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A’ITRACTORS FOR THE PENALIZED NAVIER-STOKES EQUATIONS*

B. BREFORT?, J. M. GHIDAGLIA? AND R. TEMAM?

Abstract. We consider the penalized form of the Navier-Stokes equations for a viscous incompressible
fluid where the pressure and the incompressibility equation div u =0 are suppressed and replaced by a
penalty term in the momentum conservation equation. In this article we study the existence of an attractor
for the penalized Navier-Stokes equation, this attractor describing the long-time behaviour of the solutions.
Then we let the penalty parameter tend to zero and we show how the attractors of the penalized equations
approximate the attractor of the exact equations.
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Introduction. The penalty method was introduced by Courant [5] in the context
of the calculus of variations and has developed considerably. Besides the applications
to the constrained variational problems and variational inequalities, this is now a useful
tool for numerical computations in continuum fluid and solid mechanics. In particular
its application to the Navier-Stokes equations which, as far as we know, was initiated
in Temam [13], [14] is now commonly used in some areas of computational fluid
dynamics, especially for the computations using the finite element methods in conjunc-
tion with quadrature formula (see for instance Bercovier [2], Bercovier and Engelman
[3], Oden and Kikuchi [11], Oden and Jacquotte [12]).

With the increase of the computing power we are now at the point of being able
to compute nonstationary flows; by this we mean the time periodic flows or the more
complex (turbulent) flows which do appear, even if the driving forces are time-
independent, after a Hopf bifurcation or a cascade of more complex bifurcations has
occurred (Feigenbaum cascade of bifurcations, Ruelle-Takens bifurcations towards
turbulence,... ). This new development in computational fluid dynamics-will necessi-
tate some improvement of our knowledge of the dynamics of the Navier-Stokes
equations, and the problem that we address here pertains to this question.

Our aim in this article is to study the attractors for the penalized Navier-Stokes
Equations (N.S.E.) and their convergence toward the universal attractor of the exact
equations (cf. Foias and Temam [6], Temam [18], and the references therein). We
restrict ourselves to the two-dimensional case and consider the flow in a bounded
domain 12 c R2; the N.S.E. of incompressible flows then reads

(0.1) vAu+(u. V)u +grad p =f,
Ot

(0.2) div u 0 in f x (0, T)

where u u(x, t) is the velocity vector, p p(x, t) the pressure, u > 0 is the kinematic
viscosity andf represents the volumic driving forces, for simplicity the constant density
/9 was taken equal to 1.

For the penalized equation we suppress the pressure p and the incompressibility
equation (0.2) and introduce in (0.1) a penalty term, (u/e)grad div u, e >0 the penalty
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parameters. Hence we obtain

Ou vAu+(u" V)u +=(div u)u grad div u=f(0.3)
Ot z e

We have also introduced the supplementary nonlinear term 1/2(div u)u which was
proposed in [13], [14] to make (0.3) well set.

The equations (0.1), (0.2) (or (0.3)) are supplemented by boundary and initial
conditions. For the boundary condition, two cases will be considered:

Either O is a smooth bounded domain of R2 with boundary F and we set

(0.4) u 0 on F x (0, T),

Or 12 is a square in R2, 12 (0, L)2, and the boundary condition is the space
periodicity for u and p

qg(x1, L, t) tP(Xl, 0, t),

(0.5) p(L, x2, t)= p(0, x2, t),

O<Xl,X2<L t6(O, T), q=u orp.

In this case we assume also that the average flow in 12 vanishes (cf. [6])

(0.6) 1 u(x, t) dx 0 It.

The initial condition is simply in all cases

(0.7) u(x, O) Uo(X), x 12.

This article is organized as follows. In 1 we recall the functional form of the
exact and penalized N.S.E. and the results of existence, uniqueness and regularity of
solutions in both cases ( 1.1); 1.2 contains a technical result on the penalized Stokes
problem. Section 2 is devoted to the study of the attractors of the penalized N.S.E.
(the penalization parameter e being fixed). We derive uniform estimates for various
norms of u and prove the existence of an absorbing set and a universal attractor M
for all e > 0. Then 3 deals with the convergence of the attractor . to the universal
attractor M of the exact Navier-Stokes equations when e 0. Section 3.1 provides an
appropriate result on convergence of attractors; 3.2 recalls and improves the results
of [13], [14] of convergence of the solutions u of the penalized N.S.E. to the solution
u of the exact N.S.E. Section 3.3 gives the main result of convergence of M to M.
Finally 3.4 shows how the dimension of M can be compared to that of M.

1. Survey and complements for the exact and penalized Navier-Stokes equations.
1.1. Functional setting. We denote by L2(12) the space of square integrable func-

tions on O, and by Hm(12) the Sobolev space of order m based on L2(12) (m an
integer), i.e., H"(12) is the space of functions u in L2(12) whose distribution derivatives
of order _-<m are in L2(O). We let Ho(O) denote the space of functions in HI(o)
whose trace on F vanishes and in the periodic case (0.5) Her(12) represents the space
of functions u in Hi(o) whose trace assumes the same values on corresponding points
of F. Finally we set ..2(12) L2()n, 11(O) Hi(O),, etc. , n 2. The scalar products
and norms on either L2(O) or _(12) are denoted

(1.1) (u, v)= u(x). v(x) dx, [u[ {(u, U)}1/2

The penalty parameter is written e/v instead of e as in [14]. Hence e is a nondimensional parameter.
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and on H(f) or H(fl)"

(1.2) ((u, v))= (D,u, Dv),
i=1

We have the Poincar6 inequality

Ilull {((u, u))}

(1.3) Vu E H(D) (or IH](D)),

where h > 0 is the first eigenvalue of the Laplace operator in H(f); (1.3) shows that
Ilull is a norm on H(12) (or H(fI)) which is equivalent to that of Ha(f) (or Hi(I))).

A similar remark holds in the space periodic case if we restrict ourselves to
functions satisfying (0.6)"

/_,2() {u E L2(), u satisfies (0.6)},

/_:/l(f) {u E Ha(l), u satisfies (0.6)},.

In particular we have

(1.4) VU E Her(- (or ’er(-))

where h 4rr2/L2 is the first eigenvalue of the Laplace operator in Hper(-)l (or
Her(f)). This shows that in this case too [[u[[ is a norm on /-:/er(f) (or Her())
equivalent to that of Hl(f) (or

The basic Hilbert space is H c _2(12); in the case (0,4) (cf. [15]),

H {u E 2(-), div u 0, u" .v 0 on F}

where .u is the unit outward normal on F and in the case (0.5) (cf. [16]), H is the set
of u _(12) such that div u 0 and u..u take opposite values on corresponding points
of F. We denote by A the unbounded operator in H with domain

(1.5) D(A) {u E H2(fl) f3 H(), div u 0} in the case (0.4),

(1.6) D(A)= {U E 2per(’), div u=0} in the case (0.5),

and

Au -PAu Vu E D(A),

where P is the projector in Ik2(f) onto H. The operator A is self-adjoint, >0 in H,
and A is an isomorphism from D(A) (endowed with the graph norm) onto H. Since
by Rellich’s theorem the embedding of Hl(f) into L2(f) is compact, the embedding
of D(A) in H is compact and therefore A-a is a compact self-adjoint operator in H.
Thus there exists an orthonormal basis of H consisting of eigenvectors wj ofA (or A-a),

(1.7)

Awj=Aw (for (0.4)),

Aw =afi wj (for (0.S)),

O<ha<h2, "’’, O<A’<A.,

h,hj-oo as j-> m.
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We can define the powers A of A, a R. Of particular interest are the spaces
V= D(A1/2), V’= D(A-1/2)=the dual of V, and [15], [16],

(1.8) V= {u H(12), div u =0} (for (0.4)),

(1.9) V--{uGO-[]per(),divu--O} (for (0.5)).

The space V is Hilbert for the scalar product ((u, v)).
We are givenf _2(-)2 and for u, v V or (1), we denote by B(u, v) the element

of V’ defined by

(1.10) (B(u, v), w)= f ui(Div))wdx /wE V
i,j=l d

and we set B(u)= B(u, u).
Similarly for the penalized problems the basic spaces are G _() in the case

(0.4), " 2(1)) in the case (0.5), and W=(fl) (for (0.4)) or lpr(fl) (for (0.5)). The
operator A is replaced by -A, D(-A)-- -er(-)(’] W and for u, v _1(-), we denote
by Yd(u, v) and (u, v) the elements of W’ defined by

(1.11) ((u, v), w)= f u,(Div.i)w.idx Vw W,
i,j=

(1.12) ((u, v), w)= (N(u, v), w)+ (div u)vwdx

(cf. [14], [15])

_! f, u,{(D,v)w_v.i(D,w)} dx Vw W.
2 i,j=l

We also set (u)= (u, u), Yd(u)= (u, u).
The functional form of the exact N.S.E. is then (cf. [15], [16])

du
(1.13) m+ ,Au+ B(u)= Pf in V’

dt

which we supplement with the initial condition (for initial value problems).

(1.14) u(0) Uo.

The penalized N.S.E. are written

(1.15) due vAu + (u)-v grad div u =f in W’
dt e

with an initial condition

(1.16) u(0)- Uo.

We recall that for Uo given in H (and Pf H), (1.13), (1.14) possesses a unique
solution u L:(0, T, V)f3 c([0, T]; H). In fact, [6], u is analytic from ]0, oo[ with
values in D(A) and if Uo V (instead of H), u L2oc(0, o; D(A)) fl %([0, c[; V).

We restrict ourselves to f independent of time since we consider only autonomous dynamical systems.
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For (1.15), (1.16) similar results were proved in [13], [14]; there exists a unique
solution u L2(0, T, W) f’) L([0, T]; G) for all T>0, of (1.15), (1.16). Also with the
same methods as in [6], we find that u is analytic in from (0, c) with values in
D(-A)=the domain of-A in G (=a closed subspace of H2(I))). Furthermore if
Uo W, then u is in Loc(0, ; H2()) I’ ([0, cX3[; W). We denote by S(t) the operator
UoU(t) which maps H into D(A) for t>0, and by S(t) the operator Uo u(t)
which maps _(I) into H2(f). Each of the family of operators {S(t)},>o, {S(t)},__>o
enjoys the usual semigroup properties.

The results above are valid for each e > 0 fixed. Concerning the passage to the
limit e 0 some convergence results of u to u were proved in [13], [14]. We will
recall and complete these results in 3. We now finish this section with a technical result.

1.2. Comparison of two norms. We consider mainly in this section the case of
Dirichlet boundary condition (0.4), while the space periodic case (0.5) is much easier
and will be rapidly considered at the end of this section.

We recall [15] that, for uD(A) (or even V) and gH, saying that Av=g
amounts to saying that there exists q L2(l) such that

-Av+gradq=g in

(1.17) div v =0 in l-l,

v=0 onF.

This is a Stokes problem. We can also consider a slightly more general Stokes problem

-Av+gradq=g in

(1.18) div v h in

v=0 onF.

Now g H or more generally _(1)), and for instance h /2(12). The results concerning
(1.18) can be found in [15] and will be recalled when needed.

The penalized form of (1.17) is the following [15]; given e >0 and g _:(12), we
denote by v the solution of

1
-Av --grad div v g in

E
(1.19)

v=0 onF.

It is known that if v V and Av =g H then in fact v D(A)= H:(I))f-) V and IAvl
is a norm on D(A) which is equivalent to that of H:(12). More generally for (1.18), if
g is in _(12) and h in Hl(f) then v is in H2(I), q in Hl(f) and there exists a constant

C1 depending only on 1 such that

(1.20) v <.) / Iql,<.) <-
or equivalently with another constant C:
(1.21) IAvl =.) + Igrad ql ,)-< c=(Igl_z,) / Igrad

For (1.19) the similar results are simple and follow immediately from the general
results on elliptic systems (cf. Agmon, Douglis and Nirenberg 1 ]). For fixed e > 0, if

Here and in the sequel we make q unique by imposing the condition q(x) dx O.
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g E _2(1"1) and v E H(12) satisfies (1.19) then in fact v e H2(II) and [Mv[ is a norm
on H2(12)fq H(12), equivalent to that of H2(12); here we have written

1
Mv -Av grad div v Vv E H(12).

E

Of course [1] provides only an equivalence of norms

(1.22) Ivl- Ivl.=()
with constants depending on e (besides 12). Our aim is now to show that one of the
inequalities (1.22) is valid uniformly with respect to e.

LEMMh 1.1. There exists a constant C3 <, depending only on 12 and such that if
eC3<= l

(1.23) IAvI<-GIvl Vv (a)().

Proof Let v E]2(12)(-] ]A(12) and let g Mv. Taking the scalar product with v
we obtain

1
Ilvll =+-Idiv vl2= (g, v)

Hence

1 1
1:

1
(1.24) Ilv[[/-ldivv[< Ig- Ivl=.

Now setting q (1/e)div v, we rewrite Mv g in the following manner

-Av + grad q g,

div v

Using (1.21) we then find

Iavl + [grad q[ C=(Igl + [grad h[)
or equivalently

and if

(1.25)

(1.26)

1
IAvl +-Igrad div vl -< C(]gl + Igrad div

EC2 < !
2

1
]Av[ +-]grad div v[ _-< 2C21g,1.

E

This proves (1.23) with C3 2C2. We recall that IAvl and Ivl=() are equivalent norms
on () fq

Remark 1.1. We infer also from (1.26) that

(1.27) Jgrad div vl <- ec3lsgvl.
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Remark 1.2. In the space periodic case, an inequality similar to (1.23) holds, for
every v 2per("). The proof is exactly the same as Lemma 1.1 and relies on the
analogue of (1.21), which is much easier to prove in this case by using Fourier series
expansions 16].

2. Attractors for the penalized equations. We derive in 2.1 and 2.2 a series of
uniform estimates on the solutions of the penalized N.S.E. We then introduce the
absorbing sets and their universal attractor.

2.1. Uniform estimates in L2. If u is solution of (1.15), (1.16) then, taking the
scalar product of (1.15) with u in _2(II) we obtain

1 d
12 2 u

2 dt lu + llull /-Idive u12-- (f’ u)

1
Ifl lull lfl u

ll 1
Ifl2<- ull-/2vAi

We have used the proPerty

(2.1) ((u, v), v)=0 ’u, v W

which follows easily from the second expression of in (1.12). Therefore

d u
12

1
(2.2) d---[u[2+ llull=+-Idiv u -<

(2.3) d_7[u[2 + VhllU12+_ldiv u12_< [f[2,
E

from which we infer easily that

(2.4) [u(t)12luol e-,’+lfl 1-e-

(2.5) lim ]u(t)lZ = lfl2.
t P A

Returning then to (2.2) we obtain

(2.6) v vllull+-ldivul= dsluole-,’+lfl=+ 1 e-

(2.7) lim u]lull+-ldiv
t

Let p denote the right-hand side of (2.5). It follows from (2.4) that if [uol p,
ppo, then [u(t)lp for all t>0, i.e., S(t) maps the ball of () centered at 0 of
radius p into itself:

(2.8) For any p Po the ball of G centered at 0 of radius p is invariant for the
semigroup S (t).

We note also that for p > po any trajectory eventually enters into the ball of [()
centered at 0 of radius p. The time of entrance of u(t) into this ball is uniform for
all the Uo such that
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We recall that a set c G is called an absorbing set for the semigroup S(t) if,
for every bounded set oC G, there exists to to(o) such that

S(t)qoC qg Vt>= to(o).

We then interpret the result above as follows:

(2.9) For any p >/90, the ball of G centered at 0 of radius/9 is absorbing in G for
the semigroup S(t).

The time of entrance of u in this ball, depending on ro, 6 =p-po (and the data, a, IfI), to(ro, ) can be explicitly computed from (2.4) and we have

[u(t)[<--po+6 fort>--to(ro, 6),

It+T( 1 ) (po+6) T 2(2.10) Ilull=/-Idiv

IT> O, Vt >= to(ro, 6).

2.2. Uniform estimates in H. We now take the scalar product of (1.15) withu
in _-(l-l), the operator being defined in Lemma 1.1. We find

1 d( 1
12) 122 dt Ilu

(f 3(u), Mu)

--< (Ifl +
v 1

--< ul=/-Ifl=v / I(u)11uI.

We know (cf. [6], [16]) that there exists a constant C4 depending only on fl such
that

c411’/1a11/11 ,11,
(2.11) I(,)1 --< C41,11/1111,/11,11,/=1a,1,/ v<,,n(a).
It can be proved exactly in the same manner that

{ c{lll/lal’/ll6ll + IIll II1/IA[1/},(2.12) I(,

Thus

I(u.)l I(u., u)l <-2Clu.l’/llull lau.l ’/.
We then apply (1.23) (cf. Lemma 1.1 and Remark 1.2 for the space periodic case) and
we bound this expression by

2ccg/=lul/=ll u Iul/,
and

I((u), u)l <--2ccg/=lul/=llull ]ul3/

-< (with Young Inequality)

/ C [2 4--<1.,,1+1,., I1,11,
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where C as well as the C, C,..., is a constant depending only on ,.4
Combining these estimates we arrive at

(2.13) d-- Ilull2/-Idiv u12 / lul=<2-1fl2/L-lulllull4"=
First we deduce from (2.13) that

y’ <- h + gy,

1 21fl(2.14) y= Ilull+-Idiv ulz, h

We apply the Uniform Gronwall Lemma [8] that we recall below for the convenience
of the reader and we obtain that y(t) is bounded uniformly with respect to (and e)
on to + T, +oo). More precisely

(2.15) Ilu(t)ll+Lldiv u(t)12<----pl [t>= to(ro, 6)+ T ’T>0

with (cf. (2.9) and Lemma 2.1 below)

(2.16)
2C 2 (po+ 8) T

,---s-(po/a)3, c=---Ifl, c3--+lfl=
/,, / /,, /,2A

Then we obtain from (2.13)

(2.17) I’’+r
(2.18t f ’+

T2Iu12ds<-pl(l+al)+ VT>0, Vt>=to(ro, 8),

[AuI2 ds<C{p,(l+Ol)+ Ta2} ’T>0, lt>=to(ro,).

We infer from (2.15), as in (2.8) that

(2.19) The ball of W centered at 0 of radius pl (given by (2.16)) is absorbing in
W for the semigroup S (t).

Remark 2.1. The bounds similar to (2.15), for O<-t<-to+ T, and to (2.17) for
0 -< =< to are easily derived from (2.14) using the classical Gronwall Lemma. Like in
(2.15) and (2.17) the bounds are independent on e.

Remark 2.2. We observe that in (2.8) and (2.19) the absorbing sets are independent
of e.

We conclude with the Uniform Gronwall Lemma.
LEMMA 2.1. Let g, h, y be three positive locally integrable functions on ]to, c[;

assume that y is absolutely continuous and

(2.20)
dy
< >d---=gy+h fort=to,

(2.21) g(s) ds<=al, h(s) ds<=cr2, y(s) ds<=o3 Wt>:to,

More precisely, these constants depend on the shape of 12 but not on its size, i.e., they are the same
for instance for 12 and A 12 for all A > 0, or 12 + a for all a R2.
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where T, 21, t2, t3 are positive constants. Then

(2.22) y( + T) <- (-+ a2) exp(cl) Vt >= to

Proof Assume that to -< -< s < + T. We deduce from (2.20) that

ds
y(s) exp g(-) dr -< h(s) exp g(’) d" <-_ h(s).

Then by integration between s and + T

y(+)y() (-) - + (-) - (.) d-

Integration of this last inequality with respect to s between and + T gives precisely
(2.22).

2.3. Existne 1’ th nivrsl nttretors. We denote by Co the L2-absorbing set
introduced in (2.9), i.e., the ball of G centered at 0 of radius p > po, and we consider
its w-limit set for the semigroup S"
(2.23) X f) S go,

s>--O ts

where the closures are taken in L2(1). It is easy to see that o X if and only if there
exists a sequence tm-* O and a sequence o,, of elements of Co such that

(2.24) S(t,,)qm

Exactly as in the case of the Navier-Stokes equations [6] or by application of
general results [19], we can prove the following.

THEOREM 2.1. The set X is included and bounded in H2(1), compact in fl_2(1) and
connected.

This set is a functional invariant set for the semigroup S, i.e.,

(2.25) S(t)X=X Vt>O(and thus Vt).

This set is an attractor in G and W. Its basin ofattraction is the whole space G resp. W).
It is the largest bounded attractor and the largest bounded invariant set for S.

This attractor X, is called the universal attractor for the semigroup S,. Our aim
will be, in 3, to study its convergence to the universal attractor for the Navier-Stokes
equations.

2.4. Remark on another perturbed equation. As indicated in the Introduction, the
nonlinear term 1/2(div u)u was introduced in order to have a well-set Cauchy problem
for arbitrary large data f and Uo and arbitrary e. Now since we are interested here in
small values of e, it is interesting to observe that we can also obtain global existence
for the equation

Ov___ uAv +(v V)v --V(div v) fot e

with the same initial and boundary conditions as those on u, namely (0.4) or (0.5)
and (0.7), provided e is small enough. More precisely we claim that if Vo G and

[Vo] -< R
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(where R is an arbitrary real number), then for

2R,4 2

the solution v (with v(0)= vo) exists and is unique in the spaces L:(0, T; W)t"I
cg([0, r]; G) for all T> 0. Moreover (compare to (2.4))

2If[2 a ,/2)Iv(t)]2<--IVol 2 e-a’’/2+v2a(1-e-
This inequality is proved as (2.4), but since b(v, v, v)=-a (div v){v & we
have, instead of (2.3),

2 dt lvl+ llvll=+ div vl lfl+ (div v)lv} dx.
8 A 2

The supplementary term in the right-hand side is bounded by

(div )lvl dx Nldiv v + Ivl4 dx.

Then using the interpolation inequality recalled hereafter in (3.48), we see that

( )dl12+ 1-11 I[l[

By the choice of e, (e/2)1 v t)l 2 > at time 0, and by Gronwall’s Lemma technics
it follows that this holds true for all > 0. This guarantees the existence of v(t) for
all time and provides a uniform estimate on Iv(t)l for 0 and e as above.

If we choose

R

then for every e, 0< e N 1/2R, the ball of G centered at 0 of radius R is invariant
for the semigroup (t) ((t)v0 v(t)). Moreover any ball of G centered at 0 of
radius Ro, Ro> IfI/a,, is an absorbing set for the semigroup (t) in the ball of G
centered at 0 and of radius R.

The uniform estimates in H for u (i.e., (2.15) and also (2.17), (2.18)) can also
be derived on the solutions v using similar methods. It follows then by the same
procedure that Theorem 2.1 can be extended to this case: the semigroup possesses
a universal attractor in the ball of G centered at 0 of radius R (where R is a fixed
number greater than lf/v and e satisfies 0< e N 1/2R2).

3. Caavergeaceto of the peaalty arameter. We recall a result on the convergence
of attractors (} 3.1). Then we recall some known results on the convergence of u to
u as e 0 and give some complements (} 3.2). Finally in } 3.3 we apply the results of
} 3.1 and 3.2 and establish the convergence of the universal attractor of the penalized
Navier-Stokes equations to that of the exact N.S.E.

3.1. A result oa convergence of attractors. We give a result on convergence of
attractors; for another form of this result see Foias and Temam [7]. Although the
notations are the same as in the rest of the aicle, this 3.1 is self-contained and
independent.
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We are given a Hilbert space G and a Hilbert subspace H c G and we denote by
P the projector in G onto H. We consider in H a semigroup of operators {S(t))t_o
which possesses an attractor attracting the whole space H.

We are also given a family of semigroups (S(t)),o which depends on a parameter
e, 0 < e -< Co. For each e it is assumed that S possesses an attractor which attracts
the whole space G. Furthermore the following assumptions are made:

(3.1) There exists a fixed open bounded set of G, R, which contains s and
M re, and is invariant by S(t) and S(t)P, (S(t)OR OR, S(t)POR
’t> 0).

(3.2) For every bounded set c G and every ]0,

Sup.,](I-P)S(t)u,lO as e-O.

(3.3) For every compact I c ]0, o[
Suptl [S(t)Vl- S( t)PVll <- a(Ivl- PVl[) + b(e)

uniformly with respect to Vl in a compact of G, where a(a), b(a) are
continuous increasing functions which tend to 0 as a- 0.

PROPOSITION 3.1. Under the above assumptions M converges to M as e - 0 in the
following sense:

(3.4) For every open neighborhood of g there exists el depending on t/" and for

In particular (I- P) - 0 (in the above sense) as e O.
Proof Let V() denote the a-neighborhood of ,ff in H, i.e., the union of open

balls of radius a of H centered on ,ft. It is sufficient to show that for every a, there
exists e el(a) and tl t(a) such that, for 0< e _-< el(a) and >-

(3.5) S( t)R =
Indeed the w-limit set of OR for S, to(oR) is equal to 6 and (3.5) implies that

,o() s ().
We now prove (3.5); there exists ro>0 such that (OR = )POR = Vo(S). Assuming

that a > ro, and since attracts POR, we can find t q(a) such that for >=
(3.6) S( t)POR = V/().
We use (3.2) with c OR and q/2 and we find that

(3.7) Sup (I-P)S()Uo =6(e)-0 ase0.
Uo q/ \z/

We then use (3.3) with I=[1/2tl, t], and v= S(1/2q)Ul, ul OR and we obtain (note
that S(q/2)OR is a compact of G)
(3.8) Sup ]S(t)v,-S(t)Pvl<-a(lVl-PVl)+b(e)<=a(6(e))+b(.e).

(1/2)tl t<=(3/2)t

We can find el el(a) such that a(6(e))+b(e)<-a/2 for every e<-el(a). Then (3.6),
(3.7) and (3.8) (with vl= S(1/2tl)Ul, u OR) show that

S(t)u T’(g) VUl611 /t6[tl,2tl] Ve<-el(a).
We have thus proved (3.5) for [tl, 2tl].

If (3.3) is satisfied with functions a, b which are not increasing, we can replace these functions by
Sup0=<r__< a(r), SuPo=r__<, b(r) and (3.3) will be satisfied.

to() to() since R and to (OR) M since s attracts OR.
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In order to prove (3.5) for > 2tl we write such a in the form ntl+ 7" for an
appropriate integer n and r tl, 2tl]. Then if u ,
(3.9) S(t)u S(7")S(ntl)U
Due to (3.1), S(nt)Ul6 and (3.5) (which is valid for ’[tl,2tl]) implies that
S(t)Ul V(M), if e _-< el(a).

The proposition is proved. []

This result will be applied to the Navier-Stokes equations, but before that we
study the convergence of u to u as e 0.

3.2. Convergence of the solutions of the penalized problems. It was proved in 13],
[14] that, if u(0)= u(0) H then u converges to u as e 0, in the following sense:

(3.10) uu inL2(0, T;H(f)) and ([0, T];_2(O)) VT<.

Here we will improve this result and, in view of (3.2), (3.3), consider also the case
where u (0) H.

We investigate the case where u(0)--hereafter denoted u--is fixed and belongs
to G, not necessarily to H. We use the a priori estimates of 2 which are of course
valid. We need only these estimates on a finite interval [0, T]. We infer from (2.4),
(2.6) that

(3.11) u is bounded in L(0, T; G)f-)L2(0, T; W) independently of e,

(3.12)
1

div u is bounded in L2(0, T; L2(O)) independently of e.
Ve

Then we use (2.13), (2.14) but in a slightly different manner than in 2. We infer from
(2.14) that

(3.13) (ty)’<= th+(1 + tg)y= th + y+ tgy.

Then by the classical Gronwall Lemma,

ty(t) <= sh(s) + y(s)) ds exp g(s) ds

<- r h(s) ds+ y(s) ds exp g(s) ds
o

Due to (3.11), (3.12) and the expressions of y, g, h in (2.14), we conclude that

1
12 K1(3.14) Ilu(t)ll2+-Idiv u(t) <--_ /t[0, T]

e

where K depends on the data (v,f, Ul) but not on e and t. Thus using again (2.13)
in conjunction with (1.23) we obtain

(3.15) tlu( t)l 2 dt <= K,

(3.16) tlAu t)l 2 dt <- K&

where
Then we consider (1.15), which is valid in G for almost every in [0, T] and we

project it on H. We find

d
(3.17) d---Pu- ,PAu + P(u)=
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The term involving grad div u has been annihilated by P. With (2.15), (3.14), (3.16)
we obtain

(3.18)
d
d-t(tPu) is bounded in L2(0, T; H) independently of e.

Because of (3.14), (3.16) and since P is continuous in .m(-) for all rn N (cf. [15,
Chap. I, Remark 1.6]), we have

(3.19) tPu is bounded in L2(0, T; H(I))) L(0, T; 11(12)) independently of e.

It follows from a compactness theorem in [15, Chap. III, 2] that tPu is relatively
compact in L-(0, T; Hi(I))); hence there exists a subsequence, still denoted e, which

(3.20) u u in L(0, T; []1(-)) weakly,

(3.21) tPu- tPu in La(0, T; ]1(-)) strongly,

(3.22) div u - 0 in L2(0, T; _2(fl)) strongly.

The term (I-P)u is the gradient of a function q such that (cf. [15, Chap. I, Remark
1.6])

Aq div u in f,

(3.23) cq-0 on F in the case (0.4),
Ou

q is periodic in the case (0.5).

Hence

(3.24) ](I P)uIHI, <= ]grad q]. _-< CTIdiv ul
and due to (3.12), (3.21)

(3.25) (I-P)u0 in L2(0, T; HI()),

(3.26) tu - tu in L(0, T; H1(12)) strongly.

It is clear that u belongs to L(O, T, V)f’)L(O, T’, H) (Pu--u). The passage to the
limit in (3.17) can be made by standard methods (cf. [15]) and we find at the limit
that u satisfies (1.13). We can also deduce from (3.17) and (3.11) that (d/dt)Pu is
bounded in L2(0, T; V’) independently of e. This implies that u’ L2(0, T; V’), u
c([0, T]; H) and that

(3.27) Pu(t)-u(t) ase-0weaklyin V’ /t[0, T].

In particular u(0)= Pu We conclude that u is the unique solution of (1.13) satisfying
u(O) Pul and that all the convergences above are valid for the whole sequence e - 0
and not only for a subsequence. We have thus proved the following proposition.

PROPOSITION 3.2. When e 0, the solution u of (1.15), (1.16) such that u(0)
Ul G, converges to the solution u of (1.13), (1.14) such that u (0) Uo Pul. The
convergences hold in particular in the sense (3.20), (3.25), (3.26).

If Ul G\H, ul Uo, u(O) does not converge to u(0) and a boundary layer appears
near 0. However away from 0, on a compact subset of ]0, T], one can improve
the convergence of u to u; this will be discussed hereafter.

tends to 0 such that
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Before that we observe that (1.13) possesses a regularizing property, and although
uoH, we have u(t) V for all t>0 (since fH). A classical energy inequality for
(1.13) reads (cf. [16])

(3.28) d-7 Ilull=/ vlaul<--lfl+luvv
Ilu]14

where c is an appropriate constant and after multiplication by we obtain

d
2) 12 2 2tlfl2(3.29) dS(tllu[I +vtlAu llull +

v +,uv Ilu[I 4.

Thanks to the Gronwall inequality and the fact already known that u e
L(0, T; V) L(0, T; H) we infer from (3.29) that

(3.30) u L(O, T; V) L(O, T; D(A)).

After multiplication of (1.13) by we see that

d
(3.31 d tu + vtAu + tB u u + tPf

and we conclude from (3.30) and (2.11) that

d
(3.32) dS tu) L(O, T; H) c L(O, T; ()).

Considering then the Navier-Stokes equation itself, i.e., (0.1), we see after multiplica-
tion by and utilization of (2.11), (3.30), (3.32) that

(3.33) grad (tp)e L(O, T; ()),
which implies

(3.34) tp L(O, T; H()).
We now improve the convergence of u to u. We subtract (0.1) from (0.3) and set

v u- u, q v/e div u-p. We obtain

(3.35) Ova_ vAv + (u, v)+ (v, u) +grad q =0,
Ot

and we then take the scalar product of this equation with v in [()"
1 d

(3.36)
2 at

u), v) + (grad q, v)=0.

The first term involving has disappeared due to (2.1) while the remaining term is
majorized using the following inequality:

(3.37) 1((,
This inequality is proved exactly as the similar inequality for (cf. Remark 2.2 in
16]). It implies

(with Schwarz and Young inequalities)

-2
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We have

(grad q, v) -(q, div v)

ldiv u12/ (p, div u)
E

/,’ E
-> ]div u]
2e -7

Hence

(3.38)
d

12
P 8

d--- [v + vllv[12+-ldiv8 Uel2----lPl2-bgl)[2’

2c( 12 )(3.39) g= l+--Iul Ilull =.
We are going to show that (3.38) implies the following property which will allow

us to prove (3.3):

(3.40) On every compact interval I to, T], 0 < to < T < oe, and for every R > 0,
lim_o Suplu,l__<R,,, I&(t)u.-- S(t)PUll =0.

The proof of this property relies on (3.38) and the fact that for every to> 0, we have

(3.41) lim sup I&(to)ul-S(to)PUl}=O.
e--,O lul<_ R

Indeed, let us assume for the moment that (3.41) holds true. We notice that when ul
belongs to G and lUll_-< R, we have IPul<= R and then since u(t)= S(t)PUl satisfies
the relation similar to (2.2)

lul/ llul] __< l/I---

it follows that there exists C3 depending only on R, T, f, v and f such that the norm
of g (see (3.39)) in Ll(0, T) is bounded by C3. The same holds for the norm of tp in
L2(0, T; Hl(f)) (see (3.34)) and we have

;o(3.42) Sup (t[p(t)[ + g( t)) dt <- C3 < o.
luI[_-R

We return to (3.38) which implies

d--- [v(t)l 2 exp g(s) ds <-
p

p(t)[ 2 exp g(s) ds

By integration between to and t, we find

[v(t)[-<=eC [v(to)[/ [p(s)[ds forto<-t<-T;
11 to

thus

eC3}lYe(t)[ 2 -< e c3 [V(to)[2+ vt to < < T.

Keeping in mind that v(t) S(t)Ul- S(t)PUl, we see that (3.41) and this last estimate
prove (3.40).
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We proceed to the proof of (3.41). We argue by contradiction and assume that
there exist 6 > 0 and a sequence (ej, ulj) *+ x G such that luu] =< R, e -->0 asj-> and

(3.43) ISej( to)Uj S( to)PuuI >= 3 > O.

Since Ulj is bounded in G we can extract a weakly convergent subsequence, still
denoted Ulj, such that Ulj--> u in the weak topology of G. It can be shown with the
methods used above that &j(’)Ulj and S(.)Puj converge to S(’)PuL for various
topologies. In particular it follows from (2.15) that &j(to)ulj is bounded in Hl(f) and
as in Proposition 3.2 it can be shown by compactness that &j(to)ulj converges to
S(to)PUl in the norm of G, as j . Similarly, S(to)Puj converges to S(to)PUl in the
norm of G(H) as jo. These convergences contradict (3.43) and therefore (3.41)
follows.

Remark 3.1. We have used (3.42), which is valid for the two boundary conditions
(0.4) and (0.5). In fact, in the space periodic case, it can be proved that

Sup ([p(t)l+ g(t)) dt <,
IvLl<-R

which is a stronger result and permits us to avoid the derivation of (3.34).

3.3. Convergence of the universal attractors. We now apply Proposition 3.1 to the
convergence of the penalized attractors. The spaces G, H, the semigroups S, &, will
be the same as in the rest of the article. We must verify the assumptions (3.1) and
(3.2). With (2.5), (2.8), (2.9) we see that any ball of G, centered at 0 of radius
p > po=(1/vA)lf[ contains the attractor M for all e >0, and is mapped into itself by
&(t). It is proved (see for instance [18]) exactly as for (2.5) that

1
lim lu(t)l-<lfl2

when u is any solution of (1.13) (the exact Navier-Stokes equations) and thus M is
contained in the ball of H centered at 0 of radius p. This shows that (3.1) is satisfied
if we take the ball of G centered at 0 of radius p > po.

The proof of (3.2) follows from (3.14) and (3.23), (3.24):

e
[(I-P)S(t)Ull=[(I-P)u(t)l<= CTldiv u(t)]_-< C7

It can be easily seen that K1, as well as all the bounds in the estimates (3.11)-(3.16)
depend only on r when Ul G and lUll <= r, and not explicitly on u17; (3.2) is proved.
Finally (3.3) follows readily from (3.40).

By application of Proposition 3.1 we obtain the following theorem.
THEOREM 3.1. Letd denote the universal attractorfor the penalized Navier-Stokes

equations and let M denote the universal attractorfor the exact Navier-Stokes equations
(in space dimension 2).

Then, as e-> O, M converges to M in the sense of (3.4) and in particular (I- P)M
converges to O.

3.4. Remark on the dimensions. It was proved (Foias and Temam [6]) that the
universal attractor M describing the long-time behavior of the exact N.S.E. is finite

Everything follows from (2.4), where we write lu(O)12=lul12r21
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dimensional. In the two-dimensional case ([ 17]) the fractal (and Hausdorff) dimension
of M is _-<Co(1+ G), where Co is a universal constant and G is the nondimensional
(Grashof) number

(3.44) G
v2A"

In this section we apply a general result of Constantin, Foias and Temam [4] to the
penalized N.S.E. and estimate in a similar fashion the dimension of M. We have the
following theorem.

THEOREM 3.2. Thefractal (and Hausdorff) dimension of the universal attractor M
is <-Co(1 + G + CleG2), where Co and Cl are universal constants.

The proof ofthis result is parallel to the one performed on Navier-Stokes equations
in [4], [17], [18]. We just mention here the step of the proof which provides the result
on the dimensions. For simplicity we consider the boundary condition (0.4). The space
periodic case is totally similar. For meN* we introduce a family {vi}i"=l in Hol(f)
which is orthonormal (o.n.) in _2(f). Let u be an arbitrary point in M, and {u}: u(t)=
S(t)uo, be the solution of (1.15), (1.16). We form the quantity9

{(3.45) o’,,,(Uo, {vi}, t)= Z v[lvill+v-[div viI2-’(V i, u(t), V i)
i=1 E

and we set

Sup (-o’(Uo {vi}, s)) ds.(3.46) q,, lim sup Sup
t--> +00 1AeoES o.n.in

According to [4], if there exists some mo M* such that

(3.47) q,,o> 0

then Me has a finite fractal (and Hausdorff) dimension and

(3.48) dF(M)<- mo Max (1-1ql[.
l<_l<=mo \ --q/

Our aim now is to estimate (3.45) in order to obtain (3.47) for some mo M*. We
notice that, pointwise

1 v
i)2

e
(3.49) (div vi)u.v <--(div

therefore if we set

(3.50) p(x)= Iv’(x)l=
i=1

then thanks to successive applications of the Schwarz inequality we find that

(3.51) Ib(v,,u v,)l-<-llu .lll ,l+-Idivvl + dx 101

If is a metric space, its fractal dimension (or capacity) dF() is defined as the lim sup as 0 of
the ratio N2(’)/log (l/r), where Nr() is the minimum number of balls of radius necessary to cover ’.
The fractal dimension is always greater or equal to the Hausdortt dimension, the converse being false in
general.

9This quantity occurs naturally when one considers the linearized flow around the trajectory {u(t)}
on the attractor.
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Returning to (3.45) we find that

(3.52) o’.,(t) -> Y Iv’ll =
i=1

ull 16. lu dx

We set

(3.53) fl =lim sup Sup Ilu(s)ll+l-- lu dx
t-+oo Ueo

and then according to (3.52), (3.46) yields

(3.54) qe E IIv’ll = -lo[.
i=1

We are going to use now the Lieb-Thirring inequality [9] (see also [19]) which is an
improvement ofthe classical Gagliardo-Nirenberg-Sobolev inequality (see for instance
[15, p. 291]):

(3.55)

According to the Lieb-Thirring inequality there exists a universal constant K (which
is in particular independent of m) such that1

(3.56) Ivi(x)l 2 dx K [Vv’(x)l 2 dx.

From (3.54) and (3.56), it follows that

q. ----> lpl=- tlpl >--

and since the {v} are orthonormal in _2(f),

m Ya p(x) dx <= I,1 Inl ’/:

where 1121 denotes the area of f. Hence

u m2 K
(3.57) q,> f12 m>__l.

=2K If 2u

If we define mo by

2K
(3.58) mo- 1 (--[[’[1/2fle <- mo,

then

ql <_ 1 for 1, , mo- 1
qo

and from (3.48), it follows that

(3.59) d(M)=<2 1+

o Applying (3.55) to each of the D provides (3.56) with only a constant K K(m) and K(m)o
when m oo.
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It remains to estimate/3. According to (2.5) we have, for every u ,,
(3.60) lim sup [u(t)]2 < if[___2.

t-+ /22/

and returning to (2.2) it follows by integration that

(3.61) limsup7 Ilu(t)ll =ds

Thanks to (3.55), we have

I(, t)l4 dx2lu(t)1211u(t)ll 2

and by (3.60), (3.61),

(3.62) lim sup - lug(x, S)I4 dx ds 2

Now from (3.53) and (3.61), (3.62) it follows that

Ifl e Ifl =(3.63) /3<_- -uA 11/ 16 /,’3A31/2"
With the definition (3,43) and according to (3.59) and (3.63) we deduce that

(3.64) d(C)2{l+2K(Allal)l/(G+ 1--62 eG2) }
and since A l[fl is a nondimensional constant depending only on the shape of f,
Theorem 3.2 follows in the case of homogeneous Dirichlet boundary conditions. As
we indicated above, the computations are almost identical in the space periodic case
and we omit them.
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ON THE MOTION OF VISCOUS FLUIDS IN THE PRESENCE OF
DIFFUSION*

PAOLO SECCHI-

Abstract. We consider the motion of a viscous incompressible fluid consisting of two components with
a diffusion effect obeying Fick’s law. We prove: (i) the existence for two-dimensional flows of a (unique)
global solution if the diffusion coefficient A is small; (ii) the convergence (as A O) for two- and three-
dimensional motions towards the corresponding solutions of the Navier-Stokes system for nonhomogeneous
fluids.

Key words. Navier-Stokes equations, nonlinear parabolic equations

AMS(MOS) subject classifications. 35Q10, 76R99

1. Statement of the problem and main results. Let fl be a bounded domain in R-or R3. Consider the motion in f of a viscous fluid consisting of two components, say,
satured salt water and water. Let Pl, P2 be the characteristic densities of the two
components, v(1)(t, x) and v(2)(t,x) their velocities and c(t, x), d(t, x) the mass and
volume concentration of the first fluid. The mean density of the mixture is p(t, x)=-
dp+(1-d)p2 and the mean-volume and mean-mass velocities are v(t,x)=
dv(l+(1-d)v(2, w(t,x)=cv(l+(1-c)v(. Then the equations of motions are (see
for instance Frank-Kamenestskii [3], Ignat’ev and Kuznetsov [4]):

p[ff+(w.V)w-b]-lzAw-(+l’)Vdivw=-Vzr inQr=-]O,

div v 0 in QT,

fi + div (pw) 0 in QT,

where r 7r(t, x) is the (unknown) pressure, b b(t, x) is the external force field,
and ’ (/x >0,3/z’+2/x_->0) are the viscosity coefficients which are assumed to be
constant. If the diffusion process obeys Fick’s law

Vp
p

(A > 0 is the constant diffusion coefficient), we get

(1.1)

p[+(v, v)v-b]-av-x[(v, v)vp +(vo.

+VP+-- (Vp.V)Vp---I(vp .Vp)Vp+ApVO =0
P P

,6+v. Vp-AAp=O in

div v 0 in QT,

where P r + hr. Tp h 2Ap + h (2/z +/z’)A log p is the modified pressure. In addition,
consider also the following initial and boundary conditions (n n(x) is the unit outward

* Received by the editors August 7, 1984; accepted for publication February 9, 1987.
? Universita degli Studi di Trento, Dipartimento di Matematica, 38050 Povo (Trento), Italy.
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normal to 012):

v=0 on Er--]0, T[ x 01-1,

(1.2)
Op/On =0 On’T,

v[,=o Vo(X) in 1,

P],=o po(x) in 12.

The initial density po(X) is assumed to be a positive bounded function: 0 < rn <- po(X) <-
M. In [6], [7], Kazhikhov and Smagulov study problem (1.1), (1.2) in the simplified
case obtained from (1.1) by dropping the hZ-terms. They prove the existence of a
local (in time) solution (global in the bidimensional case) under the assumption

A<
osc Po"

In 14], Smagulov and Utegenov study the asymptotic behavior as - o of the solution
of the simplified model; they also consider the problem of the behavior of the solution
as h - 0. Local existence for the complete system (i.e., with the h Z-terms), without any
condition on h, is proved by Secchi in 12] in the case 1 R3. More recently, Beiro
da Veiga [2] has studied the complete problem (1.1), (1.2) in a bounded domain of
R3. He has proved (with no assumption on A) the existence of a (unique) local solution
for every initial datum and external force field and the existence of a (unique) global
solution if, as usual, the data are sufficiently small. In the present paper we consider
the full system (1.1) and prove the existence of a (unique) global solution for the
two-dimensional problem if h//z is sufficiently small. We need to introduce this
condition in order to get the estimate of energy, necessary in our approach to obtain
the global existence. Moreover we consider the behavior of the solution as h - 0. We
prove that there exists a subsequence of solutions of (1.1), (1.2) converging towards
a solution of the corresponding Navier-Stokes equations for nonhomogeneous incom-
pressible fluids:

p[t3+(v.V)v-b]-/Av+VP=0 inQr,

5+v. Vp=0 inQ-,

divv=0 inQT,
(1.3)

v-O on,r,

vl,=o Vo(X) in l-l,

p[t:o =po(x) in.

If the domain is two-dimensional the convergence is on every finite interval [0, T]. In
the three-dimensional case, where the solution exists only in the small, the convergence
is on a short time interval independent of A. Concerning the Navier-Stokes equations
for nonhomogeneous fluids see Antoncev and Kazhikhov [1], Kazhikhov [5],
Ladyzhenskaja and Solonnikov [9]; see also Lions [10] and Simon [13]. We find the
solution to the Navier-Stokes system in the same class of solutions of Kazhikhov.

Let us denote by and (,) the norm and the scalar product in Lz(’), by lip
the norm in Lp (12), 2 < p <-_ . We use the same notation for scalar and vector spaces.
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Let Hk(f) be the usual Sobolev space and I1 its norm. Let H(f) be the closure
of C(fl) in Hl(f). We introduce the following functional spaces:

{ OP=ono’faP(x)dx=faP(x)dx} k>-2,H p e H’(I)):
On

V=-{ve C(O)" div v =0in O},

H {v e L2(f): div v 0 in 2, v. n 0 on 0f},

V={veH(f)" div v =0in f}

(see for instance [8], [11], [15] for their properties). H and V are the closures of V
in L2(O) and H(f), respectively. Moreover L2(1)) =H@G, where G=
{Vp" p e Hl(f)}. Denoting by Pn the orthogonal projection of L2(O) onto H, we define
the operator A-=--PHA on D(A)=-H2(f)f3 V. We have

(Au, v) , (Diuj, Divj) Vu e D(A), v e V
i,j

where Di means O/Oxi. The norms tl011=, IIoll are equivalent in H, [[0[[3, IIVApll are
equivalent in H and Ilvll=, IIAvll are equivalent in D(A). We define
Y .j (Divg, Dvj); the norms v I1, v are equivalent in V. If X is a Banach space,
L2(0, T; X) will be the Banach space of X-valued measurable functions in L2(0, T),
and C(0, T; X) will be the Banach space of X-valued continuous functions on [0, T].
We set L:(Qr) --- L2(0, T; L2(f)), Hi(0, T; L(12))=-{re L(Qr) with t e L2(Qr)}. In
the sequel C will denote different constants depending at most on 12 and m, M,
Other constants will be indicated by Co, C, C, .. We prove the following results.

THEOREM A. Let 1 be an open bounded set in 2 with boundary 012 of class C
Suppose Vo e V, poe H% such that 0 < m <- po(X) <- M in 11, b e L(Qr). Then there exists

Ao > 0 depending on 12, m, M such that, if A //x < )to, problem (1.1), (1.2) is uniquely
solvable in Qr. Moreover v e L(O, T; H:(12)) f’l C(O, T; V), i e LZ(O, T; H), p
L2(O, T; H3) C(O, T; H), ti e L2(0, T; H1(1))) and m<=p(t,x)<=M, VPeLZ(Qr).

DEFXNTON. We shall say that (v, p, VP) is a generalized solution of (1.3) if:
(i) ve L2(0, T; H2(f)) fq Hi(0, T; L2(f)), pe L(QT.), VPe L(Qr);
(ii) (1.3)1, (1.3)3-(1.3)5 are satisfied in the usual strong sense and (1.3)2, (1.3)6

are satisfied in the following weak sense:

(1.4)
r

(p, (o + V" Vgo) dt +(po, g0(0, "))=0

for any go e HI(QT) such that go( T, x) 0.
THEOREM B. Let 11 be an open bounded set in Nn, n 2 or 3, with Ofl of class C3.

Assume Vo e V, po eH such that 0 < m <- po(x) <-- M, in 11, b e L2(QTo). Then there exist
r e (0, To] (independent ofA and a subsequence of {(vx, pX, VP)} converging on [0, r]
in the topology indicated in (3.12), (3.13) to a generalized solution (v, p, VP) of (1.3).
The function p satisfies m <- p( t, x) <- M a.e. in QT. If n 2, r To.

Remark. It is not known if generalized solutions of (1.3) are unique. In [9],
Ladyzhenskaja and Solonnikov show the existence of a solution of (1.3) v e
Lq(O, T; Wq(f))f-I Wlq(0, T; Lq(o)), VPe Lq(IT), q> n (n =2, 3), pe CI((T), pro-
vided that roe Wq-/q(l)), poe cl(fi), be Lq(Qr). Here r is sufficiently small in n 3,
arbitrary if n 2. In this class of functions the uniqueness theorem holds. It is also
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possible to prove that these smoother solutions (if the data are regular enough so that
they exist) necessarily coincide with the generalized solutions. Hence, if the data are
smooth enough, the uniqueness theorem holds also for generalized solutions. This
implies the convergence ofthe whole sequence {(va, pa, VP )} to the solution (v, p, VP).

2. Proof of Theorem A. Let (v, p, VP) be a solution to problem (1.1), (1.2). We
want to find some global a priori estimate for it. In view of the study of the next section
(the convergence as A - 0), we shall explicitly point out every dependence on A, also
if, for the aim of this section, A is considered fixed. We start with the estimates for
the density. From (1.1)2 and (1.1)3, (1"2)1, (1.2)2 one has d/dt p dx 0; hence

p dx po dx. From the diffusion equation (1.1)2, we have by the maximum prin-
ciple

(2.1) 0 < m <-_ p(t, x) <= M, (t, x) QT,

for any A > 0. Multiply (1.1)2 by -AAp and integrate over 12. Then, by integrating by
parts and using (1.1)3, (1.2)1, (1.2)2, we obtain

(2.2)
Ad

dtllvpllZ+zZllapll=+z((vp.__ v),
2

Using (2.1) and the interpolation inequality

(2.3) I’pl] -< ColIAp IPI,
where Co is a positive constant depending on 11, we easily obtain

(2.4)
A d CM2

2 dt
IIvplI=/x=IiApII=<-’A=[IApII=/

where el is a small positive parameter. From (1.1)1 and (1.1)2 we have, after suitable
integrations by parts,

(2.5)

1 d

2 dt

-(-[(vo. v)vo--L(vp vo)vo +AoVo], v).p

On the other hand, by integrating by parts, we have

(-(7p XT)Tp, v) v + (vp. V)v, Vp lvplZvp, v

Then (2.5) becomes

(2.6)
d

2 dt
---(pv, v)+/x ]]vll2v (pb, v)-A((v. 7)v, 7p)+(A-(Vp. V)v, 7p).

Set Co=(M+m)/2 so that Ip(t, x)- col <-- (M- m)/2. We have

l((v. v)v, Vp)l l((v. v)v, v(o- Co))l

A I.. (D,, D(p Co))
Mm

2
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Moreover, by using (2.1), (2.3) and introducing a small parameter e2,

Then (2.6) gives

1 d M-m CoM .2(2.7)-(pv, v)+llvll<-(pb, v)+
2 A+4e2m2a

Now we have to balance (2.4) and (2.7) in a suitable way. We can proceed in the
following way" We add (2.7) to (2.4) multiplied by a /2CM and set e 1/4,
e2 a/4. Then there exists Ao> 0 suciently small depending on m, M, Co such that
if Z/ < Ao we have

1 d
d[(pv, v)+ xllVPllq+Z=llaPll=+llvll(Pb’2 4

v).

By Gronwall’s lemma and (2.1), after some calculation, we get for any

(2.8) v (O.T;.)+ ’/=IlVP (0.T;=(,))+ X IIAP (O) +

Now we shall prove a priori estimates for higher norms. From (1.1); and (1.2), we have

a o1= o -(o, (o, (v. o
Integrating by pas and using (1.1) and (1.2), we obtain

i,j,k

Then we have

(2.9) llall+ x311vaoll= x((vao v)v, vo)-x Z (Dv,, OO,pDOp).
i,j,k

Using (2.3) and the interpolation inequality

we obtain

eo e C
E0

where eo and e are small positive parameters (say less than 1). On the other hand, by
using the inequalities

W

we have (since ub e/2 (C/e)b)

(2.10) X 2 Y (Djv,, DD,pDDjp)
i,j,k

We thus obtain

(2.11)

E0 2 E/3 +___C ilvllL-IIAvll + IlVZXpll 084
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Now we turn to the estimate for the velocity. We obtain it by following the method
used in [2]. If we take the projection P/ of (1.1)1, we obtain

(2.12) PH(pf) IXAv F

where for the sake of brevity

Pn{-p(v" V)v+pb+A[(v. V)Vp + (Vp. V)v]F-

(Vp V)Vp ----(Vp Vp)Vp + ApVp
p p

In H take the inner product of (2.12) with f+(mix/4ME)Av. Since

1 d

we obtain

Ix d mix
2

mix mixm[[[12+--llv[I ’+L4M2 I}avll:<-I[FI]llll +4M211Fl[]lav]] +-
from which we easily obtain

(2.13) [Ivll,/ mllllZ/- Ilevll=<= +2 IIFll2"

We have only to estimate the norm of F in L2(O). By using H61der’s inequality and
suitable interpolation inequalities, we obtain

+ cAnIIAp IIVApIi/=+ cAalIApII4+ Cilbll =.
After some calculation we then get from (2.13) the following estimate:

(2.14)

d m mixd-llvll+--IIll=+ Ilmvll=< =
tx 4M e[IAvll + eA IIVAII

+ c + (+ I111)1111+ c + 411zxll+ Cllbll.
Finally, adding (2.11) to (2.14) divided by 2, we have

1 d

2 dt
m mix--[11 vllv + A=11 =3+- 11=+-liAr = + AllVp =

- eoll av I1 + AalIVap 11 +(1+ v I1) v 4v+ 4 Ilap 4 + c b i1.
EOE EoE

By taking eo and e sufficiently small, we thus obtain

(2.15)

d

-< C[(1 + 11=)11 vll,+ A=IIAp II]EII 11,+ AIIAplI] + CIIbll =.
By (2.8) the function (1 + Ilvll=)llvll%+ A=llapll - belongs to L’(0, T). This gives, for any
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h < ho/Z, the following estimate:

+ A /211vap :<o> K, (11 roll v + IlVpoll
(2.16)

Y*/=b[lo) [][Voll llPol[
where K is an increasing function of its argument depending also on m, M, , .
Finally, directly from (1.1), we can obtain VP L(Qr), and from (1.1) we can obtain
E L2(0, T; H()). By using these estimates, it is possible to prove the existence in

the large of a solution of (1.1), (1.2). For example, one can follow (with obvious
modifications) the continuity method employed in [2]. Also the uniqueness can be
proved as in [2].

Remark. If b L(0, +; L(O)) L(0, +; L(O)) it is possible to get the
existence of the solution on the whole interval [0, +). The assumption b
LI(0, +; L2()) is necessary to obtain the estimate (2.8) for T=+, with on the
right cEIIvoll IlVpoll Ilbll,o,+;=]. Analogously, also (2.16) will be true for T=
+, with on the right

K(ll roll llVpoll bll ,o,;=)" [llvoll IIpoll b <o,+;=].
These estimates permit to extend the solution from every bounded interval [0, T] to
the whole interval [0, +).

3. Proof of Theorem B. Let us now consider the problem of the behavior of the
solution to problem (1.1), (1.2) as A 0. For the passage to the limit we need suitable
estimates not depending on Z. We already proved these estimates in 2 for the
bidimensional case. Now, we shall prove them for the three-dimensional case. Let us

denote by (va, p*, VPX) the solution of (1.1), (1.2) (existence and uniqueness of this
solution is proved in [2]). This solution exists in a shoa interval which is, a priori,
dependent on A. We shall see that one can find an interval not depending on A; the
convergence will be proved in this time interval. Assume 0 < A A with A > arbitrary.
We proceed as in 2. From the diffusion equation we obtain

(3.1) O<mp*(t,x)M, (t,x) QT,

for any A > 0. As in the bidimensional case we obtain (the analogue of (2.4)):

(3.2)
A d A 2

(observe that (2.3) is valid also for three-dimensional domains). From (2.9), by using
(3.1) and the following interpolation inequalities

(3.3)

(3.4)
(3.5)
we get

(3.6)
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where e is a small parameter. Finally, consider the estimate (2.13), where instead of
v and F we write vA and FA. By using (3.1), (3.3)-(3.5) and the Sobolev embedding
theorem HI L6, we have

+ CA 4llvAp 114/ IlAp + c b =.
From this estimate we obtain (for e > 0 small), after some calculation,

d a 2 2dllll+cll +clIAII
(3.7)

where the constants C in the third and in the fouh term of the right side depend
also on A1. Thus, from (3.6) and (3.7), it is possible to obtain the following estimate:

d
d[ + A =llAp * =] + c #* = + (C 3 e )liAr* 2 + A 31IvApx =

(3.8)
EIl* I1+ A =lIAR * I1=3 + c b =.
E

Let e be such that C 3e > 0. Then there exist T’ e (0, To] and a constant C1 depending
only on m, M, , , I1o11, A,IIPoll and Ilbll=o uch that

+ liar =<, C,,

for any 0 < A < A1. From (3.2) we see that there exists a constant C2, depending on
the data of the problem as C1, such that

(3.10) A 1/2llvpx c<o,,;,--< c2

for any 0 < A <: A 1" Directly from (1.1)1 we obtain

(3.11) [[vP I1o, < C

where C is a positive constant depending on the data as C

The convergence as k-> 0. From now on we treat both the two-dimensional and
the three-dimensional cases together. Let T be arbitrary in the plane case and T- T’
in the spatial case. Since {vA} is bounded in L2(0, T; H2(12))CI HI(0, T; L2(12)), it is
bounded by interpolation in C(0, T; HI(I))) f’) H1/2+(0, T; HI-(I)); hence from the
Ascoli-Arzelfi theorem it is compact in C(0, T; HI-(I))). Then there exists a sub-
sequence, that we continue to denote by {v}, and a function v such that

v -- v in C(0, T; HI-(I))),
(3.12)

v v in L2(0, T; H2(I))) and in Hi(0, T; L2(I))).

From (2.1), (3.1) and the estimates on the pressures P, we find two subsequences,
again denoted by {pA}, {P}, and two functions p, P such that
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First we pass to the limit in (1.1)2, where instead of (v, p, VP) we consider (v, p, VP).
Take p H (QT-) with # T, x) 0. Then

O= (,6 ’ +v. Vp -AAp, ) dt

(p, +v. V) dt+A (Vp,V) dt-(po, (0,.));

using the strong convergence of v and the weak-, convergence of p, estimates (2.8)
and (3.10), one can pass to the limit as A 0 in the right-hand side of this equation
obtaining (1.4). Consider now (1.1). By (1.1)2 and some integrations by pas we
obtain, for any m C(Qr),

(o +o"(v. lv, ) =- (o"v", ) t- (o"(v"., v"l t
o

(3.14)
+ ((o" v", +a ((o"., v") .

o

By (2.8), (2.16), (3.9) and (3.10) the last two terms can be estimated by

going to zero as A 0. By using the strong convergence vA and the weak-, convergence
of pA, we can pass to the limit in the other terms of (3.14) obtaining

Io’ Io Io(p +p(v. v)v, ) dt- (pv, ) dr- (p(v. V), v) dt

for any C(Qr). Consider now v. ; then H(Qr), (T, x) (0, x) 0.
By (1.4) we have

f’ Ior fo
T

(vv, d) at- (v(v" v), v) at (v+v(v" v)v, ) at.
o

The convergence of I (p*b+Av*-VP, )dt to the corresponding expression is
direct. Consider the first term in X in (1.1)1. We have, by integration by pas and (3.10),

((v".o", 4 a ((v". 4,o"

1/21] VpA < C4A 1/2

going to zero as A 0. Concerning the second term in A :, we have, by using (3.4) and
(3.9),

f T ( la )(VPA . VpX)Vp, ) dt A/2C
M2 3/2 A < 1/2

o (p m
=llll=)A IIVp I1=)=c

which goes to zero as A 0. Also the other terms in A, A2 go to zero as A 0, as one
can see with a direct calculation. Thus at the limit we obtain

’r(p6+p(v. V)v-pb-Av+VP, ) dt=O
o
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for any b 6 C(Qr). This gives (1.3)1. (1.3)3 and the initial and boundary conditions
(1.3)4, (1.3)5 are easily checked. The boundary condition (1.2)2 on pa is lost.
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THE EQUATIONS OF
ONE-DIMENSIONAL UNSTEADY FLAME PROPAGATION:

EXISTENCE AND UNIQUENESS*

B. LARROUTUROUf

Abstract. This paper deals with the mathematical analysis of a system of partial differential equations
describing the time-dependent propagation of a planar flame front within the framework of the well-known
isobaric approximation of slow combustion. The problem to be investigated takes the form of a nonlinear
mixed initial-boundary value problem in an infinite one-dimensional domain. We show the existence and
uniqueness of weak and classical solutions of this problem, depending on the assumptions on the initial
data and on the nonlinear temperature dependence of the chemical reaction rates. The crucial point lies in
the introduction of a Lagrangian space coordinate, which uncouples the reaction-diffusion equations for
the combustion variables from the remaining hydrodynamical subsystem. The analysis then uses some
classical arguments of functional analysis, such as the application of the theory of linear semigroups to
nonlinear partial differential equations.

Key words, partial differential equations, combustion

AMS(MOS) subject classifications. 35Q20, 76N10, 80A25

1. Introduction. The mathematical analysis of systems of ordinary or partial
differential equations arising from the theory of gaseous combustion has received
increasing attention in recent years" one can mention for instance several studies of
the equations of the stationary planar flame (see [2], [8]) or of the two-dimensional
zero Mach number model (see [6]), and in a different domain some mathematical
works dealing with the existence and the asymptotic behaviour of the solutions of the
Kuramoto-Sivashinsky equation for the flame front instabilities (see 1 ], [9]).

We present in this paper a new rigorous mathematical result which concerns the
time-dependent one-dimensional flame propagation. More precisely, we consider the
governing equations of an unsteady planar flame propagating in an infinite channel.
These equations, which we recall in 2, are written using the classical isobaric approxi-
mation for reacting flows in open domains (we first consider a simplified one-step
chemical mechanism; the extension to chemically complex flames or to nonadiabatic
flames is given at the end of the paper). With appropriate hypotheses on the initial
data and on the temperature dependence of the reaction rate, we show the global
existence and the uniqueness of both weak and classical solutions of the resulting
initial-boundary value problem.

The crucial point in our analysis (and in fact the point which restricts our work
to the one-dimensional case) lies in the introduction of a Lagrangian space coordinate.
This change of coordinates has the effect of decoupling the reaction-diffusion equations
for the combustion variables (temperature and mass fraction of the reactant) from the
remaining equations for the hydrodynamical variables (density, velocity and pressure).
The reactive diffusive system involving the temperature and the mass fraction takes
the form of two coupled nonlinear heat equations and is known as the thermodiffusive
model for the flame propagation. This parabolic system of partial differential equations
is solved in a first step, using classical tools Of nonlinear functional analysis such as
semigroups generated by linear operators in functional spaces. The remaining subsystem
for the hydrodynamical unknowns is then solved in a second step, the temperature

* Received by the editors August 15, 1986; accepted for publication November 3, 1986.
Institut de Recherche d’lnformatique et d’Automatique, Sophia-Antipolis, 06560 Valbonne, France.
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being considered given. This provides the existence and uniqueness of solutions of the
Lagrangian system. In particular, the analysis shows that no initial data for the
hydrodynamical variables need be given for the initial-boundary value problem to be
well posed.

Owing to the strong regularizing effect of the heat equation, even a weak solution
of the Lagrangian system is continuous. It is then straightforward to come back to the
usual Eulerian coordinates, and to prove that similar existence and uniqueness results
hold for the original Eulerian system of governing equations.

The paper is organized as follows: (1) Introduction; (2) Governing equations of
the flame propagation; .(3) Assumptions and main results; (4) Recalling some basic
results from semigroup theory; (5) Existence and uniqueness for the combustion
variables; (6) Existence and uniqueness for the hydrodynamical variables; (7) Back
transformation to the Eulerian variables; (8) Extension to chemically complex flames.

2. Governing equations of the flame propagation.
2.1. Reactive flow equations in one dimension. We are interested in the description

of a compressible heat-conducting chemically reacting gaseous mixture with the
assumption of a one-dimensional geometry. For the sake of simplicity, we first assume
a one-step chemical mechanism nA- nB: the mixture is considered to be made of
only two species, the reactant A and the product B. The extension to the case of a
chemically complex flame will be investigated in 8 below.

The reactive gas flow is then described with the usual variables p, u, P, T (denoting
respectively the total density, velocity, pressure and temperature of the mixture) and
an additional variable for the mixture composition, the mass fraction Y of the reactant
A (pY is the separate density of the reactant and p(1 Y) is the density of the product).
The time-dependent flow of this reactive mixture is then described by the following
set of equations (see [5], [7], [14]):

p+(pu)=O,

pu + puu -P,
(2.1) pcpT. + pucpT (AT) Q( Y, T) + P. + uP,

pY. + puY-(pDY) -rmo( Y, r),

mP
pT- R’

where sc and r denote respectively the space and time variables; cp is the specific heat
at constant pressure of the mixture, A the heat conductivity, D the diffusion coefficient
of the reactant A, m its molecular mass and R is the universal gas constant. The effects
of viscosity and gravity are neglected. Lastly, Q(>0) is the amount of energy released
by the exothermic chemical reaction per unit mass of the reactant, and oJ( Y, T) is the
rate at which this reaction proceeds. From the Arrhenius law and the law of mass
action, this reaction rate is given by"

(. o(g, r (r e-/

where E is the activation energy of the reaction (a constant), and B(T) is some given
function of T (which usually has a polynomial-type dependence on T).

2.2. Eulerian form of the flame propagation equations. For writing down the
governing equations of the unsteady flame propagation, we will use the so-called
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"classical approximation of combustion"" the flame propagation is essentially a very
subsonic, almost isobaric phenomenon. In other words, the Mach number M of the
flow is very small and consequently the pressure variations are also small: P(s, r)=
Po+p(, "r), with P/Po O(M2) << 1. For this reason, we may set P Po= Constant
everywhere except in the momentum equation (2.1b) (see [5], [7] for a more detailed
discussion of this approximation). The system (2.1) then reduces to

p+(pu)=O,

(2.3)
pcpT.,. + pucpTg (A Tg)g Oo( Y, T),

pY + puY-(pDYe) -mo( Y, T),

mPopT- R’

(2.4) pu + puue -pe.

Some authors use the system (2.3) alone, replacing the momentum equation (2.4)
by P-- Po (see [14]). This is legitimate in one spatial dimension since the only role of
the relation (2.4) is the calculation of the small pressure variation p. But this sim-
plification is no more valid when the space dimension N is higher than one, since it
eliminates N scalar momentum equations and only one variable/9. For this reason we
will mainly consider the full system (2.3), (2.4).

The flame propagation equations (2.3), (2.4) will be investigated with the following
upstream and downstream boundary conditions:

(2.5) Y(-oo, t)= Y,, r(-oo, t)= T,, u(-oo, t)= u, p(-oo, t)= 0

(where Y, > 0, T > 0, u R are given constants) in the fresh mixture, and:

(2.6) Y(+, t)= 0, T(+oo, t)= T T, +Q Y",
cpm

in the burnt gases.

2.3. Lagrangian form of the governing equations. From now on we will assume
that the Lewis number Le ,/pq,D and the specific heat cp are constant. We will also
assume that the thermal conductivity ofthe mixture h is proportional to the temperature
T; this additional assumption will be discussed below, after the derivation of the
Lagrangian equations.

We now derive an alternate formulation of the governing equations (2.3), (2.4)
using the usual mass-weighted Lagrangian coordinate:

(x,t)

(2.7) x= p(:’, t) d:’.
f(o,t)

Although the use of this transformation is classical, we detail the calculation for sake
of completeness. Let us define a Lagrangian coordinate (i.e. a variable whose value,
defined at time z 0, remains constant during the flow for each fluid particle) by setting:

x p(:’, 0) d’.

We also set r. Then x(se, r) represents the Lagrangian coordinate of the panicle
which is located at the abscissa sc at time r and the last relation is to be read as



ONE-DIMENSIONAL UNSTEADY FLAME PROPAGATION 35

X(:, 0) Jo p(:’, 0) d’. Inversely, :(x, t) is the position at time of the fluid particle
whose Lagrangian coordinate is x. Therefore we have, by definition"

s‘ u or --:(x, t)= u[((x, t), t].
Ot

We can then write:

p(’, t) d’ =(x, t)p[(x, t), t]- (o, t)p[(o, t), t]

(,t) Op
+ t) ’
(Ou)[(a t), t]-(Ou)[(O, t), t]

Op+ t) ’
whence:

(x,t) f (x,O)

O(’, t) d’= p(’, O) d’= x,
(o,t) . (o,o)

which is exactly (2.7).
Differentiating (2.7) with respect to x gives:

a 1
l=p:x or --:(x,t)=ox p[(x,t),t]

We then have in matrix form (writing simply u(x, t) for u[(x, t), t])"

which implies:

(xTx i) (o ),

Remark 2.1. The mass balance equation (2.3a) has been crucial for introducing
the new variable x. This amounts to noticing that a variable X satisfying X p,
X =-pu (i.e. (2.8)) could have been introduced directly, since (2.3a) insures that
(a/a-)(x) (a/a)(x).

We can now derive the Lagrangian form of the flame propagation equations. For
any quantity F we have F Ft-puFx, F pF, and the system (2.3), (2.4) becomes

Pt q- p2 tl 0,

ut +p O,

(2.9) Tt
Q to 1

--+--(ApTx),,
Cpp Cp

Yt -m--+(p2Dy,)x,
P

mPopT-
R
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To nondimensionalize these equations, we refer the mass fraction to Yo Yu, the
temperature to To-Tb--Tu=(Q/cp)(Yu/m), the density to po-mPo/RTo. Denoting
(hp)o the constant value of hp =(mPo/R)(A/T), we relate the time unit to and the
"Lagrangian unit" Xo by: xg to(hP)o/cv. The velocity is then referred to Uo Xo/poto

2and the pressure variation to Po-poUo.
Setting O T- Tu and denoting by , Y, p, u,/ the nondimensionalized variables,

we obtain the following expressions for the Lagrangian equations (2.9) and boundary
conditions (2.5), (2.6)"

(2.10) O, Oxx +O(Y, (R)), Y =eeY (, O),

(2.11) +a)=l, u=Ot, ut+x=O,

6(-, t) =0, 6(+, t) 1,

(2.12) (-, t)= 1, (+, t)=0,

(-, t)= o, (-, t)=0,

where x and now represent the nondimensionalized Lagrangian coordjnates,
a= Tu/(Tb-Tu) is a nondimensional heat release parameter, and (Y,@)=
(Q/cp)(R/mPo)to(to/) is the normalized reaction rate. In the sequel, we will assume
using (2.2) that 1 is given by"

a( Y, 6)= Y"f(@),

where f is a positive continuous function satisfying f(0)= 0.
Remark 2.2. The assumption f(0)--0 is not fulfilled in view of the expression

(2.2) of the reaction rate to since e-/RT. # O. This is the well-known "cold boundary
difficulty," on which a lot has already been said (see [5]). Let us just point out that
this hypothesis is necessary for the mathematical problem (2.10), (2.12) to be well posed.

It should be emphasized here that the use of the L,agr,angian coordinate (2.7)
uncouples the equations (2.10) for the combustion field (@, Y) (which take the form
of a purely diffusive reaction system) from the equations (2.11) for the hydrodynamical
variables (fi, ,/3). Moreover, the form of these hydrodynamical equations leads one
to think that no initial data for the density, velocity or pressure is needed to determine
the profiles of these variables at positive time values" these hydrodynamical profiles
fi(., t), t(., t),/3(., t) for t> 0 only depend on the temperature profiles )(., t’) for
t’=> 0; we first have to study the nonlinear parabolic system (2.10), and (2.11) will be
investigated in a second step.

Remark 2.3. The assumption )tp- Constant, or A/T-Constant only affects the
expression of the diffusive terms in the .temperatureand mass fraction equations" these
terms take the form @xx and (1/Le)Yxx instead of [(hp)T] and (1/Le)[(Ap)Y]
where, in complete generality, hp is a function of T and Y. Nevertheless, it can be
noticed that this hypothesis (which is rather classical in combustion theory, see [11])
does not change the preceding remarks about the nature of the Lagrangian system
(2.10), (2.11). We hope to extend our mathematical analysis to the case of a nonconstant
h/T ratio in a forthcoming paper.

Remark 2.4. In the classical nondimensionalization of the Eulerian equations
(2.3), (2.4) (see [5], [7]), the length and time scales :o and Zo to are related to the
thermal diffusion coefficient (h / pCp)o (hp)o/pgCp and to the velocity unit Uo by the
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identities"

o (*p)o o
ro poCp and Uo to"

In our case, the units used above to nondimensionalize the equations (2.9) have
essentially been chosen in order to simplify the Lagrangian system (2.10), (2.11), which
will play a crucial role in the sequel. Therefore, these units are not quite usual, and
the above relations are replaced by:

fi(, 0)d and Uo fi(, 0) d,
ro pgc o

sine o Io, 0) de’= poo ’o, 0) d
3. Assumptions and main results.
3.1. Statement of the problem. The aim of this paper is to investigate the following

version of (2.10)-(2.12):

o,-ox ( Y, o) Y"f(o),

YxY, (Y, o),
Le

(3.1) ((R)+a)p= 1,

u, 19t for x e R, e R+,

(3.2)

(3.3)

O(x, 0) Oo(x),

0(--00, t) 0,

Y(-00, t)= 1,

u(-00, t)= u,
ut + Px :0,

Y(x, O): Yo(x),

Y(+00, t) 0,

p(-00, t) 0.

We will also study the corresponding normalized Eulerian formulation in conserva-
tive form:

p+(pu)=o,

(pu) + (pu) +p 0,

(pO).+(puO)--(-) p(Y, O),
(3.4)

-p,.Q,( Y,(pY) + (puY) ee
(O+ a)p 1 for x , t+,
O(x, 0)= @o(X), Y(x, O)= Yo(x),

19(-oo, t)=0, 0(+00, t)= 1,

(3.5) Y(-00, t) 1, Y(+00, t)=O,

u(-00, t)= u, p(-00, t)=0.
It can be noticed here that initial data are prescribed only for the temperature

and mass fraction (19, Y) and not for the hydrodynamical unknowns (p, u, p).
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For the investigation of these two problems, we will mainly focus on two types
of solutions, which we define precisely below.

DEFINITION 3.1. (O, Y, p, u, p) is a weak solution of problem (3.1)-(3.3) if the
three following properties hold:

(1) (O, Y,p, u,p)E[Loc(RR+)] and (O, Y,p, u,p) is a solution of (3.1)-(3.3a)
in the sense of the distributions"

[-on, +on-n] I Oon(., 0),

[(+)Pn- n] =,
xR+

[un-on,]= IOon(., o),

j -[u,+px]=fu(.,O)(.,O) for any r/E D(R x +).
lxl+

(2) The boundary conditions (3.2) hold in the classical sense for > 0 and (3.3b)
holds in the following weak sense:

(3.6) Vt>0, ::lplL=(), lim [p(x, t)-pl(x)]=O.

(3) The following inequalities (which are necessary from a physical standpoint)
hold:

O(x, t)>=O, 0 <- Y(x, t)<_-I a.e. onxE+.
Moreover, O Lc(+, L()).
DEFINITION 3.2. A weak solution (0, Y, p, u, p) of problem (3.1)-(3.3) is a smooth

solution if and only if:
(1) All the functions and all the partial derivatives appearing in the equations

(3.1) and (3.3a) are continuous with respect to both variables x and on R x/;
(2) The boundary conditions (3.2) and (3.3b) are fulfilled in the classical sense

for t>=0.
Similar definitions hold for the solutions of (3.4), (3.5).

3.2. Assumptions and notation. Before stating the main hypotheses which will be
used for investigating the two above problems, we need to introduce two functions
and 71 of C(R) satisfying

3’=0 on(-,-1], 0_-<3,-_<1 on[-1,1],
(3.7)

3,1=1-7.

We will set:

(3.8) Co(X) Oo(x)- r(x), g,o(X) Yo(x)- ,,(x).



ONE-DIMENSIONAL UNSTEADY FLAME PROPAGATION 39

The following assumptions will be used in the theorems stated below"

qo L(It) f3 LI(I), 6o L(i) 71L’(I);

(3.9)

Oo e L(R), Oo(x) -> 0 a.e.,

Yo(X) [0, 1] a.e.,

Le>0 and n N* are given,

fC(R+,+), f(0) 0,

VO > O, fis Lipschitz-continuous on [0, 0].

Moreover, we will sometimes need some of the following more technical
hypotheses:

(3.10) ::1Cf > 0, vo+, If(o)l<=Glol,

(3.1 1) Po e H(I), o E H2(ll),

fG cl(+, +),

1 If’(O)l1- O <+oo,(3.12)
:!/3 > , o-,o

3
(3.13) :1/z > -’ xa_sup Oo(x)lxl < +,

(3.14) qo n4(), @o E n4([),

(3.15)
f C2(+, R+),

’0 > O, fx, is Lipschitz-continuous on [0, 0].

From now on, we will denote LP=LP(), for poll, +), and I111= I111 or
I1(, )11 max (11 , ,). Furthermore, for m e *, we set H" H ()
wm’().

3.3. Results concerning the Lagrangian formulation. The first of our theorems deals
with the problem (3.1), (3.2) without the pressure variable.

THEOREM 3.3. Assume that the hypotheses (3.9) and (3.10) hold. Then there exists
a unique weak solution (0, Y, p, u) of (3.1), (3.2) in x+ satisfying:

(3.16) O- y, Y- y 6 C(l+, L2).

Furthermore, this solution satisfies:

(R), Y, p e C(l+, L) CI C(I*+, C(I)),

(3.17) (R)-% Y-1 ( cl([*+, L),

u C(l*+, C(l) CI L).

Concerning the complete system (3.1)-(3.3), we have the following two results.
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THEOREM 3.4. Assume that the hypotheses (3.9)-(3.13) hold. Then there exists a
unique weaksolution (19, Y, p, u, p) of (3.1)-(3.3) in R xR+ satisfying (3.16). Moreover
this solution satisfies (3.17).

THEOREM 3.5. Assume that all the hypotheses (3.9) to (3.15) hold. Then there exists
a unique smooth solution of (3.1)-(3.3) in ff x +. This solution satisfies:

19, Y, p 6 C(R+, C3())f) C’(+, C()),
(3.18)

u c(+, c()) q c(+, c()).

These three theorems will be proved in 5 and 6 below.

3.4. Results concerning the Eulerian formulation. Analogous results hold for the
Eulerian problem (3.4), (3.5).

THEOREM 3.6. Assume that the hypotheses (3.9)-(3.13) hold. Then there exists a
unique weak solution (19, Y, p, u, p) of (3.4), (3.5) in+ satisfying (3.16) and:

u, p C( x +, ).

Moreover, this solution satisfies (3.17).
THEOREM 3.7. Assume that all the hypotheses (3.9) to (3.15) hold. Then there exists

a unique smooth solution of (3.4), (3.5) in x+. This solution satisfies (3.18).
The proof of these two last results is detailed in 7.

4. Recalling some basic results from semigroup theory. In this section, we briefly
recall some classical results from functional analysis which will be needed in the
following sections. We refer the reader to [3], [4], [10], [15] for more details and for
the proofs of these results.

4.1. Semigroups of linear operators. Let us first recall some basic definitions and
results about maximal monotone linear operators.

Let H be a real Hilbert space and A be an unbounded linear operator defined
on the subspace D(A)c H. The operator A is said to be maximal monotone if and
only if:

Vu D(A), (Au, u) >= O,
(4.1)

VvH, :IuD(A), v=u+Au.

The basic property is the theorem of Hille and Yosida.
THEOREM 4.1 (Hille and Yosida). Let Hbe a real Hilbert space andA be a maximal

monotone linear operator defined on the subspace D(A) H. For Uo D(A), the problem:

du
+Au =0 fort>-O,
dt

(4.2)
u(0)= Uo

has a unique solution in C(R+, D(A)) C(+, H).
Let u(t) be the solution of (4.2) for >=0; we set u(t)= R(t)Uo, where R(t) is a

linear operator from D(A) into H. Since it follows from (4.1) that D(A) is a dense
subspaee of H, we can extend R(t) to the whole space H; the resulting operator,
which we still denote by R(t), is (by definition) the linear semigroup generated
by -A.

Let us finally recall that a maximal monotone operator A is self-adjoint if and
only if, for all (u, v) D(A), (Au, v)= (u, Av).
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4.2. Nonlinear equations. We are going to consider some problems of the form:

du
m/Au F(u) fort->0,
dt

(4.3) u(0) Uo,

where A is a linear self-adjoint maximal monotone operator, Uo H and F C(H, H).
Before stating results about the existence of a solution of this problem, we specify
which type of solution will be considered.

DEFINITION 4.2. U is a classical solution of (4.3) on an interval [0, T) if and only
if u satisfies (4.3) in the classical sense, i.e., with:

u C([0, T), H) CI C([0, T), D(A)).

u is a weak solution of (4.3) on [0, T) if and only if u e C([0, T), H) and:

(4.4) Vte[O, T), u(t)=R(t)uo+ R(t-s)F[u(s)]ds.

We can then state the following two theorems.
THEOREM 4.3. Let H be a real Hilbert space and A be a linear self-adjoint maximal

monotone operator defined on the subspace D(A)c H. Assume that F is a Lipschitz-
continuous mapping from H into itself. Then for any Uoe H, there exists a unique
weak solution of (4.3) in R+ and this solution u is classical on *+.Moreover, if Uo D(A), then u is a classical solution on R+.

THEOREM 4.4. Let H be a real Hilbert space and A be a linear self-adjoint maximal
monotone operator defined on the subspace D(A)c H. Assume that F is a Lipschitz-
continuous mapping from any bounded subset of H into H. Then for any Uo H, there
exists Tma 0 such that a unique weak solution of (4.3) exists on [0, Tmax); this solution
u is classical on (0, Tmax) and the following alternative holds:

Either" Tmax +oo,
Or" lim u (t)II/4 +oo.

t- Tma

Moreover, if Uo D(A), then u is a classical solution on [0, Tmax).

4.3. Application to the heat equation. We now consider the case H L2, and the
operator:

D(A) H2- L2,
A:

Problem (4.3) then becomes a nonlinear heat equation; Theorems 4.3 and 4.4
apply to this case because of the following lemma.

LEMMA 4.5. A is a self-adjoint maximal monotone operator.
Let S(t) be the semigroup generated by -A; the following properties of this

semigroup will be useful in the sequel.
LEMMA 4.6. The following properties hold for the semigroup S(t):

Vp[1,), VqgL2CILp, Vt+,
Vq L2 L, S( ) e C[+, L(U)].

LEMMA 4.7. Let Uo6 L. efollowing explicit expression holds for S(t)Uo:

(4.5) [S(t)Uo](X)= uo(y) eIx-ylz/4t dy.



42 B. LARROUTUROU

5. Existence and uniqueness for the combustion variables.
5.1. Statement of the problem and main results. The aim of this section is to study

the subsystem ofthe reaction-diffusion equations for the temperature and mass fraction:

(5.1)

O,-0 12( Y, O) Y"f(O), Y

O(x, 0) Oo(X),

Yxx -12( Y, O) for x , [+,
Le

Y(x, o)= Vo(X),

O(-oo, t)=0, O(+, t)= 1,
(5.2)

Y(-c, t)= 1, Y(+, t)=0.

Before stating the results concerning the existence and uniqueness of a solution
of problem (5.1), (5.2) we introduce a new formulation of this problem. In order to
apply some of the results recalled in the preceding section, we define new unknowns
(o, 4) satisfying zero boundary condition; we therefore use the functions y and yl

introduced in (3.7), define (qo, qo) as in (3.8) and set:

(5.3) q(x, t) O(x, t) y(x), b(x, t)= Y(x, t)- yl(X).

Finally we extend the domain of definition off by setting: f-= 0 on _, and we define
g by:

f
(5.4) g()

:" if :_>_ 0.

The system (5.1), (5.2) can now be rewritten as:

q,- qxx =f(q9 + y)g(O + y,) + %x,

@xx ’Yxx(5.5) qt-L- -f(q + Y)g(@+ )’1)- L-’
(x, 0)= o(X), q(x, 0)= qo(X),

(5.6) (-, t)= (+o, t)= q,(-, t)= q(+o, t)=0.

The next lemma shows that problem (5.5) does belong to the general framework
of the preceding section. Consider the linear operator:

D(A) H2x H2 --> L2 L:,

(cp, q) -r,,,,- Le/"

We then have the following lemma.
LEMMA 5.1. A is a maximal monotone selfoadjoint operator.
Proof The proof is obvious from Lemma 4.5. 13
Remark 5.2. Let S be the continuous linear semigroup generated by -A. The

two following properties follow easily from Lemma 4.6:

Vp[1, oo), V(, d/)6LxLnLPxLp, Vt6R+, IIs(t)(q, ,)ll,,-<ll(,, ,)11,,,

V(, ,)L2xL2CILxL, S2(.)(qg, E/) C(I+,LxL).
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We can now make precise what the solutions of (5.5) may be, in view of Definitions
3.2 and 4.2. For the more general problem:

tp qgxx h qg, d/, x

(5.7) qtt- q&---= h2(tp, O, x)
Le

(x, 0)= o(X), ,(x, 0)= q,o(X),

we state the following.
DEFINITION 5.3. (p, t) is a weak solution of (5.7) on x [0, T) if and only if:

q, q e C([O, T), L), H(q, q) e C([O, T), Lx L),

e[0, rl, (,(=s((o, 4,o+ s(-sN[(o,(s] s,

where H(0, ) [h(q, , x), h(q, , x)].
A weak soluion (q, 4) of (5.7) is a classical solution on the interval K of N+ if

and only if:

q, O e C’(K, L2) C(K, H2).
A classical solution (q, ) of (5.7) is a smooth solution if and only if (q, q) and

all the partial derivatives appearing in (5.7) are continuous with respect to both variables
x and t.

DEFINITION 5.4. (19, Y) is a weak (resp., classical, smooth) solution of (5.1) on
x [0, T) if and only if (19, Y) is related to a weak (resp., classical, smooth) solution

(, q) of (5.5) on x[0, T) by (5.3), and satisfies:

19 G Lloc([+, L),

19(x, t)>_--0, 0<= Y(x, t) -< 1 a.e. onx[0, T).

Remark 5.5. It is easily checked that a weak solution (q, d/) of (5.5) on x+
which is also a classical solution on +* is a solution in the sense of the distributions.
Let indeed r/D(x+). Assuming that Supp (r/) (-M, M)x[0, T), we set: K=
(-M, M) x[0, T) and K=(-M, M)x(e, T). Since (q, q) is a classical solution on
x K, p, and ,/ are in H(K). We can then apply Green’s formula to get:

[-q/,- (q + y)r/x,-f(o + y)g(ff + yl)r/] q(x, e)rl(x, e) dx.
M

As q e C([0, T), L2), we can take the limit e --> 0 in the last relation to get:

[-on ( + ,)n -f( + ,)g(4, + q)n] o(X)n(x, 0) dx,
M

which (together with the analogous relation for 0) shows that (q, ) is a solution of
(5.5) in the sense of D’(N x l+).

In the same way, a weak solution (19, Y) of (5.1) is a solution in the sense of
distributions.

We are now ready to state the main results about problems (5.1), (5.2) and (5.5),
(5.6). For the sake of simplicity, we are using both the new unknowns (o, q) and the
old ones (19, Y).

TEOREM 5.6. Under the hypotheses (3.9) and (3.10), there exists a unique soluion
(19, Y) ofproblem (5.1), (5.2). The corresponding solution (o, O) of (5.5), (5.6) satisfies:

o, e C(+, Lz (3 L) (3 C1(+$_, L2) CI C(*+, H2).
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COROLLARY 5.7. Under the hypotheses (3.9), (3.10) and (3.15), the solution (, Y)
of (5.1) (5.2) is a smooth solution on R x *

Moreover, if Oo, bo H4, ((R), Y) is a smooth solution on +.
5.2. A lemma for systems of type (5.5). We begin the proof of the above theorems

with the next result, which will be used several times in the sequel.
LEMMA 5.8. Letfo and go be two bounded Lipschitz-continuousfunctions on , with

fo(0) 0, go(0) 0; consider the problem"

t- xx =f0( + v)g0(@ + Y)+

(5.8) t--L= -fo( + y)go( + y,) L
(x, o)= o(X), ,(x, o)= Oo(X).

For any qgo o) L2 x Le, the problem (5.8) has a unique solution p, d# in C(+, L-L2); this solution is a classical solution on *+:
, e C(#, H) n C’(#, L=).

oof Define the mapping Fo by:

Fo(, if)= [fo(+ y)go(+ y,)+ yx -fo(+ y)go(+ yl) -yxx]
Le J

for , L. In view ofTheorem 4.3, it suffices to show that Fo is a Lipschitz-continuous
mapping from Lx L2 into itself.

Let h =fo( + Y)go( + ). It is classical to show that h L when , ff L. Let
us simply check that h is Lipschitz-continuous from L2x L2 into L2. Let Mf, Mg, Lf,
Lg be real constants such that:

V, Ifo()lMf, Igo()lMg,

v(,n)u, [fo()-fo(n)lLe[-nl, lgo()-go(n)lL]-nl.
For , 1 L, 2, L, we have"

h,- h =fo(, + v)go(6, + r,)-fo(: + e)go(6 +

fo(, + r)[go(6, + ,)- go(6: + ,)]+ go(6+ v,)[fo(, + v) -fo(+ v)],

whence:

and the proof is complete.

5.3. Uniqueness. The uniqueness of the solution (O, Y) of problem (5.1), (5.2) is
a consequence of the following proposition.

PROPOSITION 5.9. Let T> O. Under the hypotheses (3.9), there exists at most one
solution ofproblem (5.5) in C([0, T), Lex L2) f) L([0, T),LL).

Proof. Let T>0, and let (Ol, Pl) and (oe, be) be two solutions of (5.5), with
o,, b, L([0, T),L) for i=1,2. Choosing UR such that I1(,, ,,)(t)ll --< u for
i= 1, 2 and [0, T), we can consider two functions fv and gt satisfying:

(5.9) fv is positive, bounded and Lipschitz-continuous on , ft()=f(:) if [scl-< U.
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(5.10) gu is positive, bounded and Lipschitz-continuous on R, gt(:) g(:) if[[-< U.

(Ol, ql) and (o2, q2) are then solutions of the following problem:

ot- (Oxx =ft (P + Y)gt(@ + Yl)+

(5.11) , L- -ft (o + /)gt( + /1) L--,
(x, 0) o(X), ,(x, 0)= o(X).

Applying Lemma 5.8, we get (ol, bl)= (o2, 2), which ends the proof.

5.4. Global existence. We show in this section the existence of a solution (19, Y)
of problem (5.1), (5.2).

PROPOSITION 5.10. Assume that the hypotheses (3.9) hold. Then there exists Tmax
R*+t_J{+} such that a solution (19, Y) ofproblem (5.1), (5.2) exists on Rx[0, Tmax)-
Moreover, (19, Y) is a classical solution on (0, Tmax), and thefollowing alternative holds:

(5.12)
Either" Tmax +,
Or: lim IIo(t)llo-+.

t-- Tma

The proof of this proposition is divided into two lemmas.
LEMMA 5.11. Under the hypotheses (3.9), there exists Tmax R*+ (-J {+c} such that

a solution (o, d/) of problem (5.5) exists on x[0, Tmax). Moreover, the following
properties hold:

(5.13) o, E C([0, Tmax) L2) C((0, Tmax) H2) fq cl((0, Tmax) L2),

(5.14) VT< Tmax, tp, t L([0, T), L),

(5.15)
Either: Tmax
Or: lim I1(, ,)(t)ll-+.

Tma

Proof. (a) Let us first show the existence of a solution on R x[0, T) for small
positive T. For U -> II(Oo, o)11+2, we define ft and gt as in (5.9), (5.10) above and
consider again the problem (5.11). Lemma 5.8 applies again and gives a solution
(ot, qt). Denoting

Ft(ot, qt) [ft (ot + /)gt (bt + ’)/1) -- ")/xx -ft(ot + )’)gt(@t + /1) /xx]
Le J’

and using Remark 5.2, we get:

(5.16) (ot, d/t)(t)=S2(t)(Oo, po)+ S2(t-s)Ft[(ot, t)(s)] ds,

[l(g, ,,)(t)ll--< I1(o, o)11/ IIF[(, ,)()311 ds.

Since fu, gt and /x, are bounded, we can obviously find a constant Ct such that:
for all (1, Pl) L L, IIF(,, )11--< C, This implies:

I1(, ,,)(t)ll -<- [[(o, ,o)11/ Ctt.
Let tt 1/C. For [0, try), we have

11(,, ’)(t)ll --< [l(o, o)11+ 1,
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whence

II(t)/11 II(o, qo)]] +2-< U, ]]qu(t)+yll]oo<-ll(po, qo)l]+2_-< U.

This implies that (qu, qu) is a solution of (5.5) on R x[0, tu); this solution satisfies"

qt, qt: 6 C([0, tt:), L2) L([0, tt), L),

and

(U, ff-/U C((0, tu) H2) (’ Cl((0, tu), L2).
(b) Since a solution of problem (5.5) exists locally in the neighbourhood [0,

of 0, it is classical to show the existence of a solution (q, q,) satisfying (5.13)-(5.15)
on a maximal interval [0, Tma). For sake of completeness we briefly recall the proof
of (5.15)" let us assume that Tmax <@ and that there exists a sequence (t) such
that:

lim t Tmax,
(5.17)

3V>O, Vm6

Let U V+2. For m N, we can argue as in (a) above to show the existence of a
solution of (5.5) on the interval [t, t + tv). Since tv does not depend on m we can
choose the latter so that: t + tu > Tmax, which contradicts the assumption that [0, Tmax)
is a maximal interval for the existence of a solution of (5.5). Formula (5.17) is therefore
wrong and the alternative (5.15) holds.

The solution (, $) of (5.5) defined in Lemma 5.11 satisfies the boundary conditions
(5.6) on (0, Tmax). For t(0, Tin,x), we have indeed (, t)=(, t)=0 since, H (see [3]).

We can now end the proof of Proposition 5.10 by using the maximum principle
for parabolic paial differential equations.

LEMMA 5.12. Let (, ) be the solution of (5.5) defined in Lemma 5.11. For
(x, t) E x [0, Tmax), define"

O(x, t) (x, t)+ 7(x), Y(x, t) @(x, t)+ 71(x).

en the following inequalities hold"

(5.18) (x, t)0, 0 Y(x, t) 1 a.e. on x[0, Tmax).

Proof (a) Let us first show that Y 0. This is essentially the maximum principle.
For any function Z of Lo() we define as usual: Z- max (0, -Z), Z+ max (0, Z).
For (0, Tm), it is known that @-(t) H1, (@(t) + y)- Ho() (see 12]). It follows
easily from the propeies (3.7) of y and 71 that (@(t)+ 71)-= Y- H1. Since (,
is a classical solution of (5.5) on (0, Tmax), we can write:

Y- -f(O)g(Y) Y-.
Le

But g(Y)Y- 0 from (5.4); integrating the last relation by pas, we get:

=o,

(5.19) d-- Y-) --< 0 for (0, Tmax).

whence
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On the other hand, it can be checked easily that the mapping @ - (, + 71)- is continuous
from L2 into itself. Thus Y- C([0, Tmax), L2). Since a Y-)- is decreasing on (0, Tmax)
from (5.19) and a Y-(t =0)]2=0 from (3.9), we obtain:

Y-(t) 0 for [0, Tmax)

or equivalently:

Y(t)>-O for t[0, Tmax).

(b) Using (Y- 1)+ and O- instead of Y- gives the other inequalities (5.18) as in
(a) above. [1

5.5. Regularity of the solution. Before showing that a global solution does exist
(i.e. Tmax +), we can investigate the smoothness of the solution (O, Y) defined in
Proposition 5.10; this is the aim of this section.

A first result concerning the regularity of the solution is the next lemma, which
is an obvious consequence of Theorem 4.3 and Lemma 5.11.

LEMMA 5.13. If (qo, ff0) H2X H2, the solution (19, Y) defined in Proposition 5.10
is a classical solution on [0, Tmax)-

Without any further assumption on f, we also have the following lemma.
LEMMA 5.14. The solution (0, Y) defined in Proposition 5.10 satisfies:

(19, Y)e C([O, Tmax) L).

Proof. Since the imbedding H2c L is continuous, we already have: (19, Y)
C((0, Tmax), L) from (5.13). Therefore we only have to show that:

(5.21) I1( , )(t)-(Oo,  o)11 - 0 when t0.

We use again the notation of the proof of Lemma 5.11. Let U> II(Oo, ,o)[[+2. For
t>0 small enough, (, ,) is a Solution of (5.11) and (5.16) implies:

I1(, )(t)-(qgo, o)11 IIs=(o, o)-(o, o)11+ cvt,

and formula (5.21) follows now immediately from Remark 5.2.
The next proposition shows that, with the additional assumptions (3.15) on f,

there exists a smooth solution of (5.1), (5.2).
PROPOSITION 5.15. Under the hypotheses (3.15) onf, the solution (0, Y) ofproblem

(5.1), (5.2) defined in Proposition 5.10 is a smooth solution on R x *+. The corresponding
solution (q, d/) of (5.5), (5.6) satisfies:

(, I C((0, Tmax) H4) I") cl((0, Tmax) H2) f-) C2((0, Tmax) L2).

Remark 5.16. This regularity result holds without any assumption on the regularity
of the initial data (o, ’o)monly (3.9) is assumed. This is of course related to the
strong regularizing effect of the heat equation.

COROLLARY 5.17. Assume that the hypotheses (3.15) hold, and that Oo, o H4.
Then the solution (O, Y) of problem (5.1), (5.2) defined in Proposition 5.10 is a
smooth solution on x+. The corresponding solution (o, d/) of (5.5), (5.6) satisfies:

(, I e C([0, Tmax) H4) ("1 cl([0, Tmax) H2) f-] C2([0, Tmax) L2).
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We begin the proof of Proposition 5.15 with two lemmas. Assuming (3.15), we
first introduce two functions f and satisfying:

f 6 C(, ),

V:> O, f is Lipschitz-continuous on [-:, :],

V:> O, f()=f(),
()=",

and a mapping defined by:

(, )= f(+)(+)+x,-f(+)(+)-j,
for , e L.

LMMA 5.18. Under the hypotheses (3.9) and (3.15), the mapping is Lipschitz-
continuous from any bounded subset oHx H into Hx H.

ro@ (a) Let us first show that F(, ) e Hx H when , e H. For e H,
let h=f(+7)(WT1), M=ll(w,)l[. We define: -LMf2max[-M’M] Mg
maxt_, if, Ly=maxt_,f Lg=maxt_, fix. Thus h as in the proof of
Lemma 5.8. Fuhermore, we have:

h =f( + r)( + x)ff( + rl-) +f( +)(+ ,)( + ),

Il tfMlx + xl + Mft]x + xl,
which yields L. It can also be shown that h L, using the Sobolev continuous
imbedding"

H c wl,(),
s>0, n=, IIll,,Slll[..

(b) It is long but easy to check that, for any M > 0, h is Lipschitz-continuous
from {(,o)nxn2, I{(,O)[I..M} into H2; the details are left to the
reader.

For , L2, we now consider the problem"

,-=f(+ v)ff(6 + )+ x,

(5.22)
Le Le’

(x, 0)= (x), O(x, 0)= 6(x).

LEMMA 5.19. Assume that (3.9) and (3.15) hold. en there exist mx {+}
such that a unique solution (, ) ofproblem (5.22) exists on x [0, max). is solution

satisfies" , c((0, max, n" C’((0, ?max’, n,
and the following alternative holds"

Either: Tmax +,
Or" lim

max
Proof From Lemma 5.18, it suffices to apply Theorem 4.4 with H= H2xH2,

D(A) Ha x H4 and F
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We can now complete the proof of Proposition 5.15 and Corollary 5.17.
Proof. (a) Let (99, @) be the solution of (5.5) defined in Lemma 5.11; for e E

(0, Tmax) we set (991, d/1)=(99,)(t=e) EH2xH2. Applying Lemma 5.19, we get a
solution (3, ) of (5.22), which is unique in C((0, max), H-x H2). But it is straightfor-
ward to show that (99, )(t + e) is also a solution of (5.22) in C([0, Tmax- e), H2x H2).
These two solutions coincide, and we get:

(99, @)(t)=(q3, )(t-e) fortE[e, Tmax).

(b) Lemma 5.19 and (a) above obviously imply that the solution (99, ) defined
in Lemma 5.11 satisfies"

99, if/E C((0, Tmax) H4) [ cl((0, Tmax) H2).
It suffices now to use the Sobolev continuous imbeddings Hc cl(), H4c C3( to
show that (99, ) is a smooth solution of (5.5), (5.6) on (0, Tmax). To end the proof of
Proposition 5.15, it remains to show that 99, @ E C((0, Tmax), L), or equivalently that
/(99, @)E cl((0, Tmax), L L); this is straightforward and is left to the reader.

Before concluding this section, we state another lemma:
LEMMA 5.20. Let (99, ) be the solution ofproblem (5.5) defined in Lemma 5.11.

Let p E.[ 1, +c) and assume that 990, o E Lp. Then

V E (0, Tmax) 99(t), b(t) E Lp.

Proof Let T< Tma and tel0, T]. We set M=max,lo,T IIo(t)ll and define Ly
such that"

V" E [0, M], }f()l--< L.
Denoting f Y"f(O), we can write f =< LyO and f =< LyMY from (5.18). Then, using
(3.7), we have"

-<_ t$ I1 (-,-,) +tM (,)+g

--< g(ll I1 + I111 + 1)

(where K denotes a positive constant), whence"

a I1,, K (11 I1,, + I1,, + 1 ).

Using now (4.4) and Lemma 4.6, we have (we use the notation f(s) instead of
Y(., s), O(., s)] for simplicity)"

99(t)=S(t)99o+ S(t-s)[f(s)+’yzz] ds,

I1,(t)11,,--<11,o11,,/ (lla(s)ll,,/g) ds,

Arguing in the same way for II(t)ll , we finally obtain:

II(t)ll,,+ll,/,(t)ll,,_-</ 1+ (ll,(s)ll,,+ll(s)ll,,)ds

It suffices now to apply Gronwall’s lemma and the proof is complete.
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Remark 5.21. With the hypotheses of Lemma 5.20, one could easily show that
(qg, )E C([0, Tmax), LP).

5.6. Existence for all time. We now end this fifth section by showing that
7"max-- -bOO.

PROVOSITON 5.22. Under hypothesis (3.10), the solution (0, Y) of (5.1), (5.2)
defined in Proposition 5.10 exists on R x R+:
5.23 Tma

Proofl For p[1, +) and t(0, Tmax), we can write, since (O, Y) is a classical
solution on (0, Tmax):

O,OV--O,O- y"f(O)Ov-1.

Integrating by pas as in the proof of Lemma 5.12, we obtain:

Formulae (3.10) and (5.18) now imply:

dt(fuOP)C f Op"

Let to(0, Tmx). Applying Gronwall’s lemma to the last inequality, we can
write:

IO(t)PIO(to)PepCt-t),
or:

1[O( t)llP = [[O( to)[l,eC(t-t.
We can then take the limit p--> OO to get:

o( )ll --< o to)[I e c( t- to)

which together with (5.12) implies Tmax +OO.
Of course, from a physical standpoint, it can be thought that (5.23) holds even if

(3.10) is not assumed, because of (5.12), since one may expect that the increase of the
temperature is limited by the consumption of the reactant. Nevertheless, we have been
able to prove rigorously the global existence of the solution only with the assumption
(3.10), or in the following case.

LZMMA 5.23. Assume that the hypotheses (3.9) hold. If moreover Le 1, then the
solution (0, Y) of (5.1), (5.2) exists on x +.

Proof. If Le= 1, we can add the two equations (5.1) to get:

(Y+O),- (Y+O)xx 0.

A straightforward application of the maximum principle for parabolic partial ditteren-
tial equations yields:

II(Y+ o)(t)ll -< II(Y+ o)(0)ll,
and (5.23) follows again from (5.12).

Remark 5.24. With the same hypothesis Le= 1, it can be shown that (Y+O)
converges towards 1 uniformly on as tends to

lim Y+O- lilt=0.
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6. Existence and uniqueness for the hydrodynamical variables.
6.1. Statement of the problem and main results. We now want to consider the

subsystem (2.11) for the hydrodynamical variablesmdensity, velocity and pressure"

(6.1) (O+ce)p 1,

(6.2) u, O t, u(-o6, t) u,
(6.3) ut +Px =0, p(-oo, t)=0.

Throughout this section, it will be assumed that hypotheses (3.9) and (3.10) hold.
The solution (O, Y) of (5.1), (5.2) in RxR+ and the corresponding solution (, p) of
(5.5), (5.6) are now considered given. We let El(y, t)= [ Y(y, t), O(y, t)].

We recall that the weak or smooth solutions of (6.1)-(6.3) are defined at the
beginning of 3 (in particular, the boundary condition (6.3b) is fulfilled in the sense
of (3.6) for weak solutions). About problem (6.1)-(6.3), we are going to prove:

THEOREM 6.1. Assume that the hypotheses (3.9)-(3.13) hold. Then there exists a
unique weaksolution (p, u,p) of (6.1)-(6.3) in RxR+.

If moreover (3.14) and (3.15) hold, (p, u, p) is a smooth solution on x +.
In order to prove this result, we now solve the two problems (6.2) and (6.3) in

sequence (solving (6.1) for the density p is an obvious task since O(x,.t)+ a >= c > 0
for all (x, t) x +).

6.2. Velocity.
PROPOSITION 6.2. There exists a unique weak solution of (6.2) in x R+:

(6.4) u(x, t) u + O,(x, t) + I_ l)(y, t) dy for (x, t) x+

and u is a smooth solution of (6.2) in ff x*+.

Moreover, if Po, tPo H2, u is a smooth solution of (6.2) in x I/.
Proof. (a) Let > 0. Since (19, Y) is a classical solution of (5.1) in the neighbour-

hood of t, we have from (6.2)"

whence:

Ux O, O,x + Loc(),

u(x, t)= u(0, t)+O,c(x, t)-Ox(0, t)+ l(y, t) dy.

Since we want a finite limit u(-oo, t) to exist, we only need to show that"

(6.5) [o l(y, t) dy < +oo.
J_

But (3.10) and (5.18) imply: fl(y, t) <= CyO(y, t) and (6.5) follows since (3.9) and Lemma
5.20 imply O(t) LI(*_). We then obtain (6.4) for > 0 (we have O(-, t)= 0 since
O(t) H2).

(b) It is clear that the solution u defined by (6.4) for > 0 satisfies (6.2a) in the
sense of D’(RxR+). When o, go H-, we can argue as in (a) above for =0 and
obtain (6.4) for _-> 0. To show that u is then a smooth solution of (6.2), it remains to
prove that -o f(Y, t) dy is continuous with respect to both variables x and t; this will
be a consequence of the next lemma. El
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Before studying the pressure problem (6.3), we state some results about the
regularity of the velocity u.

LEMMA 6.3. The solution u of (6.2) satisfies:
u c(+*, c()) c(+*, L).

If moreover qo, o H, then u C(+ C( CI C(+ L).
Proof For T>0 define M max,to,- I]O(t)ll. For t (0, T], we first have u(t)

L, or equivalently fi(t) L from the estimates:

O(t)_--< CfO(t) 6 C(*+, La(*__)), l(t) <- CfMY(t)6 C(*+, La(*+)).

These two inequalities can be written together in the form O(t)=< G(t) with G(t)
C(+*_, L). The continuity of the integral f(y, t) dy with respect to the variable is
now a consequence of classical convergence results from integration theory. For the
sake of completeness we sketch the arguments: arguing by contradiction, we assume
that there exists a sequence (t,) satisfying t, to> 0 and:

(6.6) IIsa(t.)--l’(to) II, -> > 0.

Then from the converse of Lebesgue’s bounded convergence theorem (see [3, p. 58]),
there exists Go L and a subsequence (t,) such that G(y, t,)<= Go(y) a.e. for all n.
Since (5.20) proves that fi(tnk) converges pointwise towards f(to), Lebesgue’s bounded
convergence theorem now shows that 11(t,k) converges to fi(to) in L1, which contradicts
(6.6) and ends the proof, lq

LEMMA 6.4. Assume that the hypotheses (3.12) hoM and define v(x, t)=
I_ a(y, t) dy. Then:

v e C’( x *+, ) and vt(x, t)= ffo fit(y, t) dy.

Proof. Assumption (3.12) obviously implies:

(6.7) VM>0, 3KM >0, VOG[0, M] If’(O)l<-K,O

(with/3 > 1/2). Let again T> 0 and M= max,,to,-111(9(t)[[oo. For t E0, T] and yz we
have:

whence:

fit nY"-1Ytf(6))+

[2,(t)l <-- nGO(t)l L( t)l + KMO (t)lO,(t)l,

),(t)l < K[O=+ Y+(92 +O,](t) C(*+, La(*)),

where K is a positive constant. The proof is then completed in a way similar to that
of the previous lemma.

The next result is now an obvious consequence of the above lemmas and of
Proposition 5.15.

LEMMA 6.5. Under hypotheses (3.12) and (3.15), the solution u of (6.2) satisfies:
u c(a*+, c(a)) c’(a*+, c(a)).

If moreover qo, q’o Ha, then u C(+, C2()) f3 C(+, C()).

6.3. Pressure. We now investigate the problem (6.3) for the pressure. We are going
to prove the following.
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PROPOSITION 6.6. Assume that the hypotheses (3.11)-(3.13) hold and that qo, o
H2. Then there exists a unique weak solution of (6.3) on R x +.

If moreover the hypotheses (3.14) and (3.15) hold, there exists a unique
smooth solution of (6.3) on +.

Proof (a) If p is a solution of (6.3), we get from (6.4) and Lemma 6.4:

whence:

or

P 6) I ’

(6.8) p(x, t):-Oxx(X, t)-l)(x, t)-I [dy IfooD,(z, t) dz ]
because of the boundary condition (6.3b).

Therefore, we need to prove that the last integral does exist when the assumptions
(3.11)-(3.13) hold. This amounts to showing that 12,(y, t) vanishes at -o at least as
fast as some negative power of y. More precisely, we are going to show that:

(6.9) Be > 0, Vy < 0, If <

We first need to introduce the functional space:

W {w e L2 [’q L, max lyw(y)[ < +oo}
yl*_

for v>0, with the norm: Ilwll=llwllz+llwlloo+llywIl._), and to state the next
lemma, which is proved at the end of this section.

LZMMA 6.7. Let v > 0 be given. If Po W, then #(t) W for any > O.
We now have:

I,1 [Y"f’(o)o, + nY"-1Y,f(O)l If’(O)l IO,[ + n[ Y,I If(O)l.

Let T>0 and M--max,tO,T3110(t)l[oo. Since (O,, Y,) C([0, T],L2 L2), we can set

M’=maxttO.T] IIO,(t)[l=. For t [0, T3 and y <0 we have:

by the Cauchy-Schwarz inequality. Hence, using (6.7):

ffc [fYoo ] 1/2

If’(O)l IO,I--< M’KM 0

As o W, with fit* > 3/2 from (3.13), we can apply Lemma 6.7 to get:

K
lyl,-1/2

Since (6.7) implies f(O) -< KO/3+1 we can argue in the same way for JY__ If(O)l ILI
and (6.9) holds.
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(b) It is straightforward to check that p defined by (6.8) is a solution of (6.3a) in
the sense of D’(R x R/) (it suffices to argue as in Remark 5.5 and to use Lemma 6.3
for the continuity of u in the neighbourhood of 0). (u, p) is the unique weak solution
of (6.3) in the sense of Definition 3.1. Furthermore, if (3.14) and (3.15) hold, (6.3a)
is fulfilled in the classical sense and p is a smooth solution of (6.3). [3

It remains now to prove Lemma 6.7. We begin the proof with a property of the
linear semigroup S(t) generated by the heat operator (see the end of 4).

LEMMA 6.8. Let , > O. The operator S(t) maps W into itself: for any T> 0, there
exists a positive constant Mr such that:

VWo w, vt[o, T],

Proof Let > 0, Wo W, T> 0, [0, T]. Lemma 4.6 implies:

Therefore it remains to study [[yS(t)Wo[[(u).
Let x < 0; we have from (4.5):

[x[S(t)Wo(X) wo(y) e dy + wo(y) e-I-yl/4 dy.

Let us denote by A(x) and B(x) the two terms in the right-hand side of this relation.
For y (-, x/2], we have:

Iwo(y)l [[wq[[w2 woll w.
Thus:

Im(x)l woll v e-lx-yl:/4tdy 2’ Wol[ w

On the other hand, we also have:

IB(,x)l <-- Ixl I44T woll e -Ix-yle/4t dy.
/2

Setting z (y-x)/x/- and assuming x <-4x/, we obtain:

Ixl" e- dz

e dz < e

<[Xl 1/41[=e-x

dz

and the proof is easily achieved. [3

ProofofLemma 6.7. Let T>0 and M =max,to,r [[O(t)l[. For t[0, T]we can
write"

whence: II(t)llwg(ll(t)llw+ ), where K is a positive constant.
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From (4.4) and (5.5), we have:

p( t) S( t)qo + S( s)[12(s) + Txx] as.

Applying Lemma 6.8 yields:

It suces now to apply Gronwall’s lemma and the proof is complete.

7. Be rsfrfi e Eler rbles. We now want to show that the
results of the preceding sections make it possible to show the existence of a solution
for the Eulerian system (3.4), (3.5). Since the equivalence between smooch solutions of
the two systems (3.1)-(3.3) and (3.4), (3.5) follows immediately from 2, we only have
to investigate the existence and uniqueness of a weak soluion of (3.4), (3.5).

7.1. Coordinate transformation. We first need to study the change of variables
between the Lagrangian and the Eulerian system. This is the aim ofthe next two lemmas.

LMMA 7.1. Assume that the hypotheses (3.11), (3.13) hoM and let (0, Y, p, u) be
the unique weak solution of (3.1), (3.2). Consider the mapping:

x+x+,

(7.) (x, t)= u(0, t’+
o(x, t)

x’, (x, )= .
T is a bijectionfrom N x N+ into itsel Furthermore, Te e C(N x N, Nx N) and"

1
(7. (x, - ,(x, u(x, .o(x,l’

Proo Since u(0, t) and 1/O(x, t) are continuous functions on N xN+, the relations
(7.1) define a mapping from N x N+ into itself. Moreover, we have 1/0 and, for > 0:

(x, t)= u(0, t’) t’+ [O(x’, t)+ ] x’.

It is clearly possible to differentiate under the second integral sign in this expression
to get:

,(x, )= u(o, ) + O,(x’, ) x’= u(o, ) + u(x’, ) x’= u(x, ).

On the other hand, we can easily define T TZ by setting T(, r) (x, t) with:

(7.3) x(, r)= O(’, ) d’, t(, r)=
(,

where o()=Io u(0, r’)d’[=(0, )]. The end of the proof is now obvious and is
omitted.
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We can use this lemma to define the following transformation: for any
Lc(R x +) we define Loc( x +) by:

(7.4) (:, z)=
We can then state the following.

LEMMA 7.2. Assume that the hypotheses (3.11 )-(3.13) hold and consider the transfor-
mation defined by (7.4). efollowing properties holdfor p 1, +] and to +"

If C(+, Lp) then C(+, LP),

If C(+, C()) then C(+, C()),

If(, to)= o then (, to)= o.
Moreover, similar properties hold for the derivatives"

If C(+, H) then C(+, H),
If C(+, C()) then C(+, C()),
If C(+, C()) then C(+, C()).

Proofi These propeies are easy to check and their proofs are omitted. We simply
indicate the expressions of the paial derivatives of and which will be useful in
the sequel; (7.2) and (7.4) obviously imply:

p

7.2. Equivalence between the Lagrangian and Eulerian formulations. We can now
show the existence of a weak solution to the Eulerian system (3.4), (3.5).
Pooso 7.3. Assume that the assumptions (3.11)-(3.13) hold. Let

(0, Y, p, u, pbeJhe unique weaksolution of (3.1)-(3.3) and define (, , , a, fi) using
(7.2). en (0, , a, ) is a weak solution of (3.4), (3.5).

Proo We only sketch the proof by studying the temperature equation.. The weak
solution satisfies (see Remark 5.5)"

[ [
x+

for any D( x+). This relation also holds for D( x +)[ C( x+) with
compact suppoa], since D( x+) is dense in Dl( X+).

Let D( x+) and let be the unique function such that (x, t) [ T(x, t)].
Since D( x +), (7.5) holds. Using the change of coordinates (7.1) in (7.5) gives"

+ P P
where we have used the Jacobian 8(x, t)/8(, r) p. The last relation, whichis true for
any D( x +), says that:

p/

in the sense of the distributions in
To end the proof of Theorem .6, we still need the following lemma.
LMMA 7.4. ere exists t most oe wekxol,tio (, E , ,) of (.4), (.)

satisfying"

(7.6) ae C( x+, ), e C( xa+, ).
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Proof. Let (), ’, , a,/) be a weak solution of (3.4), (3.5). Thanks to (7.6), the
transformations (7.3) and (7.4) can be used to show (exactly as in the proof of
Proposition 7.3) that (), , p, t,/) corresponds to a weak solution (19, Y, p, u, p) of
(3.1)-(3.3); the uniqueness then follows from 5 and 6.

Remark 7.5. The uniqueness of a weak solution of (3.4), (3.5) can also be proven
without (7.6). In this case, the equivalence between Lagrangian locally bounded weak
solutions and Eulerian locally bounded weak solutions still holds, but is less simple to
prove (see [13]).

8. Extension to chemically complex flames. In this section we extend our analysis
to the equations of a chemically complex flame propagating in a dilute premixed
gaseous mixture.

8.1. Physical assumptions. We will assume that the mixture is made up of N
components A1, A_. As, whose mass fractions are respectively Y1, Y2"’" YN. The
last species AN is chemically inert and the reactants and products are highly diluted
in a bath of Av:

N-1

(8.1) E Y << Y.

It therefore makes sense to consider that the specific heat Cp and the thermal conductivity
A of the mixture are those of the inert. Also assuming that the matrix of the diffusion
coefficients is diagonal (the diffusion flux for the sth component only depends on
V Ys), we obtain that all the species have equal diffusivities (see [5, p. 8]), a fairly
classical assumption.

Let M be the number of irreversible chemical reactions taking place in the mixture.
From 1 =< r=< M, the rth reaction can be written as:

N-1 N-1

ursA - la,rsAs,
s=l s----1

where the stoicheometric coefficients /rs and liars are positive integers (lrs (resp., tZrs)
is equal to zero if the species As is not a reactant (resp., a product) in the rth reaction).
Let Wr be the rate at which this reaction proceeds (a relation analogous to (2.2) gives
Wr as a function of the temperature and the mass fractions Y).

We can now write the governing equations of the propagation of this chemically
complex flame under the form:

m+(pu) =o,

(8.2)

pu. + puu -p,
M

pcp T,,. + pucpT hT E Qrtr,
r=l

M

p(Y),+pu(Y)-(pD(Ys))= m E ([drs-- lrs)O)r
r=l

for l <-s<=N,

N

P
(8.3) pT= mN---.
We have defined UrN [3,rN--0 for all r. The heat released by the rth reaction, which
is no more assumed to be exothermic, is denoted by Qr, and ms is the molecular mass
of the sth species; the other notation are defined as in 2.
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Remark 8.1. The form pT= mN(P/R) of the equation of state follows from the
assumption (8.1). The perfect gas law gives the value P RT(pY/m) for the partial

N
pressure of each species. Using Dalton’s law we get P pRTs= (Y/m) for the
total pressure P, and this last expression reduces to (8.3) in view of (8.1).

Assuming again that the Lewis number Le A/pcpD, the specific heat Cp and the
ratio A/T are constant, we can write a Eulerian and a Lagrangian normalized form
of (8.2), (8.3) as follows:

m+(pu) =o,
(pu)-+(pu2) -pe,

r=l

(8.4)

7---1 Ys)
ms Y (].lbrs- 1)rs)O-r for 1 <_- s <_- N,(PY)’+(PuY)-Le p

N

E =1,

(o+c)p .
M

r=l

(Y)xx
Y),-- rm Z (,.-- V,.)r forl----<s--<--N,

Le r--1

N

(8.5) Z Y=I,
s=l

(o+)p= ,
t,/x Ot
ut +p O.

The following boundary conditions are associated with the above systems:

o(-) 0, o(+) 1,

Ys(-) Y,, Y(+oc) Ysb,

U(--eC) U p(--) 0.
N-1Let us denote 12=1-Is= Y%(O). Since we use time-independent boundary

conditions, we have to assume that the two thermochemical states prescribed at the
boundaries -oc and +o correspond to equilibria, i.e."

Yr,{I,2... M}, fr(O)=O,
N-1

Vre{1,2.-.M}, H Y’sb=O.
It is then straightforward to extend to systems (8.4) and (8.5) the results stated

in 3 (with a change of unknowns similar to (5.3) and assumptions analogous to
(3.9)-(3.15)). Stating in detail the hypotheses and the theorems would be too long,
but there appears to be no new difficulty in applying the arguments of 5-7 to systems
(8.4) and (8.5).
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Remark 8.2. The global existence and uniqueness results stated in 3 are also
easily extended to the case of the nonadiabatic propagation of a planar flame. In this
case, the energy balance equation (2.3b) becomes:

pcpT + pucpT-(AT) Qto( Y, T)- K( T),

where K(T) --> 0 represents the heat losses (see [5]; for instance (T) k(T- Tref) if
only conductive heat losses are considered). In Lagrangian coordinates, the energy
equation (2.10a) reads as:

O, 0+O(Y, 0)- (0),

with (0)-> O, (0)=0, and the arguments presented in 5 and 6 apply.
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THE ACOUSTIC APPROXIMATION FOR COMPRESSIBLE FLOW IN THE
PRESENCE OF A SURFACE UNDERGOING SMALL AMPLITUDE

VIBRATIONS*

JEFFERY COOPER?

Abstract. Existence and uniqueness for short time is proved for the solutions of compressible isentropic
flow in a bounded region with a moving boundary. These solutions have an asymptotic expansion in r/, the
amplitude of the boundary motion, as r/-> 0. The leading term in this expansion is a constant flow in a fixed
region, and the second term is a solution of the linear acoustic equations in the fixed region which satisfies
an inhomogeneous boundary condition.

Key words, acoustics, moving boundary

AMS(MOS) subject classification. 35

1. Introduction. In this paper we shall make a rigorous derivation of the equation
and boundary conditions which describe the acoustic waves produced and reflected
by a vibrating surface when the amplitude of the vibrations is small. The sound waves
produced by a loudspeaker are a typical example of this situation.

In most engineering textbooks, e.g., [3, p. 100], the derivation begins with the
linear wave equation for the velocity potential, b(x, t), x 3, 6 E. Denote the moving
2-dimensional surface by S(t) and assume that S(t)= So+ r(t) where So is a fixed
surface and r(t) is a displacement vector. Then the usual acoustic boundary condition
would be

(1.1) Och_ n. O,r on S(t).
On

This boundary condition, however, leads to an ill-posed problem for the linear wave
equation [1]. Acoustic engineers have found that the "correct" boundary condition
for the linear wave equation is obtained by assuming that S(t) oscillates about So and
that the wavelength of sound is much longer than the amplitude of the oscillations of
S(t). One then requires that

(1.2) Odp_ n. Otr on So.
On

Recent work by Majda [2] and Schochet [5] for the nonlinear equations of
compressible flow allow us to make a more systematic derivation of this boundary
condition. In 2 we prove the short-time existence of solutions of the equations of an
isentropic, compressible gas in three space dimensions in a bounded region with a
moving boundary. The boundary condition is that particles of the gas do not cross the
moving boundary surface.

In 3 we introduce a small parameter 7 which is a measure of the amplitude of
the boundary motion. We then rigorously prove in Theorem 2 that the solution U, of
the nonlinear equations has an asymptotic expansion

UI Uo- ’o UI "- o (’o as -->0
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where Uo is the state of zero velocity and constant density, and U is the solution of
the linearized acoustic equation with the boundary condition

n. Ul= n" Otr on So.
When a velocity potential b is introduced, this is precisely (1.2).

2. Nonlinear equations. For each >-0, let f(t) be a smoothly bounded open set
of R with l)(t) compact. We set

Q= U (t)x{t} and ,= U o(t)x{t}.
t>o t->o

Set Qr Q f’) {0 < < T} and ET E f-) {0 =< =< T}. The smoothness of the motion of

the~ O(t) will come from assuming that there is a fixed, bounded, open.set 1 c R3, with
0f smooth and a family of smooth mappings x- oh(x, t) "12( t) 12, with inverse
y d/(y, t)’12-fl(t), such that (y, t)-(O(y, t), t) extends to a ditteomorphism of an
open neighborhood of x[0, ) onto an open neighborhood of (. v=O#(c(x, t), t)
is the velocity at a point (x, t) 0, and we assume that

(2.1) sup <
fix[o, o)

Finally, we let v (v,, v,) be the space-time unit normal to E.
For a function U’Q P, we shall let

U(y, t)= U(d/(y, t), t)

when it is necessary to indicate that we are considering U in the coordinate system
of t. When no confusion will arise, we suppress the symbol to simplify the notation.

We shall need the following spaces. HS(l)), s>=0, will denote the usual Sobolev
space. Let X,,,T be the space of functions U on Q such that

/ VI C([0, T];
j=0

We set

[[[U(t)[[[ 2 =lll(t)lll-- II0gr(t)ll =
j=0

and give X,,T the norm

II ulll,r sup III s(t)lll.
OtT

Finally, we let Y,r (0< < 1) denote the space of functions U on Q such that

2

Oe C([0, T]; Ha-*-(fi))
j=0

with the obvious norm.
Now we are ready to consider the following initial-boundary value problem in Q

for the Euler equations of isentropic compressible flow:

(2.2)
a,p+(u. V)p+p(V. u)=0

in Q,
p[atu+(tt. V)u]+ c2(p)Vp=O

(2.3) v, + v, .4u 0 on X,

(2.4) u(x, O)= Uo(X), p(x, O)= po(X) in f(O).
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Here t9 is the density and u (Ul, U2, U3) the velocity. If P(p) denotes the pressure,
then c2(p)= dP/dp is the sound speed. We assume that c2(p) is a smooth, increasing
function of p with c2(p) > 0 for t9 > 0. The model case is that of an ideal gas in which
P(p) Ap, with A > 0 and 3’ > 1. The boundary condition (2.3) means that the velocity
of the fluid is tangential to E. That is, fluid particles do not cross the moving boundary
surface.

We shall write the system (2.2) more concisely as

(e.5) (u)c=0

where U (p, u). When we wish to study the equation in the coordinates of 0, we
shall write it as

(2.6) L(U)U-O.

Before stating the existence theorem, we make the following assumptions about
the initial data p0 and Uo:

(2.7) po, UoE H3(O(0)),
(2.8) There is a constant ko> 0 such that po(x) >- ko in (0).

Condition (2.8) makes sense because the Sobolev inequality in three dimensions ensures
that functions in H3((0)) are continuous.

We must assume a compatibility condition of the initial date with the boundary
condition at 0. Using the equation (2.6), and the initial data o (rio, to), one can
calculate the putative derivates,

"oit )r(o) for i= 0, 1, 2,

as in the Cauchy-Kowalesk,aya Theorem. In fact, from (2.7) and the smoothness of
the nonlinear functions of L, one can deduce that "0 i,/Q(0)" E H3-i() for 0, 1, 2.
Thus it makes sense to consider the restriction of ,,zivt/(0)" to 0(.

For a vector field U" 0-"> we set (/t -]--/x" U)" (/t "]" lx" u)(O(y, t), t). Then for
all y 0( we assume that the data po and Uo satisfy

(2.9) O(’t+ ’x" u)’lt:o:O fori=0,1,2

where we use the putative derivatives "0 (0)" to evaluate (2.9)
Remark. In the original coordinates of O, the condition (2.9) can be expressed

as follows"

Oi(,t+,x’u)lt=o=O for i=0, 1, 2

where 0r Ot + Ot[[/" V is a tangential derivative to E.
THEOREM 1. Assume that the initial data satisfy (2.7), (2.8) and (2.9). Then there

is a T>0 such that there is a unique classical solution U (p, u) of (2.2), (2.3) and
(2.4) on Qr. T depends on ko, on the H norms of (Po, Uo) and on the derivatives of 0
up to order 3.

In addition, the solution U Y,r (q C (Or) for each 6 > 0 and

01/ L(O, T; H-J(fi))
forj =0, 1, 2, 3.

The proof of Theorem 1 is only a slight modification of that of Schochet [5] for
the initial-boundary value problem in a fixed domain. For completeness, we will sketch
the several steps of the proof, and indicate where changes must be made to take the
noncylindrical domain into account. For details we refer the reader to [5].
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The first step is to approximate the initial data (po, Uo) by functions (p, u)
H5(12(0)) such that

(i) (p, u)- (po, Uo) in H3(f(0)),
(2.10)

(ii) u satisfies the compatibility condition (2.9) for i= 0, 1, 2, 3.

This can be done by the methods of [4].
The boundary condition (2.3) is characteristic for the equations (2.2). To apply

the basic existence theorem in a bounded domain for quasilinear symmetric hyperbolic
systems, we must add a term to the equations (2.2) which makes the boundary condition
noncharacteristic. At the same time we must add a term to the right-hand side so that
the initial data p and u still satisfy the compatibility conditions (2.9).

According to standard results on Sobolev spaces, there exists a function
HS(Q) such that

a(2.)(0)="0t7" 0)" for O< k<4.

We then consider the modified equations (for each e > O)

O,p+(u. V)p+p. 7u=O
(2.2) in Q.

p[OU +(U" V)U]+ C2(p)Vp + e( V)U e(x" V)Zn

Here we have smoothly extended the vector field , into Q.
We write the system (2.2) more compactly as

(2.5) L(U)U= ey,, 3/,=(0, (,,,. V)Z,).

Next we subtract off the nonhomogeneous boundary values. Set /3=
(O,O,q,(qb(x, t), t)), and let V=(p, v)= U-/3 so that u=v+O,4,. Then equation (2.5)
becomes

(2.11) L(V+B) V= F(e, n)

where F(e, n)= ey-L(V+ fl)fl.
The boundary and initial conditions are

(2.12) u,. v =0 on ,
(2.13) p(x, O)= p(x), v(x, O)= v(x)-O,4,(Cb(x, 0), 0) in f(0).

We require v to satisfy the homogeneous boundary conditions (2.12) because
v+O,, should satisfy (2.4) and t,,+ ,. O,tp=O on . The appropriate compatibility
conditions on v are

(2.14) 01(’" v)’l,=o 0, i= 0, 1, 2, 3.

These conditions are satisfied because the initial data u satisfies (2.9) for i= 0, 1, 2, 3.
If we multiply .the first equation of (2.2) by c(p) and the second by p, the system

becomes symmetric hyperbolic. Then according to the existence theorem for symmetric
hyperbolic quasilinear systems with noncharacteristic boundary, for each e and n there
exists a unique solution V(e, n)X4,T(e,n) of (2.11)-(2.13).

Our goal is to pass to the limit as e0 and n-. However, note that

HI g(e, n)ll]4,T(e,n)depends on ]]F(e, n)IIHa(OT(..)), where 0T 6 [’-] {0(t( T}. This norm,
in turn, involves This latter norm may blow up as u Uo in H3(f(0)).
Thus for each n= 1,2,3,. .we choose g(n) so that IlF(g(n), n)llH4(O,,.)remains
bounded as n-. Finally, we set

e(n)=min {, g(n)}.
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We shall write V(n, t) for V(e (n), n, t), and T(n) for T(e (n), n). When it is clear
from context, we may suppress the index n for brevity.

By a continuation principle of [5], V(n) X4,r for any T> 0 such that Ill V(n, t)lll
is bounded on [0, T). Hence the desired convergence will follow provided that we can
show there exists a T> 0 with T(n)=> T for all n, and that

(2.15) IllV(n)lll3,T<= C
where C is independent of n.

We introduce the following auxilliary norms. For 6 > 0 sufficiently small, we set

Q(0, T)= {(x, t) Q(O, T)" d(y=b(x, t), E)_-< t}.
Next, using suitable cutoff functions equal to 1 on neighborhoods of the boundary
which cover Q, we use local coordinates to define ][[V[l[,,tan. This norm contains no
normal derivatives at the boundary E. On Q/Q, ]]]Vlllm, tan and Ill vlllm are equivalent.

Now for U X3,r, U (p, u), we define

III u( t)lll, Ill u(t)lll + III u(t)lll, tan + lily X ulll
Next we cover the boundary Er by a finite family of sets G such that the im.age

of ( under the mapping (x, t) (4 (x, t), t) is a product set ( x [0, T] where G is
open in R3. Furthermore, we assume that in each (, can be expressed in local
coordinates

Xl Yl, x2 Y2, x3 Y3 if" l( yl, Y2, t).
Set O(Xl, X2, X3, t) X I(Xl, X22 t).
In these local coordinates, VI G { Y3 0} and Q G { Y3 > 0}.
Next, for U e X3,r, U (t9, u) and some G, we consider

IIICy3(p, Vc. u)lll=,
where Va =(-ax, l,-ax21, 1) and the seminorm is evaluated in the local coordinates of
(. Now we sum over the sets t and define

IIIu(t)lll= IIly(p, v. u)lll,.
G

The basic lemma for these norms is as follows.
LEMMA 1. Assume so small that the sets cover Q(O, T). Then for U Xa,T

(2.16) [[I u(t)ll[3 <-- c(lll u(t)lll, + 1[1U(t)lll).
The constant is independent of U, but depends on the choice of localizing sets. The proof
is given in [5].

The proof of the estimate (2.15) can be organized into several lemmas. We shall
use Hi(s), H2(s),..., K(s), K(s),..., to denote positive, smooth increasing func-
tions of s ->_ 0.

LEMMA 2. Let V(n)EX4,T(n) solve (2.11), e= e(n). Then for each n= 1,2,3,. ,
d

(2.17) d- III V(n, t)lll, H,(lllV(n, t)lll3), O < T(n).

Proof We can show that

d
(2.18) d-SIIIV(n, t)lll-<- H2(IIIV(n, t)lll)

and

(2.19)
d 2 < n(lllV(n, t)lll)d- III V(n, t)lll, tan
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using standard estimates for symmetric hyperbolic systems. In the case of (2.18), we
do not make the usual integration by parts in the spatial variables.

The remaining term in the definition of III II1, is lily viii=. Take the curl of the
second equation of (2.11) and use the fact that V x (Vp)= 0. We deduce that V x v
satisfies

(2.20) p[O,(7 x v)+(u. 7)(V x v)]+ e(ux" 7)(V x v)=f

where f is a function of first derivatives of v and p. Because of the boundary condition
satisfied by u, the left side of (2.19) is simply a transverse (to E) derivative in an
exterior direction. Hence usual energy type estimates show that

d
(2.21) d--- ]llv x v[[[<= H4(lllV(n, t)]ll3)

for o-< < T(n). We combine (2.18), (2.19) and (1.21) to arrive at (2.17).
When the boundary condition is noncharacteristic, it is possible, in an equation

like (2.11), to solve for derivatives of V normal to E in terms of tangential derivates.
However, in this case the boundary matrix of the system (2.2) has rank 2, so that we
can only solve for normal derivatives of two components of V in (2.11) without
obtaining terms of order 1/e. To see this, we change variables in (2.11) using the local
coordinates of G introduced earlier. The first equation becomes

(2.22) (Va. U-ll- Olt)Oy3p-l-)OOy3(Ol 1)) f
After changing variables, and taking scalar product with Va, the second equation
becomes

(2.23) p(Va. /"" Ot)0y3(VO" v)+c2lVo[2Oy3p+e(u. VO)0y3(VO" V)=g.

Here f and g contain terms which involve derivatives of p and v in the Yl, y2, and
directions. Now

so that

We set w=(p, (7a. v)).Then (2.22) and (2.23) can be written

where

AOy3w=(f,g)

Va. u+at p

We can solve for Oy w provided det A # 0. Now on the boundary E, we have 7a. u + at
0 because (u, 1) is tangent to ;. Furthermore, when t=O,p=p)(x)>-_k>O on 12(0)
for n sufficiently large because convergence in H3(O(0)) implies uniform convergence.
Hence

det A -oc2( )lv 12_-< -kc2(k) =- < 0

on 0(0) because IVal2= 1 +(0x11)2+(0,21)2>= 1. For (y, t) (,
(2.24) I(y, t)-g(Y)l <- sup

O<=s<_t
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SO that

;(y, t) >- k- ctlll vIIl,,
where c is independent of n, n sufficiently large.

Now the data u are bounded in H3((0)) so that sup(o Ivu,l is bounded. For
each n, u satisfies the boundary condition. Thus by choosing 6, sufficiently small we
can guarantee that supQ,n,=o IV a" u + a[ el for any suitable e. Choose eo and
el so that for e Co, n sufficiently large, and x Q, { 0},

(2.25) det A < -Ao.
We assume fuher that 6, is chosen so small that Q, is covered by the local coordinate
neighborhoods . Then for points in ,
(2.26) 7a u + a, e + ct sup

Ost

e, + t[ Cllll viii3,, + c].

Combining (2.24), (2.25) and (2.26) we see that

(2.27) det A -o+ tg(lllV(n)lll,,).
We have thus proved the following.
LZMMa 3. For each n sufficiently large, there is an S(n), 0< S(n) T(n) such that

(2.28) det A-J&o forOtS(n)

on O,. S(n) depends on lV(n)3,T(n).
LEMMA 4. For each n,

d
(2.29) d[V(n t)[, K3([[[V(n t)[,)

for 0 < S(n). K3 does not depend on n.

Proof On Q,{0 <S(n)] we can solve (2.22) and (2.23) for OyW and thus
arrive at the estimate

(2.30) [llV(n, t)lll2 K(llIV(n,
for 0 < S(n). For details see Schochet [5]. Now combine (2.16), (2.17) and (2.30)
to deduce (2.29).

Finally, to establish the uniform bound (2.15), we will use the following argument.
Assume that S(n) sup {S: det A(n, t) -A4 o on [0, S)} S(n) T(n) where [0, T(n))
is the maximal interval of existence of V(n). Suppose that S(n) 0 as n. Now
the differential inequality (2.29) implies that there is a uniform bound

(2.31) Ill v(, t)[ll, c
on 0t< S(n). From (2.16) and (2.30), we deduce that

(2.32) lily(n, t)lllc forOtS(n).

Finally we inse (2.32) into (2.27) to deduce that

detA(n,t)-Ao+tK(C1), Ot<S(n).
But then S(n)O as n implies that detA(n,t)-(3/8)Ao on [0, S(n)) for n
sufficiently large. By continuity, we have det A(t, n)-]Ao on some larger interval,
which contradicts the maximality of S(n).
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The proof of Theorem 1 is completed exactly as in [5], in the coordinates of Q.
We use (2.11) for indices n and m, to deduce

n(lT"(n) +/3)[ (n) ’(m)]
(2.33) =[m("’(m) +/3)-- n(lT"(n) +/3)] lT"(m) + fi(n)-/3(m)

[/,,, Q(m)+ fl)- ,( Q(n)+ fl)]( Q(m)+/3)+ e (n) y, e (m) y,,

where we have used F(n) to denote F(e, n) when e e(n).
Multiplication of (2.33) by Q(n)-Q(rn) and integration over (, together with

the Sobolev inequality and the bound (2.15) show that V(n) converges in
C([0, T]; L2()). Again using the bound (2.15) and an interpolation argument, we
deduce that V(n) converges in Y,r for each 6 > 0. This implies that V(n) converges
in cl(Or), and hence converges to a solution of (2.2)-(2.4). The uniqueness of C
solutions is well known.

3. Small amplitude motion. Now consider the case of vanishingly small boundary
motion. We assume that 0 has the form

(3.1) (y, t) y + r/r(y, t),

(3.2) sup [O,r(y, t)l < c

and r/> 0 is a small parameter. The boundary condition can be expressed as follows:

(3.3) Vx" (u-r/O,r)=O one

because ’t ux" 0t0 r/,,. 0tr.
The initial conditions are more easily described in . We take initial data of the

form

(3.4) o(y)= po+ r/f(y)

where po is a constant, po>0, and f H3(’). For the initial velocity we assume that

(3.5) to(y) r/(y,

where r/- (y, r/) is continuous with values in H3() for 0<= r/<-- r/o, some r/o> 0. We
assume that the compatibility condition (2.9) holds for each

By Theorem 1, for each r/> 0, there will exist a solution U, of (2.2), (2.3) with
initial data (3.4), (3.5). From the estimates of Theorem 1, we can see that there will
be a common interval of existence [0, T), T > 0, for all r/=> 0. For the purpose of this
section, we write the system compactly as

(3.6) L(U,)U,=O in 07-.

Now let Uo(x, t)--(Po, 0) be the constant solution with r/= 0, and let Lo-= L(Uo)
be the operator of (3.6) with constant coefficients. The initial-boundary value problem
for the linearized acoustic equations is (U1 (pl, ul))"

(3.7) LoU1-- 0 in

(3.8) n. (u(y, t)-Otr(y, t))=0 fory601,

(3.9) U(y, O) (f(y), ,(y)) in 1



68 J. COOPER

where g(y)= g(y, r/=0). Here we use n as the exterior unit normal to 0. The data
(y) satisfies the compatibility condition

(3.10) O(n.u,-)l,=o=O for 0,1, 2.

The putative derivatives "0 tu(0)’’ as computed from (3.7) are used to evaluate (3.10).
We are ready to state our main result.
THEOREM 2. Let Un be the solution of (3.6). Then the solution U1 of (3.7), (3.8)

and (3.9) lies in X3,T and

(3.11) U, Uo+ r/U1+ o(r/) as q,O.

The convergence takes place in Y,T fq C (tT) for each > O.
Proof. To see that UI X3,T, apply the existence theory of 2 to the linearized

equation (3.7). Since the boundary data are smooth and the compatibility condition
(2.9) is satisfied, we can conclude that U1 Y,T for each 8 > 0 and that

03 U L(0, T, H3-J()), j 0, 1, 2, 3.

However, multiplication of the first equation by c2(po) and the second by po yields a
symmetric hyperbolic system with constant coefficients and the theory of unitary groups
may be used to improve the regularity to yield U1 Xa,r.

Next we define U, by setting U, Uo+ U,. Then because Uo is constant,
satisfies"

(3.12) L(U,) U, 0 in QT,

(3.13) v,,. (a,-0,r)=00nET,
(3.14) U,(0) (f(y), (y, r/)) in f,

(3.15) O[(u,. (a,-o,r))’],=o- o, /=0, 1,2

where "01U,(0)" is computed using. (3..12).
If we write (3.12) as L(Uo+ r/U,) U, =0, we can apply the quasilinear theory of

1 to deduce that

(3.16) /], is bounded in Y,T
independent of r/> 0. It follows that

(3.17) Un Uo as r/-0 in Y,T.
TO prove Theorem 2, we shall show that

(3.18) Un U1 in Y,T.
From (3.7) and (3.12), we have that

(3.19) Lo( U1-
To find the boundary conditions satisfied by U1 Un, we introduce the .3 x 3 matrix

Sn (Oqbn)(x t).

Then S,n=h, where
can be expressed as follows"

n. Sn(an-atr)=O onr
to yield

(3.20) n
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The initial condition is

(3.21) (U-,)(0)=(0,(y, r/=0)-(y, r/)) intl.
Now we need to show that the right side of (3.19) tends to zero in LZ(0r) as

r- 0. We shall need to write out the matrices of L"

(U) V A( U)O,V+ Ag( U)Oy V.
j=l

Recalling that LoV L(Uo) I/, we see that for each t, 0 _-< _<- T

/ E IIAJ(So)-eJ(C ,)ll  m)llo  S llc
j=l

_-< Const. No- t), II =(a (llo,s, + u,
for some 6, 0 < 6 < 1/2. Then using (3.16) and (3.17) we see that in fact [Lo- L( n)] Un - 0
in C([0, T]; L2(’)).

The same bounds and the fact that Sn - I uniformly on Er imply that the right
side of (3.20) converges to zero in C([0, r]; H(O)). In addition, (y, r) (y, 0)
in H3() by hypothesis (3.5). Then by standard results for symmetric hyperbolic
systems we deduce that

III gllllo, 0 as ,/ O.

Since n U is bounded in Y,r, we deduce by the usual interpolation argument that
Un U - 0 in Y,r for each ’> & This completes the proof of Theorem 2.
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Abstract. We show that if a hyperelastic material is slightly compressible, in this case the stored energy
function is a function of the "modified invariants," then the existence results of Ball are still valid. We then
study the behavior of the solutions when the compressibility tends to zero.
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Introduction. In an important article Ball 1 has established an existence theorem
for nonlinear hyperelastic and compressible materials. Roughly speaking, it is shown
that the problem

(P) inf{I(u)=f. W(Vu(x))dx, u=uoonOll,UE WI’p(-; R3)}
admits a solution; where ’C2R is the reference configuration, 0- is part of the
boundary 012, u:12- and VuEM3+ (i.e., Vu is a 3x3 matrix with detVu>0),
W: M3+ - is the stored energy function which is assumed to be coercive and polyconvex
(for precise definitions see the next section).

In particular, if the material is isotropic then it is well known that W can be
written as

(0.1) W(F) dP( i(FTF)
where : (+)3.+ and i(F) denotes the principal invariants of F, i.e., i(F)=
(il(F), i2(F), i3(F))= (tr F, tr (adj F), det F).

It is the aim of this article to show that the theorem of Ball still holds, under some
extra hypotheses, if one replaces the principal invariants by the so-called "modified
invariants" i* (cf. [7], [8]) defined as

(0.2) i*(F) (i*l i* (ili- 1/3, i2i2/3).

Let us be more precise and first explain the importance ofthe "modified invariants."
In practice it is a hard problem to determine experimentally the function W (or , if
the material is isotropic) and for slightly compressible materials, one is led to proceed
indirectly. One way of determining W may be as follows: first we make some experi-
ments (such as simple traction, biaxial traction, simple shear, etc.) for which we can
assume that the volume changes are negligible,

(0.3) W*(F) W(F)ldetF=
or for isotropic material

*(il, i2) (il, ia, 1).
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However, since the material is actually slightly compressible, we assume that a

strong pressure p leads to change of volumes and postulates that

(0.4) p(Vu) g(det Vu).

It is then easy to show (cf. Proposition 1) that W must be in the following form:
det F

(0.5) W(F) W*((det F)-I/3F)+ g(v) dv
dl

or if the material is isotropic

(0.5’) (il, i2, i3) d*( i*l i’2) + g( v) dr.
dl

However it is not obvious that such functions W (or ) remain coercive and
polyconvex (the two crucial hypotheses in Bali’s theorem). And indeed for the Mooney-
Rivlin stored energy function W*(F)  lFI= //31adj El, the polyconvexity is actually
lost.

In the second section of this article we show (Theorem 5) that for a large class
of materials including some of the Ogden materials (but not Mooney-Rivlin materials),
W is coercive and polyconvex. Then, using the same techniques as in Ball [1], we
show existence of minima when W satisfies (0.5).

In the last section we study the convergence ofthe minima when the compressibility
tends to zero and, in particular, we show convergence to the incompressible case.

Finally, we should mention that this kind of rheology has been used for engineering
purposes and for numerical computation of rubberlike materials; for more details we
refer to Charrier and Pouyot [2] and Pouyot [9].

The article is divided as follows: 1. Stored energy function of hyperelastic and
slightly compressible materials; 2. An existence theorem; 3. Convergence to the
incompressible case.

1. Stored energy function of hyperelastic and slightly compressible materials.
1.1. Notation. We start by recalling the usual framework of nonlinear elasticity

(for references, see [10] or [3] for instance).
We denote by M the set of 3 x 3 matrices and by

(1.1) M3+ {A M3: det A > 0}.

We endow the space M with the scalar product A. B =tr (ABT) and we denote
by IAI the associated norm. We also denote by i(A) the principal invariants of A M3,
i.e.,

(1.2) i(A) (il(A), i2(A), i3(A)) (tr A, tr (adj A), det A)

where adj A denotes the transpose of the matrix of cofactors of A.
Let f c 3 be the reference configuration (f is a bounded open set), u" 1)3 a

deformation of the body satisfying det V u > 0, i.e., F Vu M3+.
Let T(u(x)) be the Cauchy stress tensor defined on the deformed configuration

u(f) and let S(x) be the first Piola-Kirchhoff stress tensor defined as follows:

(1.3) S(x) det (Vu(x))T(u(x))[(Vu(x))7"]-1.
We also assume that the material under consideration is hyperelastic (and

homogeneous), i.e., there exists W: M3++ the stored energy function such that

(1.4) S= W’(Vu)

where W’ (0 W/OFia)l<_i,a<__3.
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The pressure is then equal to

(1.5) p --1/2 tr T-- 1/2(det XTu)- W’(Vu) Vu.

If the material is also isotropic then W assumes the following form

(1.6) W(Vu)

where : (R/)3_/.
As we mentioned in the Introduction, one way to construct the function (or

more generally W) is to determine at first

(1.7) *(il, i2) (il, i2, 1)

(or W*(F) W(F)ldetF=,).
In the second step we postulate that pressure changes induce volume changes that

are related in the following way:

(1.8) p(Vu) g(det Vu)

where g: + +.
In Proposition 1 we show that relations (1.7) and (1.8) determine completely the

function (resp. W), once * (resp. W*) and g are prescribed. And in fact we find

(1.9) W(F) W*((det F)-/3F)+ G(det F),

(1.9’) (i, i2, i3)--t*(i;1/3i, i;2/3i2)-FG(/i3)
where G is a primitive of g, i.e.,

I(1.10) G(x)= g(z) dz.

The identity (1.9’) leads to the introduction of the so-called "modified invariants"
(see Ogden [6], Penn [8])

(1.11) i* =- i/3il and i’2 i/3i2.
1.2. Determination of the stored energy function. We can now state the proposition

which shows (1.9) and (1.9’).
PROPOSITION 1o Part 1. Let W: M3+ + be differentiable and p: M3+ + be such

that

(1.12) W’(F). F= 3 det Fp(F).

Let g Loc(O, +oo). The following conditions are then equivalent"
(i) For every F M3+,

(1.13) p(F) g(det F).

(ii) There exists W*" {F M3+; det F 1}-+ such that
det F

(1.14) W(F) W*((det F)-I/3F)+ g(z) dz.

Part 2. Furthermore if satisfies (1.6) then (1.13) is equivalent to the fact that
there exists *: x+ such that

(1.14’) @(i, i2, i3)= *(il*, i’2)+ g(z) dz
dl

where i*l i* satisfy (1.11).
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Proof. Part 1. First suppose (ii). If W satisfies (1.14) then

d
d--t W(tF)lt= 3 det Fg(det F)

and since (1.12) holds, we indeed have (1.13).
Conversely, assume that (i) holds and let

det F

(.) h()= w()- (z) az.
dl

We then have

h’(F). F= W’(F). F-(adj F)rFg(det F)

=3 det F(p(F)-g(det F)) 0.

Therefore h is homogeneous of degree 0. Let W* be the restriction of h on {F
M3" det F 1}; then we immediately have (1.14). This completes Part 1.

Part 2. This is proved exactly in the same way. [3

1.3. Choice of a rheology. We first start with a definition introduced by Ball [1].
DEFINITION. A function W: M3-+ is said to be polyconvex if there exists

W: M M [ -+ convex, such that

(1.16) W(F)- w(F, adj F, det F).

In the incompressible case a class of rheologies (i.e. stored energy functions) for
isotropic materials is that of Ogden [6], where

M N

(1.17) W*(F)= Y a, tr(C,/-)+ Y, bitr ((adj C) fli/2)
i=1 i=1

where C FTF. If ai, b>0 and a,fl >- 1 then W* defined as in (1.17) is polyconvex
(cf. Ball [1]).

One can choose the coefficients in (1.17) such that W* interpolate, with a reason-
ably good approximation, the experimental measurements.

We will also, marginally, consider W* satisfying
M N

(1.17’) W*(F)= Y a, lF[,+ biladj FI,
i=1 i=1

with a, b >- 0 and a, fl => 1, which is obviously polyconvex.
Note also that if w*" M3M / in (1.17) or (1.17’) is such that

(1.18) W*(F) w*(F, adj F)

then we have the following coercivity condition

(1.19) w*(F,) K(IFI /lal
where K >0 is a constant and a max __< i_<M {ai} and/3 maxl_j_<v {/3j}.

We now discuss the compressibility law. As we mentioned, we postulate that for
slightly compressible materials the pressure p satisfies

(1.20) p(Vu) g(det Vu).

We assume that if

(1.21) G(x) g(z) dz
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then G satisfies

G" (0, +oo) [0, +oo) is convex,

lim G(x)= +oo,
x-0

(1.22)
G(x)>-Cx’forsome C>0 and y>l, x large enough,

G(x)=0 if and only ifx=l.

A good example of compressibility law is, for every F e M+,

(1.23) p(F) g(det F)=e-e det F-det--
which satisfies (1.22). In particular, if det F is close to 1 we have

l(detF 1)=1(oo 1)P"’e e

where Po is the initial density and p is the density of the deformed body. This is usually
considered as reasonable for numerous slightly compressible materials.

Therefore, consider a rheology of the form

(1.24) W(F) W*(F) + G(det F)

where W* and G satisfy (1.17) and (1.22). We could also consider more general W*
(cf. (2.6) below). We seek deformations u such that u Uo on 0f/1 (where 0f/1 = 0f)
and which minimize the potential energy of the system (we suppose for simplicity that
the material is homogeneous and that there are no external forces), i.e.,

(1.25) I(v) f, W(Vv(x)) dx

among all kinematically admissible deformations v which belong to

A,r= {v Wl"(O, R3), adj Vv (L(f))9, det Vv LV(f/)

det Vv > 0 a.e. and u Uo on 0f/l}.

The methods and results of Ball [1] can then be applied as follows.
TrEOREM (Ball). Let ce>3/2, /3>1, 1/c+1//3<4/3 and y>l. If there exists

At such that I() < oo then there exists u At so that

I(u) inf {I(v)" v Av}.
Remark 2. In the definition ofAtr, if we assume c -> 2, then there is no ambiguity

in the definition of adj Vu since it is an L function. However if 3/2 < a <2, adj Vu
is extended as a distribution by continuity denoted Adj 7u by Ball [1]. A similar
remark is applicable to det 7 u.

It is the aim ofthis article to extend Ball’s result to the case ofa slightly compressible
material which satisfy (of. Proposition 1)

(1.26) W(F) W*((det F)-I/3F)+ G(det F)

where W* and G satisfy (1.17) and (1.22).
The theorem of Ball cannot be applied directly since, even if W* is polyconvex

and coercive when det F 1, it is not, in general, the case for W satisfying (1.27). This
will be investigated in the next section.
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We end this section with some remarks.
Remark 3. (i) A simple example of stored energy function is the so-called

Mooney-Rivlin rheology, i.e.,

(1.27) W*(F) a tr C + b tr (adj C)= alFl-/ bladj El=.
We shall see in the next section that, even though (1.27) is polyconvex the function

(1.28) W(F)=a(det F)-:/3lFl-+b(det F)-4/3ladj F[2+ G(det F)

is not polyconvex.
(ii) It is known (cf. Gurtin [4]) that in an isotropic material the constraint in the

reference configuration is a pressure. The choice of a law of compressibility satisfying
G’(1) g(1) 0 implies that the reference configuration is free of constraint and thus
is a "natural" configuration.

2. An existence theorem.
2.1. Statement of the result. We consider a stored energy function W in the form

(2.1) W(F)= w(F, adj F, det F)= W*((det F)-I/3F)+ G(det F)

where

(2.2)

and w* satisfies

W*(F) w*(F, adj F)

M N

(2.3) w*(F, H)= Y a, tr (C,/2)+ Y bj tr (D/2)
i=1 j=l

with a, > O, b > O, C FrF, D HrH and

ai>= i=l," ",M,
(2.4)

/3j _-> 3, j=l,’" .,N.

We also assume that

(2.5) G satisfies 1.22).

Finally, if we let a max { ai, 1 <_- -< M} and/3 max {flj, 1 <_-j =< N} we then assume

3cy 3
>-p--

c+3y 2’

3/3’,/,
(/3 ->_ 3 and y > 1 imply q > 1),(2.6) q

2/3+3y

1 1 1 4
--+--
p q a fl y 3

For instance (2.6) is verified if a 2, fl 3, y 2.
Remark 4. The same results hold if instead of (2.3) w* is of the form

M N

(2.3’) w*(F, G)= E ailFI’+ Y blGI t’,
i=1 j=l

and if we assume all the other hypotheses (2.1)-(2.6).
Recall that we want to minimize

(2.7) I(v) =- f W(Vv(x)) dx
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over the space

Apq3,-- {t) WI’P(-’ 3), adj Vv (Lq(’))9, det Vv LV(l),
(2.8)

det V v > 0 a.e. and v Uo on 01}.

The theorem can then be stated as follows.
Tno 5 (Existence Theorem). Let Wsatisfy (2.1)-(2.6) and suppose that there

exists v Apv such that I v < c, then there exists Apq so that

I(a) inf{I(v): v Aq}.

In order to prove the above theorem, we proceed according to Ball [1] and we
divide our proof in three steps. In the first one we discuss the polyconvexity of W, in
the second one we study the coercivity of I in the space Apq and last, we pass to the
limit on the minimizing sequence.

2.2. Polyconvexity of W.
PROPOSITION 6. Let a > O, fl > O.
(i) Let

(2.9) W(F) ([F[(det F)-1/3);

then W is polyconvex if and only if a >- 3/2.
(ii) Let

(2.10) W(F) (ladj F](det F)-2/3)’;

then W is polyconvex if and only if fl >-3.
(iii) Let Vl, rE, v3 denote the principal stretches, i.e., the eigenvalues of (FTF) 1/2

and let

(2.11) W(F)= a v-/3 + _, b v+v+2-/3

i=1 k=l j=l j=l

where det F (with the notation v4 v and vs v) and a, b > 0. Furthermore if
>- 3/2 and >- 3 for every i, j chert W is polyconvex.
Remark. It is interesting to note that, following the above proposition, the

Mooney-Rivlin stored energy function

W*(F)- alF]2+ bladj FI2

does not lead to polyconvex W:

W(F) a]Fl(det F)-/3 + bladj F](det F)-4/3

since a 2 and/3 2.
Proof (i) Step 1. Let h: + x+ be defined as

(2.12) h(x, ‘3 =- (x6-1/3) ’*.

It is then easy to show that h is convex if and only if a >_-3/2. Let us remark now that

(2.13) W(F) w(F, det F), where w(F, 6)= h([F[, ‘3).

If a->_ 3/2, polyconvexity of W is deduced from the convexity of h and the fact that
x h(x, ,3) is a nondecreasing function.
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Step 2. It now remains to show that a >_-3/2 is also necessary for W to be
polyconvex. To prove this is slightly more involved. We first define for F M3+, a, b 3
such that F + ta (R) b M3+ for every E+ (where a (R) b (aibj) l__<i,j_-<3 M3)"

(2.14) q(t)=- W(F+ ta(R)b)=(lF+ ta(R)b[(det (F+ ta(R)b))-l/3).
It is then easy to show (cf. Ball [1]) that

(2.15) W polyconvex implies q convex

(a function W having the property that the associated q is convex is called rank one
convex).

In order to simplify the notation we let hi,. , h5 be defined as

[F+ta(R)b]2 ht2+h2t+h2
3,

(2.16)
det (F+ ta(R)b)= ,4t-F A5

for every t/ (observe that det (F+ ta(R)b) is linear in t).
Since W C2, so is p and an elementary computation leads to

qg"(t) (h2t2 -(/3[ () 3+h2t+h)a/2)-2(h4t+As) )-2 hh24t4 (2a-3) -FO(t3)

thus

and consequently

p"(t) >_- 0 for every + implies

W polyconvex implies a _-> .
(ii) The second part of the proposition is proved in exactly the same way.
(iii) In order to prove the third part we set

W(F) b(v,, v2, v3, v2v3, v, v3, v, v2, vv2v3)

and use a result of Ball [1] which asserts that, if p: (R+)7-R is convex and increasing
in each of the first six variables, then W* is polyconvex. It is clear that if ai >- 3/2 and

fl-> 3 then @ has the required properties (as in the first part). E

2.3. Coercivity of the energy functional I. We now want to show that I defined
in (2.7) is coercive over the space Apq introduced in (2.8).

PROPOSITION 7. Let W satisfy (2.1)-(2.6); then there exists K >0 such that for
every v e Apq

I(v) f W(Vv(x)) dx

(2.17) It w(V v, adj V v, det V v) dx

-> K(- + IlVvll,5 + [[adj Vvl[ , + [[det Vvl[[).

Remark. The result is still valid if instead of (2.3) we have (2.3’).
Proof. It is easy to see that (2.3) implies that there exists K > 0 such that

(2.18) w*(F, H) >- g(lFI +IHI’)
where a =max {ai’l =<i -<M} and fl =max {/3’1 =<j-< N}.
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Let 6 det F and use (2.5) to get that there exists K > 0 (we write K generically
for constants)"

(2.19) G(6) >- K(6- 1);

hence W and w defined by (2.1) satisfy the following coercivity condition"

(2.20) w(F, H, 6)>-_ K(I6-’/F] + ]6-2/HI +- 1).

We now apply Young’s inequality to

<2.21) [FIp I-l/3FIp p/3.

So for every e >0 and m > 1, 1/m+l/m’= 1 we have

Em --m’
(2.22) IF] p --Ia-1/3FIp + apm’/3,

m m

Choosing p as in (2.6), i.e.,

p-
a+3y

and m such that pm a, we indeed obtain pro’= 3y and hence

(2.23) IFI =--e<
p /P 16-’I3F[ +--P 8--3y/Pa y.

Similarly if q 3fly/(2 + 3y) we get

< qe/ql6_/3 i
2q -3v/2q(2.24) ]HI q H

Combining (2.20), (2.23) and (2.24) we have indeed obtained

and thus proved the proposition.
Remark 8. Observe that in the above proposition we have indeed used the coer-

civity of w(F, H, a) (i.e. where the arguments (F, H, 6) are independent) as in (2.25),
and not only the condition W(F)=w(F, adjF, detF)gK(IFI"+IadjFIq+
(detF)V-1),FeM which is, in general, weaker. In fact, the coercivity of
w(F, adj F, det F) does not seem to be sufficient to ensure the coercivity of I(v) in
Apqv if 3/2 <p<2, since we do not know whether adj Vv (which is defined only as a
distribution in Lq) coincides with the almost everywhere definition. However, if p g 2
and qp/(p-1), the coercivity of w(F, adjF, detF) is sufficient to obtain that of
l(v) on Apqv (see } 2.5, Theorem 5’).

2.4. Proaf of Theorem 5. We first state a lemma proved by Ball 1].
LEMMA 9. Let be a bounded open set of 3 and let

u uW*(a; ).

(i) Ifp > , then

adj VUk adj Vu in (@,(fl))9.

(ii) Furthermore, ifp > 1 and

adj Vu---- adj Vu in (Lq())9, q>l
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with 1/p) + (1/q) < then

det VUk-- det Vu in 9’(12).

Remark. Recall that in the lemma we have used the notation of Remark 2.

ProofofTheorem 5. We may now proceed exactly as in the proof of Ball’s Theorem.
Let Uk be a minimizing sequence of I(u) on Apqv. A version of Poincare’s inequality
ensures that

(2.26) fa ]uk(x)lP<--K[fa ]VUk(X)lP-l"(ffoa, [uO] ds) p]
where K is a constant. Therefore combining (2.26) and Proposition 7, we find that
(up to an extraction of a subsequence)

Uk U

(2.27) adj V Uk H

det V Uk 6

in WI’p(-’ 3),

in (Lq(f))9,

in LV(f).

The above lemma ensures that H- adj V fi and 6 det V tT. Using Proposition 6 we get

(2.28) lim inf I(Uk) >= I().
kcx

Moreover, a=Uo on 01-11 and detVfi>0 a.e. Since, by (2.28), I()<.+, so Apqv.
Thus is a minimizer of the energy.

In the next section we show that the coercivity condition may be slightly improved;
and in the last section of the second part of this article we will also show that one can
consider more general stored energy functions.

2.5. Optimal coercivity of the energy. Recall that

W(F) w(F, adj F, det F)= W*((det F)-I/3F)+ G(det F),
M N

W*(F)= w*(F, adjF)= Y aitr(C,/-)+ Y bjtr(adj C)6/2,
i=1 j=l

(2.29)
where C FF,

G(6) >= C6 ’ for some C > 0 and y > 1, 6 large enough.

In Proposition 7 we have shown that

w(F, H, 6) _>-- K (IFI p + IHIq + 6 1)(2.30)

provided

3ay 3fly
(2.31) p_--< q_--<

a+3y’ 2/3+37

where a max {ai: 1 <-_ <- M} and/3 max {/3j 1 _-__j _-< N}.
In fact, we have shown that for every (x, y, 6) (/)3

(2.32) (6-1/3x)aW(6-2/3y)t3+6Y>--g(xPWyq+63’-l).

The question is then,whether we can improve p and q by assuming that x IFI,
y ladj F and 6 det F. This can indeed be done and we have the following optimal
result.



80 CHARRIER, DACOROGNA, HANOUZET AND LABORDE

PROPOSITION 10. Let W be as above, then the following two statements are
equivalent:

(i) There exists K > 0 such that

W(F) >- K(IF[ p +ladj F[ q +(Oct F)- 1)

for every F M3+;

(ii) p <max q <max ya+33/ fl+6y] \ 2a

Proof Let us suppose (ii) and prove (i).
We first show the following two inequalities:

(2.33) tr (adj A) <= tr A for every A M3,

(2.34) tr A/2 < tr adj A for every symmetric positive matrix A with det A 1.

Let ak be the eigenvalues of A. It is obvious that

tr (adj A) aa3 + aa3 + aa _-< al
2 + a2 + a3 tr A2,

and hence (2.33). Similarly,

(a:a3)-l/2 / (alaa)-l/Z / (ala2)-1/2<_ a-l+ a-l/ a-1

and since det A ala2a3 we deduce that

tr A1/2 al/2 + a/ .4. a/ <- aEa3 + ala3 + ala2 tr adj A

and thus (2.34).
Let us define

(2.35)
C. (det F)-Z/3FTF (det F)-2/3C,

c=max a, /3=max /3,

Then using (2.33) and (2.34) we have

(2.36) tr (C/2) >= tr (adj C/4),
and thus

tr (adj C,/) >- tr C/4)

(2.37) W(F) -> K (tr Cg/+ tr (adj C,/2) + (det F) v 1 ).

We now proceed exactly as in Proposition 7, where we have replaced a and/3 by c7

and/3, and thus we get (i). Conversely, we now assume that W satisfies the coercivity
(i) and we want to show that p, q and r are as in (ii). The condition on r is immediately
deduced from (i) by choosing F AI and letting A o0.

Furthermore, by letting vl, v2, v3 be the principal stretches of F and 6 vv2v3
we get from (i)

(2.38)

(Vi-l/3) "4- 2 (ViVi+l-2/3)t "4- T
i=1 i=1

-> K v .4- V Vi+
i--1 i=1

q/2

where 1)4 V
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Step 1. We let si be such that

(2.39) vi e s, and Sl s2 S3o

Then (2.38) is equivalent to (considering only the leading term)

(2.40)

Hence letting

e(Sl-(1/3)(sl+s2+s3))
__

e(Sl+S2-(2/3)(Sl+S2+S3))fl + e(sl+sz+s3)v

>- K (eqp + e(sl+s2)q nt- e(sl+s2+s3)r- 1).

sl=s, s (1- 0-1)s, $3 (1 0-1 0-2)S

we must have from (2.40)

max (20-1 + 0-) 3; + 20-) (3 20-1
(2.41)

=> max {p, (2 0-1) q, (3 2o-1- 0-2) r}

for every O" O"2 O.
Step 2. In particular

p-<p-= min { max 1i(0-1,0-2) }a,o-2_>0 1<i<3
(2.42)

where

(2.43) 11 (20-1 + 0-2)7, 12 (0-1 + 20"2)
.5

It now remains to show that

3ay 3fly }max
a+3r /3+63,

3ay
a+3y"

Case 2. a _<-/3/2, then 12--> 11 and therefore

/ min {max {12, 13}}.

Repeating the above argument we find

3flyp-
/3+67"

Observe that the line 11 13 divides the cone 0"1 => 0, 0"2 0 into two regions and that
max {11,/3} tends to +m if 0-1 or 0-2 does. Therefore, the minimum of max {11,/3} over

0-1 >= 0 and 0"2 => 0 is attained at one of the extremal points. Comparing the different
values of max {11,/3} at these points we find

min {max {11,/3}}"
0"1,0"2=>0

13=(3--20"1--0"2) %

to obtain (ii).
We need to consider three cases.
Case 1. a >= 2/3; then 11--> 12 and hence
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Case 3. fl/2 <-_ a <-_ 2/3, one shows in a similar manner that max {ll, 12, 13} attains
its minimum over oq _>- 0, tr2 -> 0 exactly at the point where ll 12 13 and this minimum
is then

3a3’
a+33’

hence the result.
Step 3. It now remains to show that

(2.44) q_<-max 2/3+33,’2a3’
We again use (2.41) to get that

(2.45) 2q<_-min /max{/l(r,r2)}--20
O’1_0, O’20 1--<i=<3

where l’i li + qo’l.

A procedure similar to that of step 2 shows that t] is exactly max (33"/(2fl +
3y), 3ay/(2a +63’)). And this concludes the proof of the proposition, fi

Combining Proposition 10 with Proposition 6, we obtain the following (exactly
in the same way as Theorem 5).

THEOREM 5’ (Existence Theorem). Hypotheses (2.1)-(2.5) are supposed to be

satisfied and (instead of (2.6))

max
ka +37’ )/2’

(2.6’)
( 3/33’

q-- max \2/;3’
3a3’ )’2a3’ / 1

holds. Assume also that there exists v Ao such that I v < o; then there exists
so that

I(fi)=inf {I(v): vAo,}.
2.6. Polyconvexity of a more general stored energy function. Up to now we have

only considered stored energy functions constructed from the Ogden model (i.e., W*
satisfying (2.1)-(2.3)). We now consider the more general case

(2.46) W(F) *(Vk*, Vk*+l, Vk*+2) + G()
where the Vk* are the principal stretches of (det F)-I/aF and 8 =det F, and (Vk, Wk)
stands for p(Vl, v2, v3, Wl, w2, w3).

For notational purposes we pose Wk--Dk+lDk+2. We also make the following
hypotheses on *:

if*: ([0, +))6+ is increasing,

(2.47) *: (Vk, Wk) *(V/3, W/3) is a convex function on [0, +)6,

*(v, w) e K v7 + E wf 1
i= j=

and G satisfies (2.5). Then if

3a3’ 3 3/33’ 1 1 4
(2.48) p= >- q-=> 1, -+-<- 3’> 1

a+33" 2’ 2/3+33’ p q 3’
we have the following.
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THEOREM 5". If there exists v Apqy such that I(v) < o then there exists Apqy
such that

I(tT) inf{I(u): u Apqv}.

Proof. The only thing that remains to be checked is the polyconvexity of W. It is
then sufficient (see Ball 1]) to show that

(2.49) I[l( Vk, Wk, "1")--lilt(T-I/ark, 7"-2/3Wk) + G(T)

is increasing in the first six variables and is convex. The first property follows from
the fact that q* is increasing. It thus remains to show the convexity of q, but this is
obvious since we have from (2.47) and (2.49)

(2.50) q,(v, w, )= *((-/v)/(-/w))+ G().

Combining Proposition 6, the convexity of q* and G, we have indeed proved the
theorem. [3

Examples. (i) Ogden materials, considered in the preceding sections, represent a
particular case of the above theorem.

(ii) However there are examples, not of Ogden type, satisfying (2.47), for instance,

* V, W) E aijv 7’ l) d- biwi w+ cijv 7’w
i,j=l

with aij, bi, co -> 0, ci ->_ 3/2 and/3 -> 3. If we also assume that the quadratic form on 6

f(x, y) Y (aijxxj + b,yiyj + c,jx,yj)
i,j=l

is positive definite. Therefore, the convexity off and the fact that f is increasing imply
that * is so.

3. Convergence to the incompressible case. We conclude this article by showing
that if in the above analysis we let the compressibility tend to zero we recover the
incompressible case.

Let e > 0 and

(3.1) /(v) W*((det TV)--I/3vV) dx +- G(det Vv) dx

where W* and G satisfy (2.1)-(2.6).
Let us consider the problem

(P) inf {I v v e Apq,}

and define

(3.2) Io(v) Jn W*((det dx.

We define the admissible set for the incompressible case as

(3.3) K={ve wl’(;3),adjVv(L())9, detVv=l and V=UoOnOl)l}.

We will assume that K . Finally, let

(Po) inf { Io( v)" v Kt}.

Remark. Note that p < a and q </3.
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We now can state our last theorem.
THEOREM 11. Under hypotheses (2.1)-(2.6) and thefurther assumption that G(1)

G’(1) -0 and G"(t)>- Co> O, then every sequence u Apq ofsolutions of (P) converges
(up to the extraction ofa subsequence) to a solution Ko of (Po) in thefollowing sense:

u in Wl’p(-’ 3),
adj Vu adj V in (Lq(f))9,
det Vu -- 1 in L2(f) strongly,

(3.4)
lim Io(u Io(tT),
e--0

lim -1 f G(det Vu) dx O.
e0 E Jn

Remark. Similar results have been obtained by Pouyot [9] and Le Dret [5] for
rheologies of the form Wo(F)+(1/e)G(det F).

Proof. The existence of solutions u of (P) is obtained using Theorem 5; the
existence of solutions u of (Po) is a consequence of a theorem from Ball [1] for
incompressible materials.

Let w K; then

(3.5) I(u) Io(u)+
1 1 G(det Vu) dx <- I(w)= Io(w).
E

Therefore u is bounded in Apq.y and, after a possible extraction of a subsequence, we
have

Vu-- Vt in Lp,
(3.6) adj Vu adj V t7 in Lq,

det Vu det V in Lv.
Furthermore, taking into account the fact that G(1) G’(1) -0 and G"(t) >= Co> O, we
deduce that Co((t-1)2/2) <- G(t). Hence in combination with (3.6) we get

(3.7) det Vu- 1 in L2 strongly.

It remains to show that t7 is a solution of (Po) and the last two equalities of (3.4). Let
eo> 0 be fixed and 0 < e < eo, we then have for w K
(3.8) Io(Uo <-_ Io(U) <- I(u) <-_ I(w) Io(w);

thus

(3.9) Io(tT) leo(a) =<lim inf Io(U) =<lim sup Io(U)<= Io(w).
e0 e0

This implies that Io(fi)< +c and hence t7 K and is a solution of (Po). Replacing
in (3.9) w by t7 we have immediately

(3.10) lim Io(U)= Io()
e--0

and returning to (3.8) we have indeed proved the theorem.
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PERTURBATION METHODS FOR SOLID DIFFUSION
IN A STEFAN PROBLEM*

JOSEPH D. FEHRIBACH"

Abstract. Consider a one-dimensional, two-phase Stefan problem where one phase is a semi-infinite
solid and the second, a semi-infinite liquid, and where the dependent variable represents a diffusive impurity
concentration. Assume that the diffusion coefficient for the solid phase is much less than that for the liquid
and that temperature is constant in space. In this paper, singular perturbation techniques are used to study
this problem when the movement of the solid-liquid interface is governed by a thermodynamic perturbation
in time which is large compared to the solid diffusion coefficient. Asymptotic expansions for the solid
impurity concentration are given for solids that decay, grow, or have both periods of growth and decay. It
is shown that when the thermodynamic perturbations lead to decay, the boundary layer in the solid impurity
concentration is substantially narrower than in the absence of the thermodynamic perturbations. The
significance of this narrowing is illustrated using the liquid-phase epitaxial decay of semiconductor crystals.

Key words. Stefan problems, singular perturbation expansions, solid diffusion, liquid-phase epitaxy,
crystal growth

AMS(MOS) subject classifications, primary 35R35; secondary 35K05, 41A60

1. Introduction. Perturbation methods have long been a powerful tool for studying
complex systems of partial differential equations. Here these methods are applied to
an infinite, one-dimensional, two-phase Stefan problem modeling "impurity" diffusion,
where one phase is a semi-infinite solid and the other is a semi-infinite liquid. The
problem has two perturbation sources: a thermodynamic perturbation which is time
dependent and which affects the phase interface, and a singular perturbation due to
the small diffusion coefficient of the solid. The interaction between these perturbations
is the mathematically interesting part of the problem.

Much work has already been done on the general class of problems known as
Stefan problems (e.g., 1 ]-[4] and their references). That the problem in question (1.1)
is well posed for at least some finite time was established (up to minor adjustments)
by Fasano and Primicerio [5]. But while existence and uniqueness proofs hold for all
e > 0, the form of the solutions to nonsingular problems with e differs from that
of the singular problems where e << 1. Determining and analyzing solutions for singular
problems is the main goal of this paper.

In its simplest form, the problem can be stated as follows: Let S(t) be the position
of the solid-liquid interface with the solid phase to the left of the interface, let v(t)
be the interface velocity, and let u represent the concentration of the diffusing species.
Then

(1.1a)

(1.1b)

(1.1c)

(1.1d)

Stefan Condition:

Thermodynamic
Equilibrium Condition:

Ut-- EUxx

Ut Uxx, X> S(t),

v( t)[ u+ u_] e( ux)- Ux)+,

F(u_, u+; to(t)) 0,
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(1.1e) u(x,O)=uT, x<0,

(1.1f) Initial Conditions" u(x, O) u, x > O,

(1.1g) S(0) =0.

Here e, to << 1, and F is a known system of two equations that is nonsingular at to(t) 0
and that satisfies the condition that there exist uniquely u such that F(ue, u; 0)=0.
This last condition assures that the only thermodynamic influence on the motion of
the interface is the perturbation to(t). For simplicity, this thermodynamic perturbation
will be assumed affine-linear in time" to(t)= 6 + at. Thus the ambient temperature is
constant in space and varies slowly in time. Also the symbols + and indicate the
limiting value on the left and right sides of the interface, respectively.

This Stefan problem (1.1) can be viewed as the instantaneous heat diffusion limit
of the coupled heat-impurity diffusion problem often referred to as the alloy
solidification problem [2, p. 14], [6]. It should be kept in mind, however, that the
presence of a single diffusion field in (1.1) places the model closer to the classical
Stefan problem than the "full" alloy solidification problem. The latter problem has
been studied analytically by Rubinstein [1, pp. 52-60], [7], and numerical methods
for the enthalpy formulation have been given by (among others) Crowley and Ockendon
[8], Fix [18], and Bermudez and Saguez [19].

Ghez and Small [9], [10] have proposed (1.1) as a model for the formation of
semiconductor crystals by liquid-phase epitaxy (LPE). In an LPE process, a solid
semiconductor crystal substrate is placed under a liquid semiconductor solution.
Depending primarily on the ambient temperature of the solid and liquid, the crystal
will either grow or decay. In the absence of a time-dependent thermodynamic perturba-
tion (i.e., when the ambient temperature is constant), Small and Ghez [9] solved this
LPE problem using the well-known similarity solution. Their solution taking the
time-dependent perturbation into account, however, is only valid for very small values
of time where the thermodynamic perturbation is small [10].

Notation. For convenience, let "" Or(e)" mean

e->0 [-
for some constant M > 0. Also let inequalities have their obvious meanings, e.g., let
’> Or(e) imply that tends to zero more slowly than e. Note that --< Or(e) is
equivalent to - O(e).

The solution of Ghez and Small is valid when to(t) < Or(x/). In the next section,
perturbation methods are used to calculate asymptotic expansions when to(t) > Or(v/-)
(i.e., when the thermodynamic perturbation dominates) for the Stefan problem (1.1)
in the growth, decay, and mixed growth-decay cases. The analysis shows that in the
presence of a purely linear time-dependent perturbation (i.e., 6 =0), the decaying
solution contains a boundary layer, the width of which narrows from Or(x/-) to Or(e)
after an initial Or(x/-) time interval. In the affine case (6 0), the width ofthe boundary
layer is Or(e) for all time. The growth solution, on the other hand, may require
fractionally iterated error functions, but will always contain a transition layer of width
Or(x/) buried in the solid. The solution for the mixed growth-decay case is obtained
by combining the first two solutions.

In the third section, the results of 2 are applied to the problem posed by Ghez
and Small. Here the major result is that the boundary layer in a decaying crystal
becomes so narrow as to effectively have disappeared altogether.
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There have been a number of other applications of asymptotic methods to Stefan
problems. Many applications are discussed by Crank [2, pp. 139-162]. Among these
are two: Ockendon [11] considers heat diffusion problems with either small or large
latent heat, and Stewartson and Waechter [12] have studied the inward freezing of a
spherical liquid assuming a large latent heat. In addition Tayler [13, pp. 167-171]
discusses the difficulties inherent in an asymptotic solution to a coupled heat-impurity
diffusion problem where the solid diffusivity is assumed to be zero and the liquid
diffusivity is assumed small. Finally it is worth noting the classical Mullins and Sekerka
[14], [15] stability analysis describing dendrite formation (see also [16] and [17]).

Weak, variational, and numerical methods have also been applied to various
Stefan problems, including those modeling impurity diffusion. Among the works
discussing these methods are [2, pp. 245-249], [3], [8], [9], [18], and [19].

2. The Stefan problem. When F is independent of time (i.e., a =0), the Stefan
problem (1.1) has a similarity solution regardless of the size of e. In particular, if

x/2x/-i, then this solution can be written in terms of error functions:

u(f)=uT+(u_-uT)
erfc (-:/x/-)
erfc (-A/v/-)

u()=uT+(u+-uT)
erfc (:)
erfc (A)’

where v(t)= A/x/7 implies that the interface position is : A. The values for u_, u+,
and A are determined using the Stefan condition and the requirement that
F(u_, u+; a)=O.

At this point one is tempted to solve the time-dependent problem (i.e., a O) by
defining r= at (hence to(7)= B+ 7) and treating r as a perturbation of the similarity
solution. This approach is essentially the one used by Ghez and Small [10] and
elsewhere [20], [21]; it works well in the liquid, but leads to difficulties in the solid
for r _> Or(x/). Specifically, if 7 is viewed as a perturbation of the similarity solution
and u(, 7) is expanded in r, then the first order term of the solution can be written
in terms of a second iterated error function. In the liquid this term is O(r), while in
the solid it is O(7/x/-). Therefore a different approach is required in the solid for
larger times. The idea is to apply singular perturbation methods leaving u_(7) and
A (r) as arbitrary functions to be evaluated at the interface. Note that in terms of (, 7),
the interface position is A(7), where

1 for A (s)
(2.0) A(7) x/ ds,

which reduces to A A in the similarity case.

2.1. Solid decay. First consider the case when to(7) causes the solid to decay, i.e.,
A (7)< O. For this case, it is useful to transform the differential equation in the solid
into coordinates where the position of the solid-liquid interface is fixed. Therefore
define sr :-A(r); (1.1a) then transforms to

(2.1) 470u(, 7)= eOccu( 7)+2[A(7)+ ]Ocu(, 7).

Since the coefficient of Ocu is always negative, there is a boundary layer at sr O. The
outer solution deep in the solid is simply Uout(’, 7)= u. To find the inner solution,



PERTURBATION METHODS FOR SOLID DIFFUSION 89

define an inner variable:

Z- p

where p is chosen to balance the lowest order terms in e in (2.1). At this point two
cases develop: the first will be referred to as diffusive motion, the second, thermal decay.

LEMMA 2.1. Assume that there exists uniquely ue such that F(ue, u; 0)=0 and
that (UT--ue)= Or(e). If to(z) < Or(x/), i.e., 6, z<_ Or(v/-), then dominant balance
for (2.1) implies p=1/2. If w(z)=Or(e q) for 0=<q<1/2, then p= 1-q.

Proof Expand , (7.) o+ hz+ O(z2). For diffusive motion, the Stefan condition
(1.1c) and F(ue, u; to(z))= O(v/--) imply ho Or(e -p) and h= O(e). On setting
p =1/2, all of the terms of (2.1) scale as Or(e). Similar balancing of the interface
conditions and (2.1) in the case of thermal decay results in p 1- q. In this latter case,
the lowest order terms of (2.1) are the term containing h(7.) and the second derivative
term.

Remarks. (1) Little is gained by considering cases where 6 Or(e r) for 0 < r <
since the coefficients of the thermal perturbation would not be expected to depend on
the solid dittusivity. Therefore from here on, either 6 0 or 8 Or(e).

(2) The above lemma has the following interpretation: When the motion of the
interface is governed principally by diffusion, the relative slowness of this motion leads
to a boundary layer in the solid of width Or(v/-). But in the presence of a thermal
perturbation which is Or(e q) for 0_< q <1/2, the interface motion is relatively fast, and
since the solid is decaying, the boundary layer is narrowed to Or(e-q). If 8 Or(e),
then the boundary layer has width Or(e) for all 7.. When 6 0, however, there is a
transition from an initial period of diffusive motion for z < Or(x to a period of
thermal decay for z > Or(x/). In this case, ho 0, and the width of the boundary layer
then narrows from Or(x/-) during the initial period to Or(e) for large times, i.e.,
r Or(e) (cf. Fig. 2.1).

(3) The direction of the diffusive motion (growth or decay) is determined by the
Stefan condition, depending on the signs of (u/- u_) and (ux)_. For present purposes,
this direction is not important.

Now since for all r the function A(r) depends on the value of A(s) near s=0
(cf. (2.0)), the initial diffusive behavior influences the large-time behavior by affecting
the position of the interface in the laboratory frame (i.e., in terms of or x). However,
as the next lemma establishes, if distances are measured in terms of if, one does not
need the solution for the diffusive period to calculate the solution for the thermal
period. The lemma follows immediately from the change of variables.

LEMMA 2.2. Recall that " :- A(r). When written in terms of (, r),for 7. > 0(/-),
system (1.1) is independent of the initial diffusive period.

A lowest order asymptotic solution valid for w(7.) > Or(,v/-) can now be calculated
using a multiple time scaling. Recall that w(r)= + 7-, and assume first that 3 0 and

1--q
7"= Or(e q) for 0=<q <. The correct inner variables in the solid are Z /e and
7 7./e q. Let r 2q. On writing (2.1) in terms of (Z, 7), one obtains the inner equation

(2.2) 46r’oUin(Z ) OzzUin(Z r) + 2[A eq) + erZ]OzUin(Z, ).

Now expand Uin(Z, Z)= Un(Z, r)-t-o(er). A priori ,(-7) would also be expected to
depend on e. But because the interface conditions written in terms ofthe inner variables
in the decay case are independent of e (cf. (1.1c), (1.1d)), ,(?) is also independent
of e. On substituting the expansion for uin into (2.2), solving the lowest order differential
equation for un and matching this solution with the outer solution deep in the solid,
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FIG. 2.1. Transition from diffusive decay to thermal decay. The continuous line is the position of the
interface and the dash-dot line shows the thickness of the boundary layer. Asim is the value ofA in the similarity
solution, and (A1/3)7" is the interface position for large times.

one obtains a lowest order solution u(r, r) valid uniformly in " for 7.= Or(eq). On
the other hand, if 6 Or(e), the scaling of 7. is not important and the above perturbation
expansion can be carried out with p 1. In either case, the following lemma is obtained.

LEMMA 2.3. Assume that to(r)>- Or(x/-). Then to lowest order, the uniform (in )
solution of (2.1) is

(2.3) u(", 7") us+ [u_(7.) Us] e-2’x(z)Ue

where the functions u_( 7") and h (7") are determined by linearizing the interface conditions
in 7" (recall that F is assumed to be nonsingular).

Note that even for 6 0, this lowest order solution is independent of q. The order
of the next term in the expansion, however, is 1- 2q. Also note that the exponential
factor in (2.3) would be present in every term of the expansion, regardless of the order.

2.2. Solid growth. Now consider the case when w(7") causes the solid to grow,
i.e., h(7") > 0. In terms of (sc, 7"), (1.1a) is

(2.4) 47"0u(, 7")= eOu(, 7") +2sC0u( 7").

Since the coefficient of Ou in (2.4) vanishes at : =0, in the growth case a transition
layer is buried in the growing solid. As in the decaying case, the goal is to find an
asymptotic expansion for u in the solid for to(7") > O(v/--). But as before, if 6 0 there
is an initial period when the motion of the interface is governed by diffusion. Since
A(7") depends on the value of A in this initial period, and since for a growing solid
A(7") is the distance between the transition layer and the solid-liquid interface, it is
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not possible to move to a reference frame where calculations can be made completely
independent of the initial period. Since the length of this initial period is O(/-),
however, lowest order calculations can be made ignoring this period. Thus for large
times, the position of the interface is

A1:= A(z)=.ho+-- z+ O(v/, z2)
3

where ho and h are determined by the interface conditions (1.1c, d) for -> O().
Note that if 8 Or(e), there is no diffusive period and therefore no O() error term.

Finding a uniform asymptotic solution for the solid in the growth case implies
combining two outer solutions, one for <0, one for 0< <A(z), with an inner
solution at 0. As before, the outer solution deep in the solid is simply Ueft(, ) U.

NOW consider the region between the transition layer and the interface, and let
U gright be the outer solution in this region. Tolowest order in e, the outer equation
corresponding to (2.4) is

(2.5) 2O,u(, )= Ou(, ).
oThis equation simply indicates that u is constant along the characteristic curves

(z x =constant. Let u

_
and u

_
be the interface constants for the solid solution,

i.e., require that

(2.6) u(A(t), t)=uY+ut+O(t).
Then to lowest order in e, u(, r) is found by solving 2r (A(t))2t for and substituting
into (2.6). If A(t) is approximated to O(t), then the equation to be solved is a cubic
with one real root. The resulting outer solution is then

(2.7) u(, z) u+ uJ[O+(, z)+ Q_(, z)]2+HOT
where HOT represents higher order terms and

L 2, [+4J
Note that if =0, then Ao=0 and (2.7) and (2.8) reduce to

r9211/3uT(, ,) u+U2Lj
+0(#/3).

Again the coefficients oo uO,u_, Ao and A are found using the interface conditions.
Now consider the inner equation near 0. By dominant balance, the appropriate

inner equation is

(2.9) 4raui,(X, r)=axxUin(X, r)+ 2Xaxu,n(X, r)

where X /. To lowest order in e, the inner solution is essentially the similarity
solution

Ir 00Un(X, ) U +tU_ U erfc (--X).

This lowest order inner solution, however, may not be sufficient to construct a uniform
solution which is O(e) or O() for all since fractional powers of e (other than
) may appear in the expansion. To determine if any such powers are present, the
following lemma is needed. The lemma shows the eect on the inner solution of a
nonconstant outer solution u satisfying (2.5). In paicular note that higher order
terms from the outer solution do not aect the lower order terms of the inner solution.



92 JOSEPH D. FEHRIBACH

LEMMA 2.4. Suppose that l/in(X 7-) is an inner solution satisfying (2.9) and suppose
that u_, u, K, m, n and q are constants with 0< q < m+ n. If t/in(X 7") matches the
outer solutions Uert(:, 7")= Us on the left and ur(, 7")= u+ K(27")q + O(7"rne n) on the
right, then

/,/in(X, 7")--

where ierfc2q is defined using an extension of the Dirichletformula for repeated integrals"

ierfcq (X) sq-erfc(s + X) ds.

Remark. The function ierfcq can be thought of as a fractionally iterated error
function. For 2q 7/+, it agrees (up to a factor of F(2q)) with the usual definition for
an iterated error function. The function equivalently can be viewed as a convolution

x The definition can then be extended toof erfc (X) with the generalized function x+.
include fractional derivatives when q_-<0 [22, p. 48].

Proof. Confirming that Uin satisfies the differential equation (2.9) is a simple
application of integration by parts. Since the latter two terms in /’/in both vanish as
X--, uin correctly matches Ueft. On the right, the sum of the first two terms
asymptotically tends to u_. As for the third term, fix /3 so that 0<</3 << X and let
p 2q- 1. Then since erfc (-s) 2- erfc (s),

s erfc (s X) ds s erfc (s X) ds + TS

-1x2q+ [(X+s)P-(X-s)P]erfc(s) ds+TS
q

where TS represents terms that are transcendentally small, i.e., terms which, as X - o,
tend to zero faster than X-" for all n. But

[(X+s)P-(X-s)P]erfc(s)ds<-Xp 1+ 1- dt+TS

<= pXP-’fl 2 + O(XP-3).

Hence for X>>0, Kq(eT") q ierfc2q (-X) asymptotically approaches K(27")q. Finally
terms which are O(e n) in the outer solution match similar terms in the inner solution,
while O(7"rn) terms in the outer solution correspond to O(ern) terms in the inner
solution. Also the term e9cu in (2.4) implies that the size of the next terms in the
inner expansion will be at least O(e).

To construct a uniform solution for the growth case, the outer solutions must now
be analyzed on the scale of the inner variable and matched to the appropriate inner
solution. Let urn(X, 7") be the right outer solution written on the scale of the inner
variable. Two cases again arise: first when 8 =0 so that ;to=0, and second when

Or(e) so that Ao Or(e) also. In the first case, urn(X, 7")= Ur(, 7"), i.e.,

Urn(X, 7")-- uO_O+ uO__lel/3r9X27-] 1/3

L _I + x > o.

In the second case, in terms of the inner variable, (2.8) becomes

Q+/-(, 7")= +/- +x/- 2AO + O(e);



PERTURBATION METHODS FOR SOLID DIFFUSION 93

hence

Urn(X, ) U + U
lX /),+o( X>O.

Uniform solutions for the solid concentration can now be obtained by adding the
inner and outer solutions, then subtracting the matching terms. When 6 0, the inner
solution is given by the Lemma 2.4 with q . The uniform solution for z > Or(x/)
in this case is thus

u(:, )= Us+1/2[u_-uT] erfc (-Ux/-)

+ uO2 ez
ierfc2/3 (--:/N/-) -- O(, 2/3).

When 3 Or(e), q 1. Hence in this case the terms of the inner solution which match
the lowest order terms in 7 and e of the outer solution are higher order in e. Therefore
the uniform solution is

u(s, z) uT+1/2[u_- uT] erfe (-:/x/-{) + u_S(, z)+ O(e, z)
where

s(, )= {’Q+(s, ) + Q_(s, z)],
2.3. Mixed growth-decay problems. Up until this point, in all of the problems

analyzed, the thermal perturbation has caused either growth or decay for all values of
z. In this section attention will be given to mixed problems where the time-dependent
and time-independent terms of w(z) drive the interface in opposite directions.

Consider the case when the time-independent term induces growth while the
time-dependent term induces decay (a similar argument can be given if the signs on
the terms are reversed). Under these conditions, the crystal will initially grow since

Ao > 0, but after a time the process will reverse to decay since A1 < 0. The turning point
occurs when h(r)=0 which (to O(x/-, 7’2)) corresponds to r= ’/’tp --(/0//1) and
:--A(’rtp) =-Ao. The mixed solution is then found by combining a growth solution
(similar to that of 2.2) for 0_-< r<_-Ztp with a decay solution (similar to that of 2.1)
for r >_- rtp. The accuracy of these inequalities, however, is limited to O(x/) since the
rapid growth/decay approximation is not valid for an O(x/) time interval around the
turning point. Indeed this accuracy limit holds for all equalities and inequalities
throughout this section.

The growth solution is again constant along the characteristic curves sc2z constant
and again is found by solving (A(t))2t :2r for and substituting into (2.6). In this
case, however, when A(r) is approximated to O(t2), the resulting cubic has three real
roots. The appropriate root is the smallest of the three; using this value for t, one finds
that the uniform solution in the solid for 0 <_-r <_-Ttp is

(2.10) u(, z)=u+1/2[u_-u]erfc(-/v)+u_lR(, z)+ O(e, .2)
where u_ and u_ are determined as before by the interface conditions and where

0, _<- 0,
R(, z)= 1/4[Q+(s, z) + Q_(, r) +x/-[Q+(, z)- Q_(s, z)]]2, s>0.

Note that since in this case Q+ and Q_ are complex conjugates, R(, z) is real and
continuous at =0. Also note that -(Ao/A1) is not only the value of z for which
A(z) =0, but is also the maximum value of " for which (2.4) can be solved using
characteristics when is negative. The solution for r_-< rtp is illustrated in Fig. 2.2(a).
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FIG. 2.2. Mixed growth-decay case: When subject to both undercooling (T < Tsat) and a temperature
ramp (tr 1), (a) the crystal initially grows, (b) then begins to decay, (c) finally resembling pure decay.

At " Ttp growth ends and decay begins. Since u(:, rtp) in the liquid is not constant,
the decay solution of the previous section is not immediately applicable. The variation
in u is O(’tp), however, and can be viewed as a new perturbation of the interface
concentrations. Therefore the formula for u(:, r) in the solid is still determined by
(2.4) using essentially the same argument as in 2.1, except that the inner solution
must now be matched to the growth solution given by (2.10) rather than to uT. The
uniform solution for the solid valid beginning at " rtp is thus

u(:, r)= uT+1/2[u-uT] erfc (-/x/-)+U_IR(,
+ [u,_(a’) u_- u_lR(A(r), r)]4e-2"()(-A())/ + O(vf-, .2)

where for r > rtp, the coefficient functions Ud-(’r) and Aa(r) are respectively the interface
concentration for the solid and the interface velocity during the decay period. These
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FIG. 2.3. The interface, transition and boundary layers in the z-plane.

functions can be determined using the interface conditions and taking the new perturba-
tion into account. Figure 2.2(b) illustrates this solution.

Let Zo be the value of z such that A(zo) 0. For z near z0 (i.e., for z Zo + O(x/-)),
the retreating interface moves across the transition layer. After this interval, the solution
in the solid is then very similar to the solution given in the pure decay case (Fig.
2.2(c)): the general profiles of these solutions are the same, and the exact interface
coefficients differ only due to the boundary perturbations in the liquid phase. Indeed
because of the semi-infinite nature of this phase, the significance of these perturbations
decreases with time, and this solution asymptotically approaches the solution of the
pure decay case.

The regions for which the various solutions are valid are shown in Fig. 2.3. Note
the relative widths of the transition and boundary layers.

3. The semiconductor problem. The results of the previous section will now be
used to study the effects of a linear temperature ramp on the LPE decay of semiconduc-
tor crystals (applications to LPE growth or mixed growth-decay problems can also be
made). This problem is somewhat more complicated than the one studied in 2 since
there are now several unknown concentrations to be found in each phase. Hence (1.1)
is transformed to a coupled system of Stefan problems. To simplify notation and
because of the particular interest in gallium-aluminum-arsenide (GaA1As), the present
discussion will focus on this semiconductor. It should be noted, however, that the
results given here are applicable to any one-dimensional LPE process.
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The principal assumptions in this model are that the problem is spacially one
dimensional and that each phase is semi-infinite. Since (1.1) is classically well posed
for sufficiently small thermal perturbations [5], there is no "mushy region" in the
model. Thus the formation of dendrites or pits in the solid is not taken into account.
Since GaA1As crystals formed by LPE typically "grow smooth but decay rough" (cf.
[23]-[25]), a model incorporating pit formation in the decaying case would be preferred.
However, the physical implications of this model are still interesting. Also the semi-
infinite assumption for the liquid is valid only for an initial period since the liquid is
in fact of finite depth. (The depth of the solid is also finite, but the diffusion coefficient
in this phase is so extremely small that the semi-infinite assumption for this phase is
valid for any practical time.) Since numerical methods can only easily handle times
outside of this initial period, however, the solution obtained by assuming a semi-infinite
liquid can be used as a "starter solution" for an analytic-numerical scheme valid for
a wide range of times [9].

The crystal structure for GaA1As is face-centered cubic (or diamond) with tetrahe-
dral bonding. Half of the lattice sites are occupied by arsenic atoms, the other half by
either gallium or aluminum atoms. For the present model the aluminum atoms are
viewed as diffusing across the gallium sites. In the semiconductor liquid, gallium serves
as the solvent with aluminum and arsenic present in substantially smaller amounts.
Hence aluminum and arsenic are viewed as the diffusing species in this phase.

Let the concentrations of the constituent species be measured in mole fractions
for both the solid and liquid phases. Specifically, let ui be the fraction of liquid made
of the ith constituent and ui.s the fraction of the solid made of the ith constituent. To
simplify notation, let the aluminum fraction of the solid be denoted us. Finally let Ds,
DAI and OAs be the diffusion coefficients for aluminum in the solid and aluminum and
arsenic in the liquid. Equations (3.1) then govern these concentrations in both phases.

Partial Differential Equations"

Solid: x < S(t)"

(3.1a) UGa,s -- U ,
(3.1b) Otus(x, t)= DsO,xUs(X, t),

(3.1c) Ugs.s =.
Liquid: x > S(t)"

(3. I d) Ua -- UAl -- IgAs 1,

(3.1e) 0tuA X, DAI0,,,,UAI X, ),

(3.1f) 0,UAs(X t)-- DAsOxxUAs(X t).

Equations (3.1) are coupled at the solid-liquid interface by two Stefan conditions,
one for arsenic, one for aluminum, and two thermodynamic equilibrium conditions
that represent the continuity of chemical potentials across the phase interface and that
are determined by the phase diagram for GaAIAs. As before, the initial conditions are
that all of the concentrations be constant and that S(0)=0.

Interface Conditions" x 5;( t)"

Stefan Conditions:

(3.2a)

(3.2b)

v(t)[ us(t)- Ugh(t)] DgOxU,(t)- DsOxUs(t),

v(t)[1/2- Us(t)] DsOxUs(t).
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(3.2C)

(3.2d)

Initial Conditions"

Equilibrium Conditions:

/’Ga( T, u -/,As( T, u ---/2,GaAs T, u ),

/ZA(T, U) + As(T, U) =/ZAIAs(T, U).

u(x,O)=uT,

u(x, o)= u
Uas(X, o)= Us.

The initial aluminum concentration in the solid is often (though not always) taken
to be zero. The initial liquid concentrations are determined by the process used to
prepare the liquid. Assume that the liquid is prepared at a saturation temperature Tsa
to be uniformly in equilibrium with a solid whose aluminum concentration is ue.

In (3.2c), (3.2d), /xi represents the chemical potential of the ith species as a
function of temperature and constituent concentrations. Assume that the temperature
is ramped, i.e., let T(t) To+ rt, where To is the initial temperature and r is the ramping
rate. Then T(t,7")--Tsat(l+t+crT" where 7"--]rlt/Tsat, o-=sgn(r), and 8=
TO Tsat)/ Tsa Here represents the relative difference between the initial temperature

for the LPE process and the saturation temperature at which the liquid phase is
prepared; this difference is referred to as undercooling.

The details of linearizing the interface conditions are discussed elsewhere [26,
p. 27]. Roughly speaking, the results are that the GaA1As crystal grows when T < Tsa
and decays when T> Tsat. Also the interface concentration for aluminum in the solid
increases in time for r 1 and decreases for cr =-1.

Although the concentrations of the constituents in both phases can be determined,
principal attention is given to the aluminum concentration in the solid. This concentra-
tion is of particular interest from the practical view of manufacturing devices. The
goal is to form regions in the solid of high aluminum concentration sandwiched between
regions having little or no aluminum. Ghez and Small [10] have speculated that an
internal maximum in the aluminum concentration of the solid could be produced by
a temperature ramp which caused the crystal to decay. Applying Lemma 2.3, however,
one can see that this is not case. In particular, the presence of the exponential factor
in (2.3) assures that no internal maximum is possible.

For GaA1As, OAl DAs" 10-5 cm2/sec while reported values for Ds vary rather
widely from 10-9 cm2/sec to as low as 10-17 cm2/sec [9]. Since in most LPE processes
Ds-<10-12, the range for is approximately 10-6<x/<10-4.-- Assume that r=

10C/min and that To Tsat= 850C (both of these assumptions are typical) [10]. For
10-4, the condition that " be larger than requires that be greater than roughly

1 sec. Note that this restriction does not present a difficulty for the linearization of the
interface conditions since -<< 1 only implies that << 104 sec. Now assume that the
liquid phase is sufficiently thick so that the semi-infinite approximation is valid for

0--2.both phases and that u 0.175. Then 3.25 x 10-3 and UAs 2.71 X 1 If U 0.1I,/A

then Fig. 3.1 illustrates the thermal decay solution for these parameter values when
1, 10, and 100sec and shows how narrow the boundary layer becomes. Indeed

since the figure spans only 100 A (20-50 atomic layers), the continuum model is
breaking down, and one would expect no increase in the aluminum concentration in
the interior of the solid for times much larger than 10 sec. For smaller values of D
the boundary layer disappears even more rapidly. A temperature ramp of this sort
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u 0.2

sec

0.1
z 50 0

(Angstroms)

FIG. 3.1. Graph of the long-time solution for temperature-ramp induced decay when T Tsat-" 850C,
r= 10C/min, and Ds 10-13 cm2/sec. Note that z =0 is the solid-liquid interface.

would therefore not be useful in creating a shallow aluminum-rich region in an LPE
crystal. From the solutions given in 2, one sees that no other temperature ramp would
create isolated aluminum-rich regions either.

Acknowledgments. My thanks go to David G. Schaeffer and Richard Ghez who
have helped me greatly in this work.
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BIFURCATION ANALYSIS OF REACTION-DIFFUSION EQUATIONS
VI. MULTIPLY PERIODIC TRAVELLING WAVES*

JAMES C. ALEXANDER AND GILES AUCHMUTY$

Abstract. The bifurcation of periodic travelling-wave solutions of a system of reaction-diffusion

equations from a trivial solution is studied. We allow general periodicity conditions and show that

the resulting bifurcation is characterized by the wave vector k and a wave speed c. Criteria for the

global branching of such solutions are described and the results axe applied to the Brusselator.

Key words, reaction-diffusion equations, global bifurcation, travelling waves, multipaxameter

bifurcation, multiply periodic

AMS(MOS) subject classification. 35D30, 35K20, 35B32

1. Introduction. In recent years a lot of work has been done applying bi-
furcation theory to describe various special classes of solutions of reaction-diffusion
equations. The bifurcation of stationary and time-dependent solutions is well-known.
More recently considerable work has been done in describing wave-like solutions in
problems with rotational symmetry; see (Alexander [1986 ]; Alexander and Auchmuty
[1979]; Auchmuty [1979]; Auchmuty [1984]; Auchmuty and iicolis [1976]). In this
paper we shall study the bifurcation of travelling-wave solutions which are periodic in
space.

Consider the general reaction-diffusion system

(1 1) Ot DiAui + f/(Ul,..., Urn; ),

on Rn (0, oc). Here i- 1,..., m and ui(x, t) generally models the concentration of
the ith chemical species at a point (x, t) of space-time. The Laplacian A is

n i)2v

j-’l

and the functions fi: Rm/l "- R, depending on a parameter #, define the kinetics of
the system.

Our interest is in studying the bifurcation of travelling-wave solutions of (1.1)
which are also periodic in space. That is, we seek solutions of (1.1) of the form

(1.2) u(x, t) V(Xl clt, x2 c2t,. ,Xn Cnt),

where v is also periodic on Rn. It may be periodic in each variable separately or more

generally we treat the case where
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(
n

)(1.3) v x + E k.a. v(x)
j--1

for any n linearly independent vectors al,a2,...,an and any k (kl,k2,...,kn) E
Zn, the set of all n-tuples of integers.

The parameter # will be regarded as the bifurcation parameter. In general, it
need not occur in the kinetics but could arise elsewhere in the system, but this usually
only causes minor changes in the analysis. It might appear that this is a bifurcation
problem with (n / 1) parameters (cl,c2,...,cn,#), but in fact there actually are
only two parameters (c,#), for bifurcation with a given wave vector k E Zn. This
is described in section 4 where we give the general global bifurcation theorem. In
sections 2 and 3 we formulate the problem mathematically as a fixed-point problem
and then in section 5 we show how the analysis applies to the Brusselator in two and
three space dimensions.

2. Description of the problem. Our interest is in studying the bifurcations of
periodic travelling wave solutions of the reaction-diffusion system (1.1) from a trivial
stationary solution. The pure reaction system may be written in vector form as

du
(2.1) d- f(u; #)

where u(t) (it l(t), t2(t),... tm(t)) T and f(u; #) has components fi(u; #), 1 _< i _<
m. Here # is a real parameter. We assume:

(F1) f: Rm+l --+ Rm is continuously differentiable and f(0; #) 0 for all # R.
Define F(#)- (-(0;#)) to be the Jacobian matrix of f(. ;#) at u- 0 TheOuj

assumption (F1) implies that u(x, t) 0 is a solution of (1.1) for all #. It is called the
trivial solution and we are interested in the bifurcation of certain wave-like solutions
from it. For many particular systems, the trivial solution is not the zero solution, but
a change of variables effects (F1).

Consider the problem of finding solutions of (1.1) of the form

U(X, t) V(Xl Clt, X2 c2t,... ,Xn Cnt)
V(X ct),

where c (Cl, c2,..., Cn) is non-zero, and v is periodic of period a. in the jth variable,
1 _< j _< n. Let e. be the unit vector in Rn whose jth coordinate is 1 and all other
coordinates are 0, and let j xj -ct. Then for any k- (kl,k2,...,kn) Zn, one
has

(
n

)(2.3) v + E k.a.e. v() for all e Rn.
j=l

Moreover if v is a solution of (1.1), then its components vi are solutions of the semi-
linear elliptic system

(2.4) D,Avi + E cs-j + fi(vl, v2, Vm) O.
j=l

Here 1 < i < m, Rn and v obeys the periodicity conditions (2.3). One may regard
(2.3), (2.4) as an elliptic system defined on the domaina [0, all [0, a2] ... [0, an]
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subject to the periodic boundary conditions

v() v( + aje.) for all t E a with . 0,
(2.5) 0v 0v

._0---(l) .._--- (l + cje.), 1 <_ j, k <_ n.

Thus the problem of finding periodic travelling-wave solutions of the form (2.2) is
equivalent to solving the boundary-value problem (2.4)-(2.5).

Note that the vectors jej, 1 _< j _< n, generate a lattice in Rn, a discrete
subgroup of maximal rank n. The periodicity condition can be phrased: if x, x E Rn

are in the same eoset of the lattice, the solutions are equal at x and x. The lattice of
the cej, 1 _< j _< n, is a rectangular lattice. It is possible to work with more general
lattices; that is, more general periodicity conditions. Let al,a,... ,a be n linearly
independent points in Rn, and suppose ai (ail,ai2, din). Let

{ }A X Rn "x .a. with 0 _< . _< 1
j---1

Then ftA is an n-dimensional parallelepiped. When n 2, it is a parallelogram with
vertices 0, al, a2, al + a2. We look for solutions of (1.2) subject to the "skewed"
periodicity conditions (1.3). For example, suppose a (1, 1) and au (0,2). Then
(1.3) reads

V(Xl -- 1, x2 + 1) y(Xl,X2 - 2) y(Xl, x2).
Such solutions are of course defined on the quotient space of R’ by the lattice. This
space is a skewed flat n-dimensional torus. Topologically it is the product of n circles,
one for each periodicity condition.

Let A be the (nonsingular) matrix (as.) and let B A-1 For the example just
above

(1 1) B=I(0 1)A-
2 0 2 -1

Define Yi -]= bix, 1 <_ i <_ n. Then x A if and only if y Bx [0, 1] n the
cube of unit side in Rn. By the chain rule,

Oui
n

OXj E bkj Oyk’
k----1

SO

n n n 02ui bj trBTDyuiB Lyui,
j=l k--1/--1

2u’ ) is the Hessian matrix of with respect to y and tr A is thewhere Dui OykOy Ui

trace of A.
Now consider the problem of finding solutions of (1.1) of the form u(x,t)

v(y -ct) with y Bx as above. Then if z y- ct,

n

(2.7) DiLzvi + E cj
ovi + fi(Vl,V2,’’’,Vm;#) 0

on Rn, subject to (2.3) with each cU 1 and with Lz defined by (2.6). Alternately
one may regard (2.7) as an elliptic system defined on the domain 1 [0, 1] x [0, 1] x

x [0, 1] and subject to the periodicity conditions
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+ ]
0v 0v

(z + e.)
for all z E F. {z E (-1 Z3" 0}, l<_j,k<_n.

Our interest is in finding nontrivial solutions of either (2.4)-(2.5) or (2.7)-(2.8).
Note that (2.4)-(2.5) can be put in the form (2.7)-(2.8) by letting z. ./%. for
1 < j _< n. Thus we concentrate on the latter problem.

3. Fixed-point formulation. The system of equations (2.7)-(2.8) may be for-
mulated as a fixed-point problem. Consider the problem of solving the scalar equation

(3.1) w L,.w g on 1

subject to the boundary conditions

(3.2) Ow Ow
(z + e.)

for all z e r., 1 _< j <_ n.
(’1

Let L2(f]l) be the usual Lebesgue space of all square-integrable complex-valued mea-
surable functions on [21. Let Hpl(fl) (resp. Hp2(f)) be the usual Sobolev space of
all complex-valued functions on [-1 which are restrictions of periodic functions on Rn,
locally in H (resp. H2) and of period 1 in each variable. Suppose w L2(1). Then
w has a Fourier expansion

(3.3) w(z) E wkexp(2ri(k,z)),
kZ

where (k,z} Ejn__l kjZj and Wk ffl w(z)exp(-2ri{k,z})dz. From Parseval’s
theorem, w is in L2(f)I) if and only if EkEZ [Wk[ 2 ( OO. For k- (ki,k2,... ,ks)

Ozj
(z)- 2ri E kjwk exp(2ri(k, z))

kEZ

and

(z) =-4r2 E kikjwkexp(2ri(k,z)).
kZ

Thus, using Parseval’s theorem again,

W Up ([-1) if and only if

W Up2 (["1) if and only if

nwhere Ikl 2 Ej=I k].

E (1/ Ikl2)lWkl 2 <
kZ

(1 + [kl2)21Wkl <
kZ

and

THEOREM 1. Suppose g L2(f). Then there is a unique w Up2(["l) obeying
(3.1)-(3.2) and the mapping G: L2()- Hp2(f]i) defined by Gg w is a continuous
linear map.

Proof. Take inner products of (3.1) with w. Then

Iw(z)l dz- (Lzw, w) -/f (z)g(z) dz.
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Now

[ Aw(x)(x)l det BI dx det BI IVw(x)l dx >_ 0LzW Wl
A JlA

by the Gauss-Green theorem. Also I- Lz’H() L/) is a closed densely-
defined finear operator on L2(), and ths nequafity implies t s positive-definite.
From the Lax-Milgram theorem, it has a continuous inverse and the result follows
from standard elliptic operator theory.

Let )o be the space of all continuous real-valued functions u: 1 R which
satisfy u(z) u(z + e.) for z E F.. Similarly let pl be the space of all continuously
differentiable real-valued functions on 1 which satisfy (3.2). Note that po and
are Banach spaces under the norms

Ilullo- sup

Ilull - sup lu(z)l/ z-:-_ (z)
’11 k=l

COROLLARY. Suppose g po. Then the solution w of (3.1)-(3.2) is in 1 and
the map G: ]o _. is a compact linear map.

Proof. If g )9o, then g LP(f) for all p, 1 < p < c. Hence from standard
elliptic theory, w W2,P(f21) and G:LP(fi) - W2,P(fI) is continuous. If p > n,
then W2,p(f) is compactly embedded in )91. This proves the result.

It is worth noting that

Lzexp(2ri(k,z)) =-47r E E bmjbtj kmktexp(2ri(k,z))
(3.4) rrt=l I=1

-47r (kB, kB) exp(27ri (k, z))

where (.,.) is the usual inner product on Rn. Thus if g(z) -]keZn gk exp(27ri(k, z)),
an explicit representation for the solution w of (3.1)-(3.2) is

(3.5) w(z)= E gkexp(27ri(k,z))

kZ-
1 + 47r (kB, kB)"

Let X1 { (Vl, v2,..., vm)’vj e )pl 1 < j < m} and define Ilvllx E.=I IIvlll.
Define ,(. ,c,#)" X1 - X1 by

(3.6) ’(v,c,#) D;1G Ck-z + f’(v; u)+ Djvj

From the corollary to theorem 1, we see any classical wave solution (v, c) of (2.7)-(2.8)
is a fixed point of ,(-,., #) in X1 Rn. That is, (v, c) is a solution of

(3.7) v (v, c, #)

PROPOSITION 3.1.
Frdchet differentiable and

(3.8) IDa(0, c, #)hi .
’X X, defined by (3.6), is a compact map. It is

(-10h
m

Ofj (O;#)ht).D;1G ck, -zk + Djhj +E
1--1
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The proof of this is identical to that of Proposition 2 in (Auchmuty [1979]).
Equation (3.5) is a fixed-point problem for a compact map of the Banach space X1

to itself which depends on n / 1 parameters (Cl, c2,..., cn, #). For all (c, #) E Rn+,
we have v 0 is a solution of (3.7), so we look for global branches of solutions of (3.7)
bifurcating from this basic solution.

4. Bifurcation results. The formulation of the last section enables us to use
general functional analytic methods for bifurcation theory. We use global results, as
described in (Alexander [1978]) or (Alexander and Fitzpatrick [1979]); of course local
results are subsumed.

First it is worth noting that the possible bifurcation points for (3.5) can be char-
acterized in terms of eigenvalues of m m matrices. Given a lattice of periodicity
conditions, let B be the associated matrix. For k E Zn, let k 47r2 (kB, kB) be the
associated eigenvalue of the Laplacian. Let D be the diagonal matrix with entries Di,
1 <_ i _< n, let F(#) be the Jacobian of f(., #) at u 0, and define the m m matrix

(4.1) Fk(#) F(#)- AkD.

PROPOSITION 4.1. If (0, , ft) is a bifurcation point for (3. 7) (or the system
(2.7)-(2.8)), then there exists k Zn such that Fk(ft) has purely imaginary eigenval-
teS.

Proof. If (0, d, ft) is a bifurcation point for (3.7), then from the implicit function
theorem, 1 is an eigenvalue of D(0, d,/2). Let h be the corresponding eigenfunction.
From (3.8), h is a solution of

(4.2) D Lzhj + + Ft()ht O,
/=1 /=1

and satisfies periodicity conditions like (2.8). Expand h in a Fourier series:

h(z) E akexp(2ri(k,z)),
kEZ

with each ak in Cm. From (3.4), for some k Zn,

--AkDak -F 2ri(d, k)ak d- F(ft)ak 0

for some nonzero ak. Thus :t:2ri(d, k) must be eigenvalues of Fk (#).
As usual, the necessary condition is not sufficient for bifurcation. Standard cross-

ing and non-degeneracy conditions are needed. The situation is still more complicated.
There are ostensively n / 1 parameters, the n components of c and #. Moreover there
are a considerable number of degeneracies. For example, suppose the periodicity lat-
tice is given by the unit vectors e.. Then all interchanges of coordinates preserve the
problem and virtually all the eigenvalues are highly degenerate. It is possible to an-

alyze the problem using equivariant bifurcation theory; however for travelling waves,
we can obtain more information by dealing directly with the problem. In particular,
we decompose it into simple bifurcation problems, one for each k. We see directly
that the solutions we obtain are plane-wave solutions. Generically in f, these are all
the wave solutions on primary bifurcation branches. Let

Ak {v P "v(z) v(z + z) whenever (z’, k) 0}.
If k 0, Ak is a proper closed subspace of )1. If v Ak, there is a function

9: R Rn which is periodic of period ko gcd {ki" ki : 0, 1 _< i _< n}, such that
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v(z) ,((k, z)) for all z E Rn. Thus if 5- (, k), define

v(y ct) -((k, y ct)) -((k, y)
That is u(x, t) 9((BTk, x)-St). Wave solutions of (3.1) in Ak are actually functions
only of the scalar variable (BTk, x) -5t.

Let

’k ((V, , #) ( ik X R2" v (v, (, ) holds with 5 (c, k) },

and let
So, e

Thus $O,k is the set of trivial solutions of (3.7) in Ak and Sk is the set of all solutions
of (3.7) in Ak. Let C be a maximal connected subset of Sk\$O,k with (0, 5, t) C. We
say there is a global branch of solutions of (3.7) in Ak bifurcating at (0, 5, ft) provided
one or more of the following holds:

(i) C is unbounded in Ak (0, oc) R or,
(ii) there exists (v, 0, ft) C or,
(iii) there exists (, ) :/: ((, ft) such that (0, , ) .
Our main result is the following bifurcation theorem. For convenience of applica-

tion, the bifurcation criteria are stated in terms of the matrices Fk(#). Fix k.
THEOREM 2. Suppose f satisfies (F1) and that , X, Fk(#), and Ak are as

above. Suppose there exists ft R and k 0 such that
(i) (nonsingularity) Fk (ft) is nonsingular,
(ii) (nonresonance) Fk(ft) has a pair of simple eigenvalues :kip and no other

integer multiple of :l:i, is an eigenvalue of Fk(ft),
(iii) (transversality) the continuation of i, in # crosses the imaginary axis as #

crosse8 ft.
Then there is a global branch of travelling-wave solutions of (3.7) in Ak bifurcating
at (0, ,/2r, ft). Moreover the solutions vi(z) are classical solutions of (2.7)-(2.8).

Proof. Both the linear equations (4.2) and the nonlinear equations (2.7) and (a.7)
respect Ak, so we can restrict the analysis to Ak. If v E Ak, then

v(z) Z vexp(2ri/(k,z)) 9((k,z)),

and thus conditions (i)--(iii) and Theorem 1 of (Alexander and Fitzpatrick [1979])
imply the existence of a global branch of travelling-wave solutions of (3.7) in Ak
bifurcating from (0, d, ft). From Proposition 4.1, 2rd. If v Ak, then v pl
and hence Lzvi is continuous on -1 froIn (2.7). Hence each vi is in W2’(Vtl) from
usual elliptic theory. This implies that Lzvi W1’(121) for each i and hence vi is a
classical solution of (2.7)-(2.8) as required. The proof is complete.

Comments.
1. The bifurcation conditions (i)-(iii) are of standard type and are generically valid.
2. These travelling waves have wave-fronts given by

(BTk, x) ct constant,

so the fronts are hyperplanes in Rn. Moreover these waves are periodic functions
of t of period ko/c.

3. When k 0 and Fo(ft) is singular, bifurcating steady states occur, while if k 0
and the other conditions of the theorem hold, standing waves bifurcate via a
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straightforward Hopf bifurcation.
4. Note that although we originally sought solutions involving a vector of wave

speeds c (cl, c2,..., cn), it turns out that these bifurcating waves may be char-
acterized by a scalar c. Thus although we originally had an (n + 1)-parameter
problem, the bifurcation analysis is a standard type involving only two parame-
ters.

5. One can use the implicit function theorem to construct these waves near the
bifurcation point and to first order they can be represented in terms of the real
and imaginary parts of exp(2ri(k, y- ct)) multiplying the eigenvectors of Fk (ft)
associated with the eigenvalues +iu. More precisely, if the eigenvector of Fk(ft)
associated to i has components 7 (defined up to a complex scalar), to first order
the wave solutions have components

(_..N ) (/_ arg 7n)el71 sin
\_,._

kiyi- t + arg 71 ,[17n1 sin kyi- t +
nin terms of the y Y=I bjxj, where e is a parameter along the branch. These

are harmonic in each component. The amplitude in the ith component is e17 and
the relative phases between components are the differences between the arg

6. Recall that the solutions could be defined on a quotient space of Rn, a torus,
which is the product of n circles. The vector k (kl,... ,kn) indexes a parallel
family of circles on the torus which wind around k times in the ith direction. This
family of circles is the direction of motion of the wave front. On perpendicular
hyperplanes, the wave is constant. Indeed use of the function space Ak reduces
the analysis to bifurcation theory on the circle indexed by k, which has radius

Ei,’,l=l bjibukjkt. In particular, local higher-order bifurcation analysis can

be done, for example to determine the criticality of the bifurcating branch. The
analysis here reduces to an analysis on a circle, such as in (Auchmuty and Nicolis
[1976]). From the point of view of equivariant theory, the vectors k index the
characters (irreducible representations) of the symmetry group (S)n. Although
there are other symmetries, these seem to be the ones relevant to travelling waves.

7. We have introduced the bifurcation parameter # in the reaction term. This is
the most common formulation. However, other parameters are also reasonable
bifurcation parameters, in particular one or more of the diffusion coefficients di
or even the size of the underlying torus (compare (Auchmuty [1982])).

5. Examples. Consider the problem of looking for periodic travelling-wave
solutions of the Brusselators in two and three space dimensions. The Brusselator is a
model chemical reaction whose analysis is described in (Nicolis and Prigogine [1977,
part II]). It is often used as a test of machinery. The case of periodic one-dimensional
waves was treated in (Auchmuty and Nicolis [1976]). The equations are

(5.1)

OX
Ot DxAX- (B + 1)X + XUY + A,

O__Y DAY + BX- XY.
Ot

For all A, B, X(x, t) A, Y(x, t) =_ B/A are solutions. Letting It (x, t) X(x, t)-A,
u (x, t) Y (x, t) B/A, we obtain

Ot

Ot

DIAU -I- (B 1)Ul -I- Au2 + h(ul,

DAu Bu Au2 h(ul, u2),
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where h contains quadratic and cubic terms.

First we look for travelling-wave solutions of (5.2) in two space dimensions which
are periodic of period 1 in xl and of period > 0 in x2. Let u(x, t) v(xl -ct, x2-
c2t) v(t, 2). Then on R2

(5.3)
01Av1 + (c. V)v + fl(v, v2) 0,

D2Av2 + (c. V)v2 + f2(vl, v2) --0,

where c-V c +c20--, f(v;,v2)- (B-1)v+A2v+h(v,v2), and f2(v,v2)=
-Bv A2v2 h(v, v2). The periodicity conditions are:

(5.4) V(I + 1, 2) V(l, 2) V(l, 2 + l) for all (1, 2) R2.
Let zl , z2 2/I and v(, 2) W(l, 2/1); then w obeys (2.3) and

(5.5) diLwi + (c. V)wi + fi(w, B) 0,

where
02 102

L
02z2 + l 02 z----"

The parameter B plays the role of # so the matrices Fk(B) are

Fk(B)_ (B-1 A2 ) ( k (D1 0 )-B -A2 47r2 kl2 h- 12 ] 0 D2

(B-1-AkD1 A2 )-B -A2 ,kD2

with ’k 471"2
In the next two theorems we need the expression for A(Ak) det Fk(B) when

Fk(B) 0. It is
A(Ak) A2 + Ak(D1

THEOREM 3. Suppooe k (kl,k2)
a global branch of periodic travelling-wave solutions of (5.3) obeying (5.4) bifurcating
at Bk 1 + A2 + Ak(Di + 02) with (27r) -1V/A(Ak). The 8olutions on this branch
have the form
(5.6) U(X, t) V(kl Xl -I- k21-1 x2 ct),
with v,c varying along the branch and v being a vector-valued function of period 1.

Proof. This results from verifying the conditions of Theorem 2. At Bk, (i) and
(ii) hold trivially and (iii) holds by computation. Hence the result follows.

In the three-dimensional case a very similar result is true. Suppose we seek
travelling-wave solutions which have period 1 in xl, 12 in x2 and 13 in x3 with 12,
/3>0.

THEOREM 4. Suppose k= (kx,k2,k3)E Z3\{(0,0,0)}, )k k+k2212+kl2,
and A(Ak) > 0. Then there is a global branch of periodic travelling-wave solutions of
(5.3) bifurcating at

Bk 1 + A2 + 47r2k (D1 + D2)
 ith  otutio  thi yo m
(5.7) U(X, t) v(klXl + k21Xx2 + k31;lx3 -ct),
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with v,c varying along the branch and v being a periodic vector-valued function of
period 1.

Proof. The only changes here are the new boundary conditions. The proof is the
same as that for Theorem 3 and (5.7) is the analog of (5.6).
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QUASILINEAR EVOLUTION EQUATIONS IN NONCLASSICAL DIFFUSION*

KENNETH KUTTLER" AND ELIAS AIFANTIS:

Abstract. After describing the motivation leading to some nonclassical diffusion equations, we formulate
a general abstract nonlinear evolution equation and establish existence of solutions. Then we return to the
original equation and discuss particular initial-boundary value problems.

Key words, existence, modeling
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Introduction. A general framework based on the approach ofcontinuum mechanics
has been proposed recently by Aifantis 1 for a systematic development of diffusion
models. In this method, the diffusing substance is viewed as a continuum subject to
two kinds of forces" an internal body force vector arising from its interaction with the
matrix and a stress tensor that the diffusing substance exerts on itself.

By introducing constitutive equations for the stress tensor and the internal force
vector, we can obtain classes of diffusion behavior which take into account viscosity
and higher-order gradient effects. Various diffusion models are thus generated within
a unified mathematical framework.

For example, if the stress tensor is assumed to depend on the concentration and
the gradient of the flux, while the internal body force is viewed as a drag proportional
to the flux, a pseudoparabolic partial differential equation of the type studied by Ting
[2] is obtained. This yields a physically realistic model of diffusion for situations where
the effects ofviscosity cannot be ignored. Similarly, the equation ofspinodal decomposi-
tion of Cahn [3] can be obtained within this general formalism by including second
gradients of the solute concentration in the constitutive equation for the stress tensor
to allow for long-range effects. For a further discussion of the method and the
development of many other examples, we refer to [t].

A central problem in the development of these new models is to determine which
of the resulting partial differential equations are well posed. This is not always obvious,
especially if nonlinear or time dependent equations are being considered. In a preceding
paper [4], the questions of existence and uniqueness were resolved for a class of linear
partial differential equations resulting when the stress T is a linear function of the
concentration, its gradients up to second order, and the gradient of the flux, while the
internal body force f is a linear function of the flux. The corresponding constitutive
equations are thus

T Clp.1 d- C2 tr (Vj).l + c tr (V2p).l,
(0.1)

f =-a.(x.,t)j,

where j is the flux, p is the concentration, Vj denotes the first gradient of j (Vj =ji,j),
72p th second gradient of p (V2p p,ij), tr’is the trace and .a(.x, t) is a nons’ingular
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supported by the Michigan Technological University creativity grants program, the SM program of the
National Science Foundation and the MM program of Michigan Technological University.

? Department of Mathematical and Computer Sciences, Michigan Technological University, Houghton,
Michigan 49931.

$ Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological Univer-
sity, Houghton, Michigan 49931.
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symmetric matrix. The spatial and temporal dependence of models the inhomogeneity
of the interaction between the solid and the diffusing substance. The reason for
neglecting nonhydrostatic components in the expression for the stress tensor in (0, 1)1
is also discussed in [4].

Next we introduce (0.1) into the balance equations of mass and momentum which,
on neglecting inertia forces, take the form

(0.2)
pt + div.j =0,
div .T +f 0.

This operation yields the following linear evolution equation whose existence and
uniqueness have been studied earlier [4].

(0.3) (p c2 div (.a lVp)) --C div (ff 1Vp)- c3 div (-lV(Ap)).

In the present paper we consider a more general physical situation by allowing
the constants Cl and c3 in (0.1)1 to be functions of p. Roughly speaking, this means
physically that we consider situations where the diffusion coefficient is concentration
dependent. In this connection, our results are most suitable for problems in the
nonlinear theory of spinodal decomposition, where c vanishes identically. Thus our
present expression for the stress .T takes the form

(0.4) .T= l(p).l + 2 tr (Vj).l + 3(P) tr (72p).1.
On substituting (0.4) in the balance laws (0.2), we find that p satisfies a partial
differential equation of the form

(0.5) p,-c2 div (fl(x, t)Vp,) +div (V(c3(p)Ap))+div (flVCl(p))=0

where fl(x, t)= a-l(x, t). As explained in [4], we could also have allowed cl, 2 and

3 to depend on .x and t, but in any case, we would have arrived at an equation of the
following general form"

P-2 0,(Di(x., t)Op) -20,(D,(.x, t; p)Ojp)
(0.6)

j

+ (-1)IID(E(.x, t; p)Dp)= h(.x, t),

where a,/3 are multi-indices [5], h is a source function and the rest of the coefficient
functions are to be specified later. Since this extra generality does not create essential
difficulties in the mathematical treatment, we will consider this last equation. We show
that weak solutions to (0.6) exist by formulating a corresponding abstract problem
and obtaining estimates that allow the use of a fixed point theorem.

The plan of the paper is as follows" Section 1 is a review of the linear version of
these equations. Section 2 contains an abstract result, motivated by (0.6), which might
be useful in other problems in the theory of nonlinear evolution equations. This result
is used in 3 to reduce the question of existence of weak solutions for (0.6) to the
verification of a coercivity inequality. In 4 we actually prove that this inequality
holds. This way, we obtain the existence of solutions for (0.6) to some specific
initial-boundary value problems. We use the standard notation for Banach spaces" If
V is a Banach space, V’ denotes its dual, -> denotes strong convergence, and denotes
weak convergence. If i: V-> W is an injection map, i* denotes the dual map defined by

(i*f u)= (f, iu)= (f u).
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1. The linear equations. Before dealing with (0.6), we discuss briefly the main
results of the earlier paper [4] in which Dij and E do not depend on p. In this earlier
paper, the assumptions were

Dij D,,

L3 is bounded, measurable and C in t,

(1.1) X/j:,_->0 for :=(:1,:2,:3) cR3,

D e L( x [0, T]),

E L(O x [0, T]),

along with a coercivity inequality similar to (2.5) of the present paper.
Under these assumptions, existence, uniqueness and continuous dependence

results were obtained for a large class of initial-boundary value problems associated
with the linear version of (0.6). The existence pa was based on the verification of
this coercivity inequality which allowed the use of the main existence theorem of [6]
or [11]. The uniqueness may be obtained as a special case of the uniqueness theorem
of [6].

To be more specific, sufficient conditions were given for well-posedness of weak
solutions of the following initial boundary value problems:

(1.2.1) O P-E O,(D,j(, t)OjO) O,(D,j(, t)OjO)+A2O g(, t),

(.2.2) (, 0)= o(),

along with either the boundary conditions

(1.2.3) (, t)
ow
(, t), x

o on

or the boundary conditions

(1.2.) a(, t) c(t) + w(, t), x

Op Ow
(1..) (, t) a (, t)

(1.2.7) E ,O)O n, +E DoO)on, _0(Ao as l(, t) as,
n O O On

(.2.8) ao(x, ) k(x, ) ()

where in (1.2.3)-(1.2.8), r(t), c(t) are unknown functions and w and are given
functions.

In the present paper, we shall use the existence and uniqueness of solutions to
an appropriate abstract version of the linear problem, along with a well-known gen-
eralization of the Brouer fixed point theorem, to establish the existence of solutions
to initial-boundary value problems corresponding to (0.6). We shall show that, just as
in the linear case, the verification of an appropriate inequality is sufficient.
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2. The abstract equation. For the sake of both generality and simplicity in the
presentation, we obtain existence of solutions to (0.6) as a special case of an abstract
result. We introduce the following hypotheses and conventions:

(2.1) V, W are reflexive Banach spaces V W, Ilvll -> Iivi[ , so that
V_ W_ i*W’ V’.

On defining B(t) as a continuous linear map from W to W’, we will assume

(B(t)u,u)>=O,

(2.2) (B( t)u, v) (B( t)v, u),

t- B(t)u is in C1(0, T; W’).

We will also make use of the space

X {u L2(0, T; V) such that
(2.3)

(Bu)’e L)-(0, T; V’)} Ilullx IIUlIL <O,T;V)+ II(Bu)’IIL <O,T;V’)

where by (Bu)’ we mean a unique function in L2(0, T; V’), such that

(Bu)’(t)(t) dr=- i*B()u(t)4’(t) dt for all e C(0, T).
o

It follows that X is a reflexive Banach space.
For each e L(0, T; V), let A(w) be a continuous linear map from L(0, T; V)

to L(0, T; V’) satisfying the following propey:

(i) sup {[[A(w)[, w e L2(0, T; V)} Q <,
(2.4) (ii) Ifu u in X and vv in L(0, T; V) then for some subsequence

u.,, v.,, A(u.,)v.,A(u)v in L(0, T; V’).

Moreover, by introducing the definitions
(i) B: L(0, T; W) L(0, T; W’) is given by B(t)u(t)= Bu(t),
(ii) B’: L2(0, T; W) L(0, T; W’)is given by B’(t)u(t)=B’u(t),

we can postulate the following coercivity inequality:

(2.5) 2(A(w)u, u)+ A(Bu, u)+(B’u, u) > GlluI[= L (0,T;V)

for some h independent of w and C1 > 0.
Finally, for each uL2(0, T; V), let f(u)L(O, T; V’) satisfy the following

properties:

(2.6)
(i) sup (llf(u)ll<o,;,), u

(ii) If un---u in X, then f(un,)---f(u) in L2(0, T; V’), for some
subsequence u,,.

With these assumptions, we can state the main existence theorem.
THEOREM 1. With (2.1)-(2.6) valid and Uo V, there exists u X such that

(Bu)’+A(u)u=f(u),
(2.7)

i*Bu(O) i*B(O)uo.
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Proof. It follows from (2.5) and [6] that for each we X there exists a unique
solution u X to the problem

(Bu)’ + A(w)(u) f(w),
(2.8)

i*Bu(O)=i*B(O)uo.

On denoting this solution by q(w) we have q" X- X.
Next we make use of three lemmas whose proof may be found in [6].
LEMMA 1. For each u X,

(2.9) {(Bu)’(t), u(t))== {Bu(t), u(t)}+(B’(t)u(t), u(t)} a.e.

Moreover (Bu(t), u(t)) is equal to an absolutely continuous function a.e. and point
evaluation of i*Bu(. is a continuous map from X to V’.

LEMMA 2. For u, v X, (Bu( t), v( t)) equals an absolutely continuous function a.e.
denoted by (Bu, v)(. ). Moreover, there exists a constant M such that

(2.10) [(Bu, v)(t)l<-Mllull[lvll for all t6[0, T].

LEMMA 3. If i* By(O) 0 for v X, then there exists a sequence { v,} X such that
v v. x - 0 ana v. o in some neighborhood of O.

As a consequence of Lemmas 1-3 we can establish the following results:

(i) (Bu, u)(t)-(Bu, u)(0)+ (B’(s)u(s), u(s)) ds

(2.11)
+: (a(wu(s, u(s as 2 (f(w(s, u(s as,

(2.12) (ii) (Bu, u)(0)= (B(O)uo, Uo).

Relation (2.11) is obtained by multiplying (2.8)1 by u, using Lemma 1 and integrating
the result from 0 to t. Relation (2.12) is derived by first using Lemma 3 to obtain a
sequence {u,}___ X with u,(t)= Uo near 0 and converging to u in X, and then using
Lemma 2 together with the inequality

I(Bu, u)(O)-(B(O)uo, Uo) I(Bu, u)(O)-(Bu,, u,,)(O)l
(2.13) =< I(B(u,, u), u,,)(0)l + I(Bu, u, u)(0)l

<-- M(llUllx / Ilu.llx)llu ullx.
With (2.11) and (2.12) valid and the use of (2.5) and (2.6), we can establish the

following main inequality:

(Bu, u)( t) +
(2.14) fo<=A <Bu(s), u(s)) ds+2Pllull,o.,;v+(B(O)uo, Uo).

On subtracting C u II==L (O,t;V) from both sides, we first note that

p
(2.15) 2Pllullo.,;v) Gllull=L (O,t’V)----’l"
It then follows that

(2.16) (Bu, u)(t)<= (B(O)uo, Uo)+ ex’
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by an application of Gronwall’s inequality. Having thus established that (Bu, u)(t) is
bounded uniformly for t [0, T] independently of w, (2.14) implies that [[qw]lL2(o,r;v)
is bounded independently of w. It now follows from (2.8)1, (2.4) and (2.6) that [[qW]]x
is bounded independently of w. Moreover, if N_-> sup {[[qW[Ix, w X} and S= {w X
such that IIW[]x <- N}, it follows that q,:X- S.

As a final step in the proof of the theorem we establish the following.
LEMMA 4. d/ X- X is weakly continuous.

Proof Let u,--’u in X. If qu, fails to converge weakly to qu, then by selecting a
subsequence also denoted by u,, we may assume un---u in X and qu, z qm in X.
By utilizing the definition of q

(2.17)
(B(d/u,))’ + A(u,)d/u, =f(u,),

i*B(d/u,)(O) i*B(O)uo,

and properties (2.4) and (2.6) together with Lemma 1, we obtain

(2.18)
(Bz)’+A(u)z=f(u),

i*Bz(O) i*B(O)uo.

Obviously, (2.18) contradicts the assumption that z qu; therefore q is weakly con-
tinuous and Lemma 4 is established.

Thus, the proof of Theorem 1 is now completed by invoking Tykhanov’s fixed
point theorem [7] which asserts that q has a fixed point in S.

3. The nonlinear partial differential equation. Here we apply the abstract result of
2 to the question of existence of solutions for initial-boundary value problems

associated with the generalized diffusion equation (0.6). We will assume the following
general properties for the relevant coefficients:

(i) /0 =/Ji,
(ii) /0 is bounded, measurable, and C in t,

(iii) /o:ij -> 0 for (1, so)_, 3) 3,
(3.1) o

(iv) sup
ij }IE(x, t; r)[, (x, t, r)12[0, T]x <,

(v) r Do(x t; r) and r Et3(x t; r) are continuous and real valued

where gl is a bounded open set in 3.
With these, and in order to cast (0.6) in the abstract form of (2.7), we let V be a

closed subspace of H2(gl), W-Hi(l)), H-L2(I), and for y L2(O, T; H2(gl)) we
let (y) be a continuous linear map from L2(O, T; V) to L2(0, T; V’) defined by

(3.2)

(A(y)u, v)= Di(x, t; y( t)(x))Oiu( t)(x)Ojv( t)(x) dx dt

+ E(x, t; y(t)(x))Du(t)(x)DCv(t)(x) dxdt,

and B(t); W W’ defined by

(3.3) (B(t)u, 13)- f u(x)t)(x)-]-Jo(X, t)Oiu(x)Ojl)(x) dx,
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where summation over repeated indices is assumed. With B(t) given by (3.3), it is
clear that (2.2) holds.

Having already specified definitions and hypotheses (2.1)-(2.3), we proceed by
considering properties (2.4)-(2.6). Of these properties, (2.4) and (2.6) are verified in
this section while the coercivity inequality (2.5) is examined in the next section. To
do this we first prove the following lemma which is a generalization of a well-known
result in [8, p. 57].

LEMMA 5. If un---O in X, then
(i) lim._ i*Bu, (t) 0 in V’ for each [0, T),
(ii) lim,_ (Bu,, u,)--0 in LI(0, T),
(iii) lim_. u,--0 in L2(0, T; H),

where each limit in (i)-(iii) refers to the strong topology of the space indicated.
Proofi We first note that i*Bu(. is an absolutely continuous function with values

in V’ since i*Bu, and (i*Bu,)’ are both in L2(0, T; V’). Thus i*Bu,(t) is well defined
and

(3.4)
i*Bu(t) If t+s

i*It+s(Bu,)’(r)(t+s-r) dr+--
S .t S

=U,+i*V,,.

Bu(r) dr

Thus, for a given e > 0, it follows that u v, - e for all n if s is small enough. With
this choice for s and w W, we have

(3.5) I(V, W)w,,w[ B(r) Xtt,t+sl(r)w, tln(r dr
W’W

Since B(. )(1/s)xt,,,+s](" ) L2(0, T; W’) and u,---- 0 in L-(0, T; V), the right-hand
side of (3.5) converges to 0. But w W was arbitrary and therefore V,---- 0 in W’. The
inclusion map of V into W is compact and thus i*V, converges strongly to 0 in V’.
This proves (i) since e > 0 was arbitrary.

To prove (ii), let e > 0 be given. If a is large enough, we have

(3.6)
(Bu,(t) u(t)> dt<-_.- Ili*Bu(t)ll2v, dt+ 2a2

e +- i* Bu,, (t) ’ dt.

In view of Lemma 1, the term Ili*Bu(t)ll2v, is bounded independently of and n.
Therefore, the Dominated Convergence Theorem [9] and (i) imply the convergence
to zero of the last term of (3.6), and since e was arbitrary, part (ii) follows. Part (iii)
is clearly implied by (ii). This completes the proof of the lemma.

As a final step in establishing the validity of (2.4) and (2.6), we introduce the
definitions

(3.7)
(i) A(v) (v + w),

(ii) f(v)=-(w+v)w-i*B’w-i*Bw’+g,
where w and w’ are both in L2(0, T; H2(f)), v e L2(0, T; V), g L2(0, T; V’) and is
the injection map of V into H2(f). Then the following lemma can be established.

LEMMA 6. Hypotheses (2.4) and (2.6) hold.
Proof. By (3.1)4, it is clear that there exists Q< oo such that IIA(u)ll--< Q for all

u e L2(0, T; V). Now let u,---’u in X and let v,---v in L2(0, T; V). From Lemma 5,



QUASILINEAR EVOLUTION EQUATIONS 117

limn_oo Ilun- ullL2(o,r;,) =0. Therefore a subsequence of {u} converges to u a.e. in
and x. Then (2.4) follows from the Dominated Convergence Theorem and (3.1)5.
Hypothesis (2.6) also holds by similar arguments.

In view of the above arguments, we have reduced the problem of existence of
solutions to the abstract evolution equation (2.7) in the special context of 3 to the
verification of the coercivity inequality (2.5). This will be discussed in the next section.
For the convenience of presentation, however, this inequality will be assumed to hold
in the remaining part of this section in order to provide the explicit form of the partial
differential equation that we are concerned with here.

To do this, we define g L2(0, T; V’) to be given by the relation

(g, v) h( t)(x)v( t)(x) dx + l( t)(x)v( t)(x) dA

(3.8)
+ Ioa k(t)(x) OV(t)(X)on da] at

where h L(O, T; H), (k, l)e L2(O, T; L(O)) and 0O is assumed to be a smooth
two-dimensional manifold. Since the trace map from HI() to L2(0) is continuous,
it is clear that g is in L2(0, T; V’). On assuming that (2.5) holds, it follows that
Theorem 1 implies the existence of u X satisfying the equation

[u(t)(x)v(x)+ bo(x t)Oiu(t)(x)Ogv(x)] dx O’(t) dt

+ Do(x, t; w(t)(x) + u(t)(x))o,u(t)(x)ov(t)(x) dx (t) dt

+ (x, t; w(t)(x) + u(t)(x))u(t)(x)Dv(x) & (t) dt

h()(x)v(x) dx (t) dt

(3.9)
+ l(t)(x)v(x) + k(t)(x)

or(x)
dA 4(t) dt

Oo(x, t; w(t)(x) + u(t)(x))o,w(t)(x)ov(x) dx (t) dt

E(x, t; w(t)(x)+u(t)(x))Dw(t)(x)Dv(x) &(t) dt

+ [w((x)v(x)+ ,(x, low()(x)ov(x)] dx ’() tit,

together with the initial condition

(3.0) i*u(o) i*(o(uo- w(O

for all v e V and e C(O, T) provided Uo-w(O)e E
On restricting v to be in C(fl) and letting z u + w we see that a measurable

representative of z is a weak solution of the paial differential equation (0.6) subject
to the initial condition i*Bz(O)= i*B(O)uo. Stable boundary conditions are obtained
by properly selecting the space V, while variational boundary conditions are obtained
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by the use of the divergence theorem in (3.9). This leads to the formulation of a variety
of initial-boundary value problems, representative examples of which are considered
in the next section.

4. Boundary value problems. In this section we consider particular initial-boundary
value problems pertaining to (0.6) and establish existence of weak solutions by utilizing
the results derived earlier. As mentioned previously, our task has been reduced to the
verification of the coercivity inequality (2.5). Here this is accomplished in relation to
specific forms of the associated boundary conditions. Three different sets of such
conditions are considered below. The first set corresponds to Dirichlet type and
coercivity is obtained as a result of Garding’s inequality. The other two examples
include variational-type boundary conditions and coercivity is established by other
means.

4.1. Dirichlet boundary conditions. We choose V= H(12) and assume that the
coefficients E, for [a [/1 2 are independent of p and are continuous on 12 x [0, T].
Moreover, we suppose that they obey the strong ellipticity condition

(4.1) Y E,t3(x, t)f C[l4 for all sc R3,

so that the conditions of Garding’s inequality [5] are satisfied It then follows that
(2.5) holds.

Thus, we have obtained existence of a weak solution to (1.6), denoted by z, along
with boundary and initial conditions of the form

(4.2)
z(t) w(t) H2o(12) a.e.,

i*Bz(O) i*B(O)uo,
where is the injection map of V into W. In less abstract fashion, the boundary
condition (4.2)1 can be expressed as

z( t, x) w(t, x), x 6
(4.3)

Oiz(t, x) Oiw(t, x), x

where w is the prescribed function defined earlier. Roughly speaking, (4.3) suggests
that in contrast to second-order problems, both the function and its derivatives need
to be specified on the boundary for this class of fourth-order problems. These problems
may be viewed as pertinent to the later stages of the important metallurgical process
of spinodal decomposition, where nonlinear effects dominate.

4.2. Variational boundary conditions. In discussing boundary conditions of vari-
ational type, we consider a simplified form of the diffusion equation (0.6) as follows"

(4.4)
0
a-(# #) o,(o(#)o,,) + &# h.

This corresponds to assuming that the stress coefficient C3(p) in (1.4) is a constant and
the mobility coefficient .a in (1.1)2 is a scalar a. Physically, these assumptions mean
that nonlinear effects are retained in the dependence of the usual diffusion coefficient
D but not in the small correcting terms, due to viscosity and surface tension.

We let Uo V--- { u H2(12) such that Ou/On 0 on 012}, with 012 smooth. Then by
the well-known theorem on elliptic regularity [10], I-A is a one-to-one and onto
mapping from V to L2(12). It follows (I-A)-1 is continuous by the open mapping
theorem [9]. Therefore, there exists a K > 0 such that the following inequality holds"

(4.5) Ilullv II(I-,X)-’(I-a)Ullv <- Kll(t-a)ull,(. <-_ K(lluI[2(/
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Then (A(v)u, y) (A(v + w)u, y) is of the form

(4.6)
Ior fa D(v(t)(x)+ w(t)(x))Oiu(t)(x)Ojy(t)(x) dx dt

+ Au(t)(x)Ay(t)(x) dx at

where w(- and w’(. are both in L2(0, T; H2(O)) and D(. is bounded and continuous.
Similarly, (B(t)u, v) is of the form

(4.7) (B(t)u, v)= Ia (uv+Vu" Vv) dx.

As a result of (4.5), it is easy to see through (4.6) and (4.7) that (2.5) holds. This
establishes existence of solutions to (3.9) specialized to the present context. Applying
then the divergence theorem, we obtain the existence of u X such that z u + w
satisfies (4.4) and the integral condition

(4.8) fo O
(zt)v+ D(z)

OZ Ov O(Az) l’ ( -n)v+Az---vdA= lv+kOV dA
a On On On On oa

for almost all values of and for all v V.
Therefore z solves

0
--(z-Az)-Oi(D(z)Oiz)+A2z h,(4.9)
Ot

along with the initial condition

l’(4.10) lim (z(t)-Uo)V+7(z(t)-Uo) 7vdx=O
tO+

and the boundary conditions

oz( t, x) ow( t, x)
a.e. tandx

On On
(4.11)

OZt(l,X Oz(t,x) O(Az(t,x))
+D(z(t,x))-

On On On

for all v V

=l(t,x) a.e. tandx

where (4.11)2 is stable resulting from the choice of V and (4.11)2 is of a variational
type resulting from the divergence theorem.

The initial condition (4.10) can be expressed in a more conventional form by
noting that for u X, Bu(t) is a function in C(0, T; W’). It follows that u C(0, T; W)
and thus z- (u+ w) C(0, T; W). Therefore, the limit in (4.10) can be taken inside
the integral giving

(4.12) fr (z(O)-uo)v+V(z(O)-uo)" Vvdx=O for all v V.

If z(0)-Uo V, it follows that the initial condition (4.12.) takes the usual form,

(4.13) z(0, ") Uo(’).

The condition that z(0, ")-Uo(’) V is equivalent to saying that (Oz/On)(O, .)=
(Ow/On)(O,.) =0uo(" )/On on 0f; that is, the initial condition Uo(" and the boundary
condition at =0, w(0,. are compatible.
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Next, we turn to a second example pertaining again to (4.4) but we now let
V (U C H2(-) such that u(x) 0 on 0f). By reasoning similar to that of the previous
example, (2.5) is again satisfied. Thus, in this case, we obtain the existence of a weak
solution to the problem

(z Xz) o,(D(z)o,z) + Xz h,
at

z(t,. w(t,. on 012 for a.e. t,
(4.14)

Az(t,.)=k(t,.) onafora.e, t,

lim (z(t)-Uo)V+V(z(t)-Uo). Vv dx =0, ve V.
t-0+

As before, z(. is in C(O, T; W) and if z(0)- Uo V, the initial condition (4.14)4 takes
the usual form z(0,. Uo(" ). In this case, the condition that z(0) Uo V is equivalent
to the requirement that Uo(" )= w(O,. on

Other examples could be considered in a similar manner. Questions of existence
of solutions to (0.6) or its specializations may thus be resolved by considering the
verification of (2.5); that is the coercivity of a family of bilinear forms. This question
of coercivity has been extensively studied and we refer to 10] for further discussion.
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A THEOREM OF LA SALLE-LYAPUNOV TYPE FOR PARABOLIC SYSTEMS*

RAY REDHEFFER’, REINHARD REDLINGER AND WOLFGANG WALTER$

Abstract. This paper deals with the boundary value problem for a nonlinear system of parabolic
differential equations for u u(t, x)

Ou
ut=Lu+f(u) inf/, u(0, x)given, --=0 on0

under the assumption that a Lyapunov function V(z) for the corresponding ordinary differential equation
system u’=f(t, u) exists. In the case where L is one and the same selfadjoint elliptic operator of second
order for all components of u, the real-valued function U(t, x)= V(u(t, x)) satisfies a parabolic differential
inequality

U,<-_LU-cluI

It follows that u exists globally and is bounded if u(0, x) is bounded. The limit set A (as oo) of any
solution u is nonempty and compact, it consists of constant functions only, it is an invariant set for u’ =f(u),
and f’ Vz" f vanishes on A (analogue of La Salle’s stability theorem for ordinary differential equations).
The results are then extended to quasilinear systems where Lu (ao(x u)uxj)xj. In the case where different

Lku +fk(u) (k= 1," n), it is assumed that a(x) ck(x)ao(x) withelliptic operators are involved, u
c >0. A Lyapunov functional U(t) =a V(u(t, x)) dx is employed, but the boundedness of solutions has
to be assumed or obtained by other means.

Key words, parabolic systems, Lyapunov function, asymptotic behavior, limit set

AMS(MOS) subject classification. 35K40

1. Introduction. We begin by briefly reviewing the ODE case. Let

(1) u’(t) =f(u(t))

be an autonomous system of n ordinary differential equations in an open set D c R n,
where f: D R is continuous and such that the initial-value problems for (1) are
uniquely solvable. This holds, for example, if f is locally Lipschitz continuous. Here
a C function V:D-->R such that the set Dc={zD: V(z)<=c} is a compact subset
of D for every c V(D) is called a Lyapunov function for (1). The function

Q(z) Vz "f:: f/O__V
i=1 OZi

the derivative of V in the direction f, has the property that

d
d-- V(u(t)): Q(u(t))

for any solution u of (1). The latter expression is called "the derivative of V along a
solution" and is denoted by f’(u).

Let u be a solution of (1) existing for t>-O. The set A+-A+(u) defined by

A/(u) {z R: z lim U(tk) for some sequence k --->oo}
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is called the positive limit set of u. Let l?(z)=< 0 for z D. Then each solution of (1)
exists for all =>0, the set A/ is a compact nonempty subset of D, and dist (u(t), A/)0
as t- c. It follows from this latter statement that A+ is not only contained in the set

W= {z 6 D" l?(z)=0}
but is contained in the largest subset of this set which is invariant under (1). The
description of A/ is usually referred to as La Salle’s stability theorem. Although various
ingredients for La Salle’s theorem were available previously, starting with the pioneering
work of Lyapunov, it appears that the complete result was first formulated by La Salle
(cf. [11] and the references there given).

The primary subject of this paper is the parabolic system

(2) u
g Lug+fg(u) inJxf (k=l,2,... n)

In short ut=Lu+f(u), where U (ul, U 2, un)--U(t,X),X---(Xl,X2, x.,), J is
an interval (0, T] or (0, oo), 12 is a bounded open set in R" with smooth boundary,
and L is a selfadjoint elliptic operator with coefficients independent of t,

(3) Lb= Y.
0 a,j(x)0b

i,j=l

Note that we have the same elliptic part in all equations, so that L can be regarded
as operating on the real-valued function b or as operating componentwise on the
vector-valued function u. For the most part we shall deal with the Neumann problem,
in which the initial and boundary conditions are

ou
(4) u(0, x)=a(x) infl, -0 onJxF

where F 01 and 0/0, denotes the outer conormal derivative; that is,

’, E an,
j=l

where n (ni) is the outer normal at x F. Our basic result, given explicitly in Theorems
1 and 2, can be roughly described as follows. If a convex Lyapunov function satisfying
f’(z)-<0 exists, then the parabolic case reduces to the ODE case. More precisely,
solutions to (2), (4) exist for all t->_0 and are bounded in C2+r() for some 3,>0.
The limit set A/ of any solution u, which is now a set in the space C2+v, consists of
constant functions only. Considered as a subset of R", the limit set A/ is an invariant
set for the ODE (1) and the function l?(z) vanishes on A/. Hence A/ is contained in
the largest invariant subset (with respect to (1)) of the subset W defined above. It will
be seen that

dist (u(t, .), A+) 0 as t,

where the distance is taken in the sense of the C+v norm. Hence, the largest invariant
subset of W can be used to assess the asymptotic behavior not only for the ODE (1)
but also for the PDEs (2) and (4).

As to method, our work relies heavily on the theory of parabolic differential
inequalities. In the ODE case the function U(t)= V(u(t)) satisfies U’(t)<=0 and hence
is decreasing. The results of Lyapunov and their extension due to La Salle follow easily
from this fact. In the parabolic case the corresponding real-valued function U(t, x)=
V(u(t,x)) satisfies a parabolic inequality of the form

(5) U<-_tU-/31uxl=’,
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this fact is crucial for our method. Here a and /3 are positive constants such that
(ai) >= aim, Vzz >- I,,, where Ik is the identity matrix of order k, V= is the Hessian of
V, and the inequalities are interpreted in the sense of quadratic forms. The assumption
V= > 0 is an additional requirement that is not needed in the ODE case.

The general problem considered here has a number of special cases that are of
considerable interest in applications. Discussion of such cases can be found in the
work of Alikakos [1]-[3], Chaffee [7], [8], Fleming [9], Hadeler [10], Leung [12],
Mottoni, Orlandi and Tesei [13], Rothe [17], Webb [20] and in our own analysis of
the prey-predator case 14]. These references make use of Lyapunov-type arguments,
as we do, and [2] also indicates the importance of a condition of strict inequality such
as V= > 0. We show by an example that, in fact, the weak inequality V:z >- 0 is not
sufficient.

2. Notation, assumptions and auxiliary theorems. Our basic notation is the same
as in [14] but is briefly described for the reader’s convenience. The Euclidean norm
in R or R is denoted by I" ]. For a function w-- R we set

Ilwllo-suplw(x)l [w],-sup
Iw(x)-w(y)l

(xySY),

where x , y and 0< 7 < 1. Fuhermore, Ilwll IlWllo+[W] . The spaces Cv()
or C+r(fi) consist of all functions with a finite norm w ll or

Ilwll=+,= Ilwllo+ E IlO,wllo+ Z IID,Owll, O,=
0

i=1 i,j=l

respectively. The space C+r(fi) is defined similarly. Whenever a distinction between
scalar- and vector-valued functions is not self-evident, we use notation such as Cr(O, R)
or C+r(fi, R"). The gradient and Hessian of V are denoted by V and Vz, respectively,
and we set, by definition,

i=1 k=l

We use a summation convention for repeated indices, the range of summation being
from to m or from 1 to n, as will be clear from the context. Thus, Lb Di(aiD.O)
and if A= (a0), Vz=(bo), the inequalities A>-_aim, VI, mean

a,.i’ 11=, b0sC’: __> 11=
for e R and for sc e R n, respectively. The range of summation in the first case is
from 1 to m and in the second, from 1 to n.

Concerning the domain i2, the elliptic operator L, the function f and the initial
value ti, we require the following:

(R1) gl is a bounded, open, connected set in R with orientable boundary 0i2 F
of class C2+L

(R2) D c R" is open and f" D- R" is locally Lipschitz continuous.
(R3) The matrix A(x)=(ai.i(x)) is of class Cl+V(fi) and A>=alm with a>0

constant.
(R4) ti(x) C2+(1)), Off/Ou =0 on F, and ti(x) D for x 1).

If u(t, x) is such that u, u,, ux and Uxx are continuous in J x 1), we write u C*(J).
The following local existence theorem holds under the assumptions (R), and any other
assumptions under which it holds would suffice for our purposes.
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THEOREM O. Under the assumptions (R) the problem

tgu
(6) ut=Lu+f(u), u(O,x)=a(x), --=0

0v

has a unique local solution u6 C*(J), J=(0, T], T>0. The matrix ux, is H61der
continuous in x and u(t,. maps continuously into C2+V(l)). If an a priori estimate

[u(t, x)l <- K for 0 <=t<= T, x , can be established, where K is independent of T, then
the solution exists for all >- 0 and supt__>o Ilu(t,"

In (6) it is understood that the first equality holds in J x f/with J (0, oo), the
second in f, and the third in J x F. To avoid unnecessary clutter, a similar convention
is followed below.

The assertion of existence in Theorem 0 has been known for some time but prior
to the investigation in [15], as far as we know, the global bound for Ilul12/ has been
available only in special cases.

When Ilull=/ is bounded, the "path" {u(t,. )" t>= 0} is a relatively compact subset
of C2(). That is, for any sequence tk-OO there is a subsequence tk* such that
limk_ U(tk*, exists as an element of C2((I). By definition, the limit set A/ is the set
of all functions in C2(1)) that can be obtained as limits in this way. Characterization
of A/ is the object of the following investigation.

3. Statement of the main results. All the concepts needed for our principal theorem
are now at hand.

THEOREM (Global existence). Assume that the assumptions (R) hold and that
there exists a Lyapunov function V" D R of class C2 such that "(/(z) <-_ 0 and such that
Vzz >- flln, where fl >= 0 is constant. Then (6) has exactly one solution u for each initial
value . The solution exists for >= O, it belongs to C*(O, o), and it remains in a compact
subset ofD. Thefunction u t, is continuous and the orbit { u t, ): 0 <- < o} is bounded
in the C2+v norm.

THEOREM 2 (Asymptotic behavior). Under the assumptions of Theorem 1, with
/3 >0, the limit set A+ of u is a nonempty compact subset of C2() and -it contains
constant functions only. Considered as a subset of R, the limit set A+ is an invariant
set for the ordinary differential equation u’ =f(u), and vanishes on A/.

The above results imply that

dist(u(t,’),A+)-O in C2(() as toe.

In particular, given any sequence {t} with t- o there exists a subsequence { t*} and
a constant cR" such that [[u(t,.)-cl[-O as

Before turning to the proof we indicate a possible source of misunderstanding.
Since each element of A/ is a constant c, and all the derivatives of c are of course 0,
it might be thought that the partial differential equation impliesf(c) 0. (The uniformity
of convergence does in fact give Lu Lc =0 as tk c.) Although existence of a
"stationary point" c with f(c)= 0 was not postulated initially, it was pointed out by
Professor Robert Greene of the University of California, Los Angeles that this is
implied by the hypothesis of Theorem 2. Namely, f(c) 0 at the point where V assumes
its minimum; we omit the easy proof.

Nevertheless, the above conclusion "c A+=:>f(c) =0 is false. Taking n 2 let
u (p, q) and consider the system

p, Lp+ q, q, Lq-p, u(0, x)= (0, 1).

This system has the solution u(t, x)= (sin t, cos t) and the hypothesis of Theorem 2
holds with V(z)=lzl2. But no point cA+ satisfies f(c) =0.
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Later we shall consider a similar problem for the scalar function U V(u) and
here the elements W A/ for U will satisfy W 0 as well as LW 0. The difference
in the two cases is that in the scalar case we shall have U(t,. ) c as t- without
restriction, while u(t,. )- c holds only on the sequence {tk}.

4. Existence of a limit. One of the most important lemmas needed for our theorem
states that the solutions of b,-< Lb, b =< 0 have a constant limit, in general, as c.
In [14] the result is deduced first for the corresponding equation b, Lb, b =0 by
consideration of the integrals

h(t) I dp(t,x)dx, k(t) I ck2(t,x) dx.

Another method is briefly outlined as follows: Let (,, Sn) be the sequence of charac-
teristic values and functions for the problem

Lb+Ap 0, =0.
Then A1 0, I]t 1, and An > 0 for n > 1. Also, by the spectral theorem,

c(O, x)= Y bnd/n(x)ch(t, x)= , bn e-X’q,(x),
n=l n=l

where the coefficients b, are bounded. Hence 4(t, x)- bl as 4oo, and indeed, with
exponential rapidity. A comparison argument [14] now gives the result for the
inequality, which we formulate as follows.

LEMMA 1. Let qb be a bounded real-valued function of class C*(O, oo) satisfying

Then limt_. oh(t, x)=c, where c is constant, and the convergence is uniform with respect
tO X.

Since the hypothesis on b, and 4x in Lemma 1 forms the primary obstacle to
extension of our theorem to quasilinear systems, we shall give an alternative proof,
different from that in [14], which requires weaker assumptions and makes no use of
existence theory. It will be seen that the crucial requirement is a condition of uniform
continuity of b, and, if the assertion of uniformity of the convergence is dropped, even
this is needed only in each compact subset of 1 as .

5. Proof of Lemma 1. Let b M- e- where M is a sufficiently large constant;
for example, M 1 + sup b. Then with bj Djb, bi DiDcb,

e-*d/i, (aijCj)i e-O[(aijtj)i- aijOiOj

and hence

cht e-*q, <- Lck e-* LO-
or, in view of the hypothesis (a0)>-a/,

q,, <-_ Lq,-

Let us now set

h( t) =- d/( t, x) dx.

Then by the divergence theorem

_-< ax.
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It is readily checked that e (as well as e-q) is bounded, and hence the boundedness
of 4t and thx ensures that qt and qx are also bounded. From the regularity conditions
on 1) it follows that q is uniformly Lipschitz continuous. That is, there exists a constant
L such that

[(t,x)-p(s,y)l<-L(]s-t[+]x-yl) forx, yetands, t>-_O.

Lemma 1 is therefore a consequence of Lemma 2.
LEMMA 2. Assume that q is bounded and uniformly continuous in (0, oo)x and

that , t, L2(fl) for > O. Suppose

1Ih( t) -l ( t, x) dx satisfies h’( t) <- - Iqx( t, x)l 2 dx,

where A is a positive constant. Then limt_ d/(t, x)= c, where c is constant, and the
convergence is uniform with respect to x.

Proof of Lemma 2. Let

v(t, B) sup (t, x) inf (t, x) where B c 12.
xB xB

We show first that v(t, B) 0 as t- for any closed ball B c 12. Assume that B has
radius r and that dist (B, F)= a > 0. Suppose that for a specified value to we have
V(to, B)> 31. Then there are points , r/eB such that I(to, )-q(to, rt)l> 21. Since

O is uniformly continuous there exists 3 N a (independent of t0) with the propey that

Assume for simplicity that l and let p (0, p’), where p’= (p, , p) R-1,
p’l < Then

e<l(t,+p)-(t,n+p)] Ix(t,s,p,’",p,)lds.

Integrating over the ball B’: Ip’l < in R-, we obtain

IB’le < Ix(t, x)[ N N [x(t, x)l 2 N" 2rln’l
B’

where [B’I w-- is the (n-1)-dimensional volume of B’. This inequality shows
that

I6 ( t, x)l ax >- S-2r for (t- to) < 6.

Hence h’-<_-A/3, i.e., h(to+6)-h(to-6)<-26A. If there existed a sequence (tk),
tk- c, such that v(t, B)> 31, we would have limt_, h(t)=-. Since h is bounded,
this cannot happen, i.e., v(t, B)< 31 for large t.

Now we show that v(t, 12)-0. Let e > 0 be given and let 6 > 0 be such that
I$( t, x) ( t, y)[ < e for Ix-yl<6 and all t. Let B be a finite subset of 12 with the
property that the 6-neighborhood of B covers 12. By connecting the points of B with
polygonal lines, we obtain a connected subset C of f with positive distance from F,
say, dist (C, F)= 2a > 0. We cover C by a finite number of balls Bi with radius a and
midpoint on C with the property that for each Bi there is a neighboring Bj such that
B Bj (. Because C1 C2 implies v(t, C1 w C2) v(t, C) + v(t, C2) we get
v(t, C)- 0 as t- . Since each point of f is in the 6-neighborhood of C,

v(t, O) < v(t, C)+2e,

which shows that v(t, f) 0 as .
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Since h is decreasing and bounded, there exists

c lim h(t).
t-0

On the other hand, since h(t) is a mean value, there exists xt such that
g/( t, xt) h( t). The equation

Ib(t, x) h(t)[- I@(t, x) @(t, x)l v(t)

now shows that O(t, x) -* c, and that the convergence is uniform with respect to x. This
completes the proof of Lemma 2.

6. A matrix inequality. The trace of a square matrix A, written tr A, is the sum
of its diagonal elements. According to a well-known lemma of Schur and Fej6r, the
following holds: Let A and D be square matrices of the same size with A >-0, D _-> 0,
Dr= D. Then tr AD >-O, with strict inequality if A > 0 and D 0. Since this result is
usually quoted for symmetric matrices only, let us briefly recall the proof. From D _>-0

and Dr= D follows a representation D XrX, so that dis XkiXkj. Thus,

tr AD aodo aijXkiXkj.

For each fixed k the quadratic form on the right is _,>0, with strict inequality for at
least one k if A > 0 and X # 0. This completes the proof.

We shall establish the following lemma.
LEMMA 3. Let A ao) B bo) and C co) be matrices of size m by m, n by n

and n by m, respectively. Suppose further that B Br and that A >- aI,,, B >-_ In with
a >- 0 and 1 >-_ O. Then

tr ACrBC aobklCkC! >-- afl[ CI2

where [C[2= i, (co).
For proof, let D CTBC. Then xrDx zTBz where z Cx. This shows D _-> 0 and

the inequality tr ACrBC >-0 follows from the lemma of Schur and Fej6r as quoted
above. Now write A A + aI,, B B + flln with A_-> 0 and B _-> 0 and consider the
identity

(/+ aI,,) C r(/ + flI. C fi,CrC + aCrC + fl,YC rC + aflC rC.

It follows from the earlier result that the traces of the first three matrices on the right
are nonnegative, and hence

tr ACrBC >- fl tr CrC aft[C[ 2.

7. The Lyalmnov function. Let V:D-> R be of class C2 and let u be a solution
of ut =Lu+f(u). The notation Vk =OV(z)/OZk, uki=ouk/oxi are used, and similarly
for higher derivatives. The gradient and Hessian of V are denoted by V and Vzz,
respectively, so that Vzz matrix (Vk). As before, and j run from 1 to n while k and
run from 1 to m. We are going to derive a differential inequality for the scalar function

U(t, x)= V(u(t, x)) or, briefly, U= V(u).
From

Ut VkU Vk aOu )S + vkfk u ),

L( U) (aoVkU) Vk(aou) + aoVk,U)U,
it follows that

U, L(U)+Q kao VklU Uj
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where I? V,. f along the trajectory u. Applying Lemma 3 with A (aij), B V,x and
C (u), we get the following lemma.

LEMMA 4. Let V" D- R be a function of class C2 satisfying

V>-I, = Vz. f(u)<=O

where is a positive constant and where u is a solution of u, Lu +f u ). en the scalar
function U V(u satisfies

UtLU-[Uxl.
It should be observed that the proof, based on Lemma 3, uses the fact that V= is

symmetric, but does not require symmetry of the matrix A. The latter condition would
be a serious restriction on the operator L.

8. Monotonicity and comparison. The following two lemmas are well known 14],
[19] but are repeated here for logical completeness. They hold under much weaker
assumptions regarding L, and u than those necessary for existence theory. Rather
than fully exploiting this fact, we point to it by introducing the space C(J) of functions
continuous in J x with derivatives ut, Ux and u continuous in J x . As always, J
is an interval (0, T] or (0, ).

LEMM 5. If the real-alued functions , C(J) satisfy

tL, tL, 0__, 6(0, x) (0, x
Ov Ov

then in J x .
LEMMA 6. If tWO solutions v, ue C(J, R") of ut=Lu+f(u) satisfy

lu(O,x)-v(O,x)lp,
Ou Ov

and if for these solutions If(u)-f(v)l<:Mlu-vl, where M and p are constant, then
[u(t, x) v(t, x)[ _-< peMt in x (l.

9. Proof of Theorem 1. Let max V((x))= r/, where t7 is the initial value of u.
Since Lemma 4 gives Ut <- LU, and since O U/Oz,=O, we can apply Lemma 5 with

b U and q, r/. It follows that, as long as the solution exists, U(t, x) _-< r/and hence
u(t, x)e Dn, where D, {z R n" V(z)<= r} is a compact subset of D (cf. the definition
of Lyapunov function given in 1). Theorem 1 now follows from Theorem 0.

10. Proof of Theorem 2. It is clear from the global estimate given in Theorem 1
that the set A/ is nonempty and compact. Since Ut <-LU by Lemma 4, and since the
differential equation together with Theorem 0 shows that ut and hence Ut are bounded,
we can apply Lemma 1 to get

(7) lim U(t,. c, c constant.
t--->

Let r9 be an arbitrary element of A/, say lim U(tk, ")= as k. Clearly #

satisfies (R4). We denote by w(t, x) the solution of (6) with initial value # and we set
W(t,x)= V(w(t,x)), that is, W= V(w). The proof of Theorem 1 gives #(x)eDn,
hence w(t,x)eD, by the same proof, and we may assume, therefore, that If(u)-
f(w)l--< Mlu-wl for some constant M. From Lemma 6 we obtain the estimate

(8) [U(tk + t, x)- W(t, x)l Ilu(tk, )- lo eMt
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which implies U( tk + t, X) W( t, X) and U( tk + t, x) W( t, x) uniformly in x as k - .But the latter limit is constant by (7); hence W(t, x) c for all and x. Now, Lemma
4 gives

W,<=tW-lwl
and, on the other hand, Wt LW=O. Hence wx =0. This shows that w(t, x) and in
particular w(x) w(O, x) are independent of x. In other words, w w(t) is a solution
to the ordinary differential equation w, =f(w). It follows from (8) that w(t) A/ for
any positive t; in other words, A/ is positively invariant. That A+ is also negatively
invariant, and that "tk(z) vanishes on A/, are proved as in [14].

11. Remarks on the condition for V=. If the condition Vzz > 0 is replaced by Vz >= 0
Theorem 2 no longer follows even when rn n 1. To see this, let f(u) be a smooth
function such that f(u)=u for lul-<l and f(u)=0 for lul_->2, Also let V(z)=0 for
Izl_-<2, V(z)=(2-lzl)4 for Izl_->2. Then the boundary value problem suggested for
n=m=l by

ut=Uxx+f(u), (t, x) (0, o) x (0, r)
has a solution u(t, x)= cos x, which violates the conclusion of Theorem 2.

In many developments of the Lyapunov theory V(z) is required to satisfy the
additional condition

(9) V(0)=0, V(z)>0 for z0.

The first of these can be attained by adding a constant to V but the second is more
restrictive. The condition is imposed to ensure stability ofthe zero solution, a considera-
tion which has nothing to do with the problems addressed in this paper. (If we impose
the additional condition f’(z)<0 for z0, as well as (9), then every solution with
initial values satisfying t(x) D for x converges to the null solution in the C2(f)
norm, as t-, and the latter solution is stable. But this case excludes most of the
more interesting applications of the La Salle stability theorem and it can be obtained
in a much simpler way.)

If V is normalized so min V(z)= V(0)=0, the hypothesis Vzz>O ensures (9)
automatically. The question arises whether (9) is sufficient for Theorem 2, without any
condition on Vzz. We shall show that this is not the case. Considering the same equation
as above, let f be a smooth function satisfying

f(u)=0, u-4, 0

on the intervals u-<_2, 3-<u-<5, u->_6, respectively. Let V(z) be a smooth function
satisfying V(z) > 0 for z 0 and V(z) z2, 2, z2 on the intervals z =< 1, 2 <- z =< 6, z -> 7,
respectively. Then all assumptions hold, except Vzz > 0. Nevertheless the boundary
value problem with initial value (x) 4+ cos x has the solution u a and A/ contains
only the function tT, which is certainly not constant. If rn n 1, a brief investigation
suggests that V= >= 0 together with (9) is sufficient. Whether this holds in general is left
as an open problem.

If g(g)=fl(gl)+f2(z2)+ .+f,,(z") the condition f>0 for k= 1, 2,..., n
ensures Vzz > 0. Using this fact, one can show that Theorem 2 contains the main results
of 14].

12. The quasilinear case. In this section we will indicate how to extend the above
results to the quasilinear system (k 1, 2,..., n)

2 aij(x, u) wfk(u) inJxfl
i,j=l OXj /
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subject to the initial and boundary condition (4). Instead of assumptions (R) we now
require:

(RI’) gl is a bounded domain in R with orientable boundary F of class Ca-.
(R2’) D c R is open and f: D- R is locally of class C2-.
(R3’) The matrix A(x, u)=(ao(x u)) is of class C3-(xD) and A>-tIm with

a > 0 constant.
(R4’) as (R4).
(R5’) For x F the functions ao(x u) are independent of u.

Here, C3-(1 x D) denotes the space of all functions 4 :l)x D- R with Lipschitz
continuous first and second partial derivatives; the symbols C3- and C2- are to be
interpreted in a similar fashion.

Remark. It is sufficient for our purposes that (R3’) holds locally with respect to u.
Under the assumptions (R’) assertions analogous to those in Theorems 0, 1 and

2 can be proved for system (10). Hence, in particular, the asymptotic behavior for (10)
is completely determined by the asymptotic behavior of the solutions to the system
(1) of ordinary differential equations. Since, as has been noted above, the proofs of
Theorems 1 and 2 can be easily adapted to the quasilinear setting, the main difficulty
in establishing this result lies in the extension of Theorem 0 to (10).

We do not want to go into details about the proof at this place. Let us only say
that local existence of a classical solution u for the boundary-value problem (10), (4)
follows from [5, 10]. Next, using reasoning similar to that employed in [16, 4], an
a priori bound (uniformly in t) for the functions u(t, in CI+(, Rn) is established
(any 0 < a < 1). This is sufficient to guarantee global existence of u. The statement
about global boundedness of ][u(t, .)112/ then follows from [16, Thm. 8]. We have
thus proved the following.

THEOREM 3. Assume that the assumptions (R’) hold and that there exists a Lyapunov
function V:D-R of class C2 such that (z)<-O in D and such that Vzz>-flI, where
fl>0 is constant. Then (10), (4) has exactly one solution u for each initial value . The
solution exists for >-O, it belongs to C*([0, o)) and it remains in a compact subset of
D. The orbit {u(t,. ): t->0} is bounded in the C2+ norm.

The limit set A+ ofu is a nonempty compact subset ofC2() and it contains constant

functions only. Considered as a subset of R, A+ is an invariant set for the ordinary
differential equation u’=f(u) and vanishes on A+.

13. Lyapunov functionals. We briefly describe an alternative approach. Assume
that u is a bounded regular solution of (2), (4) with values in D, and that V: D- R
is a Lyapunov function for the associated system (1) of ordinary differential equations
with V= >- flI,, where fl > 0 is constant. Consider the Lyapunov functional

U(t)= / V(u(t,x)) dx for t_-__O.

We get

IQ -- U Vku

fa Vk(aou;)i + Vkfk

Vkfk aij Vk U; bl

<__ Vf
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Since the orbit {u(t, .): t_>0} is relatively compact in C2(,Rn) by [15], La Salle’s
principle implies that A+ consists of constant functions only. Moreover, A+ is an
invariant set for (1) and 9" 0 on A+. This proves Theorem 2.

The same reasoning also applies to the system

(2*) ukt Lkuk+fk(u) inJxl (k=l, 2,... n),

where the elliptic part

LkO=(a(x)Oj)i
now may vary with k, provided we have a kij ck(x)aij(X) with functions ok(x)
that are strictly positive in 1. Moreover we suppose that

(a) (aij) is symmetric and (CkVk) is positive definite for any x (l, u D;
or that

(/3) the matrix V= is of diagonal form.
This gives the following theorem.

THEOREM 2*. Let u be a bounded regular solution of (2), (4) under the above
hypotheses. Then the limit set A+ of u is a nonernpty compact subset of C2(,) and it
contains constantfunctions only. Moreover, A+ is an invariant setfor (1) and "(/vanishes
on A+.

Theorem 2* generalizes a result of Alikakos [1, 4], where the case (aij) I,,, Ck
constant is considered. The method of proof (integration with respect to some variables
and derivation of a differential inequality for the resulting function) apparently was
first used by Carleman [6] in his paper on the Denjoy conjecture.

14. Remarks on boundedness. It should be noted that in the preceding section
boundedness of the solution u is used as a hypothesis. As shown above, for systems
of type (2) an a priori bound for u can be derived directly from a differential inequality
for the Lyapunov function. For system (2*) it seems that such a procedure is not
possible. We mention instead the following two methods.

(i) Comparison arguments. Let a(t), fl(t)’[0, c)-> R be a pair of upper and
lower solutions for (2"), i.e., assume that (k 1, 2,..., n; > 0)

ak(t)fk(z) foralla(t)<-z<-fl(t), 2k--ok(t),
flk(t)>--fk(z) forall a(t)<--_z<--fl(t), zk=flk(t),

and that

a(0)_-< u(0, x)-<_ fl(0) in ft.

Then a (t) _-< u (t, x) _-</3 (t) for all _-> 0, x 1. This is a special case of a general
estimation theorem for parabolic systems (see [19, 32]). In case a and/3 are constant
it is sometimes called the method of "invariant rectangles."

(ii) Functional analytic methods (bootstrapping and feedback arguments). For
these we refer the reader to the book by Rothe [18].

15. Historical remarks. As mentioned in the Introduction, a number of special
cases of (2) have been treated in the literature. Our results contain those of [10], [12]
and [14], and they generalize those of [20] from one to several space variables. The
results of 17] are contained insofar as they deal with Neumann boundary conditions.
Our results do not contain those of [17] for other boundary conditions, nor those of
[7], [8], [9] or [13]. Reference [7] pertains to an unbounded x-domain, [8] and [9]
involve nonlinearities depending on both x and u, and [13] has a functional acting on
u(t, .). These references suggest possible directions in which our work might be
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generalized. It would also be desirable to extend the results to equations with a lagging
time variable.
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Abstract. The solvability behavior on the real line of linear integrodifferential equations in a general
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1. Introduction. It is well known that quite a few problems of applied mathematics
lead to abstract equations of the following type"

(1) u’(t) Au(t)+ dB(r)u(t-r)+f(t),

for example, problems in-thermodynamics or elasticity theory for materials with
memory, and in population dynamics, to mention a few. Here u(t) denotes the state
of the system at time t, A a closed linear operator in the state space, a Banach space
X, with dense domain D(A), {B(t)},__>o a family of closed linear operators in X with
D(B(t))D(A) for all t_->0 such that BBV(R+,B(Y,X)) (the space of B(Y,X)-
valued functions of bounded variation over R/ =[0, oe)), where Y= D(A) is normed
by the graph norm of A and B( Y, X) { T: Y- X T linear and bounded}, and f an
X-valued function; w.l.o.g, we also assume that B(. is left-continuous in B( Y, X)
and satisfies B(0)= B(0+)=0.

In recent years equations of type (1) have been the object of intensive study,
mainly the local problem for (1) has been investigated, i.e., the history value problem.
This means, given the history function u_(t) for <= 0 and f, find the solution u such
that u(t) u_(t) for _<- 0 and (1) holds for -> 0. Assuming well-behaved history values
u_(t), this problem reduces to the initial value problem for

(2) u’(t)= Au(t)+ dB(r)u(t-r)+ g(t),

where

g(t) :f(t) + dB( 7-)u_( -).

The theory of (2) centers around the concepts "wellposedness" and "resolvent
operator" and is well understood by now. It turns out that (2) is well posed if and
only if there is a resolvent operator S(t) for (2), and in this case the solution of (2)
with initial value Uo is represented by the variation of parameters formula

(3) u(t) S(t)Uo+ S(t-r)g(-) dr.

Furthermore, the relation

(4) (A) (A -A-d’(A))-
* Received by the editors September 2, 1986; accepted for publication November 6, 1986.
f Fb 17, UHGS Paderborn, Warburger Str. 100, 4790 Paderborn, Federal Republic of Germany.
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for the Laplace-transform of S yields a Hille-Yosida type result for resolvents analogous
to linear differential equations (cf., e.g., Grimmer and Priiss [7] or Priiss [13]).

However, there are other questions concerning (1) that call for a global theory of
(1), e.g., the existence of periodic or almost periodic solutions in the case f has the
corresponding property. It is the purpose of this note to present some results in this
direction.

2. Admissibility. Let f:-X be continuous, f C(X) for short. First we have
to state what we mean by a solution of (1).

DEFINITION 1. uC(X) is called a solution of (1) if uC(Y)f3C(X),
supo lu(t)]- o and (1) holds on .

Note that (1) is translation invariant; i.e., if u is a solution of (1), then (Tu)(t)-
u(t + -) is also a solution of (1) with f replaced by Tf. This property is not shared
by (2). The analogue of "wellposedness" for (1) is the concept of an admissible
subspace of C(X)- {f C(X):f bounded and uniformly continuous} which we have
to introduce next. Since (1) is translation invariant, we only consider translation
invariant subspaces W C(X).

DEFINITION 2. Let W C(X) be a closed translation invariant subspace. W is
called admissible for (1), if for each f Wo Wt3 CI(x) there is a unique solution
u Wo (3 C(Y), and (f) Wo, f - 0 in W imply u - 0 in W.

In case W is admissible for (1), the solution operator G is defined on the dense
set Wo according to the following:

(5) (Gf)(t) u(t), , f Wo
and can be extended to all of W, since G is bounded, i.e., G B(W). Due to the
translation invariance of (1) and W, G enjoys the following properties.

(i) T,G GT for all - ;
(ii) DG GD, where D ddt;
(iii) G( .f) Gf for all f W, q L1.

Property (i) shows already that for f W periodic or almost periodic the solution
u Gf is periodic or almost periodic, also. Therefore the main problem is to obtain
characterizations of admissibility of subspaces W which can be checked more easily.
We are not able to do this for all subspaces W but for a large class which we introduce
next.

DEFINITION 3. Let f Cb(X) {f C(X): f bounded}. The Fourier-Carleman
transform of f is defined by

e-tf(t) dt, Re A > 0,
(6) f(A)= of_ e-atf(t) dt, Re A < 0;

f(A) is holomorphic in C\ iR. Let p(f) denote the set of all p such that f(A) admits
analytic continuation to some ball B(ip); then tr(f)=\p(f) is called the spectrum
off.

For A c closed we let

(7) A(X) {f C,(X): g(f) A};

it can be shown that A(X) is a closed translation invariant subspace of C,(X) (cf.
Katznelson [11]). This class of subspaces is, on the one hand, large enough for our
purposes and, on the other hand, amenable to analysis, in particular to transform
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theory, and therefore presents an efficient means to describe the solvability behavior
of (1). Two special cases should be mentioned.

(i) f Cb(X) is ’-periodic. Then

f(A) (1 e)-’ e-f(t) dt for all Re A # 0;

hence,

denotes the nth Fourier-coefficient of f.

where fn r-1 e2rint/rf(t) dt

(ii) f Cb(X) f’) LI(x). Then tr(f) supp f, wheref denotes the Fourier-transform
off; this gene.ralizes to anyf Cb(X) if f is understood in the sense of distributions:
o-(f) supp Dy (cf. Katznelson 11 ]).

We are now in a position to state the conditions necessary for the admissibility
ofthe subspaces A(X). In fact, Fourier-transformation of (1) formally yields the relation

(8)

Let

ip A-(ip ff(p f(p), p , i.e.,

ff(p) ip A- d(ip))-lf(p) H( ip)f(p).

(9) Ao {pR" ip-A-dB(ip) not invertible}

denote the (real) spectrum of (1); then we have
PROPOSITION 1. Let A(X) be admissible for (1). Then
(i) A VI Ao and there is M >- 1 such that

IH(ip)]<-_M and Ian(iP)l<--M(l+lpl) for all peA;

(ii) r(Gf) r(f for each f A(X);
(iii) r(u) Ao for each solution u C (X) fq C(Y) of the homogeneous equation

(1) (i.e., f-0).
It is obvious that the conditions necessary for admissibility of A(X) presented in

Proposition l(i) are much easier to check than the definition of admissibility, but
unfortunately they are not in general sufficient as a counterexample shows, even for
differential equations (cf. Greiner, Voigt and Wolff [6] and Prfiss [13]).

3. The main results. In this section we present several results on the solvability
of (1) and on the converse of Proposition 1 (i). In particular, we obtain characterizations
of the admissibility of the subspaces A(X) introduced above for several important
subclasses of (1). One of the main tools for this purpose is the following lemma.

LEMMA 1. Suppose q L satisfies C and AoVI supp q3 . Then there is a
unique G C(B(X, Y)) VI LI(a(X, Y)) such that

(10) G’=AG,+dB,G,+q=G,A+G,dB+q

holds on .
Fourier-transformation of (10) shows that G is given by

G(t) (2r)-’ f-oo H(ip)(p) eip’ dp
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which exists and belongs to C(B(X, Y)) since has compact support. The main task
in the proof of Lemma 1 is to show that Go LI(B(X, Y)) holds; this in turn follows
from the generalization of classical Paley-Wiener Theorem which we state as follows.

LEMMA 2. Suppose K LI(fl$(X)) is such that I-(p) is invertible for each p
Then there is a unique L6 LI(B(X)) such that

(11) L=K+K.L=K+L.K

holds in LI(B(X)).
For a proof of this result we refer to Hagedorn [9], Priiss [13] or Gripenberg [8].
By proper choice of Lemma 1 implies our first main result.
THEOREM 1. Let A c be closed and such that Af’)Ao . Then (1) is uniquely

solvable in A(X) for each ffrom a dense subspace of A(X). If, in addition, A is compact
then A(X) is admissible for (1) and there is a kernel GA C((X, Y))0 LI((X, Y))
such that the solution operator admits the representation

for each f A(X).
Theorem 1 shows that, in the case where A f’)Ao , without any further assump-

tion on A or B the solution operator G for (1) on A(X) is already densely defined,
and to obtain the admissibility of A(X) it remains to prove its boundedness. The
second part of Theorem 1 shows that the solution operator for (1) behaves very well
on A(X) for compact A. But this should not be surprising since each fe Cu(X)
with (f) compact admits an extension to an entire function, namely by f(z)=
(2"n’i) -1 r(A) exz dA, where F denotes a Jordan curve surrounding the set ir(f) in
the complex plane.

The next result on admissibility does not restrict Ac (besides A O Ao of
course), but the class of operators A and B(t).

THEOREM 2. Suppose A generates an analytic semigroup and let B
BV(+, ( Y, X)) be decomposed according to B B1 + BE d- B3 where B1

1,1Wloc(+, ( Y, X)), B2 BV(+, (Y X)) for some t < 1, and B3 BV(R+, a( Y, X))
has sufficiently small variation. Then A(X) is admissiblefor 1 iffA f’) Ao . Moreover,
in this case there is a kernel GA LI((X))f’)L((X)), strongly continuous for O,
satisfying the jump relation GA(0+)--GA(0--)=/, such that the solution operator Gfor
1 is represented by (12) on A(X).

Here Y= D((too-A)) denotes the domain of the fractional power (too-A)
where tOo>_-0 is chosen large enough; thus the assumption on B2 means that BE is of
"lower order." Note that the conditions for B are strong enough to imply compactness
of Ao as well as limlpl_ IH(ip)l 0, therefore the other necessary conditions of Proposi-
tion 1(i) are automatically satisfied. Theorem 2 covers the so-called parabolic case;
applications are given in 6. It is an open question whether this result holds in the
case where B is merely of bounded variation in (Y, X); examples show that Ao then
need not be compact.

Our third result is concerned with A generating merely a Co-semigroup. Then as
the above-mentioned examples in [6] and [13] show, X must be a Hilbert space for
Proposition 1 (i) to be sufficient for admissibility. Also we have to assume more regularity
as well as a certain decay of the kernel B which already implies existence of the
resolvent for (2) (cf. [7]). In this case Ao need not be compact as before, and here it
still remains open whether the solution operator G admits a representation (12).
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However, if in addition compactness of Ao is assumed, then we show that such a kernel
GA does exist.

THEOREM 3. Let A c be closed, X a Hilbert space, A a generator ofa Co-semigroup
1,1in X and let B Wloc(+, B( Y, X)) be such that

(i) IB’(t)xl<--_b(t)lxlyfor x D(a), o (l + t)b(t) dt <oo;
(ii) B’(.)xBV(R+,X) and o (l+t)ldB’(t)xl< for each xD(A).

Then A(X) is admissible for (1) iff A f’l Ao and there is some M >-_ 1, such that
IH(ip)l <- M and IaH(ip)l <- M(1 + I 1) for all A. In this case for each x X there is

gx LI(X)fqL2(X) such that x(p) H(ip)x holds for all peA.
If, in addition, A0 is compact then there is GA :--)B(X) strongly continuous for

O, such that GA(’)x LI(x) f’) L(X), GA(0+)x-- GA(0--)X X and (A(p)X
H(ip)x on A for each x X.

4. Almost periodic solutions. Recall that a function f Cb(X) is called almost
periodic (a.p.) if TRf {f(r+ .): - R}c Cb(X) is relatively compact; the space AP(X)
of all a.p. functions is a closed subspace of Cb(X). a.p. functions are uniformly
continuous on R and their Bohr-transform

a(p,f)= lim N-1 e-if(t) dt, per
N---)oo

is well defined. The exponent set off
exp (f) (p : a(o,f) O)

is at most countable and we have tr(f)= exp (f).
This can be proved by means of Bochner’s approximation theorem, which states

that, given a fixed countable exponent set {pj}]o, there are convergence factors ynj
with ,nj--) 1 as n--) c such that the trigonometric polynomials

f,(t) E ynja(pj,f)

converge to f uniformly on , provided exp (f)c {p}]o (cf. Amerio and Prouse [1]
for the proofs).

Recall also that a functionf Cu(X) is called asymptotically almostperiodic (a.a.p.)
if there is gAP(X) such that ]f(t)-g(t)l--)O for toc. Such g is unique since
a(p,f) a(p, g) for p; it is called the a.p.-part off and will be denoted by fa. It
is not difficult to verify that the space AAP(X) of all a.a.p.-functions is a closed
subspace of Cu(X) and decomposes according to

where

AAP(X) AP(X)O) C-(X),

C-(X)={f6 C,(X)" limf(t)0}.,_,oo
Thus for any fAPP(X) we have that f=fa+fo with unique fa6AP(X) and
fo C-(X). Note that

C-(X) {f C(X)" i,rnf(t)=f(cc)exists}
is a closed subspace of AAP(X).
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We are now in position to state our main result on a.p. and a.a.p, solutions.
THEOREM 4. Let W A(X) be admissiblefor (1) and let G denote the corresponding

solution operator. Then
(i) fAP(X), exp (f)cA imply GfAP(X), exp(Gf)-exp(f) and

(13) a(p, Gf)-H(ip)a(p,f) for all pff.

(ii) fAAP(X), r(f)c A imply GfAAP(X), (Gf)a-Gfa, (Gf)o-Gfo, and
(13) holds.

(iii) f Cf(X), o-(f) c A, 0A imply Gf C-(X) and

(14). (Gf)(c) H(O)f().
It should be mentioned that Theorem 4(i) contains as special cases results on

periodic solutions of (1) for periodic f. For instance, if A= {27m/z: n e7/} and A(X)
is admissible, then each r-periodic function f C(X) satisfies exp (f)=o-(f)c A;
hence there is precisely one r-periodic solution u of (1) and, moreover, we have the
relation

u H(2rin/ z)f, n 7/

for the Fourier-coefficients of f and u.

5. Nonresonant equations. The results of 2-4 can be applied to the study of the
asymptotic behavior of bounded solutions of (2) and of the resolvent S(t) of (2),
provided (1) is nonresonant, which means that W C,(X) is admissible for (1). Note
that in this case Theorems 2 and 3 yield Go such that Go(p)= H(ip) for all p and
the kernel Go represents the solution operator by means of (10). More generally, we
define the following.

DEFINWION 4. Suppose (1) is nonresonant and let G denote Green’s operator
for W-C,(X). An operator-valued function Go’(X) is called solution kernel
for (1) if Go(t) satisfies

(G1) Go(" )x is continuous on \{0} for each x X;
(G2) Go(" )x L(X) L(X) for each x X;
(G3) Go(p) H(ip) for each p;
(G4) Go(O+)x- Go(O-)x x for each x X.

Note that solution kernels are unique.
Suppose that (1) is nonresonant and admits the solution kernel Go(t). Let S(t)

be a resolvent for (2) of exponential growth, i.e.,

(E) IS(t)[--< M e’ for all => 0
holds with some M_-> and to , and suppose that the (complex) spectrum of (2)

Eo {h C" Re h => 0, h A- dB(h) is not invertible}
is compact and that

(15) [H(A)[=<M for Re h _->0, dist (h, Eo) -> 1

holds. Since S(A)= H(A) the inversion theorem for the Laplace-transform yields for
x D(A) and some tOl > to

Oal+Ni
S(t)x (27ri)- lim e;ttH(h)x dh for O.

N .1 tot- Ni

Thus, shifting the path of integration to the imaginary axis, we obtain

S(t)x (2r)- lim e’H(io)xdp+(2ri)- e’H(1)xdl
N-cx3 -N
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where F denotes some Jordan curve contained in {Re A > 0} and surrounding Eo. The
inversion theorem for the Fourier-transform therefore yields

(16)

with

S( t)x Go( t)x + So( t)x

(17) S(t)=(27ri)-I

Note that So C(R, B(X, Y)) and

S’o(t):ASo(t)+ dB(r)So(t-’) for

In the case where Eo {A1, , An} is finite and each Aj is a pole of finite multiplicity
m, So(t) can be evaluated by means of the calculus of residues to the result

(18) So(t) ejt E I-t,,,t’-1/(m- 1)!, R
j=l m=l

for some/-/,,, B(X, Y), i.e., So(t) becomes a generalized exponential polynomial.
Property (G3) and the variation of parameters formula (3) now yield the following

result.
THEOREM 5. Suppose (1) is nonresonant and admits a solution kernel Go(t). Let

5;(t) be a resolventfor (2) with (E) and suppose No is compact and that (15) holds. Then

(16) S( t) Go(t) + So(t) for all R\{0}

where So C(R,B(X, Y)) is given by (17). Any solution u Cu(R+,X) of (2) with
g f satisfies

u(t)-(Gf)(t)O as

in particular
(i) u is a.a.p, iffAAP(X), and a(t, u)=H(ip)a(p,f) for all
(ii) u C-[(R+, X) iff C(X), and lim,_ u(t) H(O)f(oe).
Combining Theorem 1 and Theorem 4 we obtain the following generalization of

results of Friedman and Shinbrot [5] and Miller and Wheeler 12] concerning integrable
resolvents of (2).

COROLLARY 1. Suppose Eo . Then
(i) if the assumptions of Theorem 2 are satisfied, the resolvent S(t) of (2) exists

and belongs to LI(R+, a(X)) f’) Co(R+, B(X));
(ii) if the assumptions of Theorem 3 are satisfied, the resolvent S(t) of (2) exists

and S( t)x belongs to LI(R+, X)f’)Co(R+, X) for each x X.
In either case each solution u of (2) with g =f Cu (X) asymptotically behaves like

the solution Gf of (1), i.e., u(t) Gf( t) -> 0 as ->

(19)

6. Applications. (a) Consider the heat equation in materials with memory

ut(t, x) Au(t, x) + b(’)Au(t ’) dr +f(t, x), e R, x e 1),

u(t,x)=O, tR, xeOl),

where 11 e Rr denotes a bounded domain with smooth boundary 01) and b e LI(R+)
(cf., e.g., Coleman and Gurtin [2]).
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We let X L2(O), A A with D(A)= W2’2(f/)fq W’z(f). A is selfadjoint and
negative definite hence analytic, and tr(A)={/zj}c(-oq, 0). Formula (19) then
becomes

(20) u’ Au + b , Au +f
and clearly the assumptions of Theorem 2 are satisfied. To determine the spectra o
and Ao of (20) note that -A- dB(, , -(1 + b(1 ))A with domain D(A) is invertible
itt 1 +/(I) 0 and A(1 +/(I))- o-(A), i.e., I j(1 +/(I)) for all j. With

(21)
Xj(A)=I+b(A)-A/lzj, j6,

X(A) 1 +/(A)
we therefore have

Eo {h C" Re h -> O, Xj(A 0 for some j I%1U {oo}}

and

Ao={p: xj(ip)=O for somejU {}};

Ao and Eo are compact, Yo 71 {Re h > 0} is at most countable, Ao has Lebesgue-measure
zero, and ho Yo with Re ho > 0 is a cluster point ofo iff h’o(ho) 0. Theorem 2 applies,
hence A(X) is admissible for (20) iff A f’l Ao , in particular, (20) is nonresonant iff
xj(ip) y 0 for all p 6,j [.J {c}. In this case there is a solution kernel Go LI(B(X))
for (20) and the resolvent S(t) admits the decomposition $(t)= Go( t) + So( t) by
Theorem 5. If we also have Xoo(A) 0 for Re A => 0, then o is finite and

So(t) ext Hj,mt’-l/(m- 1)!
j=l m=l

where mj denotes the multiplicity of hj Eo. Finally, by Theorem 5 we have S
LI(B(X)) itt gj(h) 0 for all Re h ->0 and jtU {o}. This generalizes the results of
Friedman and Shinbrot [5] and Miller and Wheeler [12].

(b) The following system of equations arise as linearizations of nonlinear
equations at equilibrium points in population dynamics (cf. Cushing [3]):

(22)
ljt t, x) djAuj( t, x) + dbjg(’)ug(t- ’, x),

k---1

OuJ(t,x)=O, x6Ol, j=l ...,n.dJ o1

Here 2 N denotes again a bounded domain with smooth boundary and v(x) the
outer normal at x 0. The solvability behavior of (22) is important for stability and
bifurcation considerations for the nonlinear system.

Let X=[L2(fl)] n, A= D.A=(diag dj)A, dj>-0 for all j, with domain D(A)=
{hi X: djuj W2’2(), dj OUj/OI,--’O on 01} and let B(t) be defined according to

(B(t)u)j(x) bjg(t)uk(x), u X,
k=l

where bjk BV(/). Then A is analytic and Theorem 2 is applicable. It therefore
remains to compute Eo and Ao. For this purpose let/Zo 0 >/Xl _>-/z2 =>" denote the
eigenvalues of the Laplacian with Neumann boundary condition and ej the correspond-
ing eigenvectors. A simple calculation then yields

Eo {h C: Re h _-> O, X., (h) 0 for some m
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and

where

Ao {p R" Xm (iP) 0 for some m No}

Xm( det (A la,mD- dB(A )), mNo.
Note that Xm(h) # 0 for m >_- mo, Re h ->_ 0; hence Eo\Ao is countable and discrete. Ao
has Lebesgue-measure zero.

(c) The following problem arises in the theory ofviscoelasticity (cf., e.g., Dafermos
[4] and the references given there):

vtt(t,x)+TVt(t,x)=Av(t,x)-(b*Av)(t,x)+g(t,x), teR,
(23)

O--V-V(t, x) + c(x)v(t, x) 0, x 012, ,
0v

where 12 and v are as before, c C(012, +), c # 0 and b WI’I(+, ) such that

o tlb(t)l dt 4- o tlb’(t)l dt <
Let Ho L(12), HI W1’2(12), H2= W2’2(12) and M=A with domain D()=

{v H2: Orcv=O on 01l}; M is selfadjoint and negative definite in Ho and or(A)
{/x}c (-0o, 0). Formula (23). then becomes the abstract second order equation

(24) v"+ 7v’= My- b* My+ g,

which can be reduced to (1) as usual. Let X= H1 x Ho, u=(v, v’), f=(0, g) and

A=
-7I -b(t)M

where D(A)= D(M)x HI. It is well known that A generates a Co-group in X and
B(t) meets the assumptions of Theorem 3. To compute the spectra Eo and Ao we note
that

h-A-B’(h)= (/(A)-I) (A+3,)I

is invertible in X iff ( + 3,) -(1-/(h))M is invertible in Ho; hence we obtain

and

where

Eo={h C" Re >=0 and X.,(h) =0 for some m NU {o}}

Ao={pR: Xm(ip)=O for some

X,(A) 1 -/(A)- A(A + Y)//x,n, men

X(A) 1- b(A).

The representation

H(A)=F(A) (1-(A))M hi

yields the estimates

IH ip)lx <= MlPl lF( ip)[,-,o,

F(h) (h(X + 7)- (1 -/(A)))-’

IAH( #,)Ix Ml,l=lF( i,)luo
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for [pl--> , pc Ao, since it is well known that H1 D((-)1/2) holds (cf. Tanabe [15,
Thm. 2.23]). On the other hand, we have

IF(ip)lHo<=[infl--p2+ iyp--(1-- (ip))tXm]] -
[l-.ll-&i)l/I- Im/(ip)+ 3" (1 "Re (ip)) I.

The relation

-pImb(ip)=p b(t) sinptdt=b(O)+ b’(t) cosptdt=b(O)+Reb’(ip)

yields

-p Im (ip)+3"(1-Reg(ip))->b(O)+3" as [pl-oo;
hence we obtain

[F(ip)l,o_-< clpl-’" Ib(0) + 1-’ for Ipl -> po.

Therefore the estimates required in Theorem 3 are satisfied if b(0) + 3’ 0, in particular
Ao is compact, and Theorem 3 shows that A(X) is admissible iff A fq Ao , and (24)
is nonresonant iff Ao . It is easy to see that the latter is the case if, e.g., 3’-> 0,
b(t) _-> 0 nonincreasing and o b(t) dt 1 holds. A calculation similar to the one above
shows also that Zo is compact and (13) holds, in the case 3’+ b(0)> 0, hence Theorem
5 yields the decomposition

s(t)=Go(t)+So(t)

for the resolvent S(t), where So C(R, B(X, Y)) fq L(R_, B(X, Y)) and Go(" )x is in
L(X) for each x X. Finally, for 3’ >= 0, b(t) > 0 nonincreasing, b(0) > 0 and

o b(t) dt < 1 we even obtain Eo , hence S(. )x L(+, X) for all x X; this result
has been proved by Dafermos [4],.assuming additionally that b is convex.

7. Proofs.
(a) Proof of Lemma 1.
Since q3 has compact support and Aof3 supp q3 =, H(ip) is bounded in (X, Y)

on supp q3, and therefore G defined by

(25) G.(t) (2"n’)-’ [ H(ip)(p) eP’dp

belongs to C(B(X, Y)).
(i) To obtain G L(B(X, Y)) suppose first that o (1 + 2) db(t)<oo where

b(t) Var B[ denotes the variation of B in ( Y, X). Then ’(ip) is twice continuously
differentiable, and so is (p) H(ip)(p) and "(p) is bounded on . Partial integra-
tion in (25) now yields

G(t) -(2zr)-at-2 f-o dp"(p) e ’pt ds for # 0

and so we obtain an estimate IG(t)[x,y <- C(1 + t2)- for t, i.e., G LI(B(X, Y))
holds.

(ii) For the general case we let B,,( t) B( t) for t<-m and B,,(t)=B(m) for
=> m; then dBm (ip) has moments of any order and dB, (h) -> dB(h for m -> oo in

B( Y, X)) uniformly on Re h _>-0. Therefore the relation

(26) ip A- dB"-" ip A- dB")[I- H(ip)(dB’ )]
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shows that Hm(ip)--(ip- A- dB"-") -1 exists on a fixed neighborhood N of supp q, in
the case where rn is chosen large enough; note that H(ip) is bounded in B(X, Y) on
N. Equation (26) yields

U(ip) H(ip)+ H(ip)[dB(ip)-dB(ip)]H(ip);

hence

(27) H(ip)(p)= Hm(ip)(p)+ H(ip)t(p)[dB(ip)-dBm(ip)]H,(ip),(p),

where q3 C is such that q31(p)= 1 on supp q, 0-<q3=< 1, and supp q3c N. By step
(i) of this proof, there are Gin, gm C(B(X, Y)) LI((X, Y)) such that t,,(p)
H,(ip)(p) and K,(p)=H,(ip)(p) (choose N such that N f-lAo=); let K=
(3"- ,), K, and observe that K L((X)) holds. Now we have

I-K I-(dB-dB,.)K,.= I-(dB-dB,.)H.I

ip A "l "m(1-) Hm
[I- (1 ,)(dBm dB)H](ip A- dB)H,

i.e., I-K(p) is invertible on , and Lemma 2 yields a solution L LI((X)) of (11).
Therefore the equation G G+G K whose Fourier-transform is (27) has the
solution G G, + G, L which belongs to L((X, Y)). Uniqueness of the Fourier-
transform now gives the assertion of Lemma 1.

(b) Proof of Proposition 1.
(i) Since for any y X, p, the function f(t)=y e‘ belongs to C,(X) and

satisfies tr(f) {p}, we havef Wo- A(X) (3 CI,(x) in the case where p A. Now, if
A(X) is admissible for (1), there is a solution u Gf of (1) and we obtain

u’ Gf)’ Of’ ipOf ipu;

hence u(t)=xei’ for some xD(A), and (1) implies (ip-A--d(ip))x=y, i.e.,
ip- A-d’(ip) is surjective. On the other hand, we have for some M> 0

Ixl- lulo-laflo -< Mlflo MI( p -a-3"(ip))x];
i.e., ip- A-dB-’--(ip)is bounded from below uniformly on A, and this yields IH(ip)I <-- M
in fl3(X) on A, in particular AAo=. Since G is also bounded as a map from
A(X) f-I C(X) to Cu(Y) by the closed graph theorem, we finally obtain

Ian( ip)y[ lax[ <-I Of .,o_-

i.e., the second estimate of Proposition l(i) holds.
(ii) For the proof of (ii) and (iii) of Proposition 1 we shall need some properties

of the spectrum of bounded functions which are collected in the following.
PROPOSITION 2. Let f, g Cb(X) and K BV(B(X, Z)). Then

(i) (f) is closed and in case f 0;
(ii) tr(f/ g) c tr(f) (3 tr(g);
(iii) tr(f’) tr(f) for eachf C(X);
(iv) tr(dK ,f) o’(f);
(v) A closed, (f,) " Cb(X) uniformly bounded, tr(f,) A for each n, and

f, ->f uniformly on compact sets imply tr(f) A; i.e., tr(. is lower semicontinuous;
(vi) tr(f)=supp ff, where y denotes the Fourier-transform of the distribution

Df induced by f;
(vii) trx(f) try(f) for eachf Cb(Y), where Y--> X;
(viii) p ,f=ffor each tp L such that =- 1 on tr(f).
Proofs for these properties can be found in Katznelson [11] in the case of scalar

functions or Priiss [13] for the general case.
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Now, let q3 C be such that supp q3 f-1 o-(f) . Since r(go ,f) c o’(g0) f-1 r(f)
supp q3 71 r(f) we have go ,f= 0 and therefore

(Dof, q) (Gf, )= (go, Gf)(0)= G(go,f)(0) 0.

Hence we obtain (r(Gf)= supp Dos c (r(f) by definition of the support of a distri-
bution.

Conversely, suppose fe A(X)fq C(X). Then by (1) we get

o’(f)=o’(u’-Au-dB*u)= O’y(U) o’(u)

where u Gf. For the general ease let go, denote a Dirae-sequence, i.e., go, e C,
supp go. (--n -1, n-l), go. > 0 and -oo go.(t) dt 1 for each n . Then f. go..f is
uniformly bounded, converges to f as n - c in Cu(X) and f, A(X) f’) C(X) for each
n. We therefore have

o-(f,)c o’(Gf,)=o’(O(go, ,f)) o-(go, ,Gf) o’(Gf);

hence o-(f)c o-(Gf) by (v) and (i) of Proposition 2.
(iii) Suppose ue Cu(Y)I3C(X) is a solution of equation (1) with f=0 on

and let q3 C be such that Ao(’] supp
C(B(X, Y))CILI(B(X, Y)) of (10). This implies

Go *au+G*dB*u= 09
,u’= G’,u= Go *au+G *dB*u+go*u,

i.e., go u 0; hence

<D’-",, >=<u, > (go, u)(0) 0,

which means r(u) supp D, c Ao.
(c) Proof of Theorern 1.
(i) Suppose Ul, Uze A(X)C1C,(X) are two solutions of (1) for the samefe A(X).

Then u ul- u2 e A(X) f’] C’,(X) is a solution of the homogeneous equation (1). Hence
by Proposition l(iii) we have o-(u)c Aof3A=, i.e., u=0 by Proposition 2(i). This
shows that solutions are unique.

(ii) To obtain the existence of a solution for f from a dense subset of A(X), let
q3eC be such that 0-<q3-< 1, q(p)= 1 for [p[_-<l, q3(p)=0 for ]p[=>2 and consider
go,(t) ngo(nt). Then {go,} is an approximation of the identity, i.e., go,,ff as nco
in Cu(X). Hence it is sufficient to solve (1) for go,,f fA(X), n. But since
tr(go,,f)= cr(f)fqtr(go,)= Afq{plt" Ipl_-<2n} holds we only need to solve (1) for
f A(X) with tr(f) compact; i.e., we may assume that A R is compact.

(iii) Suppose A R is compact. Then we choose a cutoff function q3o C such
that q3o 1 for dist (p, A) -< e, q3o 0 for dist (p, A) => 2e, 0 -< q3o -< 1, where dist (A, Ao) =>
3e, and let GA C((X, Y))f’)L((X, Y)) denote the solution of (10) from Lemma
1. Then u GA*f is a solution of (1) with inhomogeneity goo*f for each f Cu(X)
and we have lulo<-_lG l  lflo. But for fA(X) we obtain goo,f=f by Proposition
2(viii) and so u is already a solution of (1). This shows that A(X) is admissible and
G is represented by (12). l-I

(d) Proof of Theorem 4.
(i) Suppose A(X) is admissible. Then if peA, as in (b) we obtain G(a

H(ip)ae ip’ for each aX. Hence iff(t) =Y,=1 a, e is a trigonometric polynomial
with exp (f) {p,} c A we obtain (Gf)(t) E H(ip,) a, e ’-’ i.e., (i) of Theoremn=l

4 holds for trigonometric polynomials. The general case then follows by Bochner’s
approximation theorem mentioned above since G is bounded and the Bohr-transform
is continuous.
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(ii) Iff =f, +fo AAP(X) VI A(X), then T,,ffa as n uniformly on compact
subsets; hence by Proposition 2(v) and from o-(T,,f)= tr(f)c A we obtain tr(fa)c A
and so tr(fo) o’(f-f,) c tr(f) (_J tr(f,) c A, also. Since A(X) is admissible we there-
fore obtain Gf Gfa + Gfo and Gf, AP(X) by step (i) of this proof; hence it remains
to show that Gfo C-(X) holds. As in (c), step (ii) it suffices to consider foe
C-(X) VI A(X) with o-(fo) compact, i.e., w.l.o.g. A compact. But in this case Lemma
1 yields a kernel GAC(B(X, Y))fqLI(B(X, Y)) such that Gf=GA*f for all fe
A(X), and since GA LI(B(X, Y)) we obtain Gf C-(X) for each fe C-(X) VI A(X).

(iii) This is a consequence of (ii) with fa(t)=--f(o). !-]

(e) Proof of Theorem 2.
(i) Since A is analytic, (ip A)-1 exists say for IPl--> No and satisfies I(iP 3)-11 <-

MIIRI for Ipl->-No. The relation

ip-A-d’B(ip)=(I-d-’(ip)(ip-A)-’)(ip-A), Ipl>_-No,
then shows that Ao c (-N, N) holds for some N> 0. In fact, we have B LI(B( Y, X));
hence B(ip)O as IPl-c, by the Riemann-Lebesgue Lemma, and so

I(ip)(ip-A)-’lx,x<=l(ip)ly,x’l(ip-a)-’lx,->O as.lPl-oo.
Similarly,

<-_ Clpl as Ipl-’ ,
and finally

Iff(ip)(ip-A)-’l:, <--I-ff(ip)l,,’l(ip-A)-’l,, <- /4 forlPl_-> N

since B3 has sufficiently small variation by assumption. Thus w.l.o.g, we let A
{p : Ipl >- N}.

Let ffo C be a cutoff function for A, i.e., fro(p) 1 for dist (p, A)<_-e, fro(p) 0
for dist (p, A) >_- 2e, 0=< fro<_- 1, where 3e _-< dist (A, Ao). Let ffl, C denote another cutoff
function such that ffl(p) 1 for Ipl_-> S+l and ql(p) =0 for Ipl_-< N, 0<_-if1.<_ 1. Then

Gl(t) (2r)-I f-o (1-l(p))o(p)H(ip) eipt dp

belongs to C([(X, Y))VI L(3(X, Y)) by Lemma 1 and so it remains to study

G2(t) (27r)-1 f-o l(p)H(ip) ept dp;

note that q3o(p)= 1 on supp q31.
(ii) Let k(t)=2(TrNt)-1 sin(Nt/2) denote .Fejer’s kernel,.....and let B(t)=

B,(t)-k,Bl(t)+B2(t)+B3(t); note that (kN*B) (p)=N(p).B(ip)=O for Ipl_-->
N, since k(p)= (1 -Ipl/N)+ holds, i.e., d’-(p)= "(ip) for Ipl=> N. Next we choose
to> too sufficiently large and the equivalent norm IlXlly=l(to-A)xl on Y.Then the
variation of B over can be made arbitrarily small, since

B- kN * B - 0 in Ll(a( Y, X)) for N-o

and

< Var BE 0VarY,X B2 o VarY,X B2 o J Y, yo yo,x Co) "- 0

for to- , where J" Y Y denotes the natural embedding, and the variation of B3
is arbitrarily small by assumption. The proof of Theorem 1 in [14] now shows that
there is Go,,N LI((X)) VI L((X)), strongly continuous for # 0, satisfying the jump
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relation GO,,N(0+)--G,o,N(0-)=/, such that Go,,N(p)--(ip+to-A-dB’-(p))-1 holds.
Note that Theorem I of 14] does not apply directly since the support of BN is generally
not contained in +, however, the method of proof still works for this more general
case. Thus the solution H,o,m(p) (ip+ to -A- dB---(p)) -1 of the equation

(28) Ho,,(p) ip + to A)-1 + no,,(p)’N(p)( ip + to A)-1

is the Fourier-transform of G,o,u LI(B(X)) fq L(B(X)).
(iii) Since 1- q31 1 is the Fourier-transform of some function 1 L we now

also have that

is the Fourier-transform of Go, GO,,N-1 * G,o, and Go, enjoys the same properties
as G,o,; note that Ho,(ip)=(ip+to-A-ff’O(ip))-1 coincides with HO,,N(p) for Ip]_> N
since (kN. B1) (p)=0 there. Finally to get from Ho,(ip) to H(ip) we consider the
equation

H(ip) Ho,(io)+toH(ip)Ho,(ip).

Choosing another cutoff function q32 C with q32-= 1 on supp 11, we then have

lH-- ,Ho, + tOlH" 2Ho,,

where qlHo, and q32Ho, are Fourier-transforms offunctions from LI([(X)) [’] L((X)),
hence, by Lemma 2, q31H is the Fourier-transform of G2 LI((X))0 L((X)) with
the desired properties, since

I to(2Ho, ip + to A- dB 0.)(#2 Ho,

[I- ’(ip + to(1 q52)- A)-l](ip + to(1 q2)- A)H,o

is invertible for each p .
(iv) Up to this point we have obtained the kernel GA with the desired properties

and GA represents the solution operator G by (12); GALI([(X)) also implies
G (A(X)). To derive the admissibility of A(X) for (1), by Theorem 1, it thus remains
to show that G is also bounded from A(X) fq C(X) to Cu(Y), and for this in turn it
suffices to prove that 1(p)H(ip)/ ip is the Fourier-transform of some V L (B(X, Y)).
Since l(p)/ip and l(p)Ho,(ip) are Fourier-transforms of Ll((X))-functions and

I to a z p "d’ p to a to a 2 p -d p

is invertible for each p , Lemma 2 and the relation

lH,o( ip)/ ip (to A)-’I(p)/ ip -(to A)-l l(p)H,o( ip)

+ (to A)-l2(p) ’(ip).l(p)Ho,(ip)/ip
show that lHo,/ip Qo for some Vo, LI(B(X, Y)). Finally, another application of
Lemma 2 to ,i-i/ip

yields VLI((X, Y))with 9(p)=l(p)H(ip)/ip.
The proof is now complete.
(f) Proof of Theorern 3.
(i) The "only if" part is contained in Proposition 1 (i). For the "if" part we note

first that ,again dist (A, Ao) -> 3e > 0 for some e > 0 holds. In fact, the relation B’(A)
Z-l(dB’) (A) together with the assumptions of Theorem 3 implies

(29) ]"r(ip)yl<---- CIylY/(I+IPl) for all y6 D(A), p6,
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and therefore

ip-A-B’(ip)=[I+ i(p-z)H(i-)+(B’(iz)-B’(ip))H(iz)](iz-A-B’(iz))

shows the invertibility of ip- A-B’(it)) on dist (p, A)-< 3e. So we may choose a cutoff
function q5 C such that qS(p) 1 on dist(plA) =< e; w.l.o.g, we may also suppose that
q(p)=0 for p[-eo, eo] holds for some eo>0, otherwise choose another cutoff
function ql C such that q 1 on [-eo, eo], 0 =< qS -<_ 1, and consider (1 qS)q instead
of qS. The part corresponding to

G,(t) (27r)-’ fo ,(p)(p)H(ip)

belongs to C(B(X, Y))fq L’(B(X, Y)) by Lemma 1.
(ii) Let to. be large enough such that IT(t)[-<_ Me(’-’ for t>0 and some

M> 1, where T(t) denotes the semigroup generated by A. Then f(t)= ho(t) e-tT(t)x
as well as f2(t)= ho(t)e-’tT(t)*x belong to L2(X), where ho(t) means Heaviside’s
function and the star indicates the adjoint. Since X is Hilbert, their Fourier-transforms

f.(p)=(ip+to-A)-’x and f2(p)=(ip+to-A)-’*x belong to L(X). By (29), K(p)=
B’(ip)H(ip) is B(X)-continuous and uniformly bounded for dist (p, A)_<-2e, and so
the representation

H( ip )*x (I + toH( ip )* + K(p )*)( ip + to A)-l*x

yields H*x L(X), also. Hence there is g* L(X) such g*- H*x. Similarly, the
relation

A( ip + to A)-’x ip + to)( ip + to A)-’x x

shows that (p)A( ip + to A)-x/ ip as well as (p)A*( ip + to A)-*x/ ip also belong
to L(X), and so by means of

Hx (I + toll)( ip + to A)-’x + H[ ipff;’((to A)-l](to A)(ip + to A)-lx/ ip

and

(AH)*x (I + toll* + K*)A*( ip + to A)-’*x

we see by (29) that cHx and (AH)*x/ip belong to L2(X) and so there are gx,
f* L(X) such that , Hx and ’= (AH)*x/ip hold in L(X). Note that
gx*, fx* are uniquely determined by x e X in L(X), i.e., almost everywhere.

(iii) Next we show that gx, g*,f*x also belong to Ll(x). Since B’ has first moment
by assumption, H(ip) is differentiable for dist (p, A)=<2e and with O=O/Op we obtain

OH= H(i-OB’)H= H(iH-K,);

hence

O(H*x) =OH*x+ OH*x =OH*x-(iH* + K* )H*x
belongs to L(X) since K=(OB’-)H=-i(B’)^H is continuous and bounded for
dist (p, A) <- 2e. But this shows tg* L2(X) and therefore

f

_
,g,( t)l dt It,<-I ,g,( t), dt + It’>=l t-lltg’( t)l dt

i.e., g* e LI(x). Similarly, one also obtains gx, f*x L(X).
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(iv) The mappings x- gx, x- gx*, x-f* from X to LI(x) are closed, linear and
defined on all X; hence by the closed graph theorem, there is some C > 0 such that

]gxlI + Ig*[I? + If*lL <= Clx[ for all x X.

To prove the boundedness of the solution operator G from A(X) to Cu(X) as well
as from A(X)fq C(X) to Cu(Y), it therefore suffices to show that the relations

(30)
(x, u(t))= f_ (g*(t-r),f(r)) dr,

(x, Au(t))= I_o (f*(t-r),f’(r)) dr, teN, xX

hold for solutions ueA(X)fqC(X)fqC,(Y) of (1) with feA(X), o-(f) compact,
which exist by Theorem 1.

So let such f be given, choose another cutoff function fro e C such that fro(p)= 1
on o-(f) and let Goe Cb(B(X, Y)) f3 LI(B(X, Y)) from Lemma 1 such that o fill. fro.
Then we have

(x, u(t))=(x, Go*f(t))= f-oo (G*o(t-r)x,f(r)) dr

I ((g* *po)(t-z),f(z)) dz= I;o (g*(t-z), (o*f)(z)) d

I_o (g*(t-r),f(r)) dr

since o.f=f by Proposition 2 and G’oX ffn*x3o g’". fro (g* po)~; hence G*ox
g** po by uniqueness of the Fourier-transform. Similarly one obtains the second part
of (30).

(v) Suppose Ao is compact, then w.l.o.g, we may choose ff such that if(p)= 1 for
[p[_-> N, where N is sufficiently large. Since for x D(A)

ipH( ip )x x ip(H( ip )x x/ ip n( ip )Ax + H(ip B’( ip )x

belongs to L2(X) asymptotically, we obtain from

(p)H( ip)x (p)(H( ip)x x/ ip) + (p) 1)x/ ip + x/ ip

that g(t) is continuous for tO and that the jump relation g(O+)-g(O-)=x is
satisfied for each xD(A). Also since H*xL2(x) and (ip+w-A)-lx[L(X)]
we derive from

(x*, Hx) (x*, ip + to A)-lx) + (H’x, (to +-)(ip + to A)-lx) 6 LI(x)
the boundedness of (x*, g,(t)) for all x, x* e X. Hence gx(t) is bounded in for each
x e X, and therefore continuous for 0 and g,(0+)-g(0-)=0 holds, by density of
D(A) in X. This shows that there is an operator-valued kernel GA(’) representing
g(t) by gx(t) GA(t)x.
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ON LIMIT STATES OF A LINEARIZED BOLTZMANN EQUATION*
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Abstract. With methods of mean ergodic theory a very simple criterion for existence of limit states of
linearized Boltzmann equation is proven.
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A linearized Boltzmann equation can under some conditions ([4], see also [1],
[8]) be written in the form

du
n-t- u Bu
dt

where B is typically a Markov operator on some L1. The solution of this equation is
e -t eBtUo and one would like to know how the solution behaves as t-+ co. In this paper
this equation is considered in an arbitrary Banach space X and B is assumed to be a
bounded linear operator on X such that sup,__>o [In" < . Let N {x c X IBx x}
and R {x X Ix y- By for some y X}.

THEOREM 1. If x X, Xo X, then the following statements are equivalent:
(a) There exist integers nl < VI2 < such that limi_,oo y((1/Vii) kOn’-I Bkx) y(xo)

for all y X*.
(b) There exist tl, te, in (0, oe) such that limi_o ti oo and lim_, y(e-ti era’x)

y(xo) for all y X*.
(c) Xo N and X-Xo R.

kx(d) lim_ [[(1 / n) Y ko B Xo 0.
(e) limt_ lie- emx Xol[ 0.
This theorem implies that all standard mean ergodic theorems (e.g. (2)) are

applicable in the study of limits of e-’ emx! A simple and quite powerful criterion for
existence of the limit is given by the following.

THEOREM 2. If x X and if the set {B"x[ n >= 0} is weakly sequentially compact,
then there exists Xo N such that

lim e-’ eBtx X0 0.
t->oO

Proof. Let C={B"x[n>=O} and let C1 be the convex hull of C. Since
kx(l/n) Yk=O B e C1 for n > 1 and since C1 is weakly sequentially compact [2, Krein-

;mulian Theorem] there exists Xoe X such that part (a) of Theorem 1 is satisfied.
There are many ways of showing that the set {B"x[n >-0} is weakly sequentially

compact [2]. In [3], [5] conditions like strong (weak) constrictiveness (and some other
conditions) are required; the following observation shows that these conditions are
much more restrictive than those of Theorem 2. If x e X, then the set {B"x[n >-0} is
weakly sequentially compact if and only if there exists a weakly compact set F (for
this x!) such that lim_, dist (B"x, F)--O.

If B is positive quasi-compact operator then even convergence rates can be
estimated.
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THEOREM 3. Suppose that X is real Banach space and that X/ is a closed subset
ofX with the following properties:

(1) IfxX+, yX+, ce[0, ) then x+yX+ and axX+;
(2) There exists Mo (0, o) such thatfor each x X there exist x+ X+ and x_ X+

which satisfy

x- x/-x_, IIx/ll--< MollXl[, IIx-II -< Molll[
and if x y+ y_ for some y+ X+, y_ X+, then y+ x+ X+.

(3) If x X+, y X+, then II--< / Y II.
Suppose also that T is bounded linear operator on X such that
(4) TX+ c X+.
(5) limn_ (1/n)y(T"x)=O for all xX and all yeX*.
(6) IIT"- K <1 for some integer m and some compact linear operator K.
Then there exist a (0, oo), b (0, oo) such that for every x X there exists Xo X

for which

rx-xo --<-Ilxll, lie- e xolln k=O n

wheneer n = 1 O.
Proof of Theorem 3 can be found in [7] and follows from the fact that T"x is

actually asymptotically periodic for every x X (see also [6]). Operators considered
in [] in connection with the Boltzmann equation satisfy above assumptions.

Proofo Theorem 1. Equivalence of statements (a) (c) (d) is well known [2]. It
is obvious that (e) implies (b) and (c) it is enough to prove that (b) implies (c) and
that (c) implies (e).

F(t)=e-+e- . n+1-1n=O

Identities

imply that for > 0

e-At e-t e Bt e-t .I.

e-A’ <= M, IIAe-A’I[ <-- MF(t).

A nasty but straightforward exercise gives that limt_ F(t)= O.
Assume (b). Then for all y X*

0= lim y(Ae-at’x) lim (A*y)(e-atix) (A*y)(xo) y(Axo);

hence, Axo O. If x Xo R, then there exists Yo X* such that A*yo 0 and yo(x Xo)
1, which leads to the contradiction

--A*yo(x Xo) (e t’yo)(X Xo) Yo( e-Atix Xo) 0

and therefore X-Xo R and (c) is true.
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Assume (c). Pick e > 0 and let z X be such that IJx Xo- Azll < e/(1 + M); hence,
for t>0

Ile-A’x-xoll <_ Ile-A’(x--xo--Az)ll + IIAe-A’zll
<- Me+M)+ MF(t)llzll

and this implies (e).
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discussions.
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EXISTENCE, UNIQUENESS AND REGULARITY OF A
TIME-PERIODIC PROBABILITY DENSITY DISTRIBUTION
ARISING IN A SEDIMENTATION-DIFFUSION PROBLEM*
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Abstract. An analysis is presented of the one-dimensional convective-diffusive equation governing the
temporal evolution and spatial distribution of the probability density P(x, t) describing the sedimentation
and diffusion of a nonneutrally buoyant Brownian particle in a vertical fluid-filled cylinder that is flipped
over instantaneously at regular intervals. A time-periodic solution is sought by requiring that the initial
spatial distribution recur after one complete period of the flipping motion. The periodicity condition is
formulated both as an infinite matrix equation for the eigenfunction expansion coefficients of a possible
recurring initial distribution, and as an integral equation of the second kind for the distribution itself. The
kernel (infinite matrix) is shown to be square integrable (square summable), so that Fredholm theory applies.
There exists a unique time-periodic solution whenever unity is not an eigenvalue of the integral (infinite
matrix) operator. Regions in parameter space are identified in which existence and uniqueness are assured.
It is shown that time-periodic solutions are analytic functions of the position coordinate at each time. A
symmetry property of unique time-periodic solutions is established by deriving a simpler infinite matrix
equation. Numerical examples show the appearance of recurring initial distributions.

Key words, sedimentation-diffusion, time-periodic solution, Fredholm theory, existence, uniqueness,
regularity

AMS(MOS) subject classifications, primary 35B10, 35K99, 80A20; secondary 35R05, 45B05

1. Introduction.
Motivation. (Small) nonneutrally buoyant particles sedimenting under the

influence of gravity in an otherwise quiescent viscous suspension ultimately settle to
the bottom of the container. This phenomenon unfortunately eliminates the possibility
of a leisurely experimental study of the physicochemical, colloidal or biophysical
properties of individual particles in their supernatant fluid environment. While the
suspension can, of course, be stirred to levitate the particles, the relatively large shear
fields engendered by the stirring may fundamentally alter the intrinsic particle property
being studied, e.g., the configuration of the body in the case of flexible or deformable
particles. Even when this is not the case, the introduction of largely unknown velocity
fields by the agitator may be expected to complicate the interpretation of any experi-
mental results.

With these difficulties in mind, a novel scheme for achieving (time-average)
nonsedimenting states for small nonneutrally buoyant particles has recently been
proposed by Dill and Brenner [5], and further elaborated by Nadim, Cox and Brenner
[15] and Davis and Brenner [4]. This involves placing the suspension into a slowly
rotating horizontal circular cylinder, so that the suspension as a whole undergoes a
rigid-body rotation upon which is superposed the Stokes settling velocity of each
particle with respect to the fluid in its instantaneous locale. (Slow rotation assures the
absence of centrifugal and Coriolis effects, whose presence would negate the theoretical
basis of the proposed scheme.) This combined translational/rotational particle motion
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relative to a space-fixed observer results in a closed, time-periodic particle trajectory,
whose net motion over one period is identically zero [5]. (This same conclusion
obtains [15] even when the sedimenting particle is small enough to undergo appreci-
able translational" Brownian motion, whereupon its trajectory is now stochastic rather
than deterministic--the former circumstance being the case of interest to us in the
subsequent analysis.) Thus, despite the particle’s continuous relative settling, it does
not undergo any net settling relative to a space-fixed observer.

The underlying mechanism behind this class of "antisedimentation" devices is
most readily visualized by imagining oneself to be a body-fixed observer, fixed in a
reference frame that rotates with the fluid-filled cylinder. From this vantage point the
otherwise constant, space-fixed gravity force vector acting on each particle is observed
to be a time-periodic vector (of constant magnitude), whose average value over one
period is the zero vector. In effect, it is this zero-valued mean which is the source of
the state of levitation. It effectively nullifies the action of gravity 16].

In a specific context the class of such time-periodic, zero-mean sedimentation
phenomena may be simulated, both physically and mathematically, by allowing the
suspension to settle in a (nonrotating) vertical cylinder that is flipped over at periodic
intervals. (Any sediment near to the bottom of the cylinder then suddenly finds itself
near to the top, whereupon it must again settle through the entire length of the cylinder
before reaching the bottom, et cycl.) An observer fixed in the cylinder walls will
evidently observe the gravity-force vector to be time-periodic with zero mean. The
physicomathematical question to be addressed here is whether or not this zero-mean,
time-periodic external force will give rise to a zero-mean, time-periodic particle dis-
placement--and hence a levitated particle state. More explicitly, we address this
question in the specific circumstances of interest to us in applications, namely that the
sedimenting particles be small enough to also undergo appreciable diffusion. Because
of this small particle size, both particle and fluid inertial effects can be ignored, and
the instantaneous particle settling velocity assigned its quasistatic Stokes law value.

Formulation of the physical problem. Consider the sedimentation and diffusion of
a nonneutrally buoyant Brownian particle (or, equivalently, a dilute sedimenting
suspension of identical nonhydrodynamically-interacting such particles) in a vertical
fluid-filled cylinder of finite length that is flipped over instantaneously at regular
intervals 19. In a reference frame fixed to the container the particle’s settling velocity
vector alternately points up and down. The analysis is simplified by considering a
one-dimensional description, in which the only spatial coordinate is distance x parallel
to the cylinder axis. Then the single-body probability density P(x, t) for the particle
position x at time is governed by a standard one-dimensional convective-diffusion
equation, together with no-flux boundary conditions at the ends x 0, ofthe container,
and an arbitrarily prescribed initial spatial distribution f(x) at 0. These equations
may be cast in the following dimensionless form (with x, t, P and f henceforth
nondimensional):

(1 1)
OP OP 1 02P
--+u(t) O<x<l t>O,
Ot Ox b Ox’
OP

(1.2) --(0, t)-bu(t)P(O, t)=O, t>O,
Ox

OP
(1.3) Ox(1, t)-bu(t)P(1, t)--O, t>O,

(1.4) P(x, O) =f(x), 0 < x < 1,
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where

1, 0<t< T,
(1.5a) u(t)=

-1, T<t<2T,

(1.5b) u(t+2T)=u(t)

and

(1.6) f(x) dx 1 (normalization condition).

The two positive nondimensional parameters appearing in this formulation are the
P6clet number b and dimensionless half-period T, respectively defined as

(1.7) b lc/D,

(1.8) T=(R)c/l,

with the container length, c > 0 the Stokes’ law settling speed of the particle, D > 0
its Brownian diffusivity through the fluid, and 19 the time interval between successive
overturnings.

Considering the time periodicity of the dimensionless particle settling velocity
u(t), it is natural to inquire whether or not problem possesses a (square integrable)
time-periodic solution; equivalently, does there exist an "initial" distribution P(x, O)
f(x) which will recur at time 2T? It is the purpose of this paper to prove the
existence and uniqueness oftime-periodic solutions for various ranges ofthe parameters
b and T. Moreover, we address the question of regularity by showing that time-periodic
solutions are analytic functions of x at each time t. We also establish a time-shifted
symmetry property of unique time-periodic solutions. Illustrations are appended which
show numerically-generated recurring initial distributions.

Although the literature on the general subject of time-periodic solutions of para-
bolic differential equations is considerable, the present problem seems not to have
been treated before. Different types of boundary conditions have been considered;
Dirichlet conditions seem to predominate. There have appeared many analyses of
problems which, in contrast with the present problem , involve time periodicity only
in the differential operator or only in the boundary conditions, but not in both (e.g.
11 ]). Extensive bibliographies are available in Cannon [2] and Vejvoda [21]. Differen-

tial equations which could reduce to an equation similar to (1.1), together with
time-periodic boundary conditions involving the unknown function and a spatial
derivative thereof, are considered by Farlow [6], [7], Heuss [9], Knolle [12], Mal’tsev
13], Prodi 17] and mulev 19], [20]. The principal differences between these analyses
and the present one are that: (i) In contrast to (1.2) and (1.3), the boundary conditions
in the aforementioned papers are of the conventional type, which require P and its
normal (or oblique) derivative with a consistent orientation to have the same sign
relationship at all points of the boundary; (ii) the time-periodic functions considered
in the cited references generally must satisfy certain regularity conditions, whereas our
time-periodic velocity u(t) is discontinuous.

2. Equations for a time-periodic solution. A time-periodic solution of problem
is sought by requiring that the initial distribution f(x) P(x, 0) recur after the system
evolves through one complete period of the flipping motion; explicitly, f(x) should
satisfy

(2.1) f(x)= P(x, O)= e(x, 2T), 0_-<x -< 1.
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Since u(t) is time independent during each half period, problem may be
subdivided into two constant-coefficient subproblems, + and - Thus, the probability
density P(x, t) is governed by the set of equations

(2.2)
OP OP 1

2, 0<x<l 0<t< T,
Ot Ox b ox

(2.3) P0--:-(0, t)-bP(O, t)=0, 0< < T,
Ox

OP
(2.4) Ox(1, t) bP(1, t) O, 0<t<T,

(2.5) P(x, 0)=f(x), 0 < x < 1,

where

(2.6) f(x) dx 1,

together with

(2.7)
OP OP_ 1 02P

0 < x < 1 T < < 2 T,
Ot Ox box2’

OP
(o, t)+be(o, t)=0, T<t<T,(2.8)
Ox

OP
(2.9) O-(1, t)+bP(1, t)=O, T< t<2T.

Here, the initial distribution P(x, T) for problem - is furnished by the solution of
problem + at time T. It is redundant to demand satisfaction of the unit normaliz-
ation condition (2.6) by P(x, T) inasmuch as problem / conserves probability density
(as do problems - and , also).

Problems + and - can be solved by separation of variables. Though both lead
to the same discrete eigenvalue spectrum,

2 2

(2.10) Ao 0, A, +. b
for n 2, 3,.

the sequence of eigenfunctions is, nevertheless, different for each. With + and
superscripts respectively distinguishing problems 9+ and -, the eigenfunctions b(x)
are given by

(2.1 la) 49:(x) +b
e+/-bX

n cos (nx) sin (nx) n 1,

and satisfy the orthonormality condition

(2.12)
o

m,n>--O.
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Both sets of eigenfunctions are complete. A direct computation shows that the two
kinds of eigenfunctions are related by the equation

(2.13) 6(x) (-1)" e-/26+,(1-x
for all n 0.

Subsequent analysis necessitates determining the expansion of each function b2(x)
in terms of the set of functions {b,+(x)} and conversely"

(2.14) ;(x)-- Z Atone +re(x),
m=0

(2.15) 4’,+(x) Z Bm,,,;b(x)
m=0

(n => 0), where

(2.16) Am,, (x)(x) e-x dx,
o

(2.17) Bm p+ bx,,(x)m(x) e dx

(m, n ->0). By making the substitution x 1 -y in (2.17), and utilizing (2.13) and (2.16),
it can be shown that

(2.18) Bm,,=(-1)m+" ebAmn.
Straightforward, albeit lengthy, computations yield:

4,n-2b[1 (-1) m+" e-b](hm/hn)l/2mn
(2.19a) Am,,

[b + (m + n)2-][b2 + (m n)2r2] m,n>--l,

(2.19b) Amo=[ 2 ] 1/ m-3b/2] 8"rrmb
Am(l_e_b) [1--(--1) e

9b2+4m2,n.2, m>--l,

(2.19c) Ao, e-b/260n, n >--O.

Explicit expressions for the Bin, can be obtained from (2.19) upon using the relation
(2.18).

The preceding development permits derivation of the pertinent equations that a
recurring initial distribution must necessarily satisfy. Start with some arbitrary initial
distribution,

(2.20) P(x, 0)=f(x)= Z am4)+,,(x), 0-_<x-<l,
m--0

where, for all m 0,

(2.21) am f(x)+m(x) e-b dx.

Correspondingly, the solution of problem + is given by the series

(2.22) P(x, t)= Y. am e-X"’tCh+m(X),
m=O

In particular,

(2.23) P(x, T)= Z am e-X’%+m(X).
m=0

O<=t<=T.
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Since P(x, T) serves as the initial distribution for problem - it is convenient to
expand it in terms of the b(x) as

(2.24) P(x, T)= Y bkc-(x).
k=0

Here, for all k => 0,

(2.25) b P(x, T)cb-(x) e bx dx.

Problem - possesses the solution

(2.26) P(x, t)= Y be-k(’-T)-(X), T<= t<=2T.
k=0

The function f(x) is a recurring initial distribution if, and only if,

(2.27) f(x) P(x, 2T)= 2 b, e-Xkr4)-(x ).
k=0

Introduction of (2.27) into (2.21) leads to the following expression for each coefficient
a,, in terms of the coefficients bk:

(2.28) am Z a,,,, e-’’Tbk m >= O.
k=0

A similar combination of (2.23) and (2.25) gives

(2.29) b, Y B,,, e-X.ran, k >- O.

Equations (2.28) and (2.29) coalesce into the following infinite system of linear
equations for the eigenfunction expansion coefficients a,,:

(2.30) am A,,,,B, e-(’+r a, m _-> O.
=0 k=0

For m =0, (2.30) reduces to the trivial identity a0 ao, owing to (2.19c) and the
corresponding equation for the Bo,. The system (2.30) therefore needs to be considered
only for m _>- 1; it may be rewritten as

(2.31) am Y C,,,,,a,, + R,,ao,
tl=l

where

(2.32) C,.. AmeBa. e-(+")T,
k=l

(2.33) R, A,,o eb/2-t ., A,,,kBt,o e-xr
k=l

re->l,

(m, n>= 1).

The coefficient ao of the expansion (2.20), which appears on the right-hand side
of (2.31), must still be specified. Direct calculation gives

(2.34) 49 +,,(x) dx tom
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whence the normalization condition (2.6) involves only ao, thereby yielding

(2.35) ao eb--1
Equation (2.31) constitutes an infinite system of linear equations for the eigenfunc-

tion expansion coefficients a, (n-> 1) of the possible recurring initial distribution(s).
The question of existence and uniqueness of a square integrable time-periodic solution
of problem is equivalent to the question of whether or not the infinite linear system
(2.31) possesses a unique square summable solution.

There also exists an equivalent integral equation ofthe second kind for the recurring
initial distributions themselves. This may be derived by first reformulating the solutions
of problems + and - in terms of their respective Green’s functions G/(x, t; ) and
G-(x, t; ). In particular,

(2.36) P(x, T)= G/(x, T; )f() d.

With this as the initial distribution for problem -, we obtain

P(x, 2T) G-(x, 2T; r/)P(r/, T) dr/

where

(2.40)

where

(2.41)

(2.42)

(2.39) H(x; )= G-(x, 2T; 7)G+(r/, T; :) dr/.

Series representations for the Green’s functions may be derived from (2.21), (2.22),
(2.25) and (2.26). Using these, we ultimately obtain

H(x; ) K (x; sc) + Q(x),

K(x; )= e-b 2 B,,,. e-(*"+")T4),(X)4)+,(),
m=l n=l

1 e"b
+ b 1

., Bmo e (x).
m---!

Substitution of (2.40) into (2.38) together with use of the normalization condition (2.6)
leads to an integral equation of the second kind,

(2.43) f(x) K(x; )f(() d+ Q(x),

for f(x). The last step, whereby (2.38) is rewritten as the inhomogeneous equation
(2.43), is analogous to our previous reduction of the homogeneous system (2.30) to
the inhomogeneous system (2.31).

(2.37)

Accordingly, the periodicity condition (2.1) may be expressed in the form

(2.38) f(x) P(x, 2T)= H(x; )f() d,
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We remark that substitution of the series representations (2.20), (2.41) and (2.42)
into (2.43) leads to the infinite system (2.31).

3. Existence and uniqueness of time-periodic solutions. Possible conclusions that
can be drawn from the integral equation (2.43) necessarily depend upon the properties
of the kernel K(x; ) as well as those of the inhomogeneous term Q(x). As shown a
fortiori by our proof of Lemma 3.2 below, K(x; ) is square integrable. Similar
arguments establish that Q(x) is also square integrable. It follows from these facts
that the standard Fredholm theorems (cf. Mikhlin [14, pp. 1-3, 64-68], Courant and
Hilbert [3, pp. 112-122, 152-153]) apply to (2.43). A parallel theory (cf. Hilbert [10,
pp. VI-VII], Courant and Hilbert [3, pp. 160-161]) applies to (2.31) because the infinite
matrix C [C,,,] and inhomogeneous term R [R,,] are square summable. Thus, we
conclude that there exists a unique (square integrable) recurring initial distribution
(equivalently, a unique time-periodic solution) if unity is not an eigenvalue of the
integral operator : lo d: K (x; :) or of the infinite matrix C C,,,].2 Accordingly,
we are motivated to identify regions of the (b, T) parameter plane in which it is
impossible for unity to be an eigenvalue. Two independent arguments are presented
for this purpose.

LEMMA 3.1. When

(3.1) T> 2bZ/(b+47r),
problem possesses a unique time-periodic solution.

Proof Suppose ao=0. Equation (2.29) with k =0, in conjunction with (2.19c)
and (2.18), then gives bo=0. From (2.24), (2.12) and (2.23) there follows the Parseval
identity

(3.2) b= ebx 2 a e +(x) dx,
=1 n=l

in which the summations start from n 1 because ao bo 0. Straightforward manipula-
tion of the right-hand side, utilizing the bound ebx <=e2b eTM (O<=x<= 1) together with
(2.12), gives

(3.3) e-2X T b-AlT 2., bn<=e2b a,, --e2( a,.
n=l n=l n=l

A similar argument starting from (2.20), (2.12) and (2.27) shows that

2 --2A T 2(3.4) 2 a,,=e 2 b,,.
n=l n=l

Relations (3.3) and (3.4) can be combined to give

e2(b-2,,XT) 2 a2(3.5)
n=l n=l

Actually, square integrability of the kernel K(x; ) is a sufficient condition for complete continuity
of the integral operator. In turn, this property is all that is required (insofar as the integral operator is

concerned) to insure the validity of the Fredholm theorems (see Hellinger and Toeplitz [8, p. 1399ff], Riesz

and Sz.-Nagy [18, pp. 177-190]).
An eigenvalue/x of the (integral/infinite matrix) operator 3? is defined by the equation y =/xy, in

which y is the corresponding eigenfunction/eigenvector.
This argument was developed in an article by L.C. Nitsche entitled Settling of a Brownian particle in

a container which is flipped over at regular intervals. (Term paper for the course "Macrotransport Processes,"
Catalog No. 10.54, Massachusetts Institute of Technology, Cambridge, Massachusetts, May 17, 1985.)
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Suppose T> b/(2A1)=2b2/(b2+4r2). Inequality (3.5) is then satisfied if[ a,=0 for
all n _-> 1. Thus, ao 00 an 0 for all n _-> 1. This means that the homogeneous system
corresponding to (2.31) has only the trivial solution, i.e., unity is not an eigenvalue of
C. It follows as an immediate consequence that problem possesses a unique
time-periodic solution. Q.E.D.

Another development is based on the fact that the magnitude of an eigenvalue
cannot be less than the reciprocal of any norm of the operator; thus, if a norm of the
operator is less than unity, no eigenvalue can possibly equal unity. We use this fact
in conjunction with a bound on the L2 norm of ,: to prove the following lemma.

LEMMA 3.2. If
def

(3.6) r(b, T) (e 1)4(rbT)-2 e-(:+r)<= 1,

then problem ’ possesses a unique time-periodic solution.
Proof

IIe,, I1 [g(x; so)]2 ddx

BklBmn e-(X+ht+x,.+xn) T
=1 /=1 m=l =1

(3.7) e-%(x)6F()6(x)6()] aa
E E E E B,B. e-+,++
k=l /=1 m=l n=l

From (2.17), together with the bound

(3.8) 14,,(x)l_-< 2 ’/z e +bx/2,
it follows that

(3.9) IB,,nl<-_Zb-(eb-1),
Use of (3.8) and (3.9) in (3.7) gives

0=<x=<l, n=>l,

m,n>=l.

IIK[l<--(2/b)4(eb-1)4 e- E E E
k=l /=1 m=l n=l

=(2/b)4(eb_l)4 e-b(2+T) e-(2T/b)k
=1

Upon majorizing the series on the right-hand side by the appropriate definite integral,
we obtain

(3.10) [l II < r(b, T).

If F(b, T) 1, then [[ [[2 < 1, thereby assuring the existence and uniqueness of a
time-periodic solution. Q.E.D.

Remark. If any norm of K is less than unity, then an iterative scheme staing
from any initial distribution w()(x), namely

(. (+(x)= g(x;l(+(x),
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converges in the corresponding function norm to the solution of (2.43). This iteration
corresponds to the actual temporal evolution of the probability density as recorded
by a stroboscopic device which records images only at the discrete times =0,
2T, 4T,.... In particular, the convergence of the iterative scheme assures that the
solution to problem , starting from any arbitrary initial distribution, approaches the
time-periodic solution in the pertinent function norm as time t- o.

Figure 1 summarizes the results ofthis section. It depicts the two curves respectively
defined by

T 2b2/(b2 +4-2) (curve I),

F(b, T)= 1 (curve II).

We have established that there exists a unique time-periodic solution of problem
for (b, T) lying above curve I, on or above curve II, or both (corresponding to the
shaded region in Fig. 1).

T 2

// (b,T)-I (Curve 11")

’= 2 b2/(b21 4r2)(Cure I)

0 5 I0 15 20

b

FIG. 1. b, T)-plane. Existence and uniqueness of a time-periodic solution ofproblem are assured for
b, T) lying in the shaded region.

Remark. By deriving a bound on the L2 norm of the infinite matrix operator C,
it can be shown that problem possesses a unique time-periodic solution if b and T
satisfy the condition

def
)2(e2b -3/2 -b(2+T) __<f(b, T) (eb 1 1)(27rbT) e 1.

The level curve given by f(b, T) 1 is quantitatively similar to curve II. It is not shown
in Fig. because its inclusion would not enlarge the shaded region.

4. Regularity of time-periodic solutions. Conditions under which square integrable
time-periodic solutions of problem exist were established in 3. We now briefly
sketch the argument that leads to a much stronger regularity property of such solutions.
The key observation is that at each time t, a time-periodic solution P(x, t) possesses
a series representation in which the coefficients multiplying the eigenfunctions b+(x)
or b(x) (n -> 1) can be bounded by [(b, T) exp (-b-/4)] exp [-(’n2"r/b)n], where
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"F > 0.4 This statement applies even at the flipping times. For example, of the two series
representations Y,=o a,4+,(x) and Y,--o b, exp (-A,T)4, (x) for P(x, O) P(x, 2T),
the latter is the appropriate one to consider.

It is well known for trigonometric Fourier series that if the Fourier coefficients
can be bounded by AO" (with 0< O < 1), then the series represents a function that
is analytic in x on [-rr, 7r] (see, for example, Bary 1, pp. 82-83]). Minor modifications
of Bary’s proof establish the analogous result for the orthonormal sequences {&+(x)},
{b(x)} on the interval [0, 1]. With A= CO(b, T)exp (-b-/4) and O=exp(-Tr2’/b)
we obtain the following theorem.

THEOREM 4.1. Any square integrable time-periodic solution ofproblem is, in fact,
an analytic function ofx for all x [0, 1 at each fixed time t.

5. Further study of the infinite linear system (2.31). It has already been established
that the eigenfunction expansion coefficients a, (n >-1) of a possible recurring initial
distribution must satisfy (2.31). We now exhibit a simpler infinite matrix equation for
the expansion coefficients, and use it to establish a symmetry property of unique
time-periodic solutions of problem .

THEOREM 5.1. Provided that unity is not an eigenvalue of C, the unique solution of
(2.31) is also determined uniquely by the simpler system

(5.1) a,, , E,,,a, + S,,ao, m >- 1,
n=l

where

(5.2) E,,,, (-1)" eb/ZAmne-A"T (m, n => 1),

(5.3) S,,=eb/A,,o (m=> 1).

Proof Using (5.2) and (5.3), together with bounds that utilize (3.8) and (2.11 a)
in the Parseval identity corresponding to (2.14), it can be shown that E [E,,,] and
S [S,,] are square summable. Thus, Fredholm theory applies to (5.1). Next, we note
the equalities

(5.4) Cmn-- E EmkJEkn,
k=l

(5.5) Rm Sm q- Z EmkSk,
k=l

which follow from (5.2), (5.3), (2.32), (2.33) and (2.18). The hypothesis that unity is
not an eigenvalue of C, in conjunction with (5.4), leads to the conclusion that unity
also fails to be an eigenvalue of E. Thus, (5.1) possesses a unique solution. Moreover,
any solution of (5.1) also satisfies (2.31), as can be verified using (5.1), (5.4) and (5.5).
Thus, the unique solutions of (5.1) and (2.31) are, in fact, one and the same. Q.E.D.

By considering the simpler system (5.1) we can establish the following time-shifted
symmetry property of unique time-periodic solutions.

THEOREM 5.2. Unique time-periodic solutions P(x, t) ofproblem satisfy

(5.6) P(1-x, t+ T)= P(x, t).

4 We establish this bound by considering (2.22) for 0< t= T with r= t, and (2.26) for T < t<-2T with
r= t-T. We then jointly utilize (2.10), the inequality exp[-(Tr2r/b)n2]<-exp[-(rr2r/b)n] for n= 1, and
the fact that the a and bn are certainly bounded, say by CO(b, T).
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0
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0.6-
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0.2-

O=
0

0.8-

0.6--

0.4-

0.2--

0
0

0.5 1.0 1.5 2.0 2.5

f(x)=P(x,O) P(x,2__T)

(a)

0.5 1.0 1.5 2.0 2.5
f(x =P(x,O) P(x ,2T

(b)

0.5 1.0 1.5 2.0
f (X)-’-P (X,O)=P (x,2T)

(c)

2.5

FIG. 2. Numerically generated recurring initial distributions: (a) b= 1, T= 1" (b) b= 1, T=0.1" (c)
b=10, T=0.1.



TIME-PERIODIC SEDIMENTATION-DIFFUSION 165

Proof We first derive a simple relation between the coefficients ak and bk for a
unique time-periodic solution. By utilizing (2.29), (2.18), (2.19c), (5.2) and (5.3) we
obtain

(5.7) b0 eb/2ao, bk (--1) k eb/2 Ekna -t- Skao for k >= 1.
rl=l

For a unique time-periodic solution the coefficients an (n ->_ 1) satisfy (5.1). Thus,

(5.8) bk (--1) k eb/2ak
for all k->_ 0. This relation, together with (2.13), yields

(5.9) bkch- x akch-(1 x ).

From (2.22), (2.26) and (5.9) we conclude that a unique time-periodic solution P(x, t)
of problem can be represented as follows:

am e-a"tP +re(X), 0 <= <= T,
(5.10) P(x, t)=

E am e-’Xmt-T)dp+ (1--X), T< t<2T.
km=0

The theorem is an immediate consequence of (5.10). Q.E.D.
Remark. It can be deduced from the preceding theorem that, in a laboratory

reference frame, the probability density distributions for comparable times after each
flip are all identical. This is in accordance with physical intuition.

6. Concluding remarks. In order to provide perspective for the appearance of
time-periodic solutions ofproblem , we present in Figs. 2(a)-(c) examples ofrecurring
initial distributions, generated numerically by solving finite sections of (5.1) for specific
parameter values. These spatial distributions also represent the probability density at
time =2T, confirming the expectation of an accumulation of probability density
("sediment") at the bottom of the container after the system has been left undisturbed
for one half period. Figures 2(a) and 2(b) show the accumulation to be more pronounced
for a larger than for a smaller value of T, again conforming to expectations, since the
Brownian particle(s) will then have had more time in which to settle between successive
overturnings.

Existence and uniqueness oftime-periodic solutions have been proven for a certain
region of the (b, T)-plane. One direction for future study is that of determining the
eigenvalues and corresponding eigenvectors of the infinite matrix C (or E)--in par-
ticular, the first eigenvalue. This would furnish further information regarding conditions
under which existence and uniqueness are assured.
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REMARKS ON THE SECOND EIGENVALUE OF A SYMMETRIC
SIMPLY CONNECTED PLANE REGION*

CHAO-LIANG SHEN"

Abstract. In this paper we study the second eigenfunctions of the fixed membrane eigenvalue problem
on a symmetric domain. Using the notion of axially symmetric functions we prove a comparison theorem
for two eigenvalues when the nodal sets of the corresponding eigenfunctions are known. This result implies
that the second eigenvalues of certain membranes are nondegenerate.

Key words, eigenvalues, multiplicity, eigenfunctions, nodal set
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1. Introduction. The purpose of this paper is to study the eigenspace of the second
eigenvalue of a fixed membrane problem ( 2), and to find a sufficient condition for
the nondegeneracy of the second eigenvalue of a simply connected plane region,
symmetric with respect to the x-, y-axes ( 3). In 3, using the notion of axially
symmetric functions proposed by Payne, Weinberger and Weinstein [4], [5], [6], we
prove a comparison theorem (Theorem 7) for two eigenvalues of a membrane when
the nodal sets of the corresponding eigenfunctions are known. Using this result, we
find that if f is continuous and strictly decreasing in [0, a], f(0)>0, f(a)=0, but
x2+[f(x)]2 is strictly increasing in [0, a], then the second eigenvalue of the fixed
membrane problem on the region l := {(x, y) R" -a <= x <= a, -f(Ixl) <= y -<_f(lx[)} is
simple (Theorem 8).

2. A decomposition of the eigenspace of the second eigenvalue of a two-symmetric
simply connected plane region, fl shall denote a 2-symmetric simply connected plane
region (i.e., fl is separately symmetric with respect to the x-, y-axes). We shall use the
following notation and terminology:

Let A be the second eigenvalue of the fixed membrane problem on
(1) If u C2() "] C(fi), u--0 on 0fl, and u0 such that Au+A2u =0, we shall

call it a second eigenfunction of
(2) E(A) denotes the vector space consisting of 0 and second eigenfunctions.
(3) For u E(A), u 0, the set N(u) {(x, y) 1: u(x, y) =0} is called the nodal

line (nodal set) of u. Any connected component of l\N(u) is called a nodal domain
of u. It is known that for u E(A)\{0}, u has exactly two nodal domains; the signs
of u on these two nodal domains are different (see [1], [2]).

(4) S(A2)= {u E(A2)" u =0, or (0, 0) N(u) and N(u)is symmetric with respect
to (0, 0)}.

(5) o%(A2)= {u E(A2): u(x, y)= u(x, -y)= u(-x, y) for all (x, y) in 1}.
(6) A function u in 1 is 2-symmetric if u(x, y)= u(x, -y) u(-x, y) for all (x, y)

in [l. A subset N of l-I is 2-symmetric if (x, y) in N implies that (x,-y) and (-x, y)
are all in N.

It follows from the maximum principle for subharmonic functions that N(u)
cannot have isolated points. It is also known that critical nodal points are isolated
(see [1, 2]). Using these facts we see that for a second eigenfunction u, N(u) is either
a simple curve with end points on 01"l or a simple closed loop in

* Received by the editors March 21, 1986; accepted for publication (in revised form) March 24, 1987.
This research was supported in part by National Science Council grant 75-0208-M007-23 of the Republic
of China.

" Institute of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China.
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We note that in general if we have a segment L in the nodal set N(v) of an
eigenfunction v of l), then L can be extended either to a (possibly self-intersected)
curve in N(v) with end points on 0f, or to a (possibly self-intersected) loop in N(v).
Since when nodal lines meet at a point they form an equiangular system with an even
number of angles ([ 1, Thm. 2.5], [3, 25.12, 25.13]), if we have an equiangular system
in N(v) at a nodal point P with 2jo angles, then the eigenfunction v has at least jo+ 1
nodal domains.

LEMMA 1. For Ul, u2 E(A2), if N(Ul)-- N(u2), then ul= aua for some
Proof We know that any second eigenfunction has exactly two nodal domains.

Let 1 and 2 be the nodal domains of ul and u2. Then uil,j is a first eigenfunction
of lj (see [2]). Thus there exist real numbers c and/3 such that

U aU2 in ’-1, Ul BU in

Suppose P 0- ("] 0’2 (-] ’. Then

OU 0112 0111 OU2

for any P, in any direction :. Since critical nodal points are isolated, there exist a nodal
point P and a direction such that (Ou:/O)(P) O. Hence a =/3.

THEOREM 2. S(A2) is a vector space, direr S(A:)-<2.
Proof For u S0 in S(A2) let 1)1 and f2 be its nodal domains. Then 121 and

are congruent from the setting of S(A2), and one is the reflection with respect to (0, 0)
of the other. Therefore it follows immediately from Lemma 1 that u(x, y) -u(-x, -y)
for all (x, y) in . This implies S(A2) is a vector space.

Choose ul, u: from S(A2)\{0} such that ul(x,y)ul(x,-y) and Uz(x,y)
-u2(x, -y). If no such ul exists, then for all u in S(A2), u(x, y) u(x, -y) -u(-x, -y)
implies that N(u) contains the y-axis portion (and hence is the y-axis portion) of 1.
Then Lemma 1 implies that dim S(A2)_<-l. Similarly if no such u2 exists, then
dim S(A2)-<_ 1. Assume both u and u2 do exist. Define

DI(X y) U,(X, y)- U,(X, --y),

V_(X, y) U2(X, y) + U2(X, --y).

Then N(Vl) (resp., N(v)) consists of the x-axis portion (resp., the y-axis portion) of
I. For any u in S(A2), by applying Lemma 1, we can find real numbers c,/3 such that
u(x, y) u(x, -y) av(x, y), u(x, y) + u(x, -y) Bv(x, y). Thus u belongs to the span
of vl and v2. Therefore dim S(A2)-<2. (We also note that , vv2=0.)

THEOREM 3. dimR if(A2) --<-- 1.

Proof From its definition it is clear that (A2) is a real vector space. Assume
dim .(A2)=> 2. Then there would exist linearly independent u and v in 5(A). Since
u and v are 2-symmetric, if N(u) were not a loop in f, then, by the symmetry of u,
N(u) would be the x-axis or the y-axis portion of . This is a contradiction to the
2-symmetry of u, since u has distinct signs on distinct nodal domains. Thus both N(u)
and N(v) are 2-symmetric loops in 12. Let 12u and 12v be the simply connected nodal
domains of u and v, respectively. We may assume u and v have the same sign in
f,fqfv (note that (0, 0)12,(312), then we can find a+ such that u(0,0)-
av(O, 0)= 0. Since u- av O, u- av is in if(h2). The previous argument implies that
N(u- cev) is a 2-symmetric loop in f. Thus (u- av)(O, 0)= 0 leads to a contradiction
unless u-av=O. Hence dimn (h2) <- 1.

COROLLARY 4. If U, vE(A2) such that N(u) and N(v) are 2-symmetric simply
closed loops in , then there exists a real number a such that u av, i.e., N(u)= N(v).
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Proof. Since N(u) and N(v) are 2-symmetric loops in , the nodal domains of
u and v are 2-symmetric regions. By the 2-symmetry of the nodal domains and the
simplicity of the first eigenvalue (recall that the restriction of u to any one of its two
nodal domains is an eigenfunction of the first eigenvalue A2 of that domain), we see
immediately that both u and v are 2-symmetric. Thus u, v :T(A2). Since dim (A2) 1,
we are done.

It is clear from the definitions of (A2) and S(A2) that for u o%(A2), v S(A2)
we have , uv =0.

THEOREM 5. E(A2)--’(A2)(S(A2). Irt particular dima E(A2)_-<3.
Proof For u 6 E (A2) define

UA(X y)= U(X, y)+ U(--X, --y),

UB(X, y) U(X, y)- U(--X, --y),

and denote EA(A2) {UA: U E E(/2)), EB(A2) (UB: U E(A2)). Then EA is orthogonal
to EB in the L2 sense. We note that u(0, 0) 0, u(-x, -y) -un(x, y); thus un S(A2).
UA(X, y) UA(--X, --y). Next, for u EA(A2), define

uc(x, y)= u(x, y)- u(x, -y),

uo(x, y) u(x, y) + u(x, -y).

Let Ec(A2)= {Uc: u EA(A2)}, Eo(A2) {uo: u EA(A2)}. Then Ec(A) is contained in
S(A2) (in fact, Ec(A2)= {0}). For w Eo(A2), w(x, y)= w(x, -y)= w(-x,-y); i.e.,
w if(A2). Summarizing the previous argument, we find that E(A2) (A2)0)S(A2).
Thus E(A2)=ff(A2)S(A2). dimaE(A2)<-3 follows immediately from Theorems 2
and 3. [3

We note that we can employ the arguments in 25.13 of [3] and the arguments
similar to those given by Cheng in 1, Thm. 3.4] to derive the following multiplicity
estimate: Let m(n) denote the multiplicity of the nth eigenvalue A, of thefixed membrane
problem on a bounded simply connected open region f in R- with reasonably regular
boundary. Then m,(n)<-_n(n+ 1)/2. The idea of the proof, as was pointed out by
Cheng, is to show the order of vanishing of an nth eigenfunction u is at most n- 1.
Let P be a nodal point of u. We may assume that P=(0,0) and expand u in a
neighborhood of (0, 0) into the following Fourier-Bessel series:

u(r, O)= E J,,(V,r)(a,, cos mO + b,, sin mO)
m=0

(bo= 0).

Define the order ofvanishing of u at (0, 0) to be the largest integer k such that u(0, 0) 0
and du(O, O) 0,. ., d k-1 u(0, 0) 0. If u(0, 0) 0 and du(O, 0) 0, -, d"-lu(0, 0)
0, then the coefficients ao, bo, al, bl,. ., an-l, bn_ are all zeros. This implies that if
jo is the first term so that (ajo, bjo) (0, 0), then jo >= n. For this jo, say a;o 0 (b;o 0 is
discussed similarly). Then cot (jo0)=-b;o/a;o determines jo segments of N(u) which
intersect at (0, 0) and form an equiangular system with 2jo angles. This implies there
are at least jo+ 1 nodal domains (see the note we give before Lemma 1). jo+ 1 > n,
which is a contradiction to Courant’s nodal domain theorem. Thus the order of
vanishing of an nth eigenfunction of a plane fixed membrane problem is at most n- 1.
Then, by using Cheng’s argument (on R2 the dimension of the space of constant
coefficient partial differential operators of order less than or equal to n- 1 is equal to
n(n+l)/2), we can obtain m(n)<-_n(n+l)/2.

3. Comparing two eigenvalues when the nodal sets of the corresponding eigenfunctions
are known. Let II be a simply connected plane region symmetric with respect to
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the x-axis and the y-axis. Let b, q be two eigenfunctions of f such that N(b) lies
on the x-axis and N(q) lles on the y-axis. In this section we shall prove a comparison
theorem (Theorem 7) which states that under certain conditions on 011, we can compare
the corresponding eigenvalues. Using this theorem we find that the second eigenvalues
of certain plane regions are simple (Theorem 8).

THEOREM 6. Let 11 11f be a simply connected plane region with smooth boundary
such that fif {(X, y)" --a --< x _--< a, -f(lx[) --< y --<f(lxl)}, where f is a continuous strictly
decreasing function in [0, a], f(x)>0 in [0, a), f(a)=0, f(0)= b. Let g be the inverse

function off. Construct two four-dimensional domains 111,112 as follows:

(l {(x, y, z, w)E 4: y2+ z+ w<-f(Ixl), -a <=x<- a},

1)2 {(x, y, z, w) E 4: x2 -t-- z2 -- w2 <__-- g(lyl)2, -b _<-- y<_-- b}.

Then (1 fi2 if and only ifx- + [f(x)]2 is an increasingfunction in [0, a]. Furthermore,
/fx2 +If(x)]2 is strictly increasing,, then (1

Proof Since both fl and 112 are simply connected, fl -- 112 if and only if 0111
__

112.
To show that 1)1

_
12, it is sufficient to prove that if y2 + r2 =f(x)2, (x -> 0, y _-> 0), then

x2+ r2<_ g(y)2. For x, y, r such that y2+ r2=f(x)2, the inequality x2+ r2_< g(y)2 holds
if and only if x2+f(x)2-y2<= g(y)2; i.e., x2+f(x)2<=y2+g(y)2. Since O<-y<=f(x) and
f is strictly decreasing, y=f(xl) for some x<-xl <-a. Thus 111 _22 if and only if
x2+[f(x)]2 is an increasing function. It is clear from the previous argument that if
x2 + If(x)]2 is strictly increasing, then 11 1)..

Example. Let a> b>0 and let 11 be the ellipse (x2/a2)+(y/b2)<l. Then
11 11y, where f= bx/1- (x2/a) satisfies the conditions stated in Theorem 6.

Let fy be as in Theorem 6, and let x2+[f(x)]2 be strictly increasing in [0, a].
Suppose 4 is an eigenfunction of 11y such that N(b) lies on the x-axis, q is an
eigenfunction of fly such that N(q) lies on the y-axis, and the corresponding eigen-
values of b, are h, IX, respectively. Let b y,. Then Ab + hb =0 implies that
(O,/Ox2)+(1/y2)(O/cgy)(y2(O,/Oy))+h,=O. If we denote V(x, Yl, y2, y3) ,(x, y),
where y2 y2 + Y2 + y, then V is an axially symmetric function on the four-dimensional
domain 111 (the x-axis is the axis of symmetry of fl). (02/Ox2) + (1/Y2)(O/OY)(Y2(O/OY))
is the axially symmetric Laplacian [4], [5], [6]. Since V> 0 in 1, h is the first eigenvalue
of the four-dimensional membrane fl (with fixed boundary). Similarly Ix is the first
eigenvalue of the four-dimensional membrane 112. Since f2fl, Ix <h. Thus we
obtain the following comparison theorem.

THEOREM 7. Suppose 11 f, f satisfies the conditions stated in Theorem 6, and
x2+ If(x)]2 is strictly increasing. Suppose b and d/ are eigenfunctions of eigenvalues h,
IX, respectively, such that the nodal set of qb lies on the x-axis and the nodal set of lies
on the y-axis. Then h > Ix.

THEOREM 8. Let f, f be as in Theorem 7. Then the second eigenvalue of the fixed
membrane problem on ff is simple; the eigenfunction is an odd function ofx,-even in y.

Proof. Since fy is convex in the x-direction and symmetric about the y axis, it
follows from Payne’s Theorem [4, Thm. I] that the second eigenfunction ofy cannot
have an interior closed nodal curve. Thus, by Theorem 5, dim E (h2) --< 2. If dim E (h2)
2, then there is a second eigenfunction b whose nodal curve lies on the x-axis, and
there is another second eigenfunction whose nodal curve lies on the y-axis; then
Theorem 7 implies A2 > h., which is absurd.

Example. Let 11 {(x, y)" (x2/a2) + (y/b) < 1}, a > b. Then f 11f, where

f= bx/1-(X/a2) and f satisfies the condition stated in Theorem 7. Thus the second
eigenvalue A2 of 11 is simple and the nodal curve of corresponding eigenfunction lies
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on the y-axis. Furthermore, Payne showed that h2>-[7r/(4 x: dxdy)]l/jl, where jl
is the first positive zero of the Bessel function J(x).
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REGULARITY OF THE SOLUTION OF ELLIPTIC PROBLEMS
WITH PIECEWISE ANALYTIC DATA.

PART I. BOUNDARY VALUE PROBLEMS FOR LINEAR ELLIPTIC
EQUATION OF SECOND ORDER*

I. BABUKAf AND B. Q. GUO

Abstract. This paper is the first in a series devoted to the analysis of the regularity of the solution of
elliptic partial differential equations with piecewise analytic data. The present paper analyzes the case of
linear, second order partial differential equation of elliptic type. It concentrates on the case when the domain
[l R is a polygon, boundary conditions are of changing type and coefficients are analytic on 1. The main
result states that the solution belongs to a countably normed space based on weighted Sobolev spaces of
all orders with weights located in the vertices of the domain and at the points where the type of boundary
conditions changes.

These results are essential for the design and the analysis of the h-p version of the finite element method
for solving the elliptic differential equations of structural engineering (see [6], [11], [12]).

Key words, elliptic equation with piecewise analytic data, Dirichlet problem, corner singularities

AMS(MOS) subject classifications. 35B65, 35D10, 35G15, 35J05

1. The preliminaries.
1.1. Introduction. In applications, as for example in structural mechanics, the

problems of elliptic partial differential equations are typically characterized by piece-
wise analytic input data. The boundary of the domain is piecewise analytic with corners
and edges; the coefficients of the equation are piecewise analytic with interfaces having
corners and edges. The type of boundary condition is abruptly changing but they are
piecewise analytic, etc.

The regularity theory is typically developed in the framework of Sobolev spaces.
We refer here, for example, to the survey [15] and to the monographs [10], [14]
addressing the problem of the unsmooth boundary. We refer to [2] for more classical
results. Results mentioned above do not characterize sufficiently accurately the class
of solutions of problems of applications. The detailed knowledge of the properties of
the solutions of problems of applications is essential for the design and analysis of
effective numerical methods for solving these problems. We mention here, for example,
the h-p version of the finite element method which was recently developed and is very
successfully used in practice. For more about the theory and practice of the h-p version
we refer to [6], [17], [18].

The solution of the problem with piecewise analytic data is analytic with the
exception of special areas of the domain, where the solution has singular character.
Typically it happens in the neighborhood of the corners of the domain, places where
the type of the boundary condition changes, etc.

This paper, which is the first one in a series of papers, deals with the problem of
characterizing the regularity of the solution of the linear partial differential equation
of elliptic type on a polygonal domain. It addresses the case of constant and analytic
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coefficients. The main tool of the characterization of the solution is the theory of
countably normed spaces based on weighted Sobolev spaces of all orders, where the
weights are placed in the vertices of the domain. The main result is that the solution
is from the set B(I)) of functions which belong to the weighted Sobolev spaces H
for k=2,..., and with C and d independent of k. The
main theorem of the paper is Theorem 2.1 addressing the case of the Poisson equation
and its generalization for the general equation with analytic coefficients is given in
Theorem 3.1. Theorem 3.1 can be further generalized for the case when the coefficients
have singular behavior in the neighborhood of the corners too. (Problems of this type
are important in applications when nonlinear equations are considered.) Section 1
gives basic notation and preliminaries. Section 2 deals with the regularity of the solution
ofthe Poisson problem. Section 3 deals with the general equation and 4, the Appendix,
proves some technical lemmas used in the paper.

1.2. Notation. Throughout this paper we shall denote integers by i, j, k, l, m, n.
By R and Re we shall denote the one- and two-dimensional Euclidean space. If Q c R’,
respectively, Q c Re, then denotes the closure of Q in R’, respectively, in Re.

By fl we denote the polygonal domain in Re with boundary 0tl F, the vertices
Ai, i= 1,..., M, and Fi, i= 1,..., M the open edges of 0fl connecting A and A+,
(A, AM/l) Obviously we have Ofl =l,_.JM By wi we denote the measure of thei=1 i"

interior angle of fl at Ai. We allow also to 27r, and o 7r and the polygon tl has
hence to be understood in this generalized sense. Let further F O+pl, FO [,_j ,
F F-F where is some subset of set {1, 2, , M}. F will be sometimes referred
to as Dirichlet boundary and F as Neumann boundary.

By Hm(l-l) (resp. H’(Q)), m=>0, m integer, we denote the Sobolev space of
functions with square integrable derivatives of order -<m on II (resp. Q) furnished
with the norm:

E IIOull L2(fl),

0 (01, 02) ai-> 0, integers, 1, 2,

As usual H(fl)= L2(-). Further let

and

H(tl) {u e HI(If) u 0 on r}

lul( E IIDull =Ho(II),

IOul- Y Im=ulL
Il--m

By r(x)= Ix- AI, i= 1,"., M, we shall denote the Euclidean distance between
x and the vertex Ai of tl. Let/3 (/31,/3e,’’ ",/3M) be an M-tuple of real numbers,
0 </3 < 1, 1,. , M. For any integer k let/3 + k (/3, + k,. ,/3M + k). Further we

M Yii+k(x).M r/,(x anddenote O(x) t-Ii=l
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By H’’l(l)), m >= >--O, an integer (H’(f) H’(f)) we denote the completion
of the set of all infinitely ditterentiable functions under the norm

L2(I-)

k=l

1>-1,

Ilull =.,o) Ilullm E IIIDuI+II2m,
Il=k
k=O

For m l= 0 we shall write H’(O)= L(). The space H’Z(O) was introduced and
widely used in [5].

For 0<6, 0<w2 let

S=S={(r, O)O<r<3, O<O<w},

0r302 UrO

and

I’ul2= E Ir-=2=u]2.

For 0<fl < 1, m>-l>-I

Y"’(S) =/u Ilull 2
HI-I s) "3

t-

and m => 0

Ilr,-t+ull2<s Ilull 2 }’(s) < oO

Obviously

and

ijrl+ull= 2 }
Yd(S) H’(S) (S)

We will now show that Yg’e(s)= H’(S).
LEMMA 1.1. Let 0 < 3 < 00. Then the spaces Y(’2(S) and H’2(S) with 13 re are

equivalent.
Proof Observe that

sin 0

tX1X1 Urr COS
2 0 Uro

sin 20 1
+ sin2 0

r 7 u02

1+- Ur sin2 0 + Uo sin 20.
r

Hence
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By Lemma A.2 (see Appendix) we have for la[ 1

1’1=2

and hence

Similarly, we have the same relation for ux, x2 and ux2x:, and hence H’2(S)c ,2(S).
The other direction follows directly.

Later we will investigate the case S when 6 . In this case we will write Q
instead of S.

LEMMA 1.2. Let be the polygon, then for j O, 1 we have

(1.1a) f, 12_+lUx:-x dx dx2 CllUlls,2.),2

where (ri, Oi) are polar coordinates, with respect to Ai, 1 <-i <-_ M.
Proof. We can write

M

i----1

M

i----1

where S/() c f are sectors with the origin in Ai such that S,,(Ai) f’) S;(Aj) for
i#j and to is the interior angle at A. Obviously (1.1a, b) hold on R. Lemma A.3
yields (1.1a) on S,(A), Lemma A.2 and Lemma 1.1 yield (1.1b) on S,(A). R

We also recall the spaces wk(s) introduced by Kondrat’ev (see [14],-[15])

w(s)={u
Finally let

D={z, O[-oo<,r<oo, O< O<}
and for h > 0 and k => 0 an integer define

(D)= {u 1 f e2hZlDatl[2 dzdO=
0=<[ <--k D

We will write also gh(F) h(D).

1.3. The space () and B(). For an integer 0_-<1-< 2 let

(1.2)

and

4,(fl) {u(x) u H""(I]), m >--_ I}

’(n), ID"ul’ IlL(.)=Cd-l(k--1)B’(n) {u(x) u ,I, +,,-, <

(1.3)
for ]a] k l, + 1, , d _-> 1, C independent of k).

For/=0 we shall write B() instead B(). Constants C and d in (1.3) depend on
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The space B(f) was defined in Cartesian coordinates. There is also an equivalent
definition of B(f) in polar coordinates.

Let (ri, 0i) be the polar coordinates with respect to Ai, i= 1,. ., M as before.
THEOREM 1.1. Let 0 <= <--_ 2. Then

(1.4)

if and only if

(1.5) I7’u12r722,_l+rdridO <= Cd’-1(k’-l)!

holdsfor all <= la ’} k’ <= k, a a, a) and 1,. ., M. By u we denoted differenti-
ation with respect to the polar coordinates (r, 0).

Proof We first prove that if (1.4) holds then (1.5) holds for every i= 1,..., M.
To this end we fix and will omit writing the index i. Then

(1.6) Urk E Uxk-JJ cOsk 0 sin O.
j=O j

Hence

(1.7)

lulz_,+rdrdO
j=0 j

<= c12kdk-l(k l)!

C2(2d)-t(k 1)!
and (1.5) is proven for a=0.

We show now by induction that for any k-> 1"

(1.8a)
k

j=0 ,/20
/1+/2

(k) sin 1l 0 COS 12 0 Ux"-Jx2,a m,j, l1,12

). ,,_1 4k!(1.8b) A)= E E la,,,,,,
j=0 11,/2>0 m

11 + 12

Suppose that (1.8) holds for k n- 1. Then
n--1

(n--1)Uon r tm,j,ll,l
j=0 11,/20

11+12

[-r sin1,+1 0 cos 12 0 UXt--J+IxJ + r sin1, 0 cost2+l 0

+(ll sin’-I 0 cos2+1 0-/ sin1+1 0 cos-l O)u.;-].
Comparing the coefficients we get

(n-)
m,j, ll,l a m_l,j,ll_l,12 + a m_l,j_l,ll,12_

(n-,) --(12+2)’*m,j,l,-1,t2+,.+ (l + 2)a,,.,+1,2-1
Thus

A)_-< 2(1 + m)A-’)+2A"5).

Using the induction assumption we get for n k and m <- k

A<=4kk!m!
and (1.8b) is proven.
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(1.9)

Let D max (1, diam 1)). Then for k _-> 1, 0 <= -< 1

r-2k lUokl22_+tr dr dO

k

<---- 2 [a(,,l,,llD(k+l-)(M-1)llm-,+tUxT-xgl]r(a)
j=O 1,10

1+12

k

m=l

k

<-CD-’ E 4kk! m-l)!
m-=l rn

<-_ CD3 -’ k

where C and D are independent of k.
By Lemma 1.2 we have for j 0, 1

(1.10) = aN < Cllull =

Hence (1.9) holds for all k l, N2, and (1.5) holds for a =0. Combining the arguments
we have used above we get (1.5) in full generality.

(2) We will now show that if (1.5) holds for every i, then (1.4) holds too. First
we will show that for any k 1

(1.1 la) Ux b(,,h, sin/’ 0 cos 0 r-(-+Ur-o
=0 1,120

ll+12=k

(1 llb) B= h(

j=o q,eo m
l+l= k

It is easy to check that (1.11) holds for k 0, 1. Analogously as in the first pa we get

b( b(- b(-m,j,l,l m-l,j,l,l-I m-l,j-,l-l,l

(-) (-)_(-- +(/+2)b -(k-m+j)Om,,q,t-(l + 2) b,,h,_

and hence

B(I < ,(-1 kB-l (-+3kB(-zo_ + 2 + kB- < 2m-1
Using the induction hypothesis we get (1.1 lb). Using (1.11) we get for k and 1

ax CD 2

where D and C are independent of k. For j 0, 1 we have by Lemma 1.2

fa -o4[rg drg dO n’(a) N

Hence (1.12) holds for 0-<_ 1_-< 2, k >-1 and (1.4) holds for a2 ---0. The general case can
be proven quite analogously. [q
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Theorem 1.1 yields an equivalent definition of B(l)), 0 -< I_-<2

B(O) u e (a) r72’Zk_l+l’u12ridridOi NCdk-l(k-l)!
(1.13)

any k _-> and Itl- k; C and d independent of k, 1, , M/for

where (ri, 0) are polar coordinates with the origin in A and @u- uo;,oo;. In what
will follow both definitions will be used interchangeably.

Remark 1. Let S-(r, OlOrl,0Oto. Then ul-r"sinO and u-
r lgr sin 0, 0 a 1 belong to B(S), fl (1 a, 1) but not to BI_,, (S).

1.4. The spaces H"-/2(y) aad H-/2’-/2(y). Let Q R be an open bounded
set with a piecewise analytic boundary oQ and let 3’ be part of, or the whole boundary
0Q. We define Hm-1/(y), m_-> 1 as the set of all functions rp on y such that there
exists f H’(3’), with q-fl- The norm is defined by

q ,,,-,/:,() inf Ilfll/-,"o
where the infimum is taken over all functions f H"(Q) with f= on 3’.

Suppose that Ai 0Q or Ai (, 1, 2, , M, then we define the spaces H’’I(Q),
l_-> 0 as in 1.2. Let H-1/2"l-1/2(y), m >= 1, >- 0 be the set of all functions on y
such that there exists f H’I(Q) with =fl and

lie II--".’-", inf Ilfll,.’o.
where the infimum is taken over all functions fe n’l(-) such that fl, .

By L2(3’) we denote the space of the square integrable functions on 3’. We also
define the space B(Q), 0 -< 1-<2 analogously as in (1.2) replacing I by Q. Finally let
B1-1/(3"), 0-</-<2, be the space of all functions for which there exists fe B(Q)
such that f= on 3’.

Remark 2. Although B(Q), 0=</-<1 is not a subspace of Hi(Q) the trace of

fB(Q) on 3’ obviously exists.
Remark 3. The norms II" lIHm-1/2(’Y)and I1" H-1/2"’-112()obviously depend on Q.
Remark 4. In what will follow Q will often be the polygonal domain and 3’ some

of its edges. Although the set H"-/’-1/(3") is characterized only by fli associated to
the vertices of the edges % we are defining the space H’-1/’1-1/(3") depending on

(1, M)"
2. Regularity of the solution of the Poisson problem on a polygonal domain. In this

chapter we will discuss the regularity of the problem

-Au =f onlY,

u g on F,
(2.1)

0u
_gl onF

0n

where

F0= I,.J [’i, F F- F.
F will be called the Dirichlet boundary, F the Neumann boundary. If F= F (respec-
tively F F), then we will speak about the Dirichlet (respectively Neumann) problem.
If F # F and F # F, then we will speak about the mixed problem. The main theorem
of this chapter is:
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THEOREM 2.1. Letf B(O), g’ B/2-’(F’), i=0, 1,/3 (1, ", M), 0< i < 1,
fli > 1- /W (respectively fl > 1-/2 ifDirichlet and Neumann boundary conditions
are imposed on the edges F_I F, _1 A) and let F . en the problem (2.1)
has a unique solution u in Hi(o) and u B(O).

Remark 1. If F= then the theorem still holds provided that f and g satisfy
the condition (2.38) and the uniqueness is understood modulo a constant function.

Remark 2. g should be understood as the vector gl (g11, g,..., g); p is an
1() andinteger M such that g= Glr,,, UL1 F,,=F GBp

Remark 3. It can be seen from the proof of the theorem that if f H’(fl),
Gs ,,k+-S’2-S(O), j=0, 1, fl> 1-- /, (respectively #> 1- /2) and k>0,= then

k+2,2the solution of (2 1) exists in ,, and

j=0,1

which is a kind of the "shift" theorem. Usually the shift theorem is expressed in the
terms of usual Sobolev spaces so that

re(k)

U=W+
i=1

where are singular functions and for w there is the same shift theorem as for the
domain with smooth boundary and without specific estimates of various constants in
dependence on k. Theorem 2.1 is related to the known results but the authors were
unable to find the theorem characterizing the solution in the framework ofthe countable
normed space B(O) which is essential for applications.

Remark 4. The singular functions are associated to the veices A,
r" l gqrO( O), a>0, q0 integer, and (0) is an analytic function of 0. (r, 0) are the
polar coordinates with the origin at A. Function belongs to the same space B(O),
fl (1- , 1) independent of q (see Remark 1 in 1).

Remark 5. The proof of the theorem utilizes simple expansions of the solution,
although this reasoning is very special. This approach is used to illuminate the main
idea which will be used in the second paper of the series in an abstract form without
using explicitly the mentioned expansion argument.

2.1. Auxilia problems on the cone and the strip. Let

F1 {r, 010< r<, 0=0),

F2= {r, 010< r<, 0=},

and

D={z, O -o < "r < c O, < O < co },, {, 01-o<<, 0=0},

The spaces ’(Q), 0_<-/-<2 and h(D), k->0, we defined in 1.2. Let CT(Q) be the
collection of infinitely differentiable functions on Q such that:

for any u C(Q) there exists a positive number A A(u) such that u vanishes
on Q-QA where Qa={(r, O)[1/A<r<A, 0< 0<to}.
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Analogously we denote by C(D) the collection of infinitely differentiable functions
on D such that for any u C(D) there exists A A(u)> 0 such that u vanishes on

D-DA where DA {(r, O)I-A < r<A, 0< 0<w}. It is not difficult to show (see [12])"
LEMMA 2.1. CT(Q) (respectively CT(D)) is dense in kdl(Q) (respectively (D)),

klO.
LEMMA 2.2. e space ,I(Q) and (D) are complete.
Consider now the following problem on Q,

l ou l
+ =f onO,

gO GO[(2.2) Ulo=o o=o,

Ou g= G1]o=
O o=

where g and g are the traces of functions G and G defined on Q. Introducing new
variable

1
r=ln-

we transform the problem (2.2) into the problem on D

(2.3a) kOrz+O0] =f(r, 0),

a[0=o o=o,
(2.3b)

O0 o=

where
fi(r, 0)= u(e-, 0), f(r, 0)= e-2f(e-’, 0),
d’(r, 0)= e-"Ot(e-, 0), /=0, 1.

LEMMA 2.3. Letf h(D), i ?2h-i(D), =0, 1, 0< h < 7r/2w, then the solution
of (2.3) exists in Ygh(D), is unique and for 0 <-]a[ <-2"

(2.4)

where

and C is independent off and (i.
Proof (1) Because of Lemmas 2.1 and 2.2, we may assume that jT, tie C(D).

Denote byf(A, 0) o%(j7) 1/ ae- "f(r, O) dr, (, 0) () the Fourier
transform (in r) of ] and

Because G’ C(D) the Fourier transform for all . By the basic propeaies of
the Fourier transform we get with

002
do(a, O)1o=o(2.5) fi(A, 0)lo=o

00
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The boundary value problem for the ordinary differential equation

=0

has eigenvalues Ak i(Tr/w)(k-1/2), k= 1, 2,..-, and corresponding eigenfunctions
Uk sin (r/w)(k-1/2)O. Hence for 0< h < r/2w (2.5) always has a unique solution and
by [3], [14] (formula (1.14))

all 2 14 2 < 2 0 2 1H2<,>/I Ilall2<,>=CEIlYllz,>/ll 11-2<,>/11 I1,’<,>
(2.6) ^0+{A[z[G (A, 0)I=/IA[[x(A, w)l=].

It follows from the basic property of the Fourier transform that for any integer s, s =< k
and for any F in the set of admissible functions

(2.7)

okF(r, O)
O,rSO0 k-s

hrOkF(7", O)
e

OrSO0- 2)dr dO

o-@(a, o)

Hence for if= -l(a) we get

(2.8) e2hr

D

(2.9) Io e2hz
Or21

02 2

d -oo+ ih L2(I

o+ ih

&dO= lalallall 2
L2(I)

d-oo+ ih

By the interpolation space theorem [8]

L2(I)

L2(I))
<= C 1/ ]a /IAI4 11112=

where C1 depends on h but not on )t and . Hence

eTM
021 2 oo+ih 2

dr dO la 12
0

da
D 0"1"(90 d-oo+ih L2(I

(2.10)
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We have also

(2.11)
J-o+ih

e=+ [j[2__ /:o == -=’l=O IW dTdO,

"0 [- eh_0(
J--+ih

(2.12)
< Cllehr(A, 0)112H2(D)

++,h

Ialldl(A, )l2 dA Cllehrdl(a, )[[l/2(R1)
-m+ih

(2.13)
a Clle:’(*, 0)II’<D>.

Hence from (2.6) using (2.8)-(2.13) we get for lal 2;

(2.14) eZhlDal dzdO <= C I111 .<o+ lid’211-’<o
D i=0

For 0, we have

e2hr

fD e2hr

(2.15)

(2.16)

and (2.4) is proven.
(2) Let a ,(D) and

x+ih

draO= lal:"llall :
L2(I dh

-cxz+ ih

oo+ ih

-oo+ ih
L2(I

i=0

o+ ih

drdO=
J oo-ih

oo+ ih

--oo+ ih

di2" )i=0

Ate=0 inD,

Hence we can write

(2.17)

(2.18)

(r, 0)= , a(r) sin j-
j=l

ioa(r) =2 a(r, O) sin j- dO,



REGULARITY OF ELLIPTIC PROBLEMS. PART 183

aj (r) =2 02(r, O)
sin j- dO

to Or2

Because fo: each j, j 1, 2,..., a(r) satisfies

we have

(2.19) aj(r) Cj e
-(r/w)(j-1/2)r + dj e=/)-’/2).

For A > 0 arbitrary

oo > Io e2h[ 12 dr dO

AA (I (,=l a(r)sin-(,--))
2

O

-a -j=l laj( r)12 e2h dr

__w la(r)l 2 eTM dr.
2=1 -A

dO) eTM dr

For j 1

[al(7")] 2 c21 e-’/+ d 2, e{=/)+ 2c, a,
and hence

1 -2hA)la,(r)l e2 dr= 2Cld,-(e2hA--e (2h- rr/w)
e(2h-r/ )A -e

d2

(2h + rr/o)
e(2h+r/w)A e-(2h+rr/w)A)

-(2h-rr/ )A

and

+A

oo > lim lal(r)l 2 eTM dr
A-+oo -A

lim e2hA q_ el(rr/o_2h)lA + d
A-o "a’/tO 2h) (2h q" 7/’/(.0

e(2h+’rr/)a

Hence c1, dl "--0. Similarly we get cj=dj=0 for all l=<j<oo, which implies the
uniqueness of the solution of (2.3) in ’(D).

We have not explicitly used in the proof of Lemma 2.3 the assumption h < rr/2oo.
We have used only h > 0 and h # rr/2w(k-1/2), k 1, 2, . The assumption h < 7r/2w
is essential in the next lemma.
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LEMMA 2.4. Let the assumptions of Lemma 2.3 hold. Let, in addition, f(r, 0)= 0,
’(r,O)=O for r<O. Then for e>O and O<= y=h+(Tr/2w)-e, 1=
{ r, 01-o < r < O, 0 < 0 < oo} one has

(2.20) I IDI2 e2(h-3’)z drdO<-- C(e) I IDI2 ezhr drdO, lal<=2.

Proof. Equations (2.17)-(2.19), hold, and

> 1712 e2h’drdO= E lab(r)[ e2h’dr.
b j-----1

Hence for A > 0 arbitrary
2c (1 e-2(h-(/w)(j-1/2))A)

-A
laj(r)l eh dr= 2cfl) (1 --e-2hA)+2( h --(/oo)(j--1/2))

+ d] (1
2( h + Trl to )(j 1/2)

Since 0 < h < r/2w and A > 0 is arbitrary we have cj 0, j 1, 2, and

I a(-)l: e2h" d=
dj (1 e-2(h+(/w)(j-1/2))A)

-A 2(h+(/w)(j-))
o d} (1 e-2(h-Y+(/w)(J-))a)._Ala(r)[2 e2(h-v) dr=2(h_y+(/w)(j_))

IfOy=h+/2w-e,e>Othen

lim
d](1 e-2((/w)(j-1)+e)a)

2 aj=l 2(e+(/w)(j-1))

CjI 2(h+(/o)(j-))

C ( a[ e2hr dr dO.

Similarly we have for [a[ 2

e2hr dO.

Lemmas 2.3 and 2.4 address the regularity of the problem (2.3) when on
respectively, F, the Dirichlet respectively the Neumann condition has been given. The
same statement holds if on F and F the Dirichlet or Neumann condition are given.

LEMMA 2.5. Let f Wh(D), o (D) (respectively ’ (D)), O<h < /.
en the Dirichlet (respectively Neumann) problem

0),

(2.21b) a]o=o 8o o=o
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(respectively)

(2.21c)
On o=,o o=,o

has a unique solution in Ygh(D) and for 0 <= al <-2

(2.22) IID’ffl[ 2

If in addition f O, o (respectively 1) 0 for r < 0 then for 0 <- y h + r/ oo e, e > O,
o-<[,1__<2

(2.23)

where a*(r, O)= a(r, 0), for the Dirichlet problem and

a*(-, 0)= tT(z, 0) ---1 tT(r, 0) dO

for the Neumann problem.
The proof is quite the same. In the case of Neumann conditions it is enough to

realize that a similar summation as in (2.17) is for j =0, 1, 2,. ..
02-,2-LZMMa 2.6. Letft(Q) gt3 (Q), i=0, 1, 0</3 <1,/3> 1-7r/2w and

let f G= 0 for r >- 1; then the mixed problem

(2.24a) -Au =f(r, 0),

gO= GO[oU[0=0"-- =0
(2.24b)

Ou 10u
gl-- G1 0---o

On o= r O0 o=,o

has a solution such that
(i) (._o) w(o), u x.(s,
(ii) [[ul[.o(o)<,
(iii) there exists a constant C independent of u, f G such that for ]a[ 2

where Q={q OO<r<,O<O<w} and S={q OlO<r<l,O<O<w}.
Proof First assume that G 0. Let 0 < h B < /2w and r In (1/r). Then

we have for ](r, 0)= e-f(e-, O) and (r, 0)= e-G(e-, O)

eh’lf(, 0) d dO e-(-h’lf(e-’, 0).1 d dO
D

o rlf(r’ )lr dr dO(.a

D
(.b

r(-Gl(r, O)lr dr dO
SU Q;
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where we denoted

Q2 {(r, O)ll<=r<oo, O<O<o}.
By Lemma A.2 (see Appendix)

fs r2(-’)lG’2rdrdO<= C[ 1= Is r2(+’-)lG12rdrdO+ fs IG12rdrdO]
and

Hence

and for , + O2 1

r2(-’)lG’[2rdrdO<= Ic IG’12rdrdO"
Q2

Therefore

(2.27)

e2hl’ o,,1 drdO f r(’-’+)lG,olr dr dO.
D Q

Using (2.26) and (2.27) and Lemma 2.3 we see that the equation

-(E+oo)=f in D,

(2.28) a[o=o=0,

a0 o=,o

has the unique solution ff Yg(D) and (2.4) holds. Let u=ff(ln (I/r), 0), then u
satisfies (2.24) and for Icel_-<2

f r(’,-2+t3lur,o12rdrdO<_C Ioe2hlEt,o12drdO
O 112

(2.29)

Hence u W(Q) and (2.25) is proven for G 0. For G 0 we define w u G; then

-w=f+aG=
W]o=o O
low ( G’ I OG

Applying now (2.29) (respectively (2.25)) to this case we get w W(Q) and

=0,1

which proves (2.25) in full generality.
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Let us prove now that 91U H(Q) < (30. Equation (2.25) shows that 91U H(S1 < (30;
hence we have to prove only that

We have by Lemma 2.4 for h=l- and OT=/2+h-e, e>O, ]a[2

(2.30) fo ]ul2r2(’-2+)+2rr dr dO ]D12 e2(h-r)z dr dO <.
Paicularly for a + a2 1 and 0< e < /2w we have

fQ ,Ur]2r dr dO N fQ ,ur,Zr2(-l+O+l-+(/2’-)r dr dO
(2.31)

u[Zr’-+)+rr dr dO <
Q2

and

1 I 12r2(-2++(1-)+(r/2)-e)-luol=r dr dO < [Uo
Qz

(2.32)

aQ

and (ii) of Lemma 2.6 is proven.
Analogously we have the following.
LEMMA 2.7. Let f6 t3(Q), Gi -i,2-(Q), i=0, 1, 0</3 < 1, /3 > 1 -(Tr/w)

f G= 0 for r > 1, then the Dirichlet (respectively Neumann) problem

(2.33a) -Au f(r, 0),

U[o =o,,o g Go] o =o,o
(2.33b)

( Ou
respectively--n o=o,o

has a solution such that
2(i) (u-G) We(Q)(respectively u W(Q)), U ’2(S1), and

where u*(r, 0)= u(r, 0)-1/oo o u(r, O) dO for the Neumann problem,
(iii) (2.25) holds with GI=0 (respectively G-0).
Let us now prove the following.
LEMMA 2.8. Let uIYt’(O)={ulol@’ul2rdrdO<c, ulro=0} and u=O for r> 1

be the solution of the problem

-au =f,

On

2-- i,2--with f3(Q), Git3 (Q),f and G vanish for r>l, i=O, 1, O<fl<l, fl>
1 7r/2tofor the mixedproblem and fl > 1 7r/tofor the Dirichlet and Neumann problem,
where F is the union of the edges of Q, or the empty set, F1= oQ-F.
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Further let w W(Q) be the solution of the same problem given in Lemmas 2.6
and 2.7. Then u w if F # (i.e. for the Dirichlet or mixed problem) and u w + C if
F= (i.e. Neumann problem).

Proof. We first prove the lemma for the Dirichlet problem. We may assume GO= O.
Since II  wll o<o>< by Lemma 2.7, we have for every vIYt(Q)
{vlollvl2rdrdO<o, vlro=O, v=O for r>A(v)}

WrVr +.--5 WoVo r dr dO UrVr +5 UoVo r dr dO
Q Q

and hence

wr u vr +- Wo Uo Vo r dr dO O.

Because o(Q) is dense in I(Q) the equality holds also for v w u. This immediately
gives w u + C and obviously C =0. Now we prove the lemma for the Neumann
problem.

Let u*=u-1/to o u(r, O) dO--u-bo(r) and w* W-o (1/w)w(r, O) dO=
w-ao(r). Then by Lemma 2.7 II’w*[I.oo <. Let

(Q)= u I’ul2rdrdO<, u(r, O) dO=O

Then for any v (Q) having bounded suppo

wv+ WoVo r dr dO

W V ""- W:o Vo r dr dO

and hence

I ((u*-w*)Vr+-l(U*o-W*o)Vo)rdrdO=O.Q r

Since the set of v (Q) having bounded support is dense in (Q) we get u* w*
C. Thus

u w u*- w* do(r)- bo(r) C(r)

and because u, w solve the same problem and obviously OC/O0 =0, we get

fo Crvr dr dO 0

for any vH={vll@’vl2rdrdO<, hence C(r)=C+C_log(1/r); but C(r)=
(u-w)H(S1) by Lemma 2.7, and hence C2=0 and u-w=C.

2.2. The regularity of the solution on a polygonal domain
LEMMA 2.9. Let g GIv H/2"l/Z( 3/) where "y is the edge of 0. Then

L( y).
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Proof Let Fi y be the edge connecting the vertices Ai+l and Ai, let A be placed
at the origin and F lies on the xl-axis. Assume that S’, c f. It is sufficient to prove
that on o rOlG(Xl, 0)12 dXl < with/3 =/3i.

Let F rtG. Then

F,, rtG,, +/3rt- x___/G.
r

By Lemma A.3 of the Appendix

and hence

IIFll n’sT,)--<
By the imbedding theorem FLp(Ia) for any p> 1, Ia =(0, 6) (see [1]), and

lilliput,,>--< CIIfll,’<s,> <-- C 11’().
Hence

f
IIr/=GIl=<,)-- | r-lFI dx

d

C(II r-flqdxl)l/q(filFl2p)l/P
ClIFII 2 ClIFll,,, cII 11,)

where 1/p+l/q=l andflq<l,p>l,q
LEMMA 2.10. Let f(O). en ,fvdx is a linear continuous functional on

n’(o) and IIf[l(,’(.),
The proof follows easily from the Schwarz inequality and imbedding theorem.

See also 12].
2-i,2-iLMM 2 11. Let f (), G () O, 1 and IFI 0. en

(2.34)

-Au =f,
u lro gO= GOlro,
0U G1
On r

has the unique solution u H1 f (in the weak sense) and

(2.35)
=0,1

Proof Without loss of generality we can assume that GO= 0 because AGO ()
and OG/Oxi H’I(). Applying Lemma 2.10 it suffices to show that

gavdx

is a linear functional on HI(-).
We have

g v ds rt3 Eg r-O 2v ds,(2.36)
r’

(2.37) Ir, r-tv2 ds <= ( Ir, r--P ds) l/P( Ir, lVl2q dx) l/q



190 I. BABUKA AND B. GUO

and (2.36) together with Lemma 2.9 and (2.37) shows that

The Lax-Milgram lemma yields (2.35) and the uniqueness.
Remark. If IF] 0 and

(2.38) ffdx+Irglds=O,,
then Lemma 2.11 holds in the factor space modulo a constant.

Proof of Theorem 2.1. Consider the polygonal domain shown in Fig. 2.1. Let

Si,,3 { r,, Oi ]0 < r, < ti, 0 < 0, < wi} =
where (ri, Oi) are the polar coordinates with respect to the vertex Ai. (See Fig. 2.2.)

Let < 1, be such that Sa. 71SjO ; for i# j, i, j 1,... M. By Lemma 2.11
there is a unique solution of (2:1i in/:/(a). By Theorem 5.7.1, 5.7.1’ and 6.6.1 of [16],
u is analytic in and on F, 1 .<= <= M (because f and g are analytic functions in

Ai- As

F +I

Ai Fi Ai+l
FIG. 2.1. The polygonal domain.

0i
Ai Fi
FIG. 2.2. The scheme of coordinates (ri, Oi).
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and on Fi by our assumption). Hence Theorem 2.1 holds on ’--u/M=I Si,i/4 and in
particular we have for ]a[ k, k-> 2

d-2k-2)(2.39) IIr/ull,s.si-s,.,/2 <- Ci,o ,o

Hence, it is sufficient to prove that in each sector S,,/2, 1 <-_i<= M and la] k, k =>2
we have

(2.40) I}r71-2)atlJlLi(S,,i/2)<: Z,D-2P/(k-2)!
with L, D, Pi independent of k (see also Theorem 1.1 and (1.13)). There are three
cases to be considered:

(i) F1 = FO, Fi-1 = F1,
(ii) Fi, Fi-lC F,
(iii) Fi, Fi-1 F1.

We may assume that Ai is located at the origin and Fi lies on x-axes. To simplify the
notation we will write S,--S and/3 =/3, etc.

We will prove case (i) only. The proof for the other two cases is analogous.
Obviously the solution of problem (2.1) satisfies

-au =f,
o

(2.41)

where

Let

Denote

l Fl O S, i- l, i.

o C(R+),
qo(x)=l for 0 -< x =< 1/2,
qo(X) 0 for x => 1,

V qou.

Then, by zero extension outside S, function v is defined on the infinite sector
Q {(r, 0)10 < r < c, 0 < 0 < to } and v satisfies

-Av f+2VVu + uAcp f,

 lo=o=
(2.42)

Ov 1 0v
qgGllo=,o

On o=o r O0

Obviously v e H(Q) and jT, to, t =0 for r > 1. Denote by w the solution of (2.24)
mentioned in Lemma 2.6. Then using Lemma 2.8 we see that v w and hence by (2.25)

(2.43)
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In (2.43) we have used the fact that q =0 for r > 6. Because Vo Aq 0 for 0 < r < 6/2
and r > 6 we have

Because f B(O), G B-(O) we get immediately from (2.43)

(2.44)

with C2 dependent on 6 and o. Hence (2.40) holds for lal 2. Let

(2.45) Vk rkurk, k >- 2.

Then

(2.46)

--Ark rk-Z( rZf)r

Ovk 10Vk
On o=,o r O0 o=,o

(rkGrk + kr-Ga-,)lo=.,.

Let Wk (OVk. Then

-AWk --(0AVk 2VqVVk VkA(o

and

On O

10Wk[ q( rkGlr + krk-l G-,)lo=,o.

Hence analogously as before

v g,=s,=> -< cell rk-2(r2f)r ocs / v ,’(s-s, + v
(2.47)

+ rGll g,(s) + rG’rll .’(s) + kll r-’ G’-’ ’Is)]"
2--iBecause fe B(O), G e B (O) we have

[Ir-=(r=f)ll(s) C3d,(2.48a)

(2.48b)

(2.48c)

Using (2.39) we get

kllrk-’ Grk-lll e,,(s) N Cdksk!.

IIvll,’(s-s= Cd-l(k- 1)!,

Vk eOo(s_s/2) <- Cdko-2( k 2)

with C independent of k (depending on 6). Hence

(2.49) IIvll ’2(s/z) <-- C6dk6 k!
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with C6 and d6 independent of k, L, D and P. Assume now by induction that (2.40)
holds for k’< k. Then we get using (2.49)

rkurk+2ll e(88/2) C6d k + 2kLDk-l k 1)! + k( k 1 LDk-2(k 2)!
(2.50a)

<_ LDkk

provided that D and L are large enough. Further P> 1, e.g., P 2

(2.50b) Ilrk-lurk/,oll:e(s/) <--C6dk+k(k-1)!LDk-lp<--LDkpk!
(2.50c) rk--2Urk02lla(S/2) C6dk[ < LKkp2k[.

Inequalities (2.50) yield (2.40) with 2 and a22.
Let us now prove (2.40) by induction with respect to a2. Let v ruo-, 2 2,

1 + 2 k, 1 2. Then

-Av r’-2(r2fo-)r,
and also

2 .--2--AV --ra*-2Ur,ou--(2al + 1)r’-lUrl+,o.2-2--l r Ur,O2-- lUFal+202-2.

Hence

+(2al +
(2.51)

Because f B(fl) we have

(2.52)

By the induction assumption

< LD-2p-2(k_2)

IIr’-2Ur,O2-ll,)

(2.53a)

(2.53b)

(2.53c)

Hence from (2.47)

(2.54)

rl-2Ur,o=ll (s/=) (k-2)![ c3dk3 -2 + LDk-2p’-2 + LDk-3p’-2(20z + 1)

+ LDk-4p’-20z 21]
<-_ LDk-2P’*2( k 2)

provided that L, D and P are sufficiently large. Similarly we can prove (2.40) for
ce22 01--0 1.

Theorem 2.1 is proven for the case (i). The other cases are analogous.
Combining our results for every vertex we easily complete the proof. E

3. Regularity of the solution of the elliptic equation in a polygonal domain ft. In
2 we analyzed the problem of the regularity of the solution of the Poisson problem

on a polygonal domain. In this section we will consider the general case of the elliptic
equation of second order with analytic coefficients.
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3.1. The problem and its basic properties. Let

2 2

(3.1) L(u ., ai,jUx, . + Z biu, + cu.
i,j= i=

Let us consider the problem

(3.2)

L(u) f in

OU

Onc
gl__ GIIF on F

F

where

F0--- U Pi, FI=F-F,
i=

and nc is the conormal.
Let 1 be the polygonal domain in R2 and Fi be the open edge of 01-1 (see 2.1).
About f and gi, i=0, 1 we will make the same assumptions as in Theorem 2.1

but replacing wi by w/* e (0, 27r], which will be defined later. About the operator L we
will assume that

(i) ai, aj,, hi, c are analytic function on 12,
(ii)

2

(3.3) E a,,jIj >--_ tXo(,i + 2dz), tXo > O,
l,j=

i.e., the operator is strongly elliptic.
(iii) Denote (see 1.2)

H(a) {u e Hi(a) u 0 on r}
and

B(u, v), uH(F), vH(f)

the bilinear form

(3.4) B(u, v)= Ia (aidUx’Vxj + biux,V+ cuv) dx.

Assume that

(3.5a) inf sup [B(u, v)] >= y > 0,
Ilullnl(m= IlvllH(m=

and for any v e H(a), v e 0

(3.5b) sup IB(u, v)l > 0.
[lullNl.(m=

Conditions (i), (ii) guarantee the existence and uniqueness of u e H(O) such that

(3.6) n(u, v) v(v)
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holds for any v Ho(12) for any F(v) H(12))’, i.e., F(v) being a linear functional
on Ho(12). In addition we have

(3.7)

with C independent of F.
For the proof see e.g. [4, p. 112]. Hence we have

u2-,.2-,(12) and Ir[0, /3=LEMMA 3 1 Let f t3(12)= nt3"(12), Gi "’8
(fl,," ", flt), 0< fli < 1. Then (3.2) has the unique solution u HI(I) (in the weak
sense) and

The proof is completely analogous to the proof of Lemma 2.11, only replacing
the Lax-Milgram lemma by its generalized form based on (3.5), (3.6), (3.7).

Remark 1. Condition (3.5a) and (3.5b) exclude the case when F=. Nevertheless
this case which occurs in the case of Neumann problem and b c 0 can be treated
in the usual way by restricting of H(12) to a modulo space.

LEMMA 3.2. Let L be the operator (3 1) with a o
.j aj, constants and bi c O. Let

M be the linear transformation, (a,2x1 al,,X2)/x/al,la, a (al,, a2,2-[a,210 2),/2,
(3.8)

x /,/a
and /(1, 2)-" U(XI(I, 72), X2(l, 2))" Then

Lu (-Ate)

and the conormal nc in (Xl, x2) transforms into the normal n in (SOl, so2). [-I

The lemma follows easily by simple computation.
The transformation M maps the polygonal domain 12 into the polygonal domain

12" with interior angles w*, w* M(ooi).
Now let L be the general operator (3.1). By assumption the coefficients a. are

analytic on 12. Hence we can define mappings Mk associated to the vertices Ak with
o

ai,j-- ai,j(Ak) and set ook* M(ook).

3.2. The regularity of the solution. The main theorem of this chapter is as follows
THEOREM 3.1. Letfe Bt3(12), gl e B3J2-1(Fl),/=0, 1,/3 (/3,,’.., tiM), 0</3, < 1,

> 1 7r/ oo (respectively > 1 7r/2oo ifDirichlet and Neumann boundary conditions
are imposed on the edges F and F_I, f’ f-I f’_l A) and F # . Then problem (3.1)
has a unique solution in H’(1)) and u e B(12).

Proof. The main idea of the proof is the same as in Theorem 2.1, namely that in
the neighborhood of every vertex Ai the inequality (2.40) holds. By Theorem 5.7.1,
5.7.1’ and 6.6.1 of [16] u is analytic in 12 and on (open) F, 1-< i<-M.

Let the mapping Mt map 12 into 12" with the vertex At mapped into the origin
and the edge Ft being mapped into F* lying on the 71 axis. Defining /(1, 2)--
u(Mi-l(:l, :2)) we have

(3.9) L*(ff) =f
where

2 2

(3.10) L*(ff) =-ART- E a,.jte,ej + E bj +t
i,j=l j=l

with d,j(0, 0)=0, and ,,/ and are analytic functions in 1*.
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Let S { r, 0 l0 < r < 61, 0 < 0 < w*}, 61 6 < 1 and S c 1*. Let us analyze in detail
the case F*_I, F* c F*. (Let us write further Fl instead of F*.) We have

L*()=f onS,
(3.11)

where i FI S. Without a loss of generality we assume that Go-- 0 (if not we set
v u G). We rewrite (3.10) by replacing t, ,,,/, , ? by u, a,,, b, c, f, and (:I, :2)
by (Xl, XE). Then

2 2

(3.12) -Au =fl =f+ Y. ai,jUxixj ., bjuxj cu, ul[.tu[.t_ O.
i,j=l j=l

By Theorem 2.1 (see (2.44)) we have for/31> 1-r/oo* and 61 <8/2

(3.13)

where for simplicity we set/3-/31. Since a,(O, O)-0 and aw are analytic in 1)* we
have ]a,]-< C1 r in S and hence

(3.14) Ila,,u,,ll,(s,> C161llUxixjll,Sg(S,sl>
One has

sin 0

/JXl Igr2 COS
2 0 lrO

sin 20 1 1 1+- uo sinE 0 +- Ur sinE 0 + -5 Uo sin 2 0
r-

and similar expressions for Ux,,2 and ux. Using Lemma A.2 scaled to the sector S, we
get for [a[ 1

1’1--2

with C2 -> 1 independent of 81.
Hence

/
uxll s,>

II=E
(3.15)

-< cll u .,>.
Analogously it can be readily proven that (3.15) holds for ux,, i= 1, 2.

Using (3.14) in (3.15) we get

2

Z
i,j=

(3.16)

where C is independent of u and 61. Let us select 61 so that CoC61 < 1/2. Then we get
from (3.13)-(3.16)

(3.17) u 5.,>_-< Co[llfll>+ u II,’<-s,> + Ilull2s-s/,]+ CoC3lllUll:,.s,>.
Hence

(3.18) u
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Because u is analytic we have for any [a k

(3.19) Iloull(s_s, <= Cdksk!
and we have also u e HI(s). Hence u e ’2(S,).

Let now Vk rkurk, k_-> 1. Then

(3.20) _AI)k =f =f,)+f2)

where

(3.21a) f(k1)-- rk-(r2f)?,

(3.22) IIvll ,=s,
Since by assumptionf B(O) there exist constants Cy, dy such that

(3.23)

Because the coefficients a,, b, c are analytic in there exist constants C6, d6 such
that for }a] k > 0

IDa,,l< f6dk
(3.24) IDbvl C6dk,

IDctf6dkt.

As before we have

Hence for 0 =< k- m _-< 2

and for k- m => 2
I(r2ai,j)rk-,.[ 6r(2-k+m)d(62-k+m)

where

Obviously

(3.26)

[(r2ai,j)r-,.[ <- 6dk6-m(k- m)!.

Therefore for i, j 1, 2

2 )rk 11G’t3(Ssl) o r2ai,)r-"(ux,x;)r"lles,

(3.25) C16111ykUx,xr11o(Sal)

m=0

(m,k)=2-k+m for0< k-m =<2,

:( m, k) 0 for k rn > 2.

12Vkl <= rkl)2Urkl + 2klrk-’ Urk+’l + k(k 1)lr-ul

( 2 2 )(3.21b) fk2)= rk-- r2 L a,.jUx,,,j- r2 Z bju,,j- r2cu
l,j=l j=l
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and by (A.10) of Lemma A.4 we get

(3.27)

llvkllg’=s,)+Ck!( E k-lal+3
=<--<--+, (1’1- 2)!
0Na2N2

For m =< k-1, by (A.11) of Lemma A.4

rk-2+(m’k)u

(3.28) <-C7m!(=<=I,I<=,.+=Y (m-lal/3)llr’’-’ull’<s"/llull’-"<Sl>)2)!
\ 0a2--<2

Hence

1 ( k) rk_2( r2aq)rk_,.( Uxixj)rm (st)
m=0 m

(3.29)
k_, (<= C7k! 2 d7 x
=0 2<--[a[m+2

(m-[l+3)

Similarly

(3.30)

Thus

(3.31) k-1

+ Ilull’,+ . dk7
m=0 2<=lal-<m+2

0<ct2--<2

(m-[a[/3) iir,_=ull(11-2)! s,

k 1
+ E dk-" E
m=0 2----<lal -<m+l (11-1)!

oct2=<l

Assuming by induction that (2.40) holds for a2<-2 and ]a[_-< k-1 and realizing that
for CoC11 <1/2 we get (2.40) for [a[ k, a2-<2 provided that L and D are sufficiently
large.
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The same argument as has been used in 2 yields (2.40) for a_> 2. So far we
have assumed that (Fl-1U Fl) F. In the case Flc F1, F/_I c F we proceed analogously.
We have

2 2

-Au =f+ Z ai.ju,,xj Z bjuxj cu =fl on SI Ulrl_ O,
i,j=l j=l

O [ OU a2,2Ux2)
3n , ,c

-(al’aux’+

o’l,-(a,,aUx+ aa.2Ux2)]
with ad(0 0)=0. By (2.44) we have

and the proof is very similar as before. The same arguments hold for the case
(F U F_)c F1. Combining the results for every veaex we get our theorem.

Remark 2. In the proof that u B(fl) we have only assumed that the solution
exists. The other conditions, namely (3.4) and (3.5), only guarantee this existence.

We have assumed that the coefficients a,;, b;, c are analytic on ft. This assumption
can be weakened. For example, we can assume that a., b;, c are analytic on U A;
and in the neighborhood of At, l= 1,..., M

ID a,,; ai,j(Al))l Cdkk r7-,
IDbl Cdk r;--’,

e-k--2IDcl < Cdk r

with arbitrary e>0, e>0, e>0, e@l> 1, and k=la 1. Neveheless we will not
go in fuher detail although this case plays an impoant role when nonlinear problem
is studied.

4. Appendix.
LEMMA A.1. One has the inequality

io(A.1) t-2[z(t)-a dt <-C(a) t
dz

dt, a 1

where for a < 1, z(t) is continuous on (0, 1 ], and a z(0); for a > 1, z(t) is continuous
on (0, 1], and a z(1).

Proof For a < 1, we have by Theorem 2.53 of [13]

s-=lw(s)l= ds C Iw’(s) ds+ w(1) w(0) =0.
o

Because Iw(1)12lolw’(s)l2 as we have

s (s) &C I’(s)l&.

Setting w(t) z() z(0) and s 1- we get

z(t) (0 c z’(l .
For > 1 we use Theorem 2.53 of [13]

-l(sas4 ’(1a,
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Setting t=s1/(1-), w(s)=z(sl/(1-))-z(1) for s> 1 and w(s)=0 for s-<l. Then we
get (A.1).

LEMMA A.2. Let S { r, 010 < r < 6, 0 < 0 < to }. Then for 0 < fl < 1:
(i)

(A.2) L2(SI--S1/2

(ii) for Il- 1

)

then

and hence

Proof. The proof is similar to the one of [5].
(1) Let

Using (A.1) we get

a(r)
1 Io u(r, o) dO;

ar(r) _1 ur(r, O) dO

r2+llfir(r)] 2 dr <-

r2-lla(r)- al 2 dr < cIlll

Where a fi(1), and by the imbedding theorem

lal <= c a2 + a2) dr.
/2

Hence

r2-llff(r) dr < c[llull oO(S1) /

and

(A.4) F-1 a 2.o97 (Sl) --< C[llurll(s, +
Further for almost all r, go we get

u(r, go)-u(r, )= uo(r, O) dO

and therefore

lu(r, )-a(r)/-Io-’ dO uo(r, O) dOI
o

c Io(, o1 ao
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and

Hence

lu(r, cp)-a(r)[2 dO < C ]uo(r, 0)12 dO.

r-lu(r, c)- 7(r)lr dr dq9 <- C fs r-lu(r’ O)lr dr dO.

Combining (A.4) and (A.5) we get (A.2).
(2) Let v Ur. Then using (A.2) we have

ilr-,Urll= < C[[lU,rll= r-1 2 2

which is (A.3) for al 1, a2 =0. Now let v Uo and repeat our argument. Let

0( r) _1 v( r, O) dO.

Then

and

Hence

O2(r) <- C v2(r, O) dO,

’ r dd-d-d-r r
l fo Uro dO

Uro) dO.

5’2(r)r-1+2 dr < C 2 r-2+2ru ,0) dr dO

,/3(Sl) < 0C),
Ic’1=2

and therefore ,5(r) is continuous on [0, 1]. We also have

fo 12(r) dr<-II u ,’s, <
r

and hence 3(0) 0.
Using now Lemma A.1 we have

r2/3-31/7(r)[2 dr<- C r23- /Tr(r)l 2 dr
o

and hence

(A.6)

Analogously as before

Iv(r, o)- (r)l= dp <- C Ivol = d

<- c luool
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and

(A.7) fs r2U3-E)lv(r’ ) 6(r)[2r dr dq <- C Is r2(-2)lu12r dr dqg"

Combining (A.6) and (A.7) we get (A.3).
LEMMA A.3. For 0 < fl < 1 one has

(A.8) lit-lull 2 < c[ l= llDull 2 ]
For 1

Proof Because

(A.8) follows immediately from (A.2). Let Du. Then (A.9) follows immediately
from (A.8).

LMMh A.4. Let S { r, 0 [0 < r< 6, 0 < 0 < w}. en for k > O, i, j 1, 2

L 0a22

andformNk-l, k1, i,j=1,2

(A.ll) [lrk_2+(m,k)uxixjrmll(S) Cml

k 0a2

where

(m,k)=2-k+m forO<k-m2,

(m, k) =0 fork-m>2
and C is independent of u, but depends on 6 and

Proof We will prove (A.10) only for =j 1. Proof of the other two cases is
completely analogous. We have

sin 20 1 1 1
u u cos2 0 Uo+ sin2 0 +-u sin2 0 + Uo sin 20.

r

Hence

(A.12)

rkux2r rk( llr2+k COS
2 0 Urk+lo

sin20 1
+ sin2 0

r - Urko2

sin 20 (-1)k-I k l)). rl-1 Ur’-’ 0
/=0

+sin20 Z (-1)k-t (k-l+l)!rl-2ur’o
/=0

+sin2 0 Z (-1)k-t

1=0
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+sin20 (--1)k/l()(k l+l)r-2
1=0

which yields

Ilrkux2rk[[,(S) <- Ilrk[2Url

(kll 1 (k-t+1) rl--2+k ]]r/-1

(A.13) + llrl-lUrl+l[[(s)+ Ilr
1=0 /=0 II --2UrtoII(S)

/

Equation (A.13) combined with Lemma 2 yields (A.10).
The proof of (A.11) is quite analogous.
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A GENERALIZED DIRICHLET PRINCIPLE FOR SECOND ORDER
NONSELFADJOINT ELLIPTIC OPERATORS*

ROSS G. PINSKY"

Abstract. The classical Dirichlet principle states that if the spectrum of L 1/2A V on a smooth bounded
domain D R" with the Dirichlet boundary condition on OD is negative, then the unique solution bo of

Lb 0 in D with bo =f on OD, for a smooth function f, minimizes a certain energy integral. This may be
easily extended to the operator L 1/27. a7 + a7Q. 7- V. Now L is selfadjoint with respect to the density
e2Q. In this paper, we generalize this result to nonselfadjoint operators on bounded domains. We consider
the solution b to Lqbo=(1/27 aT+b. 7-V)qbo=O in D and qbo=f>-O on dD under the assumption
Re (or(L))< 0 for L with the Dirichlet boundary condition on OD.

Key words, second order nonselfadjoint elliptic operator, Dirichlet principle, mini-max formula

AMS(MOS) subject classification. 35J

1. Introduction. Consider the Dirichlet problem in a smooth bounded domain D,
that is,

(1.1) 1/2Au =0 in D and u =f on OD forf W’2(D).
The classical Dirichlet or energy principle states that

ho inf ID l
lvl=

4,:Son0D
dx is attained uniquely at b bo

bE WI’2(D)

where bo is the unique solution to (1.1). More generally, if V is smooth and the lead
eigenvalue of the operator 1/2A-V with the Dirichlet boundary condition on OD is
negative, then

Ao inf f (1/2IV 4,]2+ Vb2) dx is attained uniquely at b bo
b=f OD
tE WI’2(D)

where bo uniquely solves 1/2Abo-Vbo =0 in D with bo =f on OD. In fact, if Q is a
smooth function and a(x) is a positive definite matrix at each x R with smooth
entries aij, then the above result can easily be extended to the case L=
1/27 a7 + a7 Q. 7- V Lo- V. Now the Dirichlet principle states" that if the lead
eigenvalue of L with the Dirichlet boundary condition is negative, then

(1.2) ho inf If(l=vckaV4+Vck2e2dx]
<b =f OD LJD\z / J
b wI’Z(D)

is attained uniquely at b bo where bo uniquely solves Lbo 0 in D with bo =f on
OD. Now, if we replace the first order term, aVQ.V, by b. V where a-bis not a
gradient, then the problem is no longer selfadjoint and although a unique solution to
the Dirichlet problem still exists, it is not representable as the solution to a simple
variational problem as above.

In this paper we will extend this variational principle to the nonselfadjoint case.
It turns out that in the nonselfadjoint case, one must consider a mini-max variational
formula rather than a standard one.

* Received by the editors July 2, 1986; accepted for publication February 9, 1987.

" Department of Mathematics, Technion, Israel Institute of Technology, Haifa 32000, Israel.
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In order to see how the minimax formula was arrived at, we need to discuss briefly
the classical Rayleigh-Ritz formula and its generalization to nonselfadjoint operators.
The classical Rayleigh-Ritz variational formula for the largest eigenvalue of the
operator L 1/2A-V for a smooth function V on a smooth domain D c R with the
Dirichlet (Neumann) boundary condition on cgD may be given as follows: the largest
eigenvalue Ao satisfies

inf l’o( 12 ) (= info =, lv6 + v, dx ,o =b=0 OD
b WI’2(D) b WI’2(D)

where I111--(o dx) 1/2" Furthermore, the infimum is attained uniquely at bo, where
bo is the eigenfunction corresponding to Ao. In fact, again, if Q is a smooth function
and a(x) is a positive definite matrix at each x R" with smooth entries a0, then the
above result can easily be extended to the case L 1/2V. aV + aV Q. V V Lo- V with
either the Dirichlet or the conormal boundary condition, naVb 0 on cD, where n is
the outward unit normal. L is now selfadjoint with respect to the density e2, and the
variational formula is given by

Ao= fo( V aV + Vb2) e2dx inthe Dirichlet case,

(1.3)

inf

b =0 OD

the WI’2(D)

Ao inf II_VckaVcb+Vck2|e"dx in the conormal case,
Jo\2 /

where I1 11 e infimum is attained uniquely at o, where o is
the eigenfunction corresponding to &0. As before, if we change the first order term in
Lo from aO. to b. , where a-b is not a gradient, then the operator L is no longer
selfadoint. However, L is still semibounded and has a compact resolvent; consequently
the Krein-Rutman theory of positive operators [4] guarantees that sup (Re ((L)))
occurs at a real eigenvalue. Yet the classical theory does not give a variational formula
for the eigenvalue.

In the nonselfadoint setting, Donsker and Varadhan [1] and Holland [3] have
Obtained for the Dirichlet case and the conormal case respectively, a mini-max vari-
ational formula for &o sup (Re ((L))). Now, in the selfadoint case, comparing (1.2)
and (1.3), one sees that the same functional, (VaV V2) e2Q &, is varied in
both the Rayleigh-tz formula and the Dirichlet principle. The only difference is the
paicular subdomain of WI’2(D) over which the variation is taken. Thus, to generalize
the Dirichlet principle, we were led to consider the functional that was obtained by
Donsker and Varadhan and by Holland, and then to find the appropriate boundary
conditions.

2. Statement and proof of theorem. Let L= Lo-V with Lo 1/2V. aV + b. V in a
bounded domain D c R" where a(x) is a positive definite n x n matrix for all x D
with entries a0. CI’(/)), b is an n-vector with components bi C1’(f3), V Ca(E3)
and cgD is a C2’-boundary. Let/ 1/2V. aV- b. V- V. b- V be the formal adjoint to
L. We will assume that the spectrum of the operator L with the Dirichlet boundary
condition on cgD satisfies Re (or(L)) < 0. Since cr(/) or(L), we also have Re (cr(/)) < 0.
Then, since Lu 0 with u 0 on OD and Lff 0 with ff 0 on OD have only the trivial
solution, there exist unique solutions in C2’ (E3) of Lu =0 in D with u =f on gD and
of/t 0 in D with t =f on gD, for each f and each f in C2’(/)) [2, Thm. 6.15]. In
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partic,ular, let bo solve Lbo= 0 in D with bo=f on OD and let o solve/_7,o 0 in D
with bo =fe2k on OD, where k C2’(/). From here on, we will assume that f_-> 0 and

f 0. Define 0D1 0D f] {f 0}. We have
PROPOSITION 2.1. (a) bo> 0 in D and bo>0 in D;
(b) Vbo. n < 0 on OD1 and Vdpo n < 0 on OD1, where n is the outward unit normal.
Proof. This generalized maximum principle follows from Theorem 10 in [7],

Theorem 6.15 in [2] and the fact that Re (or(L))= Re (or(L))< 0.
Proposition 2.1 gives us the following.
PROPOSITION 2.2. (boo)1/2 W1,2(D).
Proof. From Proposition 2.1, it follows that

0< inf
o(X) o(X)

-<sup
xo q)o(X)-xo 6o(X)

This is enough to show that in fact (boo)1/2
We now present a generalized Dirichlet or energy principle for bo. Actually, we

obtain a family of mini-max variational principlesone for each k, where k is as
above. In the selfadjoint case, that is, the case a-lb V Q, our Dirichlet principle will
reduce to the classical one if and only if k Q on D-OD1. (See Remark 3 after the
statement of the theorem for a proof of this.) It does not seem possible to give just
one mini-max variational principle, which reduces to the classical one simultaneously
for every selfadjoint case.

THEOREM. Let L Lo- V =- a + b V on a bounded region D R with
C2"-boundary OD. Also let /-7,=o-V=-1/2.a-b.-. b-V be the adjoint to L.
Assume that the n n matrix a has entries ao C 1, that the n-vector b has components
b C 1,, (/), that V C () and that f and k are in C2" (:) with f >-_ 0 andf 0 on
D. Define ODI=OD{f=O}. Assume Re (cr(L))<0 where L is the above operator
with the Dirichlet boundary condition on OD.,.and let bo and bo be the unique solutions
to Lqbo 0 in D with qbo =f on OD and to Ldp =0 in D with o =fe2k on OD. Then the
mini-max variational formula

(2.1) (o) inf
g=fe OD
g WI’2(D)

(dist(x, OD1))-lg(x)e L(D)

sup
h k OD-ODI
he W’2(D, g2 dx)

IL(-a-lb)a(-a-lb)g2dx- (Vh-a g2

is attained for a unique pair,

(go, ho) {(g, h)" g WI"2(D), (dist (x, OD1))-lg(x)) L(D), h WI’2(D, g)- dx)},
and in fact go (boo)1/2 and ho 1/2 log to/bo. Thus

(2.2a)

In the special case {f 0 orf 1 } 0D OD, then

(2.2b) fo v av )6
+v 6ogodx.
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Formula (2.2b) also holds for arbitrary f in the selfadjoint case a-lb VQ if Q k on

OD-OD1.
Furthermore, the mini-max principle in (2.1) may be converted to the following

minimum principle:

is attained uniquely at the pair .(go, Zo), where Zo Vho-a-lb and go and ho are as

defined above. Moreover, tz (ok) A (ok.
Before proving the theorem, we make a number of comments.
Remark 1. The theorem ought to hold without the condition (dist (x, OD1))-Ig(x)

L(D). Unfortunately, our proof requires this technical condition.
Remark 2. The smoothness conditions on a, b, V, D, f and k may be ignored as

long as it is known that (possibly weak) solutions bo> 0 and o> 0 exist in W’=(D)
and that ((D0(0) 1/2 is in W’2(D). The only change now is that the condition
(dist (x, OD))-g(x) L(D) should be replaced by blg L(D). It is true that in
the proof, we integrate by parts and use the assumption that bo and o are C--functions.
However, this is merely a convenience.

Remark 3. In the selfadjoint case, we have a-b =TQ. This implies that Q
C2’(/3). Thus, it is always possible to pick k such that k Q on OD-OD (in fact
one might as well pick k--Q). We noted, prior to stating the theorem, that only in
the case k Q on OD-OD1 will the variational principle reduce to the classical one
give in (1.2). To see this note that only in this case will

inf [I (Vh-VQ)a(Vh-VQ)g2dx] =0 frallgWl’2(D)"
h k OD-OD D
h wl’2( D, g2 dx)

If this above expression is zero for all g W’(D), then it is easy to see that the
condition (dist (x, OD1))-g(x) L(D) is no longer needed. Thus (2.1) reduces to

h(0k)-- inf [ fo (?-VQ)a(-VQ)g dx+ ID Vg2 dx]gfe OD
gG WI’2(D)

=finfon OD [ f (VuaVu) e2O dx-b fD VU2 e2O dx]
WI’2(D)

where we have made the substitution g ue. This is (1.2). Furthermore (2.2b) now
becomes

,(oe) (VboaVo) e dx + V ez dx,

since ho Q and o/bo e2Q.
Remark 4. Since OD may be composed of two disconnected pieces (D an annulus,

for example), the special case {f= 0 or f= 1} fq OD OD does not only include the
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trivial cases f---0 on OD and f-= 1 on OD. We note the reduction of (2.2a) to (2.2b)
for two reasons. First of all, if V_-> 0, then excluding the selfadjoint case a-lb VQ
for some Q satisfying Q= k on OD (see Remark 3), it is clear from (2.1) that only in
the case {f=0 or f= 1}fqOD=OD can one guarantee by inspection that A(ok)_--> 0. This
is reflected in (2.2a) and (2.2b). Also, in a probabilistic application of this theorem,
which appears in [6], we need the form appearing in (2.2b).

Remark 5. This generalized Dirichlet principle is less general than the classical
one since it requir.es that the boundary values be nonnegative. Indeed, if f changes
sign, then 4o and bo may change sign and, consequently, neither go nor ho is defined.

However, this restriction is not too severe. For example, if V=0 and if bo satisfies
Lbo 0 on D and o f on 0D, for a general f, then for sufficiently large M, bo -= o+M
satisfies Lbo 0 on D with bo =f-=f+ M_-> 0 on OD. Thus bo may be described as

bo-M where bo has a generalized Dirichlet principle associated with it.
Proof For g WI’2(D) satisfying g=fek on OD, let

Hg(h)= (Vh-a b)a(Vh-a b)g2dx.

First we show that

inf Hg(h)
h=konoD-oD1
hE wl’2(D, g2 dx)

is attained at a unique h hg W’(D, g2 dx).

Actually, the proof is almost identical to a special case of the proof of a result which
can be found in [5, pp. 688-690]. For completeness, we will give a proof although we
will not write down all the details. By the Schwarz inequality, it is easy to obtain
Hg(h) >- c o ]Vhl2g2 dx- c for positive constants Cl and c2. Thus if{h,} is a minimizing
sequence, then o ]Vhn]2gdx is bounded independent of n. This, coupled with the
fact that hn k on OD-OD gives weak compactness in WI’2(D, g2 dx). Now Hg(h)
is lower semicontinuous under weak convergence since the norm is lower semicon-
tinuous under weak convergence. Thus, in fact, any limit/ of a subsequence {h,} must
be a minimizer. Varying Hg(h) at h gives

(2.4) fc,
(Vf a-b)aVqg2 dx=O,

for all q WI’(D, g dx) s.atisfying q=0 on OD-OD1. Now if/ is also a minimizer,
then (2.4) also holds with h in place of h. S.ubtracting gives o (Vf-Vf)aVqg2.. dx=O.
Substituting .q=/-/ shows that V/-Vh =0 a.e. [g2 dx], and since h h k on
OD-OD, we have / =/ a.e. [g2 dx]. This completes the proof. We will denote the
minimizer by hg.

Consider g=go=(boo)1/. By Proposition 2.2, go WI’2(D). We claim that
ho hg 1/2 lo.g (o/bo). Note that ho satisfies the appropriate boundary conditions since
bo =f and bo =fe2k on OD. We must check that (2.4) is satisfied with / replaced by
ho. From the fact that Lbo 0 and o 0, one can check that ho satisfies

(2.5) V. aVho+ 2VgVho V b + 2Vg---q b.
go go

Integrating the left-hand side of (2.4) by parts and using (2.5), one sees that (2.4) is
indeed satisfied with h ho.
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Now, for g WI’2(D), let y g2 and define for y and for h
q,(h, Y)=1/2o (Vh-a-lb)a(Vh-a-lb)Y dx. Also define

J(Y) (1/2 log T, Y)- inf
h k OD-OD
h WI’2(D, "ydx)

g,(h, r)+ Io vr dx.

Then the right-hand side of (2.1) may be written as

inf J(y).
T=f 2k OD
TI/2 wI,Z(D)

(dist (x, OD))-T/2(x) L(D)

To show that (a) the mini-max in (2.1) is attained at some pair (g, hg); (b) the pair is
unique; and (c) the pair is given by (go, ho), it obviously suffices to show that
J(To)<J(T1) for all ’)/1 # Yo=-g that satisfy )tl--f2 e2k on OD, ")/11/2 WI’2(D) and
(dist (x, OD1))-lyll/Z(x) L(D). To do this, we will show that M(p)=- J(yp) is strictly
convex on [0, 1] and satisfies M’(0) 0, where yp =PYl +(1-p)yo.

Now

M(p)=J(yp)=O(log yp, Tp)+(- inf g/(h, yp))+; V’ypdx
h k OD-OD D
hE wI’Z(D, Tpdx)

and it is easy to see that the second term on the right-hand side is convex in p (the p
appearing in the domain over which the infimum is calculated causes no problem).
Since the third term on the right-hand side is linear, to show strict convexity we need
only show that (d2/dp2)((1/21og yp, ’)lp))>O for pc[0, 1]. We have

P(1 log yp, yp ) =lfc,(1/2Vyp-a-lbyp)a(1/2Vyp-a-lbyp)dXyp
and

dp (($ log yp, ’)/p )) f(V(yl-y)-a-lb(yl-y)
3/2

D ")/p

a (V(yl-y)-a-lb(yl-y). 1/2 V’yP-a-lb’yp(’Y1-T))3/2 dx >-O.
"}p p

Equality occurs if and only if

V(y, yo) a-’b(yl yo) V’),p-a-lb’),p(Yl-’),o)

that is, only if (V(yl-YO))/y-yo=Vp/yp. For this to occur for even one fixed p
requires that 71 be a multiple of yo, which is impossible since by assumption 71 3’0
and T 3’0 =f e:zk on OD. This proves the strict convexity.

We now prove that M’(0)= 0. Let hp WI"2(D, yp) be the function at which

inf I (Vh-a-lb)a(Vq-a-lb)ypdx
h k OD--OD D
h wI’E(D, Tp)

is attained. From (2.4), hp satisfies

(2.6) I (Vhp- a-lb)aVq’yp dx=O’
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for all q WI’2(D, 3/p dx) satisfying q-0 on OD-OD1. We will show that

(2.7) Vh--lim
e-0 E

Vh -Vho

exists as a weak limit in L2(D, Yo dx). Then we have

Io (1/2VYP-a-lb3/P)a(1/2V3/P-a-lb3/P) dxM(p) =-(2.8)
Y"

-1;o(Vhp-a-lb)a(Vhp-a-lb)ypdx+Io2 Vypdx

and, formally,

M,(O) fD [(1/2V(y- Yo)- a-b(7- 3’o))a(1/2V yo- a-lbyo)
3/o

(1/2V 3/0- a -lb3/o) a (1/2V 3/0- a -lb3/o)( 3/1 3/0) ] dxJ
(2.9)

Io (Vh-a-lb)a(Vh’)3/ dx

_1 (Vho-a-’b)a(Vho-a-lb)(3/1-3/o) dx-- V(3/1 3/o) dx,
2

Underthe assumption that (2.7) and (2.9) hold rigorously, we will show that M’(0) 0.
Then we will go back and prove (2.7) and (2.9). The term D (Vho-a-lb)a(Vh’o)3/o dx
0 by (2.6) and (2.7). Thus (2.9) becomes

M,(O) fD [(1/2V(3/1- 3/)- a-lb(3/1- 3/))a(1/2V3/- a-lb3/)
3/0

(1/2V3/o- a-lb3/o)a(1/2V3/o a-’b3/o)(3/1- 3/o) 1(2.10) dx
2,o

_1 f (Vh-.a-’b)a(Vho-a-’b)(3/1-3/o) dx
2-- ffD V( 3/1 3/0) dx.

From the fact that 4o go e-h and o go eh, one can verify that 3/0 g satisfies

1 1 V 3/oaV 3/0(2.11) -V- aV 3/o--
2 4 3/0 - 3/o(V hoaVho V b 27hob) V3/o O.

Now (2.9) arises as the variation of (2.8) in the direction 3/1- 3/o. If we set q 3/1- 3/o
in (2.9), and then integrate by parts and use (2.11) and the fact that q- 0 on OD, we
obtain M’(0) 0.

It remains to show (2.7) and (2.9). First we show (2.7). Since D (Vh- b)a(Vhp-
b)3/p dx is bounded independent of p, it is clear that

(2.12) lim
p-0

By the assumption that (dist (x, OD1))-13//Z(x) L(D) and by Proposition 2.1, (2.12)
guarantees that

(2.13) limpo ffD ]Vhp123/1 dx < c.
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From (2.6), we have D(Vhp-a-lb)aVqypdx=O for 0<p<l and (Vho-
a-lb)aVq3,o dx =0 for all q WI’2(D, 70 dx) satisfying q =0 on OD-OD1. Subtracting,
we obtain

(2.14) Io(Vhp-Vh)aVqydx+pf(Vhp-b)aVq(yl-y)dx=O’o
From (2.12), (2.13) and (2.14), we have

(2.15) lim [ (Vhp-Vho)aVqTo dx=O,
p0

for all q wI’E(D, Vodx) satisfying q=0 on OD-OD1. Since hp-ho also satisfies
hp-ho WI’(D, To dx) and hp-ho=O on OD-OD1, (2.15) guarantees that Vhp Vho
weakly in L(D, Yo dx). Using this fact, we see from (2.14) that

po P
aVqodx=- (Vho-b)aVq(l-O) dx.

This shows that (Vhp-Vho)/p (Vho- b)(To- T1)/To Vh weakly in LE(D, o dx)
and proves (2.7).

To show (2.9), we must show that

pO

(Vho-a-b)a(Vho-a-lb)odx
D

2 (Vho- a-b)a(Vh)o dx

+ (V ho a -1 b)a(V ho a- b)( o) dx.
D

We have

(2.17)

l [f
D
(Vhp-a-lb)a(Vhp-a-lb)Tp dx

P

f (Vho-a-lb)a(Vho-a-lb)’yodx]
D

P

+ I (Vhp-a-b)a(Vhp-a-b)(Y-Y) dx

_1 I ((Vh-a-b)+(Vh-a-b))a((Vh-a-lb)
P

-(Vho-a-b))7odx

+I (Vhp-a-lb)a(Vhp-a-b)(7-7) dx
D

Io IP
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+ fD (Vhp-a-’b)a(Vhp-a-’b)(yl-YO) dx.

Since (Vhp-Vho)/p converges weakly in L2(D, yodx), Vhp-Vho strongly in
L-(D, Yo dx). By Proposition 2.1 and the assumption (dist (x, OD1))-lyl/2(x) L(D),
we also have Vhp- Vho strongly in La(D, Yl dx). The weak convergence of (Vhp-
Vho)/p to Vhin L(D, Yo dx) and the strong convergence of Vhp to Vhoin L:(D, ")’o dx)
and in L(D, Yl dx) show that as p-0, the right-hand side of (2.17) converges to the
right-hand side of (2.16). This verifies (2.16).

Now we derive (2.2a) and (2.2b). We obtain (2.2a) simply by substituting go
(boo) 1/2 and ho=1/21og (o/4o) in (2.1). For the case a-lb=VQ and Q-k on OD,
(2.2b) was proven in Remark 3. We now show that (2.2b) holds in the case {f= 0 or

f= 1} CI OD OD. By (2.4), we have

(Vho-a-lb)aVqg2 dx=O,

for all qe WI’:(D, g2 dx) satisfying q=0 on OD-OD1. Because of the condition on f,
we may pick q log go- ho to obtain

(2.18) f (Vho-a-’b)a(-2- Vho)g dx=O.

From (2.18) we have

lira2 (Vh-a-lb)a(Vh-a-lb)gdX= fD gVgaVhdX-ID gobVgodx

_1_2 fD (Vhoarho)g dx

+- (ba-lb)g dx.
2

Substituting this in (2.1), we obtain

1 Vg-a-lb a
2 \ go go a-lb)g dX- fD goVgoaVho dx + fr gobVgo dx

+- (VhoaVho)g dx-- (ba-lb)gZo dx + Vg dx
2 D

(Vgo goV ho) a (Vgo goV ho) dx + Vg dx

D D)
-[- V Do(o dx,

since

o
go (oo)1/: and ho- log 4--"

We now turn to (2.3). Let R(z) D (1/2zaz + z(b- aVk))g2 dx. Essentially the same
proof as that used to prove the existence of a unique minimizer h h of H(h) at the
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beginning ofthe proof ofthe theorem shows that there exists a unique (1,
L:(D, g:Z dx) which is a weak solution of V. (g:Zz)=0 in D and which satisfies

Rg() inf Rg(z).
zeCI(D)

V.(gz)=O in D

This proof also shows that is the unique solution to

(2.19) q(a+b-aVk)g2 dx=O,
D

for every q E L2(D, g2 dx) which is a weak solution to V. (g2q)=0 in D.
In order to complete the proof of (2.3), it is enough to show for each g E WI’2(D)

satisfying g fek on 0D, that
(i) =Vhg-a-lb, where hg minimizes Hg(h) over hE WI"2(D,g2 dx) satisfying

h--k on 0D-OD1, and that
(ii) Rg() --1/2D (Vhg a-’b)a(Vhg a-lb)g2 dx.

To show that (i) holds, simply substitute Vhg-a-lb in (2.19), integrate by parts
and use the condition on q and the boundary condition on h. Now (ii) follows by
substituting q V hg a b in (2.19).
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ON THE DETERMINATION OF A FUNCTION FROM SPHERICAL
AVERAGES*

LARS-ERIK ANDERSSON"

Abstract. Letfbe a functionf: 1"+ which is even in the last variable, i.e., such thatf(x, -y) =f(x, y)
where x n, y. The mapping R is defined by f-- Rf=g where g(x, r) is the average off over a sphere
with radius and center at a point (x, 0) in the hyperplane y=0. The problem to invert the mapping R is
studied. Extending the domain of the mapping R to the class of tempered distributions, we give a

characterization of the range of R and prove that the inverse mapping R- exists and is continuous in the
topology of distributions. An inversion formula, first discovered by J. Fawcett, is obtained in terms of Fourier
transforms and a Sobolev estimate for the inverse mapping is given. Next, inversion methods using only
values of g on some bounded set are studied. First a uniqueness theorem of Courant and Hilbert is generalized
to distributions. Inversion formulas involving partial Fourier transforms are given and a numerical inversion
procedure is proposed.

Key words, inverse problem, spherical averages, generalized Radon transform, ill-posed

AMS(MOS) subject classification. 44A15

Introduction. Consider functions f:n+l_ which are even in the last variable,
i.e., such that f(x,-y) =f(x, y) where x n, y . Define the mapping f-> Rf=g by
letting g(x, r) be the average of f over a sphere with radius r and center at the point
(x, 0) in the hyperplane y 0. Consequently,

g(x, r)=l_J_ [ f(x + r, rrl) dSn(,
O)n ,IS

where S is the unit sphere {(, r): 1:12+ r/2= 1} in n+l, dS, is the surface measure
on a sphere and ton is the area of Sn. The domain of this mapping R will be specified
later.

The problem of inverting the mapping R, i.e., to determine the function f when
g is known, which is the subject of this paper, has been treated by several authors.
The uniqueness of the solution f in the class of continuous functions was proved by
Courant and Hilbert [2]. Employing essentially the same technique as Courant and
Hilbert, Lavrentiev et al. [9] have given inversion methods as well as a characterization
of the range of R. Unfortunately, these methods are difficult to use numerically. In a
recent paper Fawcett [3] has given an inversion method using Fourier-Hankel transfor-
mation and a so-called back projection operator. He thus provides a method to solve
the global problem, i.e., to determine f(x, y) for all (x, y) n+l when g(x, r) is known
for all x n, r > 0.

The inversion problem for the mapping R, belongs to the same class of problems
as the inversion problems for the classical Radon transform and its generalizations
(see for instance Helgason [4]). The problem that is studied in the present paper is of
interest in several applications, for example in image processing of so-called synthetic
aperture radar (SAR) data, when using wavelengths of the magnitude 3-30 m. In such
a situation, when the wavelength is considerably larger than the dimension of the
antenna, the emitted radar signal is spread more or less uniformly in all directions,
and then the problem of inverting spherical averages enters naturally in the analysis.
For a more detailed account of this application we refer to [5]-[7].
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1987.
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Other interesting applications are found in connection with inverse problems for
hyperbolic partial differential equations. One example is the linearized inverse scatter-
ing problem in acoustics as described by Cohen and Bleistein [1]. Surveys of these
applications are given by Lavrentiev et al. [9] and by Romanov [11].

One of the main results of the present work, given in 2, is a rigorous derivation
of Fawcett’s inversion formula under very general conditions on f and g. Our (slightly
different) version of the formula is given completely in terms of Fourier transforms.
In 4 we turn instead to the local inversion problem, i.e., how to determine f when
g(x, r) is known in some region Ix[ < A-<_ , 0 < r < B <. Using the theory of 2, we
first deduce a theorem of uniqueness which is a generalization of Courant’s to the case
when f is allowed to be a distribution. In 5 we give inversion formulas for the local
problem in terms of integral equations involving partial Fourier transforms of f and
g. We also discuss the range of the mapping R in the local case and the ill-posedness
of the problem, and propose an inversion procedure.

1. Some notation and definitions. By 5e(Rn) we mean the so-called Schwartz class
of infinitely differentiable functions q for which the norms IIll-
sup{Ixl lD  o(x)l O<-k<-N, are finite for all N->0. Here c=

(al, a:,..-, an) is a multiindex. 0(Rn) is given the topology which is induced by
these norms.

,e([]n+l) {I]l e ([n+l)" (x, -y) (x, y), Vx e ln, y R}.

For convenience we will in this paper consider the functions g(x, r) where x Rn,
r_-> 0, to be defined on nn+l and to depend radially on the last n + 1 variables.
We therefore introduce

5e(" x"+)={ 5e("+): o(x,z)=o(x, Uz),Vxl",z"+

and for all orthonormal transformations U}.

5fr(n Rn/l) is thus the subspace of functions in 5e(:n/l) which depend radially on
the last n + 1 variables. Sfe(n/l) and 5er( xn+) are given the same topology as
(n/) and 5e(R:n+l), respectively. O’(n), the class of tempered distributions on n,
is by definition the set of all continuous linear functionals on 5e("). ff,(n) is given
the weak topology. (f, q) denotes the value off ,(n) at q b(). 5e(R"+)
{f oW’("+a): (f q0=0 whenever q(x,-y) -q(x, y) for all x, y}, i.e., OW’e("+1) is the
subspace of tempered distributions that are even in the last variable. 5e’(R" n+)
{g 5e’(:"+) (g, q)=0 whenever lzl= q(x, z) dS,(z) =0 for all xn and r> 0}, i.e.,
O’(Rn x "+) is the subspace of tempered distributions which depend radially on the
last n + 1 variables. OW’e("+1) and 5e’( x"+1) may also be identified with the class
of continuous linear functionals on 5e("+1) and Set(R" x"+1) respectively. In the
following we will occasionally write b, e, 5e, etc., instead of 5e(n), 5e(n+),
,.r(n n+l). Fourier transformation is defined by q(r)= q3 (r)= R" e-i<’x>q(x) dx,
-lq3(x) q(x)= (1/(27r)") R. e<’x>q3(r) dr when q 0(Rn) and by (-f,
(27r)n(f 0) whenf b’(E").

We note that Fourier transformation gives isomorphisms

If q, q 5e(") then p * @(x)=, q(x-z)O(z) dz is the convolution. (q )^=
If f 0’(gn) then f. q is defined by (f. q, q)= (f, q3. q). Here q3 is defined by
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q3(x) q(-x) and q5 denotes the complex conjugate of o. Elements of ,.e(n+l) or
5e’e("+l) will be denoted by, for example, q,(x, y) orf(x, y) and their Fourier transforms
by tp(o-, to) or f(o-, to). Here x, tre " and y, to

Elements of 5er(" x"+1) or 5e’r(" R"+1) are written, for example, q(x, r) or
g(x, r) and their Fourier transforms q3(r, p) or ff(r, p). Here x, trR" and r, p, r
and p => 0. In 5 we use the notation *, q*, etc. for the partial Fourier transform
with respect to the n first variables.

*(cr, y)= I. e-<’’(x, y dx, q*(r, r)= I. e-<’>q(x, r) dx

when q, 6 ._,We and o ._,w

(f*, q,*)= (27r)"(f ,) and (g*, q*)= (27r)"(g,
when fe 5e’ and g e

Note that q, e 5e <::> q’* e 5t’e,fe 5t"e :>f* ’e,
5e’r. In 5 we also use J. and I. to denote respectively the ordinary and the modified
Bessel functions of the first kind and of order v. See Magnus and Oberhettinger [10].
(f)(P) =f(P) o e-V’f(t) dt denotes the Laplace transform of the functionf Finally
[x] denotes the integer part of x.

2. An inversion formula for the global problem. It is almost obvious that the relation

g(x, r) l_J_ I f(x + r, rrl) dS,(, rl) Rf(x, r)
ton Sn

defines a linear, continuous mapping
g.

Note, however, that in general, Rf_ L(2"+) or L(2"+1) when fe 5("+), not
even if f has compact support. Now ("+) may also be thought of as a linear
subspace of 5(’"+), equipped with the topology of 5’(R"+1). It is well known, then,
that 5("+a) is dense in O’("+).

THEOREM 2.1. If ff(+) is given the topology of Se’("+1) then the mapping
g" e(n+l)-.-> ,’r( XRn+’)

is continuous and can, by continuity, be extended to a mapping (with abuse of notation)
R" ,9e(n+l) ---> ,_’r( X n+l).

Further, the range of this extended mapping R is the closed subspace

/9tr,cone(n xn+l) {g tr(n xn+l): supp
CT. ,jtr X [],+I).

R is one-to-one and the inverse mapping

R-1 0r,cone( X "->,_e(n+l

is continuous. Moreover, if g Rf and iff or , are in some open set equal to ordinary
integrable functions f(cr, to) or (tr, p), then

2 1 f(r, 4p2-lrl
o)= "-’,, ,/p=-Iol= for > Iol,

0 for 0 <-_ p <
and conversely we have the inversion formula

f(o., to) T
to,.



INVERSION OF SPHERICAL AVERAGES 217

The proof of Theorem 2.1 will be divided into several steps arranged in the
paragraphs (a) through (i) below.

(a) PROPOSITION 2.2. There exists a linear and continuous dual mapping

R*" e(U" x/)- ee(U"/)

such that (Rf, q) (f, R*q) for all f 9e("+1) and q 9r(" R"+I). Further

and

R* q:, (x, y) In" q:, (z, /Iz xl2 + y2) dz

(R*)^(, ,o) 4(, ,/11 + o)

for all (x, y) and (or, co "+1.
Proof.

(Rf, q)= (x, r)r" dr dx .f(x + r, rn) dS,(, n)

dx (x, r)f(x + r, rrl)r" dr dSn(,

{z= r, y= rrt}

In. dx f..+, ff(x, /[zl2 + y2)f(x + z, Y) dz dy

where, by definition, we take

(x, (, xl +R* dz.

The changing of the order of integration is easily justified by the fact that fe and
e . Obviously R* e (N+). We have to prove that, actually, R* e (N+)

and that the mapping R* is continuous. To this end we first calculate the Fourier
transform (R*)"(, ).

e-"’ e-(’-+’(a lx 1 + x
n

e-i<’z> dz e 4lxl= + yZ) dx dy
n
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Here, again the change in the order of integration is easily justified since the integrals
are absolutely convergent.

LEMMA 2.3. If r then (R*o)^ e. The mapping R* -1. SCr --> Sfe is
continuous.

Proof. q3(tr, p) may be written (tr, p)=(r,z, to) where (R2"+1), ",
z", and =41zl=+=. Then (R*)(,o)=(ff,][2+o2)=(,,o).
Using the chain rule, it is easy to verify that (R*)* and that the mapping

R* - is continuous.
It follows immediately from the lemma that R* e whenever r and that

the mapping

R*" ,(" x n+l) e(n+l)

is continuous. This finishes the proof of Proposition 2.2.
(b) For fm ("+) we now define Rf ’r(" X"+) by the equality

<R > < R*),

i.e., by Rf=f R*. From the continuity of R* it is dear that Rf is an element of ’r
for everyf. The continuity of the extended mapping

follows trivially from the definition.
(c) We will also need the following extension lemma of Whitney type.
EXTENSION LEMMA 2.4. ere exists a continuous linear mapping.(a’) r(a

such that for all e(+)
),) , -[) fo [l.

Postponing the proof of this lemma, we first note that the following corollary
follows immediately.

COROLLARY 2.5. (R*)*(ff )=(ff ) for oll e, i.e., R* id. e
mapping R*’r is onto. If then (R*)*(,p)=(,p)

(d) PROPOSITION 2.6. e mapping

R. (a’) ’,(U x U’)

is one-to-one.

Proo Suppose that Rf 0 and let be arbitrary. Then by Corollary 2.5

( )(R*):(R )0.

Consequently f 0 which finishes the prooff
(e) PROPOSITION 2.7. Iff and g Rf then ( ) (g, ) for all .
This was already proved in the previous proposition.
(0 PROPOSITION 2.8. For everyf ’ we have g Rf r,

Proo Let be arbitrary such that and supp {(, p)" 0 p < ]]}. Then
(R )=( R*)=(2)-’( (R*)*). Since (R*
for all (,)1 we deduce that (R )=0 which finishes the proof.

LEMMA 2.9. If ’, and if supp
{(, p)" p ]]} then (, h) O.
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Proof. Choose C(R"+1) such that g(0)= 1 and take ,(x)= (x/n). Then,
if we let h nh, h- in ("+’) and upp h is compact. By [8, Thm. 2.3.3],
(, h)= 0. Consequently (, )= lim,. (g h,)= 0 and the proof is complete.

(g) PROPOSITION 2.10. For every g ,on there exists an f such that g R
Proo Let g ,onbe given. Now, since the mapping is continuous, the relation

with e arbitrary, defines a distribution f ’e. We shall prove that g R Using
that supp ff c {(, p). p Il}, Corollary 2.5 and Lemma 2.9 we have

(g, ) (2)-"+)(ff, )= (2)-"+1)(, (g*)) (g, g*).

By the definition off this last expression equals ( R*)= (R ). Therefore (g, )=
(R ) for all, i.e., g=R

PROPOSITION 2.11. Ifg, .on, g, g ’ and ifRf g, thenf, fwhere Rf g,
i.e., the inverse mapping is continuous.

Proo By Proposition 2.7 (f,, @)= (g,, @) for all @ . Since ,o,e is closed
g ,oe and g Rf for some f . Now

(h) Let ="+’ be an open set of the form U=
{(, p)" EO<a<p<b} where Vc" is open. Let U’c"+ be the image of U
under the mapping (, p)(, p2-1[2). It is easy to see that U’ is open and that
U is the inverse image of U’ under the same mapping. Fuher consider the mappings
ff(R*)’= and ()=. It is rather easy to see that they establish a
one-to-one correspondence between all r with supp ff U and all e with
supp U’.

Now suppose that the distribution (Rf) is on U equal to some integrable
function (, p). Then

(, )=. (,p)(,p)pdpd={substitute =40-[-I}

Taking 0 R* we have

where with supp c U’ is arbitrary. We conclude that

 .i i<i i= + 2)(.--1)/2(, +

for (, )e U’. This is our inversion formula. Next suppose that the distribution f is
on U’ equal to some integrable function f(, ). By Proposition 2.7 we have, if
supp c U’,

(, (g@)) ( )= [=.+, f(< )(< ) dd {substitute p =}

n d,v= = pdpdm
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Since (r, /p2-1o’12 (O)"(o’, p) we have, introducing o ,
(, )=

2 f(, 4p -[l)

whence we conclude that

ff(, p)- , P"-’4P-II
for (, p) U.

(i) To complete the proof of Theorem 2.1 it remains to prove the extension lemma.
For that purpose we need a few sublemmata.

LEMMA 2.12. e mapping A:e(+)C(+), given by A(x,y)=
(1/y)(x, y) has its range in e(+) and is a continuous mapping,

A:e(+’)e("+’).

Proo Considering Fourier transforms we may equivalently prove that the
mapping

(, s(, s s
is a continuous mapping from e 0 e" This is almost obvious.

Let us now consider functions 0(, t) defined for > ]1 in N+, which are C
and such that the norms

t o(, ) t>ll,OmZM,O+llM

are finite. The linear space of such functions with the topology given by these norms
is denoted by par("+a).

LMMA 2.13. e mapping

n: Ye("+’) Y.ar("+’

given by B(, t)= (, t-l]) is linear and continuous.

Proof If (, t)= B(, t)= (, (t-l]2) then

O(, t)
1 o(,t_ il)= 1( 0(, ))

Consequently (O/Ot)(B)=BA where A is the mapping in Lemma 2.12. Fuher

06 0 (, 4t-1) ’ (,4t-I1)

i.e. (a/aG)(B)=B((a/aG)-GA)=BC where the mapping Ci:(R"+I)
(R"+) defined by Ce(G, )=0/0(, w)-GA(G, w) is continuous. Fuaher we
see that AC CA which implies that

0+11 1

0t0

Here C’= Cf,C C.. Then

(t+}l)oto6(,t)= (((+l + ).
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Using the estimate

sup IBq(r, t) < Ko sup
t>lol (O’,tO)E

and the continuity of A and C we obtain

sup (t+ll) (, t)OtO
<- KM sup { (Io"1 (o’, o)eR"+,

O<=a+II<=M’,O<=m<-M’}
for some constants KM and M’. This proves that B is continuous.

LEMMA 2.14. There exists a linear continuous mapping

(. ,.par(n+l) ...> ,_(n+l)

such that Jd/(r, t)= d/(r, t) for t> Itrl 2.
Proof Following the method used in Chapter VI in the book by Stein [12] we

first introduce a function h(A) with the following properties, h(,) is defined for A _-> 1,
h(A) is rapidly decreasing at oo, i.e., h(A)= O(A -N) as A-->oo for all N and, finally,

fl h (h) dA 1, 1 h"h (h) dh 0 for n 1, 2,. .. Then define the extension q by

0(r, + 2A (]tr]2- t))h(h dh for < I 12,
j$(cr, t)= $(cr, t) for t> [cr[ 2,

lira $(cr, t) for t= [or] 2.

Now, by the arguments in [12, pp. 185-186] it follows that
C("+I). To prove the continuity we proceed as follows.

If _-> [cr[ 2 then $(o’, t)= $(cr, t+).
If t< [cr[2 and la] +/3 M then it easily follows that

OcrOt
$(cr, t)= 5 Pm o’,--, O(o-, t*)A (h) dh

=0 00"

where t*= t*(o-, t, h)= + 2A([o’[2- t) and p,,(., .,. is a three-variable polynomial of
degree less than or equal to m. Multiplying by ([cr[2+ t2) N/2 and taking the supremum
when < [0-]2 we obtain, for some constant C

m=0

Since h is rapidly decreasing, all the integrals are finite. This proves the continuity of
the mapping " 3p,(R"+1) --> 5(R"+l).

LEMMA 2.15. The mapping

K" ,_([]n+l) ,.r(n X [n+l)
given by KO(tr, p)= q(tr, p2) is linear and continuous.

Proof If p2 l[2, G [n+l and rC(tr, ) O(cr, p2) then

ol,l+ltl ol,l+l
0(r.0s

q(cr, s) E P.,(s) ,6((r, Is[2)
o-</--<ltl Ocr0t
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where P,l() are polynomials in 1, 2,’’’, n+l. From this it follows that K is
continuous.

Now combining Lemmata 2.13, 2.14 and 2.15, we see that the mapping

=o K go Bo

satisfies the requirements of the extension lemma. This finally completes the proof of
Theorem 2.1.

Remark 2.16. In case f or ff are not locally equal to integrable functions, an
inversion formula is still supplied by the relation

(f, P) (g, )

given in Proposition 2.7. This may also be written ( )= (*g, ) or

f= *g where *’’r".
Consequently R*g g ff ,oe and Rf=f for all f ’e.

3. A Sobolev estimate.
DEFINITION. a(n) is the set of all distributions f in ’(") such that f has a

representative which is a locally integrable function with the norm

TEOREM 3.1. If g Rf then

Proo By the inversion formula

f(,  )=Tlol(l Jl12+2)

we have

dqd

{substitute p lql2 +

-" (l+p p2 1 I(, )]=p dpd
2 JaJl

" p= /:lg(q, p)lp do dq2

e+l/2.

Before proceeding to the local problem we remark that several reformulations of the
inversion formula
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are possible. Taking inverse Fourier transforms and using the formula of Proposition
2.2, we obtain f= cnHy(O/Oy)A"-l)/2R*g which is also given by Fawcett [3]. Here Hy
is the Hilbert transform with respect to y, A is the Laplacian A A
is a constant. However, if we introduce the pseudoditterential operator K defined by
(gg)^(tr,/9) x/p2- Itrl2 p"-’(tr,/9) then also f= c,R*Kg.

Here, as is easily seen, K is a continuous mapping from the subspace (q o’Gtr,
to +" fq 5e’r and R* is a continuous mapping from

This formula might be more useful for numerical purposes than Fawcett’s. One
difficulty in using any of these formulas numerically will probably be the fact that the
calculation of R* requires an integration over an unbounded domain.

4. Uniqueness for the local problem. In this section we will extend a theorem of
uniqueness for the local problem, proved by Courant and Hilbert [2] for continuous
functions f.

Let Xo ", e > 0 and B > 0 be given.
THEOREM 4.1. Let f 5’e(R"+1) and suppose that g= Rf is equal to zero on the

open set Un, {(x, r)" IX-Xol<e, 0=<r<B}c"x"+1. Then f=0 on the open set
Vn={(x,y)’[X-Xo]2+y2<B2}cn+1. Also g=O in the open double cone WB=
{(X, r)" Ix Xol + r < B}.

We first note that the assumption that f is a tempered distribution is inessential
in the sense that any distribution defined on an open set UB,,, D UB, is, when restricted
to UB,, equal to the restriction of some tempered distribution to UB,. We also see
that we may take Xo 0 without loss of generality.

LEMMA 4.2. Let q Jr, d/= R*q, f ,.t and g Rf. Then g p R(f 6).
Proof. Consider the continuous mapping f--> R(f. (R*)) -(Rf) p h from

’e to 5’.
Using the inversion formula of Theorem 2.1 and the formula for (R * q)^ in

Proposition 2.2 it follows that/ 0 if fe r, i.e., that the mapping is identically zero
on the dense subspace 9e C 5e’ By continuity it follows that R(f (R*q)) -(Rf) q =0
for all fe 9’e which proves the lemma.

Proof of Theorem 4.1. The first part of the proof is merely a reproduction of
Courant’s proof and is included for the convenience of the reader. Let fe C(N"/1)
and g Rf Obviously g C(" x R"+). Take

G(x, r) to, g(x, s)s" ds f(x + , rl) d drl,
l+q2r

IGx,(X, r) f’,(x + ,
lel+n=<rfe,(x + , r/) d dr/

1 [ f(x + sc, r/)sci dS..
r Jl:12+n2=r2

Now
1

R(x.)(x, r) Jl f(x + , rl)(xi + i) dS,rncon #l+nZ=
r

xig(x, r)+G’,(x, r)
CO

xig(x, r)+ r1-"
0 I

Oxi .Io
g(x, s)s" ds Dig(x r).
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Consequently R(x.cf)= Dig where the linear operator Di is defined by the previous
expression. Repeating, we obtain R(p(x)f)=p(D)g where p is any n-variable poly-
nomial. Further

f
R(p(x)f)(x, r) - | p(x + )f(x + , rl) dS.

r to J[l+n=r

r"-
p(x+)

1tOn #[-_<r

f(x + , x/r- Iscl)

Now if g=0 in UB,. then obviously p(D)g=O in UB,. Then

p(x + d 0).f(x + ))
et ,/r- 1[=

for every fixed point (x, r) U and every polynomial p..For x and r fixed, select a
sequence p. of polynomials sucl that p.(x + )-->f(x + , ,/rZ- I[=) uniformly for r.
It follows that f 0 in Vn and that g 0 in Wn.

To proceed to the case when f 5e’e we select a sequence of mollifiers p. Sfr such
that supp p.c{(x, r): [xl<l/n, O<-r<l/n} and such that q..gg for all g6 6e’r.
Taking . R*p. it follows easily that supp . c {(x, y): Ixl < 2/n, 0_-< y < 1/n}. From
Lemma 4.2 we conclude that R(f q.) g Pn g in the topology of 5e’. Since R -1

is continuous we have f. qn-->f in the topology of O’e. Moreover, g * q. and f.
are in C, g * q. 0 in a sequence Un.... UB, of open sets such that B. --> B, e. --> e.

Then by the previous result f, q. 0 in the sequence Vn. V of open sets. Since

f. ft.-->f as n--> in the sense of distributions it follows that f 0 in Vn. Then also
g 0 in W/ and the proof is complete.

COROLLARY 4.3. If g=0 in a strip {(x,r):[X-Xo[<e,O<=r<} then g=0
everywhere.

Proof. Let B in Theorem 4.1.

5. Inversion formulas for the local problem. We will start by investigating the
mapping R whenf and g are of the formf(x, y)= F(y) ei<’x> and g(x, r) G(r) e’.
The resulting equations have somewhat different form for even and odd values of n.

THEOREM 5.1. Letf(x, y) F(y) e’ where F(y) is continuousfor 0 <= y < B <-_ c.
Then g= Rf is of the form g(x, r)= G(r) ei<’> where

(1)
2F((n + 1)/2)

rn-’ G(r) F(y)(r y2)(.-2)/4j(._2)/(lerl/r2 yZ) dy

for O<-_r<A.

Further rkG(k)(r) is continuous on [0, B) for 0<= k <= n/2]. We have alsoforn 2m, rn >= 1

(2) r r rr (r2,._iG(r)) 2F(m+1/2)x/_# F(r)-Irlr F(y)Jl(l[x/r2/r2-yy2) dy

and for n 2m + 1, rn _-> 0

()m1 d r2,,,G 2r(m + 1) cos (lr[4r-y)
(3) rr r (r))

r x/r2-y2
F(y) dy.
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In particular for n 1 we have

rr
G(r) F(y)(4)

2

and for n 2

(5)

(6)

Proof.

Hence

cos (rx/r y2)

rG(r) F(y)Jo(l14-y) dy,,

d-d-(rG(r)) F(r)- rill F(y)
dr

Jl(lrl4r2-y2)

1 f
g(x, r)= | F(n) ei<’x+> dSn(,

OOnI’n J[

1 ei(r,x) Iitonrn ]2+n2___
F(r/) e’<’e> dSn(,

nrn-lG(r)= F(’/rZ- ]l’-)
e‘<’> d.2 1<-- ,/?-- I1

For n 1 we easily obtain (4). For n => 2 we introduce polar coordinates s sx, x Sn-l,
0 <- s <= r, des s n-1 ds dSn_l(X). Then

tnrn-lG(r)= fo F(/r2-s2) n-1 IsT 4r--(S-s S as dSn_l(X).

Taking (tr, x)= [r cos v we have by Fubini’s theorem

Is Ioei<’x> dS_(x) e11 o_2(sin v)"-2 dv

2._ cos (s]] cos v)(sin v) "-2 dv

(see Magnus and Oberhettinger [10])

If we inse this in the previous formula and use that ./.-2 2(n 1) we obtain 1 ).
Next if we consider H(r)= r("-/2G() and K(y)=F()/2 (1) may be

rewritten

I0""-/

n()= ()(-s)("-/4J._/4(l-s) a.
2r((n + 1)/2)
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Taking Laplace transforms we have (see [10])

2F((n + 1)/2)
If n 2m then

Now

and so

Consequently

e-112/4p
n/2

P

m/_ -Itrl2/4p
2F(m+1/2)p (p)=K(p)e

e-[rl2 4p

2r(m+1/2) p (P) (p) R(p)
47 (P)"

Further by the equality

IY-I(p) I(p)
e-112/4p

2r(m +1/2) pm
pk+llYI(p)=O for k=0, 1," rn-1it follows that H(k)(o) limp +

Now, inveing the Laplace transform we have

r(m+g(m(r=(r) g(s)
J(llr-s)

If we substitute s y, ds 2y dy and replace r by r we have

n((r)=g(r)-I K()J(llr-)
2r(m +) r2 y y dy

whence we easily obtain (2). It also follows that rkGk)(r) is continuous on [0, B) for
O<__k<-m.

Next if n 2m + 1 we have

2F(m+l)p (p)=K(p)

Using that

e-112/4p
1/2P

e-112/4p 1 (COS (_.!__O’_l/))
and an argument similar to the preceding one we may obtain (3) and the statement
about continuity for rkGk)(r). The proof of Theorem 5.1 is complete. We note that it
is of course possible to obtain formulas for

dr
(r"-I G(r)) for every k with 0 _-< k _-<

THEOREM 5.2. If g(X, r) G(r) e i<’x> and if rkGk(r) is continuous for 0<= r < B
and 0<-_ k<-_[n+ 1/2] then g= Rffor some function f(x, y)= F(y) e<’> where F(y) is
continuous for 0 <- y < B.
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For n 2m, m_>-I we have

(7)
2r(m +) F(y)=a(y)_lrly a(r)

where

Ii(lrlx/y- r)
x/y2 r2

a(r) =r rr rrn-l G( r) )"

For n 2m + l, m >- O we have

(8) F(y) G(0) cosh (lrly) +
F(m + ly b(r)

where

dr

In particular for n 1

cosh (ll,/y- r2)
/y2_ r2

b(r) =-rr r (rZmG(r))"

(9) F(y)=G(O)cosh(cry)+y G’(r)
csh (trx/Y2- r2)

dr
,/yZ- r

and for n 2,

dr

d Io d II(Itr[x/Y-r2)
dr.(10) F(y) =-fffy(yG(y))-]cr]y -r(rG(r)) x/y2_ r2

Proof Recalling the proof of Theorem 5.1 we see that to find a function f(x, y)=
F(y) e i<:’> satisfying g Rf is equivalent to solving (1) of Theorem 5.1 for F. Now
this equation is, with the previous notation, equivalent to

If n 2m then

2r((n + 1)/2)/ (p) p./2H(p) ellZ/4p.

2r(m+1/2)/(p) pmH [trl2/4p(p) e

Arguing as in the proof of Theorem 5.1, we obtain

2F(m +1/2)(p)__p=l_l(p)_p,,,l_l(p)(Icrl I1(1o’1,,/7) )
where we have used that

e[rl2/4p

P

Now r’-lG(m-1)(r) is continuous on [0, B) which implies that H(0)= H’(0)
H(-(0) 0 and that pH(p) H((t). Inveing the Laplace transform, we easily
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obtain (7) and the argument is complete for n 2m. Next, if n 2m + 1 then

2F(m + 1) m+lH
e112/4p

K(p)=p (p) /
P

Using that

el12/4p 1 (cosh (]trlx/;)
pl/2--4"- ’ff-t

and that H")(0)=F(m+ 1)G(0) we obtain (8) after arguments similar to those pre-
viously used and the proof is finished.

THEOREM 5.3. Let g Rffor some distribution f ’e(Rn+l) and assume that the
distribution g* is for 0<r< B equal to a function g*(tr, r) such that rk(O/or)kg*(r, r)
is continuous on Rn x [0, B) +1 for 0 <- k <- [(n + 1)/2]. Then the distribution f* is on

" x [0, B) c ,+1 equal to a continuousfunction f*(tr, y). Moreover, we havefor n 2m
the inversion formula

(11)
2r(m +)

x/’n" I0f*(o-, y)= a*(r, y) Ily a

where

*(r, r)
q(l14Y- r2)

dr
/y- r2

0- (r2m-lg*(cr, r))

and for n 2m +
1

1y fo::) f*, y)= g*, 05 cogh lly+Fm+__ *, r5

where

cosh (Io’lx/7 r2)
dr

b*(tr, y)=--r r (rmg*(ty, r)).

In particular

’Og___*(
cosh (trx/y2 r2)

(,y)=g*(,O)cosh(y)+y
Or ’ r)

y2_r2
dr

for n 1 and

a .-, a I(l[4y2-r- r2
(, y)= (yg*(, y))- I[y os(rg*(, r)) dr

for n=2.
Proo Let us for (, r) "x [0, B) define a function h*(m r) by replacing in

(11) or (12) above, by h*. Then h* is continuous on " x[0, B). Moreover, inveing
these integral equations, we obtain

.-1

g*(w, r)= h*(, r)(r2- y2)<"-2/4S,_:/:(ll:- y: dy
2r((n+l)/)

for (w, r) " x [0, B). Reveing the deduction in the proof ofTheorem 5.1, we find that

" r"-lg*(w, r)=
xlr h*(,4r_lxlr-Ixl) e’<’" dx

for (tr, r) c" x[0, B).
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Next suppose that p r. Then

(R*q)*(tr, y)= fR, e-i<’X> dx ln, q(z,x/]x-zl2+ y2) dz

e-i<’> dz e-i<’-z>to(z, 4Ix z{ + y2) dx

=e-(’dxe-i’(z,,xl+,;)dz.. e-i(g,x>.(, 4[xl + y2) dx.

To proceed we introduce the following subspaces of e and r.
e. {* e e: 0*(g, y)=0 if lyle ,}

and

Consider the mapping

with

r.B {q r: q(x, r) 0 for r >- B}.

(R* tp)*(o’, y): I" e-i<"x>*(tr’ "/lxl+Y) dx.

It is obvious that R*o e,B if 0 6er,.
LEMMA 5.4. R*(6er,n) ’-e,B"
Proof. Suppose, on the contrary, that R*(,n) e,n. Then, according to the

Hahn-Banach theorem (see [13, Chap. IV]) there exists some fe and some e e,n
such that (f R*) 0 for all , and so that (f ) 0. Let g Rf Then (g, )
(f R*)=0 for all ,z. Consequently g=0 for r< B and by Theorem 4.1 we
conclude that f 0 for ]y] < B. This contradicts that (f ) 0 and the lemma is.proved.
Now suppose that *e ,z. Then, using the previous relation between g* and h*,

(g*, *)= g*(g, r)*(g, r)r drd

2 *(, r)r dr
xlNr 47_lxl= e dx

r,r r

{substitute r lxl

In.+ h*(o’, y)(R*(p)*(tr, y) do" dy.
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However, we also have (g*, q*)= (f*, (R*q)*) whence

(f*, (R*q)*) IR./ h*(cr, y)(R*q)*(cr, y) dcrdy.

From the lemma it now follows easily that f* is for 0 =< y < B equal to the function
h*(cr, y). By the definition of h* this completes the proof of Theorem 5.3.

We remark again that for n 1 and 2 the direct formula and the inversion formula
have the following form.

For n 1

2
g*(cr, r)= f*(cr, y)

Og*
f*(o’, y)= g*(cr, 0) cosh (cry)+y ---r (or, r)

For n=2

rg*(cr, r)= f*(cr, y)Jo(lCrl4r- y) dy,

f*(o-,y) :-fy(yg*(cr, y))-Icrly --(rg*(cr,Or r))

cosh (trx/y:- r:)
dr.

x/y2 rE

II(IO-14y-r)
x/y2 r2

dr.

COROLLARY 5.5. Let g Rffor some distribution f6 te(Rn+l and assume that the
distribution g* isfor 0< r < B and tr E, where E c R is an open set, equal to a function
g*(tr, r) such that rk(o/or)kg*(tr, r) is continuous on Ex[0, B)cRn+l for O<-k <-

[(n + 1)/2]. Then the distributionf* is on E x [0, B) c ,+1 equal to a continuousfunction
f*(tr, y) and the previously given inversion formulas are valid. In particular ifg* (tr, r) 0
on Y, x [0, B) then so is f* tr, y ).

The proof is omitted.
Finally we will demonstrate a theorem concerning the local range of the operator

R. The proof of this theorem also suggests a procedure for the inversion of the operator
R. However, for numerical purposes the given procedure may not be directly useful.
For simplicity we formulate the theorem for n 2.

THEOREM 5.6. Let n 2 and suppose that g(x, r) and rg’r(X, r) are continuous in
the set

{(x, r): 0 _--< xi --< ai, 1, 2, 0 -< r -< B} K.

Then, given any e > 0, there exists a function h(x, r) such that

sup {Ig(x, r) h(x, r)l + rig’s(x, r) h’r(X, r)l} < e
(x,r)eK

and such that h Rffor some function f(x, y) which is continuous for x ", 0 <= y <= B.
Proof First extend g(x,r) to an even function in x by requiring that

g(+xl, +x2, r) g(xl, x, r). Then extend g periodically in x by the condition g(x +
2al, x, r) g(xl, x2+2a2, r) g(xl, x2, r). Now we can find a function h(x, r)
Y g(r) e i<’x> with the following properties, h is a trigonometric polynomial in (Xl, x2)
with the same periodicity as g. The coefficients g(r) are continuously ditterentiable
for O<-r<-B and sUp(x,r)K (Ig-hl+rlg’r-h’rl)<e. Now, in order to determine the
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function f, we simply take f(x, y)= ,f(y) ei(’x> where

d ’ d i(]n,/y- r=)
f(Y) =--Y(Yg’(Y))-]]Y Jo -r(rg’(r)) x/y2- r2

dl’.

Then according to Theorem 5.2 h Rf and the proof is finished.
In the previous proof we note that since Ii(t) has exponential growth as t-

the formula for f(y) will give an amplification of terms g with large frequencies
Although by choosing some limit for the bandwidth one may try to control the
ill-posedness of the inversion problem, the required cut-off bandwidth will probably
be so small that the method would not be directly useful.

6. Conclusions. In 2 we have given a solution of the global inversion problem
by means of Fourier transformation under very general and precise conditions on f
and g. The inversion formula that is given is suitable for numerical purposes in many
problems.

In 3 we have a Sobolev estimate for the function f, and a reformulation of the
form f= cnR*K(Rf), where K is a certain pseudodifferential operator and R* is the
backprojection operator. This formula differs from the one given by Fawcett [3] which
is of the form f cnKR*Rf

In 4 we have, using the theory of 2, extended a uniqueness theorem for the
local problem to distributions.

In 5 we gave inversion formulas for the local problem in terms of partial Fourier
transforms with respect to the first n variables. These formulas are closely related to
similar inversion formulas for the ordinary Radon transform, given in terms of integral
equations involving Chebyshev polynomials of the first kind (see for instance the article
by A. M. Cormack in 14]), and suffer from the same numerical limitations. Perhaps
some modified version analogous to the one suggested in [14] might prove to be more
efficient. Finally, considering Theorem 5.6, it is remarkable that the condition supp c

{(or, p): p >= Itr[} given in 2 does not prevent the functions g(x, r) from taking virtually
arbitrary values in a bounded set {(x, r): O<-xi<-ai, O<-r<=B}.
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DEGREE OF APPROXIMATION OF REAL FUNCTIONS BY RECIPROCALS
OF REAL AND COMPLEX POLYNOMIALS*

A. L. LEVIN" AND E. B. SAFF$

Abstract. Let ECon(f; I)(Eon(f; I)) denote the error in best uniform approximation of a real continuous
functionf on a closed interval ! by reciprocals of polynomials of degree =<n with complex (real) coefficients.
We investigate the rate at which Eon(f; I) (or Eron(f; I) provided f>-0) can decrease. For example, we
prove a Jackson type theorem and also present a class of functions for which reciprocal polynomial
approximation is significantly better than polynomial approximation.

Key words, uniform approximation, reciprocals of polynomials, Jackson theorem

AMS(MOS) subject classifications. 41A20, 41A17

1. Introduction. For any real continuous function f on a closed interval I, let
Eon(f; 1) and ECo,(f; I) denote the errors in best Chebyshev (uniform) approximation
off on I by reciprocals of polynomials of degree =< n with real and complex coefficients
respectively.

If f changes its sign on I, then obviously Ero,,(f; I) does not approach zero as
n-> . On the other hand, a result of Walsh [8, Thm. IV] implies that any continuous
function on I can be approximated arbitrarily close by reciprocals of complex poly-
nomials; that is, Eo,(f; I)-> O. The aim of this paper is to investigate the rate at which
Eo,(f; I) can decrease. For example, we prove a Jackson type theorem (Theorem 2.1)
and also present a class of functions for which reciprocal polynomial approximation
is significantly better than polynomial approximation (of the same degree).

Most of our results are formulated for the case I [-1, 1 but can be easily restated
for an arbitrary finite interval. We also present some examples of approximation on
the real line and on the unit disk.

The paper is organized as follows. In 2 we state and discuss our main results.
The proofs of these results are presented in 3-6.

2. Main results. Our first result is the following Jackson type theorem.
THEOREM 2.1. There exists an absolute constant M such that for any real

f C[-1, 1],

(2.1) Eo,(f; [-1, 1])-<_ Mto(f; n-l), r/-- 1,2,3, ,
where to(f; t) denotes the modulus of continuity off on [-1, 1 ].

Moreover, iffdoes not change its sign on [-1, 1 ], then one can replace Eon by Eo:
(2.2) Eo,(f [-1 1]) < Mto(f; n-), n 1, 2, 3,

We remark that the estimate (2.1) follows from the estimate (2.2) and (via the
usual Jackson theorem) from the following general result.

THEOREM 2.2. For any realf C[-1, 1],

(2.3) E,3,(f; [-1, 1])=< 5(Eg.(Ifl; [-1, 1])+ Ergo(f; [-1, 1])),

* Received by the editors May 27, 1986; accepted for publication (in revised form) February 12, 1987.
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author was conducted while he was visiting the Institute for Constructive Mathematics at the University of
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where Ergo(f; [-1, 1]) stands for the error in best Chebyshev approximation off by
polynomials of degree <-_ n.

From Theorem 2.1 we obtain as a special case that

(2.4) Ero,(lxl; [-1,1])<=Mn-s, 0<a-<l.

For 0< a < 1, this improves a result of Lungu [5]. For the case a 1, the estimate
(2.4) was proved by Newman and Reddy [6]. It turns out that the method of [6] can
be modified to establish the estimate (2.4) for any a >0. Since the matching lower
bounds are also available (see Lungu [5]) we obtain the following result.

THEOREM 2.3. For any a > O, there exist positive constants As, Bs such that for
any n 1, 2, 3, , the following hold:

(2.5) AsH <= E(lxl; [-1, 1]) _--< E,.(Ixl; [-1, 1]) _--< Bsn -s,
(2.6) AsH < E (Ixl sgn (x)" [-1, 13) < nsn
(2.7) AsH-2s <-_ Eron(XS; [0, 1]) <- B,,n -2s.

Moreover, the constants As, Bs may be written in the form A A-s, Bs C(Ba)s,
where A, B, C are absolute constants > 1.

Note that the upper bound in (2.6) follows from that in (2.5) and (via Jackson’s
Theorem) from Theorem 2.2. The upper bound in (2.7) follows from that in (2.5) by
the standard substitution x--> x2.

The lower bounds in (2.5), (2.6) show that the estimate given in Theorem 2.1 is,
in general, the least possible. Moreover, by considering the function f(x)=x, it is easy
to see that no estimate of the kind Eon(f; [-1, 1])-<_ Mn-kto(f<k); n -i) (the analogue
of Jackson’s Theorem for differentiable functions) can be obtained. To get estimates
better than O(n -1) one has to make some assumptions concerning the zeros off. The
simplest theorem of this kind is the following one.

THEOREM 2.4. Let f( O) be real-valued and analytic on [-1, 1] and assume f
vanishes somewhere on [-1, 1 ]. Denote by r the smallest order of the zeros off in (-1, 1)
and, by s, the smallest order of the zeros off at +/- 1 (either r or s may be zero but not
both). Define k by

r ifs =0,
k:= 2s ifr=O,

min (r, 2s) ifr>O, s>0.

Then there exist positive constants A(f), B(f) such that

(2.8) A(f)n -k <- Eon(f; [-1, 1]) _-< B(f)n -k, n 1, 2, 3,....

Moreover, the same estimates hold for Eo,(f; [-1, 1]) provided f does not change sign
on [-1, 1].

Remark. The situation is more delicate iff is differentiable and does not change
sign on [-1, 1]. It may be true that in this case one can obtain the estimate
Eron(f; [-1, 1])-< Mn-lto(f’; n-) without any further assumptions on the structure of
f. Even so, since E,,(x2; [-1, 1]) 0, no further refinement involving the modulus of
continuity of higher derivatives is possible.

Our next result exhibits a class offunctions that can be approximated by reciprocals
of polynomials much better than by polynomials (of the same degree). The common
feature of functions of this class is that they vanish on a set of intervals but not at
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isolated points. To demonstrate why such functions are "well approximable" by
reciprocals of polynomials, consider the following example. Let

x O,
x+ :--

0, x<0.

Then, from the well-known degree of polynomial approximation to Ixl, we have
E,o(X/; [-1, 1])=> Cn -1. On the other hand, we can find a real polynomial p,(x) such
that (see (2.7))Ix-1/p,(x)l<=An -2 for 0_<-x<-1. In particular, p,(O)>=A-ln-. It can
be shown that p(x) is monotonic on (-,0) and consequently p,(x)>=A-ln2 for
x < 0. It follows that

Ix+- 1/p,(x)l 1/p,(x) < An-2 for x < 0,

and we obtain

Eo,(X+, [-1 1]) < An -2

We now formulate the general result.
THEOREM 2.5. Let aj, bj],j 1, 2,. , N N >- 1), be mutually disjoint subintervals

of [- 1, 1 ]. For each j, let f C3[a, b be real-valued and satisfy f(a) f(b) O,
f(a + O) O, fj(b- O) O, and assume that f # 0 in (aj, bj). Define the function f on
[-1, 1] by

f(x) := {f(x) aj<-x<-_b, j=I,2,...,N,
otherwise.

Then

(2.9) Eo,(f [-1, 1]) =< A(f)n -z, n 1, 2, 3,....

Further, iff does not change sign on [-1, 1] then Eo,(f; [-1, 1])<=A(f)n -2.
Notice that if N => 2 or if N- 1 and [al, bl] # [-1, 1], then f is not ditterentiable

somewhere in (-1, 1) and consequently E,o(f; [-1, 1]) O(n-1-) for any e > 0.
So far we have discussed the direct theorems. What about inverse results ? To have

any chance of proving that f is ditterentiable on [-1, 1], we have to assume at least
(in view of Theorem 2.5) that Eo,(f; [-1, 1]) o(n-2). Under some additional assump-
tions on the behavior of f near its zeros we can then prove the ditterentiability of f
For example, if f is piecewise continuously ditterentiable on [-1, 1] and satisfies
Eo,(f; [-1, 1]) o(n-2), then f is continuously differentiable on [-1, 1]. At present,
the proper formulation of an inverse theorem for ditterentiable functions is not clear.
We confine ourselves to the following Bernstein type result, which was essentially
proved by J. L. Walsh [8].

THEOREM 2.6. For any complex-valued function f( O) on [-1, 1], the following
conditions are equivalent:

(i) lim sup,_.oo {E,(f; [-1, 1])} 1/" < 1.
(ii) f is analytic on [-1, 1 and does not vanish there.
Our final result deals with approximation on the real axis.
THEOREM 2.7. Let K(x), L(x) be real polynomials of degrees k and respectively,

with k <- l- 1. If L(x) 0 for x real, then

(2.10) Eo,(lK(x)l/L(x); )-- O(n(k/I)-l),
(2.11) Eo,(K(x)/L(x); )= O(n(k/l)-l).
Furthermore, if K (x) does not change sign for x then

(2.12) Ero,,(K(x)/L(x); )= O(n(k/O-2).
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For the special case K(x)=x, L(x)= 1--x2m, the estimates (2.10), (2.12) were
proved by Newman and Reddy [6]. The lower bounds obtained in [6] show that the
estimates of Theorem 2.7 are, in general, the best possible.

3. Jackson type theorems.

Proof of Theorem 2.1. To prove the estimate (2.1) it suffices to prove the corre-
sponding estimate for the case of approximation of 2r-periodic functions on the
interval [-r, r] by reciprocals of trigonometric polynomials of degree n. In what
follows we use the notation and the estimates that appear in the book of Lorentz
[4, p. 55-56].

For any 2r-periodic function g, let

J,(g; x):= g(x + t)K,( t) dt

be the Jackson operator. Since

K(t) dt 1, [t[kK(t) dt= O(n-), k= 1,2,

we obtain that

(3.1) lg(x + t) g(x)lK.(t) dt < c, to(g; n -1)

and that

(3.2) lg(x + t) g(x)12K.(t) at < c2[o (g; n-’)]2,

where c, c2 are absolute constants.
Consider now the function

(3.3) f(x):=f(x)+ie,

where f is a given real 2r-periodic function and e > 0 will be chosen later. Since f is
real, 1/f is continuous on [-r, r]. Furthermore,

(3.4) eo(f; n-’)= w(f; n-’)

and

(3.5) I1/f(x)[ <= l/ e, -r <= x <- r.

Define the trigonometric polynomial p, of degree <_-n by

p,,(x):=J(1/L;x).

Then

[1/f(x)-p,(x)]< ]l/f(x)-l/f(x/t)lK(t) dt

f
/

]f(x+ t)-f(x)[
K,,(t) dt.

If(x)f(x + t)3.
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Hence,

I1 -f(x)p(x)l IL(x / t)-L(x)l
IL(x / t)l

1
_

1
<=- c,to(f; n )=- c,to(f n-

Kn(t) dt

by (3.1), (3.4) and (3.5).
The choice

(3.6) e 2ClW(f; n

therefore yields

(3.7) If(x)p(x)l >"-’2, 7i" X

In particular, pn # 0 on [-zr, r]. Now

If(x)- 1/p.(x)[ 1/f (x)-p.(x)l. ]L(x)/p.(x)l

< f’ If(x+ t)-f(x)l f(x)
IL(x)L(x+t)l p.(x)L

I_ f(x)
-<2 If,(x+ t)-f(x)l"

If(x+ t)

’ IL(x + -L(xll+ 2
If(x+t)l

g.(t) dt

K.(t) at

K,( t) dt (by (3.7))

=<2c, to(A; n-’)+2 [A(x+ t)-L(x)12K,(t) at

by (3.1) and (3.5). Thus, from (3.2), (3.4) and (3.6) we deduce that

If (x) 1/p,(x)l <= (2Cl + c2/c,)oo(f; n-l).
This yields (see (3.3), (3.6)) the first part of Theorem 2.1.

For the second part, we suppose that f->_ 0 on [-zr, r] and set

(3.3’) f(x):=f(x)+e.

Then the polynomial J,(1/f,; x) will have real coefficients. The rest ofthe proofremains
the same. l-1

Remark. Although it does not follow immediately from the above argument,
Theorem 2.1 holds, more generally, for any complex-valued continuous function f on
[-1, 1]. The proof of this fact will appear in [2]. Moreover, for a special class of
functions f, our methods can be adapted to obtain a Jackson-type theorem for approxi-
mation by reciprocal polynomials on the unit disk Iz <- 1. For example, in [3] we prove
that

Eo.((z 1); Izl <-- 1) Mn-’, 0< a =< 1.

We now proceed to the proof of Theorem 2.2, which uses an idea of Trefethen [7].
LEMMA 3.1. Let p. be a real polynomial of degree <= n. Then

E,3.(p.; I)_-<4E,.(lp.I; I).
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Proof Let q, be a real polynomial of degree _-<n satisfying

Then

max Ip.(x)l- 1/q,(x) u;.(lp.I; I)=: e.

]p(x)- 1/q2,(x)] <- e(2lp,(x)] + e),

Define the complex polynomial Q3n of degree _-<3n by

Q3,,(x) := (pn(x)- ie)q2(x).

E

pn(x)
p,,(x)-ie

p’(x)n 1

pn(x)- ie (pn(x)- ie)q(x)

Then

Ip,(x)-l/Q3,(x)l

pn(x)-ie
-b-F_,

Hence, on choosing Pn such that [[f-P, Eo(f), Theorem 2.2 follows.

4. Approximation of powers of x. The lower bounds for En(lx]; [-1, 1]) and for
Eon(X; [0, 1]) were proved (for 0< a -< 1) by Lungu [5]. The proof for other cases is
exactly the same. For the proof ofthe upper bounds it suffices to show (as we mentioned
in the Introduction) that

(4.1) E2.(Ixl"; [-1, 1]) =< Bn-, a > O.

Following an idea in Newman and Reddy [6], we consider the kernel

(4.2) qn(t) := t-l(Tnt))
2k

where n is odd, k is the smallest integer satisfying k >= a and Tn denotes the nth degree
Chebyshev polynomial of the first kind. Define

(4.3) p(x):= on( t) dt, x > 0
Cx

where C := I qn dt.
Clearly, p(x) is an even polynomial of degree 2k(n- 1). By evenness we consider

only x e [0, 1 ]. Write

1 x jl, pn(t)at
(4.4)

p(x) I ton(t)dt

5llf-p. + 4E ;n(Ifl).

Ilf-p. +4[E2.(Ifl)+ Ifl-IP.I

E;,3n(f) =< Ilf-p. + E),3n(Pn)
(by Lemma 3.1)

since p, is real. [3

Proof of Theorem 2.2. Let Pn be any real polynomial of degree -<n. With obvious
simplification of notation we obtain the following:
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As in [6] we make use of the estimates IT,(t)/tl<=n, ITn(t)/tl<-l/t for 0<t<=l and
[Tn(t)/tl>-2n/Tr for 0=< t-<sin (Tr/2n). It follows that

qgn(t)<_n2kt-1, qgn(t)<__t-1-2k for0<t__<l,

and

o(t)_>_ nt-
We consider now two cases.

Case 1. Suppose 0-<_x=<sin (Tr/2n). In this case, we have

qg (t) dt <- + <= n2k dt + 1-2k dt
/n dO 1In

1 n2k_ 1 n2k_--a 2k-a
2 Fl2k_-<_- since k ->_ a.

Also,

Io q,,(t) dt > nekt-1 dt n2k 1

It now follows from (4.4) that

X--(4.5) 0<- <2 n-, 0NxNsin
ptx)

Case 2. Suppose sin (Tr/2n)<=x<= 1. In this case, we have

p(t) dt <- a-l-2k dt < a-l-2k dt

1 Xa_2k1 Xa-2k <_ since k > a.
2k-a a

Hence,

Also,

It follows that

(4.6)

x p. (t) dt <= <- sin _-< n
O O O

f sin(,n-/2n)

p( t) dt >- pn( t) dt >-
dn(r/2n) (_)2kn2kta_l d

n2k 1
sin

r 1 n2k-a

O<p(x)-X -< n- sin <=x=<1.

From (4.5) and (4.6) it follows that

[-1, 1]) <--_2(’rr/2)2kn
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(recall that p(x) is of degree 2k(n- 1)). Using a standard technique, the last inequality
implies (4.1) with a constant B of the form C(Bct), where B, C> 1 are absolute
constants. Analyzing the proof of lower bounds given in Lungu [5], we see that A,
may be taken of the form A-, where A> 1 is an absolute constant. The proof of
Theorem 2.3 is complete, tq

An appropriate change of variable yields the following corollary.
COROLLARY 4.1. For any a [-1, 1] and for any a>0 there exist constants c, c

(depending on a, a) such that

(4.7) cln-"<--Eo,(lx-al;[-1,1])<-c.n /flal < 1,

(4.8) cln
-2 < E (Ix-a[" [-1 1]) < c2n-z" iflal 1

The same estimates hold for ECo,(Ix-al sgn (x-a); [-1, 1]).
We conclude this section with a simple lemma. This lemma together with Corollary

4.1 enable us to obtain upper bounds for Eo,(f; [-1, 1]), where f is a finite product
of functions of type Ix- al or ]x- al sgn (x- a).

LEMMA 4.2. For any complex-valued continuous functions f, g, on I, there is a
constant K (independent of n) such that

(4.9) Eo,z(fg;.I)<-_K(Eo,(f; I)+ Eo,(g; I)),

where Eo,,, stands for E ro,, or for Eo,,.
Proof. Choose the polynomials p,, q, such that

f_
1

Eo,(f; I), g-

where I]" denotes the uniform norm on I. Since

the result follows. I-]

=Eo,(g;I),

IlgllEo,,(f; I) + 2llfllEo,,(g, I),

< B,,n- 0< x < 1

Recall that p(x) is an even polynomial of degree 2k(n- 1), where k is the smallest
integer satisfying k >-2a. Define the polynomial Q(x) by Q(x):= p(x/). Then

(5.2) Ix-l/Q(x)l<-B,,n-2 0<x<l

1

p(x)

5. Well-approximable functions (Proof of Theorem 2.5). The proof of Theorem 2.5
given in this section will be split into several lemmas. We shall use the following
notation:

f(x)+={fo(X) iff(x) -> O,
otherwise.

LEMMA 5.1. For any > 0 and for any n 1, 2, 3,...,

(5.1) E,(x; [-1, 1])_-< E,,(x_; (-0o, 1])<-B,n -2’.

Proof We consider the kernel ,(t) and the polynomial p(x) as in the proof of
Theorem 2.3 (see formulas (4.2), (4.3)) with a replaced by 2c. From the proof of
Theorem 2.3 we obtain that
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Since T,(t)/t has the form (-1)("-l)/2-ol)/2(-1)JajtZJ aj>0, the polynomial
T, (t)/t]2k has a similar form (except that the- factor preceding the summation is now

1). Hence the polynomial p(x)is of the form ___(-1)(-1)ibexES, b>0, and therefore
Q(x) has the form

k(n-1)

Q(x) (-1)JbM, bj > O.
j=O

It follows that Q(x)> Q(0) for x negative and we obtain from (5.2) that

Hence,

O< 1/Q(x) < 1/Q(O) < B,n -:’, -oo<x <0.

To show this write

1(v/-- a)+= (x- a)+ qr_+ a

From Lemma 5.1 it follows (by linear transformation of the variable) that

(5.7) Ero,((x a2)+; [0, 1]) =< cn-.

Ix+-l/Q(x)lBn -oo<x---< 1.

LEMMA 5.2. Let p be a real polynomial. Then

(5.3) E,(p+; [-1, 1]) _-< cn-21[p+ll(deg p),

where c is an absolute constant and II" denote the uniform norm on [-1, 1].
Proof By the proof of Lemma 5.1, there exists a polynomial q,,(x) of degree m

such that

(5.4) ]x+--1/ q,,,(x)[ <-_ cm -2 -<x< 1.

Let deg p =: k and define the polynomial Qmk(X) of degree mk by

1
Q,,k(X)

IIp+ll

The substitution x-p(x)/llP/ll in (5.4) yields:

p+(x)- 1/Q(x)l]--< cm-2[[p+ll- c(mk)-=llp+llU.

Hence the lemma is established for n of the form mk. The result for arbitrary n follows
by a standard technique. I3

LEMMA 5.3. Let f be a nonvanishing real continuous function on [-1, 1]. Then

(5.5) c, Er,,o(1/f; [-1, 1])__-< E;,(f; [-1, 1])<-cE;o(1/f; [-1, 1]),

where C > O, C2 > 0 depend on f
The proof of Lemma 5.3 is straightforward.
LEMMA 5.4. For any 0 < a < 1, there is a constant c (depending on a) such that

(5.6) Ero.((Ixl-a)+; [-1, 1])_--< cn -.
Proof It suffices to prove that

E ,((v/- a)+; [0, 1]) _<- cn -2.
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Further, we can extend the function 1/(x/+ a), x_-> a2, to the interval [0, 1] in such
a way that the resulting function, g(x) say, will belong to C2[0, 1] and will be positive
on [0, 1]. By Lemma 5.3 and by Jackson’s Theorem for differentiable functions (see
e.g. [4, p. 57]) we obtain that

(5.8) Eo,,(g; [0, 1]) <- cn -2.
Since (x-a2)+g(x)=(x/-d-a)+ on [0, 1], the inequalities (5.7), (5.8) and Lemma 4.2
yield the desired estimate.

LEMMA 5.5. For any 0 < a < 1 there is a constant c (depending on a) such that

(5.9) E,(([x[- a)+ sgn (x); [-1, 1]) _-< cn -2.

Proof. Write

([x[- a)+ sgn (x) x3([x[- a)+]x[ -3,
and extend the function [x[ -3, [x] _-> a, to the interval [-1, 1] as a twice differentiable
positive function. The lemma now follows (as in the proof of Lemma 5.4) from Theorem
2.3, Lemma 4.2 and Lemma 5.4. l-]

Using the proof similar to that of Lemma 5.2 we obtain the following.
LEMMA 5.6. Let p(x) be a real polynomial and let 0< a < lip[i, where denotes

the uniform norm on [-1, 1 ]. Then

(5.10) Eon(([p(x)[- a)+ sgn p(x); [-1, 1]) _-< cn-2llPll(deg p),
where c depends only on a.

Proof of Theorem 2.5. We first consider the case when all functions f are of the
same sign (positive, say). Define the polynomial p(x) by

N

p(x) := 1-I (x- a.i)(x- b.i ).
j=l

Then p(x)> 0 on each interval (a, b). It follows that the function

g(x) := f(x)/p(x), x [a, b],
is positive on [a, b] and belongs to C2[a, b]. We can find now a function G(x)
C2[-1, 1] that is positive on [-1, 1] and coincides with g on [a, b], j 1, 2,. ., N.
Since p(x) <= 0 whenever f(x) 0, we can write

f(x) -p+(x)G(x).

By Lemma 5.2,

E;,(p+; [-1, 1]) <- cn-(c depends on f) and by Lemma 5.3

Eo,,(G; [-1, 1]) <- cn -2,
since 1/G is twice ditterentiable. Applying Lemma 4.2 we obtain that

Eo,,(f; [-1, 1]) =< c(f)n -2.
For the general case, when the f are of arbitrary signs, define the function q on

u [a, bj] byU=
#(x) := f(x)+1/2 iff > 0,

[f(x)-1/2 iff <0.
Then

(5.11) (Iq(x)[-1/2)sgnq(x)=f(x), xe[a,b], j=l,2,. .,N.
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Next, we claim that there is a polynomial P(x) of some fixed but large degree, such that

N

(i) IP(x)l <1/2 for x [-1, 1]\ LI [aj, bj],
j=l

(ii) IP(x)l>1/2 for x(a, b), j= 1,2,... N,

{ irf>0,
(iii) P(a) P(bj) 1/2 iff < 0.

This can be seen as follows. The function o satisfies conditions (ii), (iii). Extend it to
[-1, 1] in such a way that it will satisfy (i) and will belong to C3[-1, 1]. Now
approximate o simultaneously with o’ by a polynomial P that interpolates o, o’ at aj,

bj, j= 1,2,-.., N. If the degree of P is large enough, the norms
will be arbitrarily small (see Chalmers and Taylor 1, pp. 55-56]). From this it follows
easily that P will satisfy (i)-(iii).

From this construction we obtain that the function

(lo(x)1-1/2) sgn 0(x)
g(x)

(]P(x)]-) sgn P(x)

is positive on a2, b2], j 1, 2, , N and has there two continuous derivatives. Extend
g to [-1, 1] preserving its sign and the differentiability. From (5.11) and from the
definition of g we obtain that

[(IP(x)l-1/2)+ sgn P(x)]g(x)=f(x), -1 -<x -< 1.

By Lemma 5.3 and Jackson’s Theorem,

Eo,,(g; [-1, 1]) =< cn -2.

Also, by Lemma 5.6,

Eo,,((lP(x)1-1/2)+ sgn P(x); [-1, 1])_-< cn -2.

Finally, Lemma 4.2 yields

Eo,,(f [-1, 1]) =< cn l-]

6. Approximation of analytic functions (Proofs of Theorems 2.4 and 2.6).
Proof of Theorem 2.4. If f( 0) is real analytic on [-1, 1], we can write

N

(6.1) f(x)=(x+l)(x-1)" 1-I (x-x)b" g(x),
j=l

where a, a_, b, , bu are nonnegative integers, Ixj[ < 1 for j 1, 2,. , N and g is
real analytic and nonvanishing on [-1, 1]. By Corollary 4.1, we have Ero,((x+
1); [-1, 1])<- cn-’, E,((x- 1); [-1, 1])<= cn-2, Eo,((x--x)b; [--1, 1]) =< cn-b.
Also, by Lemma 5.3 and by Bernstein’s Theorem (cf. [4, p. 76]),

lim sup [E,(g; [-1, 1])] 1/" < 1.

Applying Lemma 4.2 we obtain the estimate

Eo,(f [-1, 1]) =< cn
where k is defined in Theorem 2.4.

For the lower bound in (2.8) we write f(X)=(X--x)b%(X), where %(xj)0 and
e.pply the argument in Lungu [5] to obtain Eo,(f; [-1, 1])=> cn-b,j 1,2, , N. We
omit the details.
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Concerning Theorem 2.6, Walsh [8] proves the corresponding result for approxi-
mation on a Jordan region. He asserts that the result is also true for Jordan arcs, but
does not provide the proof. For completeness we provide the details.

Proof of Theorem 2.6. The implication (ii)(i) is trivial (apply Lemma 5.3 and
Bernstein’s Theorem). Assume now that

lim sup (En(f; [-1, 1])) 1/n q < 1,

and let P(x), n- 1, 2, 3,. ., be polynomials for which

or,(f, [-1 1]).IIf 1/P,,ll

It suffices to prove thatf 0 on [- 1, 1 ], since then Lemma 5.3 and Bernstein’s Theorem
will imply the analyticity of f on [-1, 1]. Suppose that f vanishes somewhere on
[-1, 1]. Since f 0, we can find an interval I c [-1, 1] such that f 0 inside I but
vanishes at one of its endpoints. Assume, for simplicity, that I [-5, 5], 5 < 1, and
f(5) 0. Then

lim sup I1/ P,,(,)l ’/" <-_ q,

which implies that

(6.2) lim inflP,,()l ’/" >- 1/q.

Pick 81<& Since f0 on [-(1, 1], there exists a constant M=M(tI) such that
IP(x)l <--M for n 1, 2, 3,..., and for x [-81,81]. Then (cf. [4, p. 43])

It follows that

]P,(8)] _-< M( 1 +x/1 (/8)2)"il/i

l+Ul-(tl/t)2 1
lim inf IP.()I ’/" _-< <-

l/ q’

provided B is close enough to 5. This contradicts (6.2).

7. Approximation on the real line.

Proof of Theorem 2.7. Consider the polynomial p(x) defined by formulae (4.2)
and (4.3) with a 1, k 1. By the proof in 4, we obtain that p is a polynomial of
degree 2(n 1) satisfying

(7.1) Ilxl- 1/p(x)l <-An- for -1 <-x_-< 1.

From (4.4) we also obtain that

(7.2) 0 < Ixl- 1/p(x) < Ixl for Ixl > 1.

For T> 0, set

F:= (x: IK(x)l < IlK IIt-,).
Then we obtain by the substitution x olK(x)l/llKIIt-, in (7.1), (7.2)that

1 An-illK IIt-, if x FT,
(7.3) IK(x)l-q(x)---- <- lg(x)l if x R\FT-,
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where q(x):= IIKII-’t_.,.ap(K(x)/llKIIt_.,a) is a polynomial of degree -<2k(n-1).
Dividing (7.3) by L(x) and setting a := minalL(x)l > 0, we obtain that

Ig(x)l 1 f Aa-’n-’llgllt-, if x F,
L(x) r(x) IK (x)l/ L(x) if x R\FT,

where r(x):= q(x)L(x) is a polynomial of degree 2k(n- 1)+ 1. For T large enough we
have IIKIIt--T,T-- O(Tk) and Ig(x)/t(x) O(Tk-’) uniformly for x R\FT and con-
sequently

E;,2k,,_I)+I(IK (X)l/ L(x); ) O( Tk)n -1 + O(Tk-l).
When we choose T n lit we obtain the first assertion of Theorem 2.7.

For the third assertion we assume that K (x)-_> 0, L(x)> 0 on and make use of
the polynomial/(x) := p(x/), where p is defined by (4.2) and (4.3) with a 2, k 2.
Then

An 2 if0_-< x_-< 1
Ix_l/p(x)l<_

x if x> 1,

and we can repeat the above proof choosing eventually T n2/!.
It remains to prove the second assertion of Theorem 2.7 (formula (2.11)). Let p

be the polynomial satisfying (7.1)-(7.2). Using the method of the proof of Lemma 3.1
we see that when we choose

(7.4)

we obtain

(7.5)

For Ixl > 1 we have

(X) (X- ie)p2(x),

Hence

1/(x)l-

:- EG.(Ixl; [-1, 1]),

Ix- 1//(x)l An-’ for [xl -< 1.

1 1
< Ix[ 2

Ix- ie] p2(x)= Ix- ie]-
Ix] (by (7.2)).

(7.6) Ix- 1//(x)l =< 21xl for Ixl > 1.

Using (7.5) and (7.6) the proof can be completed as above.
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THE NEWTONIAN GRAPH OF A COMPLEX POLYNOMIAL*

MICHAEL SHUB’, DAVID TISCHLER:I: AND ROBERT F. WILLIAMS

Abstract. In a recent paper [4] Smale posed as an important problem in complexity theory, characteriz-
ation of the graph Gf of the Newtonian vector field Nf for a complex polynomial f. Such graphs are known
to be connected and acyclic and Smale conjectured that these two properties completely characterize them.
The purpose of this paper is to prove this conjecture, after adding an additional hypothesis (part 3 of the
definition of "dynamic graph," 2). In additon we give an example and prove a proposition to show this
is necessary (see "Counterexamples" in 2).

We present the proof as Theorem C in 5 using the topological characterization of analytic maps given
by St/Silow [5] in 1929. Bill Thurston pointed us in this direction, though considering the fact that G. T.
Whyburn was the major professor of one of us, we should not have needed this help. In addition we present
direct proofs of three special cases as Theorem A, Theorem B and Example 7. While this was being written
an independent proof was given in the generic case (Theorem A) in [2].

Sections and 2 are devoted to basic properties and to a list of examples designed to acquaint the
reader (and the writers) with various aspects of Newtonian Graphs.

Key words, polynomial, root, Newtonian vector field, Newtonian Graph

AMS(MOS) subject classifications. 58F, 65H, 68Q

1. The Newtonian vector field. Given a smooth map f: Rn- R the Newtonian
vector field for f, Nf, is defined by

Nf(x) -(Ofx)-’ (f(x)).
Let bt" R" --> R" be the corresponding flow. Then a computation carried out below using
the chain rule shows thatf(h,(x))= e-f(x). Thusf maps orbits of b, into rays pointing
toward 0. This is essentially the geometric content to Newton’s method for seeking
zeros of f

Alternatively, one defines

Vy(x) -1/2 grad Ilf(x)ll 2-- -(Dfx)trf(x).
For conformal maps, and in particular analytic maps, of one complex variable (by the
Cauchy-Riemann equations) the inverse of a matrix and its transpose differ only by
a scalar multiple. Therefore, the vector fields Vy and Ny also differ only by a scalar
multiple, except where (Df)-1 is undefined.

We next collect some facts for f a polynomial of one complex variable:
1. Ny or Vy have the same solution curves as
(a) -f(z)f’(z) or
(b) - (z a)/[z aj] 2, {a} the zeros of f

Thus the field is the sum of forces toward aj, each inversely proportional to the distance
from a.

To see (a),
f(z) f’(z)

lVAz) -f’(z--- f’(z) -(1/If’(z)l)f(z)f’(z)
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SO that Ny differs from -f(z)f’(z) only by the scalar function If’(z)l -. Note however
that this scalarization converts poles of Ny to zeros of Vy.

(b) -f/f’= -[(logf)’]-= 2 z- a

Iz- a,I 2 -- z- i--](/Ialza,),

where A z- a,/Iz- a,l.
2. Properties of Ny and Vy:
(a) f(,(x))= e-if(x)
(b) Nf and Vy have attractors (sinks) at the zeros aj off.
(c) The only other rest points of Vy are the zeros 0j of f"

(i) generic zeros of f’ are hyperbolic saddles of Vy;
(ii) at multiple zeros of f’ Vy has multipronged saddles ("monkey saddles"
and worse);
(iii) For 0 a zero of f’, the orbits leaving 0, called together the unstable
manifold WU(0), consist of n algebraic curves emanating from 0 at equal
angles because f(z) cl + c2(z- O) Al- higher order terms, c2 0.

(d) Multiple zeros a of f have no geometric effect on the corresponding sinks.
Only the velocity of the flow toward _a is increased.

(e) (Gauss-Lucas Theorem). The convex hull ofthe sinks {a} contains the saddles
{ 0}. The flow of Ny or Vy is inwardly transverse to any convex curve containing the {a}.

Proof of 2. To prove (a) we compute

d--f(cht(x)) Df(t(x)) .- tht(x)

Df(t(x)). (-Df(t(x)))- f(th,(x))

-f(6,(x)).

Thus f(cbt(x))= Pt where

dt
-p att=O, p=f(x)

which has e-’f(x) as solutions.
Parts (b) and (d) follow from the "attracting force" version of Ns, -Y(z-a)/

[z-aj[ 2. Similarly, if all the a are on the side of a line, the vector field is transverse
to this line, which proves the second part of (e). The first part follows from the second
part.

The form -f(z)f’(z) shows that the zeros of f and f’ are the only rest points.
Part (a) implies (c)(ii)-(c)(iii); the inverse image of a directed line under the map
z - c + c2(z- 0)" + h.o.t, consists of 2n directed curves pointing alternatively toward
and away from 0, with tangents evenly spaced at 0.

In fact, property 2(a) is proven for general Cf and 2(b) is true for simple zeros
of Cf since at such points the derivative of Ns is -/.
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Whenf’(0) 0, DVf(O)(w)= -f"(O)wf(O). Iff(0) #0 andf"(0) # 0 then the 2x2
real matrix representing this linear transformation has strictly negative determinant
and trace 0. Thus the eigenvalues of DVy(0) are real and have opposite sign.

We have borrowed here from [3] and [1] where a desingularization of Newton’s
method is discussed in more variables as well.

2. Newtonian graphs and special terminology. Let f be a complex polynomial with
{aj} its zeros and {0k} the zeros off’ which are not zeros off. Let Vy= -f(z)f’(z) be
the gradient vector field of f as in 1. Let WU(0k) be the "unstable manifold" of 0j,
i.e., the union of all solutions which limit on 0k as --> -. Note that they in turn limit
on some a or some other 0k, as t--> +. Define

= {a} {0} w"(o).
Then Gy is a finite graph with distinguished vertices a, 0k and directed "edges" W"(0k).

For nonrepeated zeros 0k off’, W" (0k) { 0k} is a smooth curve but in degenerated
cases W"(0k) consists of 3 or more prongs.

The sinks aj of Gf have weights oj where aj is the multiplicity of aj.
Counterexamples. CE1 below is not homeomorphic to any Newtonian graph Gf,

f a polynomial. CE2 is not isotopic to any such Gf.

CE1 CE2

These facts follow from the general proposition.
PROIOSrrION. For f any complex polynomial and v a vertex of Gj. at most one

incoming edge can lie between any two outgoing edges.
Proof. Suppose the contrary. Then choose a small circle J around v and note that

it passes through points A, B, C, D where
(i) A<B<C<D on J;
(ii) there is no other point of J (outgoing edge) between A and D on J;
(iii) A and D lie on rays beginning at v;
(iv) B and C lie on rays terminating at v.

Then f has a singularity at v (of index>_-2) and f maps the open arc (B, C) of J
completely around f(v) since it intersects the ray {mf(v)l m real m > 1} in the two
points f(B), f(C). fl (B, C) does not intersect the ray {mf(v)lm real, 0 < m < 1} which
is a contradiction.

Examples. In our sketches we indicate the weights only if different from 1.
1. z"-z n =7
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2. Real roots

3. zd--1 d=5

4. (z: + a:’)(z:’- be)

multiple saddle or
unstable star with 5 prongs.

saddle connections

a<b

a>b

5. (z- c)"

n m

sinks of weights n and m.

6. There is a polynomial P, monic and of degree n such that ((z-c)"P)’=
(n+ m)(z-c)m-lz m, n positive integers. (This is proved in Lemma 4.1; we sketch
the graph for such a P, where n 5 next.)

n=5
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7. Given positive integers a l, ", a, there is a polynomial of degree O --" t_ an
with graph

O

t6 O

O

O

O

unstable star with weights

Remark. For any complex polynomial f, the graph Gy is connected and acyclic.
Proof A cycle in the graph, Gy, would bound a finite region in the plane, but this

contradicts 2(a). The flow is a gradient flow with o as the only source. Thus the plane
is the union of Gy and W (), the unstable manifold of. Thus Gy has the homotopy
type of the plane (or a point) and so Gy is connected.

Remark. Any connected acyclic finite graph can be embedded in the plane, and
sometimes in distinct-nonisotopic ways. Embeddings f:G-.R2 and g: GR2 are
isotopic provided there is a continuous 1-parameter family f, 0-< t-<_ 1 such that fo =f,
fl =g and ft is an embedding of G for each t, 0=< t-< 1. This last property, that each
f, be an embedding, distinguishes isotopy from homotopy; were it to be dropped, one
could reverse the orientation of the next two examples, by pushing one of the legs
through another one. The following two examples have two isotopy classes of embed-
ding determined by the cyclic order at the circled vertices.

PROPOSITION. Generically Vf is structurally stable, having
(a) hyperbolic saddles,
(b) no saddle connections, and
(c) all weights= l.

Proof Generically f and f’ have no repeated zeros which proves (a) and (c). Any
one saddle connection can be removed by an arbitrarily small perturbation of one of
the vertices involved, noting for example that a saddle connection implies that two

critical values lie on the same ray. Thus proceeding one at a time, one can remove all
saddle connections by a perturbation so small as not to effect those already broken.
Structural stability now follows from Peixoto’s theorem (see Palis-de Melo [8]).

In order for an abstract finite acyclic graph to be the Newtonian graph of a

complex polynomial, it must have certain properties best described in dynamical terms.
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By a dynamic graph we mean a finite directed graph with two types of vertices,
which we call saddles and sinks subject to the following conditions:

1) At a sink, all edges are directed inward (i.e., toward the sink).
2) Saddles have at least two outwardly directed edges.
3) At a saddle, any two adjacent outwardly directed edges have at most one

inwardly directed edge between them. (Each such edge must then connect two saddles,
and is thus called a saddle connection.)

4) Each sink has a weight which is a positive integer, often 1. The weights have
no effect on the geometry of a dynamic graph.

It follows that a dynamic graph falls into natural units each consisting of a saddle
together with all edges directed away from it. These will be called unstable stars or
k-prongs where k is the number of issuing edges, k 2, 3, . A 2-prong is also called
a hyperbolic saddle.

3. The generic case. Our first theorem is a special case of each of the two others,
but its proof is easy. In addition, while this was being written, other authors [2] have
found a proof independently of this part of our results.

THEOREM A. Given an acyclic dynamic graph with all saddles hyperbolic, no saddle
connections and all weights 1, there is a complex polynomialfwhose graph Gf is isotopic
to G.

Proof. First, there exist sinks Vo, vl," ", v,, G, and subgraphs G c G such that
for each ce, v G and G/I consists of G together with one additional hyperbolic
saddle having v as one of its 2 sinks.

We proceed by induction on a. The graph {Vo} is realized by^the polynomial z.
Thus assume we have a generic polynomial P, such that the graph G of P is isotopic
to G. Let D be a (round) disk containing the zeros of P. Then D t and the field
Vp is inwardly transverse to the boundary cD of D.

Let f(z)= P(A(z-c)) where IAI 1 and c is real. Note that the graph of f is
conjugate to G by a linear conjugacy" f’(z)=AP’(A(z-c)) so that Vf(z)=
-Pa(A(z-c))ff(A(z-c))=Vp(A(z-c)) which gives Vy(z) I-IVpa(A(Z--C)).

Let g(z)= zf(z). We claim that for c sufficiently large and certain A, IA 1, the
graph of g is isotopic to G+I. In fact the field Vg on D differs from Vy only by the
summand -1/z and this is essentially constant=-1/c. Thus for c >> 1, the part of the
graph of g related to the zeros and saddles off is isotopic to by structural stability.

Note that the "ice-cream cone" region sketched below contains the zeros of g and
hence the dynamics of Gg. It follows that the graph Gg of g consists of G together
with a single edge added and that for c large, the saddle of this new edge is outside D.

Now as A varies in the unit circle, the disk D and the dynamics of Vp rotates
through a full circle as well, by structural stability. Thus our new edge arrives at any
one of the entering orbits, for the appropriate choice of A. This is important below,
but here we have more leeway, because there is an open set of orbits limiting on the
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sink v, and have the correct deployment with respect to . Thus for some choice
of h the graph Gg of g is isotopic to G/I.

This completes the inductive step and the proof of Theorem A.

4. Nongeneric saddles and Theorem B. The purpose of this section is to prove
Thoerem B. This uses the fact that our example 6 is the Newtonian graph of a complex
polynomial which we prove as Lemma 4.1. Example 6 is used in the proof of Theorem
B (implicitly) and in example 7, below.

LEMMA 4.1. Given integers m, n and c C, there exists a monic polynomial P of
degree n+m such that P(O)O for cO and ((z-c)mP(z))’=(n+m)z"(z-c)m-1.

Proof. This linear ODE reduces to (z-c)P’+ mP (n + m)z". We try a solution- biz and note that the coefficient of z is n + m on both sides.of the form P z +Y i:o

Proceeding downward, for j=n-1, n-2,...,0 one has the formulas jbj-
c(j + 1)bj+l + mb 0 for the coefficient of z. Thus

c(j+ 1)
b=b+,

m+j

gives our solution, which terminates with bo as b_l 0.
THEOREM B. Given an oriented acyclic embedded dynamic graph G with no saddle

connections and all weights 1, there exists a polynomialf with graph Gf isotopic to G.
Proof. We proceed as before with v,, G c G by induction on a. Here, however,

G/I is G with a multiple saddle attached at v, G. Suppose then that P is a

polynomial yielding the graph G and that D is a disk around 0 containing all G (as
above) and w, the field of P transverse to 0D. Let f(z) P(A(z-c)). For simplicity
we assume 0 is a zero of P, and set f(z)= P(A(z- c)).

Now G+I is G with a saddle edge added at the vertex v. Say the new unstable
star has (n + 1) exiting edges, for some n >_- 1. Then we want our next polynomial g to
have derivative z’f’(z), or g(z) w’f’(w)dw, some c C which we choose to be real.
Here we use the same c as that in f(z)= P(A(z-c)). Then integrating by parts,

ig(z) z"f(z)- n w"-’f(w) dw,
as f(c) 0.

Then the gradient field for g is given by

v. -Izl’f(z)f’(z)+ ne’f’(z) w"-’f(w) dw.

Now near c we scalarize to Vg/lZl2" which gives

-f(z)f’(z)+ nf’(z) Wn-lf(w) dw,

so that we have our given field with an error term,

2’

Then one can estimate E on De by

n(c + ,)"-’[f’(z)f()l,
(c-6)"

some z, " 6 De
which goes to 0 for large c, where diameter of D.
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Next to check the C part of the error, we note that E is ditterentiable as a map
from R2 to RE, as conjugation is real analytic. Hence

nzn-lf’(z)f(z) nf"(w) wn-lf(w) dw n2f’(z) wn-lf(w) dw+
Z Z Z

n+l

These clearly go to zero on Dc as c--> . Thus the field of g on the disk is near that
f(A(c-z)) and has exactly the same saddles. It follows that for c large enough, the
graph Gg is isotopic to G with an unstable star of n + 1 prongs added.

But just as in the proof of Theorem A, we can choose A so that this last edge is
added in the correct "angle."

This completes the proof of Theorem B.
PROPOSITION (Example 7). For any (integral) weights al,’", ak there is an

unstable star with these weights. Equivalently, there is a solution al, a2," ", ak, ai # 0

of the equation

(z- an) ’" (1 "-""" + k)zk-1 H (Z an
n=l n=l

Furthermore, any cyclic ordering of the weights (see the above remark) can be realized.

Proof This ODE leads to an unstable star with weight ai at ai, provided it has a
solution with the ai distinct. To solve it is equivalent to solving a set of k- 1 equations
in k unknowns, which we augment by one equation.

k

(j) an a,,a2...aj=0, j=l,2,...,k-1;
n=l i, <i2<...<i

ia in

ak--1 =0.

Now the function F Ck --> Ck defined by the left-hand sides, where a a 1, , ak
is a proper map and has a positive Jacobian (see 1, p. 294]). Thus F can be extended
to the 2k-sphere cku {} SO that it has a solution al,’", ak.

In fact, by counting degrees we see that there are (k-1)! solutions. To see that
these contain all of the isotopy classes we need a homotopy argument. First, we may
as well suppose that the an’s are numbered in their desired cyclic order. Next let a(t)
be a path, 0 <= <-1, where

a(0)=(1, 1,’’’, 1) and

ce(1)--(Cel, 02,’’" ak) and

a,(t) aj(t) for #j and O< < l.

Now by Lemma 4.1, above, there is a singular graph of weights 1, 1,..., 1, that is,
the regular unstable star of k petals, and thus there is a solution an(0) n 1,..., k
of the equation F<o 0. Then F<,) is an analytic isotopy of this algebraic function,
so there is a unique arc of solutions {an(t)} to the equations F<t =0. This gives a
1-parameter path of functions f(z)= l"-[(z-an) a-, and Newtonian graphs Gt, whose
end G1 has its weights in the correct order as Gt is an isotopy of graphs. The weights
{an(t)} do vary with t, of course, but Gt is an isotopy of the graphs if we disregard
weights. One could also interpret Gt as an isotopy of weighted graphs. The ft(z) are
proper and their Newtonian graphs are acyclic, connected, etc.

5. The general case via Stiiilow’s theorem.
THEOREM C. Given an acyclic dynamic graph G c R there is a polynomial f such

that the Newton graph Gf is isotopic to f
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DEFINITIONS (see Whyburn [7]). A map f:X--> Y is light if f-l(y) is finite (or
totally disconnected; for surfaces X, Y it comes to the same thing) for each y Y and
open provided f(u) is open for each open set U c X. In these terms there is the classical
(1929) result as follows.

STtILOW’S THEOREM [7, p. 103]. Iff M2-> C is a light open mapfrom the surface
M(OM =) to the complex plane then there is an analytic function b :R->C, R a
Riemann surface and a homeomorphism h R --> M such that d f h.

We next outline the proof of Theorem C. We construct a light open map f:R-> C
such that

(a) f is zero only at the sinks v G and has degree m at v, m the weight of the
sink v.

(b) The degree off at a saddle 0 is k- k(0) where 0 is a k-prong in G.
(c) f has no points of degree > 1 except as in (a) and (b).
(d) The f-image of each directed edge is a (straight) ray pointed toward the origin

in C.
(e) f is proper.

Now applying St6ilow’s theorem we obtain an analytic map th’R- C, and a homeo-
morphism h:R-> R:. Now R must be C or the interior of a disk in C. But the latter
case is ruled out as b is proper. Then b is a polynomial since it is entire and has poles
only at . But G6 is just h-i(G) by our construction. That is, the zeros occur only at
the sinks of h-l(G) and the other singular points are th(h-l(0)), 0 a saddle of G.
Finally the solution curves of V6 being those curves which map onto rays of C pointing
toward the origin, include the directed edges of h-(G).

This completes the proof of Theorem C; it remains only to construct the light
open map f satisfying (a)-(e).

Construction offi The construction will use induction on the number of saddle
points in G.

Suppose there are no saddle points in the graph G. Then G consists of one root
of weight m. In this case Gf G for f(z)= zm.

We make the induction hypothesis that such f exist is true for dynamic graphs
with less than or equal to n saddle points.

An equivalent form of the induction hypothesis which will be convenient is the
following. Let G be a dynamic graph with less than or equal to n saddle points. For
any disc D containing G there exists a light open map f such that (1) f(D)= D
{z Izl <_- 1}, (2) f is a covering map from the boundary of D onto the boundary of D1
and (3)f satisfies (a), (b), (c), (d) relative to G.

In order to see that the second form of the induction hypothesis follows from the
first, observe that a large enough disc {zl Izl-<-R} in the range off has for preimage a
disc containing D. Adjusting f by an isotropy in the domain and by a radial isotopy
in the range gives f: D-> D1 with the desired Gf.

Suppose we have a dynamic graph G which is connected and acyclic, with n + 1
saddle points. The points of G are partially ordered by the directed edges. Choose a
saddle point 0 at which no edge terminates. Let {yi}, 1 _-< i-_< k be the edges emanating
from 0. For each yi, G-{interior of %} is the union of two dynamic graphs. Let
be the component of G-{interior of %} not containing 0. Let {D}, 1_-< i<-_k, be a

family of pairwise disjoint discs such that Di contains G, OD f’) y is a single point p
in the interior of yi, and Di 0 yj b for j. Such discs D can be found by taking
small neighborhoods of the G. Since G is connected and acyclic, by the induction
hypothesis there is a light open map f: D--> D1 such that Gi Gj.

Denote by q the terminal end of
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LEMMA. We can alter l/i by an isotopy so thatf(qi) Ai" f(pi),for some real number
Ai >--O, and so that the part of yi from p to q is mapped by f onto the radial segment
from fi (pi) to fi (qi). Furthermore, we can assume that fi (pi) 1 for 1 <= <-_ k.

ProofofLemma. Let { 0} be the saddle points off. Then f(G) is the star formed
by the union of the radial segments from f(0j) to 0. We consider separately two cases"

(1) q is a saddle of Gi and (2) q is a sink of Gi. In case 1, there is a unique radial
segment J from a point of the circle {z [z 1} to f(qi). Let I be the union of all curves
in f-l(j) that terminate at the saddle point qi. There is one and only one such curve
between each pair of successive edges emanating from qi. If J contains some f(0j)
then one of the curves of I will contain an edge of Gi which terminates at qi. Suppose
’i arrives at qi between the two successive outward edges eo, el. By property 3 of the
definition of a saddle connection for the dynamic graph G, no edge of Gi can arrive
at qi between eo and el. Let Io,1 be the curve in I that arrives between eo and e Then

lo.1 does not contain an edge of G. Since Gi is connected and acyclic yi can be isotoped
(that is, G can be isotoped, fixing G-y) so that yi agrees with Io,1 in Di.

In case 2, Yi arrives at the sink q and f(yi fq Di) is a topological line segment
proceeding from 0 to some point p’ OD. Of course the map f, which we know exists,
is only weakly related to the arc /i since 3/ is not a part of the graph Gi. We construct
a more appropriate arc as follows. Choose a point p’ near qi in the correct angle"
or cone at q. Then f(p) 0; let J be the line interval from 0 to f(Pl). Then there is
a unique lifting of J to an arc Iv joining P to q. This arc lifting property is essentially
trivial to understand since we know f/is a branched covering.

Let Ri be the rotation of C centered at z=0 such that R(f(pi)) 1. Define
fi R Gi. Note that Gy, Gy because Ri preserves radial lines. This completes the
proof of the lemma.

We now have the situation pictured in Fig. 5.1, which we can think of as a map
f defined on the union of the disks D1,"" ", Di. Thus it is a simple matter to define
a star-shaped disk D* bounded by the dotted lines in Fig. 5.1 and small arcs on the
disks D1," ", Di. This disk D* is in turn mapped into the disk D’ bounded by the
dotted line A F(Ai) and a small arc of D, by a covering map, branched at F(O)
(see Fig. 5.2). The resulting map F is a light open map having the appropriate properties
except that it is defined only on a compact disk Do D* [_J D1 [_J [_J Di. But since
F(Do) D [.J D’ is a covering on the boundary, it is a simple matter to extend it to the
whole plane by a covering map. This completes the induction and thus the proof of
Theorem C.

FIG. 5.1
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Abstract. In much of the mathematical work on nonlinear viscoelasticity it is assumed that the kernel
(or memory function) is smooth on [0, ). There are, however, theoretical and experimental indications
that certain viscoelastic materials may be described by equations involving kernels that are singular at zero.
In this paper we establish local (in time) existence of smooth solutions to a nonlinear integrodifferential
equation with a singular kernel. This equation provides a model for the motion of a certain class ofviscoelastic
materials. Our analysis is based on energy estimates and properties of positive definite kernels.
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1. Introduction and statement of results. Over the last decade, a significant amount
of effort has been devoted to the study of nonlinear integrodifferential equations that
model motions of viscoelastic materials. Most of the results obtained so far concern
equations with kernels that are smooth on [0, 0o). There are, however, theoretical and
experimental indications that certain viscoelastic materials may be described by
equations involving kernels that are singular at zero. (See, e.g., [5], [16], [18], [27],
[31].) A number of interesting questions are directly linked to behavior of the kernel
near zero.

Recent work on linear equations with constant coefficients ([4], [10], [14], [23],
[24]) shows that singular kernels lead to smoothing of solutions. One therefore expects
that nonlinear equations with singular kernels should have "nicer" existence properties
than those with regular kernels. However, singular kernels lead to significant technical
complications, and even questions of local existence become very delicate.

In this paper, we study the model problem

(1.1)l utt(x, t)=x(ux(x, t))x+ a(t-’)d/(Ux(X, ’))),d’+f(x, t),

x [0, 1], t-->0,
(1.1)2 u(0, t) u(1, t) 0, --> 0,

(1.1)3 u(x, O) Uo(X), ut(x, O) u(x), x [0, 1].

Here X, :[ -> R are assigned smooth functions, a (0, 0o) -> R is a given kernel, f is a
known forcing function, and Uo, Ul are prescribed initial data. The unknown function
u represents displacement. On physical grounds, it is natural to assume that a is
positive, decreasing and convex, and that ,’> 0. If the material in question is a fluid
then X’--0, while for a solid, X’ generally is positive near equilibrium, but may change
signs globally.

For physical problems arising in viscoelasticity, the integral in (1.1)1 would extend
from -0o to and the history of u prior to time 0 would also be prescribed. This
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type of problem can be put in the form (1.1) by incorporating the part of the integral
from -oo to 0 into the forcing term f. However, if the kernel a is singular then in
order to ensure that the original history value problem is equivalent to the initial value
problem (1.1) we must require that the limit as t’0 of the given history is equal to Uo.

The behavior of smooth solutions of (1.1) (and of similar problems) is well
understood when a is smooth on [0, oo), i.e., a, a’ AC[O, oo). The situation can be
described roughly as follows" if g’+ a(0)q/> 0 and the data (Uo, ul,f) are sufficiently
regular, then (1.1) has a unique classical solution on a maximal time interval [0, To).
Under some additional assumptions (which are physically motivated) the solution of
(1.1) exists globally in time, provided that the data are suitably small. On the other
hand, if the data are too large then the solution will develop singularities in finite time.
See, e.g., [2], [3], [9], [11], [12], [25], [28], [30], as well as the recent monograph [26]
and the references cited therein.

The local existence result mentioned above can be established by a relatively
simple iteration procedure that requires X’+ a(0)q/> 0, but is otherwise insensitive to
sign conditions on a and q. As explained in [15], [25], this procedure cannot work
unless a’(0/) is finite.

The main effects of a kernel which is smooth on [0, o) are exemplified by the
special case

(1.2) a( t) tx e-’’

with/z, A > 0. When a is given by (1.2), the integroditterential equation (1.1)1 can be
converted to the partial differential equation

(1.3) utt, + Autt (X(u,)+ txq(u,,)),t + AX(ux), +f + Af,
which is studied in [7], [13]. We note that if X’+/xb’> 0 then (1.3) is hyperbolic.

If we formally take a to be the Dirac delta function, then (1.1)1 becomes

(1.4) utt=X(Ux)x+(d/’(Ux)U,)x+f.
If q’> 0 then the initial-boundary value problem (1.4), (1.1)2, (1.1)3 is well posed
(locally in time)--irrespective of the sign and size of X’. Moreover, under reasonable
assumptions on X and q, (1.4), (1.1)2, (1.1)3 has a globally defined classical solution,
even if the data are large ([1], [8], [17], [20]). (There are large-data global existence
results for (1.4) that permit X’ to be negative. However, positivity of X’ is needed to
ensure asymptotic stability.)

Although (1.4) is parabolic, solutions generally do not have more spatial regularity
than the data, due to the presence of stationary singularities. Indeed, in the special
case when X=0 and p(:)= sc the solution of (1.4), (1.1)2, (1.2)3 is given by

(1.5) u(x, t) Uo(X) + v(x, s) as,

where v satisfies the heat equation and hence is analytic. The spatial regularity of the
function u in (1.5) is precisely the same as that of Uo. In contrast with the situation
concerning shocks and nonlinear hyperbolic equations, stationary singularities in
solutions of (1.4) do not form on their own. In other words, such singularities originate
solely from singularities in the data.

If the kernel is a function, but has a singularity at zero, we except (1.1)1 to behave
in an intermediate fashion, somewhere between a damped hyperbolic equation (such
as (1.3)) and the parabolic equation (1.4). Some results of this nature have been
established for linear problems, but relatively little is known about nonlinear equations
with singular kernels.
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In an earlier paper [15], we studied a problem quite similar to (1.1) under
hypotheses which permit a’(0+) --c, but require a(0+) to be finite. (The problem
considered in [15] is not exactly of the form (1.1). However, under the assumptions
made in 15], the problem studied there is essentially equivalent to (1.1).) We establish
here a local existence theorem for (1.1) that permits the kernel a to have an integrable
singularity at zero. On the other hand, we also impose stronger monotonicity assump-
tions on a than those needed in [15].

Our proof employs the same basic strategy as in 15], i.e., a contraction argument
based on energy estimates. However, a different function space is used and an inequality
of Stattans [29] is exploited to obtain a modified chain of energy estimates.

A global existence theorem (which allows a’(0+) =-oo, but requires a(0+) to be
finite) is also proved in 15] for bounded intervals and extended to unbounded intervals
in 12]. This result requires the data to be small, and it is not known whether solutions
develop singularities in finite time if a’(0/) =-oo and the data are large. The problem
of global existence when a(0/) +oo is currently under investigation (see "Note added
in proof").

The only other existence results for nonlinear problems with singular kernels that
we know of are the works of Londen [19] and Engler [6]. Londen establishes the
existence of weak solutions to an abstract integroditterential equation. His existence
theorem can be applied to (1.1) in the special case when X is a scalar multiple of
Engler establishes the existence of weak solutions to the equations of motion for a
class of viscoelastic fluids.

Concerning the kernel a we require

a L(O, oo),
(a)

a _-> 0, a’ _-< 0, a"_-> 0, a’" _-< 0,

and we make the following assumptions of smoothness"

(sl) X, P 6 ca(R);
(s2) Uo e Ha(0, 1), Ul H2(0, 1);

(s3) f,f,fx Loc([0, oo); L(0, 1)).

In order to obtain a smooth solution of (1.1) we need the data (Uo, u and f) to be
compatible with the boundary conditions; for technical reasons we make the following
rather strong compatibility assumption:

Uo(0) Uo(1)= u(0)= Ul(1)=0,

(c) u(0) u() =0,

f(0, t) =f(1, t) 0 a.e. ->_ 0,

which guarantees that the data admit smooth, spatially periodic, odd extensions (of
period 2). Finally, in order to ensure the evolutionarity of equation (1.1) we require

(e) ’(sc) > 0, X’(sc) + a (0+)#’(:) > 0

Observe that if a(0/) +oo then (e) imposes no restrictions on X’. In this regard, when
a(0/) +oo the memory term in (1.1) has the same effect as the Newtonian viscosity
(’(Ux)Ux,)x.

The hypotheses of primary interest are (a) and (e). The inequalities in (a) are
assumed to hold in the sense of distributions. Of course this guarantees that the kernel
a has a certain amount of smoothness on (0, oo) in the classical sense. More precisely,
it follows from (a) that a C(O, oo) and that a’ is locally Lipschitz continuous on
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(0, ). The main difference between (a) and the corresponding assumption in 15] can
be described roughly as follows: in 15] it is also required that a’ LI(0, o) (and hence
that a(0/) is finite), but no condition on a’" is needed.

Our main result is the following theorem.
THEOREM. Assume that (a), (sl)-(s3), (c) and (e) hold. Then the initial-boundary

valueproblem (1.1) has a unique solution u on a maximal time interval [0, To), To > 0, with

u, u, u,, U,x, Ux, Ux,,,,, Ux,,t L([0, To); L2(0, 1)),(1.6)1

(1.6)2

Moreover, if

u., u:,,. Lo([0, To); L2(0, 1)).

(1.7) ess-sup { 2 2 (x, t) dx dt <,Ux,x + Ux,}(x, t) dx + Ux,,
t[O, To)

then To oo.
Remarks. (1) It follows from (1.6) and standard embedding theorems that u, u,,

u,, u and u,, are continuous on [0, 1] [0, To). Moreover, since f vanishes at the
endpoints, one can show that the solution satisfies Uxx(O, t)= u(1, t)=0 for all

[0, To).
(2) A similar existence theorem holds for the pure initial value problem on all of

space.
(3) The question of optimal regularity of the solution of (1.1) appears to be rather

delicate. One expects that a singularity in a will lead to smoothing in the temporal
direction. However, one should not expect spatial smoothing because equation (1.1)1
permits stationary singularities.

The paper is organized as follows. In 2 we discuss some preliminary material
concerning the kernel. Then in 3, we establish an existence theorem for a linear
integrodifferential equation with variable coefficients. Finally, in 4, we use the results
of 3 to prove the theorem stated above. In 3 and 4 we emphasize those features
of our proofs that differ from 15]; details of arguments that are very similar to ones
in [15] will be omitted.

2. Preliminaries. This section contains some preliminary material that is needed
for the proof of our theorem. Let X be a Hilbert space with inner product (., .) and
associated norm I1" II- For each b Lo[0, c), T> 0, and L2([0, T]; X) we set

/o’< )(2.1) Q(*, t, b):= (I)(s), b(s-r)cI)(r) dr ds Vt[0, T].

We denoteby H([0, T]; X) the set ofall* L2([0, T]; X) such that *’ L2([0, T]; X),
where ’ is the (distributional) derivative of .

Our energy estimates make crucial use of several properties of positive definite
kernels. For the sake of completeness we recall a few basic concepts. A real-valued
function b Lo[0, ) is said to be positive definite (or of positive type) if

(2.2) v(s) b(s-r)v(r) drds>-O Vt>-_O

for every v C[0, c); b is called strongly positive definite if there is a A > 0 such that
the function t--> b(t)-Ae-t is positive definite. As the terminology suggests, every
strongly positive definite kernel is positive definite.
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The definition of a positive definite function is not easy to check directly. We
quote a well-known sufficient condition. If b Loc[0, oo) satisfies

(2.3) b>=O, b’<-O, b">=O,
then b is positive definite; if, in addition, the measure b" has a nontrivial absolutely
continuous component, then b is strongly positive definite. We note that if b is positive
definite and e L2([0, T]; X) then

(2.4) Q(, t, b) _-> 0 Vt [0, T].
See, for example, [22], [29] for more information on these matters.

In our existence proof for the linearized problem we shall employ "shifted"
kernels. For each 8 > 0 we defined aa [0, ) R by

(2.5) aa(s):=a(s+8) Vs>=O.

It follows from (a) and (2.5) that

">0, a’<0,(2.6) as >0, a <0, as=
(2.7)
and

(2.8) Ilall,.’ Ilall’
for every 8 > 0. Observe that as a pointwise (and in L1) as 8+0. The use of shifted
kernels is not essential, but it provides a simple way of constructing approximate
problems which are known to have solutions.

In view of (2.8), the following estimate is an immediate consequence of an
inequality of Staffans. (See Lemma 1 and Theorem 2(iii) of [29].)

LEMMA 1. Assume that (a) holds and let A:=5llall’. Then, for every 8, T>0,
and L2([0, T]; X) we have

io’llio(2.9) a(s-z)(z) dr dsA. Q(, t,a) Vte[0, T].

Lemma 1 of [29] is formulated for the case when is a continuous scalar-valued
function. However, the same proof applies under the present circumstances.

The next result provides a useful lower bound for Q(’, t,
LEMMA 2. Assume that (a) holds and let 80, e > 0 be given. Then there is a constant

C =C(8o, e) such that for every T>0, 8(0, 8o], and Hi([0, T]; X) we have

(2.10)

1
O(a’, t, a) -(a(o)- e)llc,(t)-a(o)ll

c Ila,(s)-a,(0)ll = as a.e. [0, T].

Proof. It is clear that the conclusion of the lemma holds if a(8o) 0, so we assume
that a(8o)>0. We note that a is then strongly positive definite and that ao, a
LI(0, o).

By virtue of Lemma 2.3 of [15], there is a constant C C(8o, e) such that for
every T> 0 and every Hi([0, T]; X) we have

Q(’, t, ao) >- (a(8o)- e)I,(t)- (I)(0) 2

(2.11)
c II*(s)-*(0)ll ds Vt e [0, T].
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(To apply the results of [15], we set (t) (0) for <0, put u(t)=(t)-dP(O), use

aso in place of a, and let h$0.) It follows from (a) and (2.5) that as- aso is positive
definite for all 6 (0, 60] and consequently

(2.12) Q(dp’, t, as) _-> Q(’, t, aso) ’q6 (0, 60].

This completes the proof.

3. Linear problem. The proof of our theorem is based on an iteration scheme
which involves linear problems of the form

utt(x t)= y(x, t)u,,x(x, t)+ a(t--)[fl(x, ’)Uxx(X, -)],d-+f(x, t)
(3.1)1

Vx [0, 1], [0, T],

(3.1)2, u(O, t) u(1, t) O,

(3.1)3 u(x, O)= Uo(X), ut(x, O)= Ul(X).

In this section we establish existence and an a priori estimate for (3.1). Concerning
the coefficients 3’ and/3 we assume

Y, Y,, Y,, Yxx, Y,,, fl, fix, fl,, xx, fl,, L([O, T]; L2’(O, 1)),
(sl*)

Ytt, ,t L2’([O, T]; L2(O, 1));

(e*) fl(x, t) --> /3 > O, y(x, t) + a(O+)fl(x, t) => A__> O x[0,1],t6[0, T];

(c*) yx(0, t)=y,,(1, t)=fl,,(0, t)=flx(1, t)=0 Vt[0, T].

Our assumptions on the kernel and the data are the same as for the nonlinear problem.
For the purpose of stating an a priori estimate we define

(3.2) Uo := {ug’(x)2 + u’(x)2} dx,

(3.3) F := J(x, t) dx dr,

(3.4) B:= {y2’+ y + 2’+ }(x, 0) dx,

(3.5) r := ess-sup {y+ y+ y,+ yx+y++++, +,}(x, t) dx.
t[0,T]

L 3. Let T>0 be given and assume that (a), (sl*), (s2), (s3), (c), (c*) and
(e*) hold. Then, the initial boundary value problem (3.1) has a unique solution u with

(3.6)1 u, u,, ut, u,, u,,, u,,, u,,,,t L([0, T]; L2’(0, 1)),

(3.6)2 u,, u,,, L2([0, T]; L2(0, 1)).

Moreover, this solution obeys the a priori estimate

{Uxx+U,}(x,t)+ess-sup 2 2 2. (x, t) dx dt
t[0,T]

(3.7)
<= K{F + (1 + B + BT) Uo} exp K (1 + F) T],

where K is a constant that depends on if_ and A_., but is independent of Uo, F, B, F and T.
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Proof. We use the shifted kernels a (which are smooth on [0, oo)) in place of a
to construct approximate solutions u(). We shall also approximate f by functions with
more temporal regularity so that standard theory of equations with smooth kernels
can be used to solve for the u(). Let us set

(3.8) f(x, t)=f(x,-t) for < 0

and

(3.9) f(a)(x,t):=I_Ja(t-z)f(x,r)dr
where J is a standard mollifier on R.

We replace (3.1) with

(3.10)1

(3.10)2 u()(0, t)= u()(1, t)=0,

(3.10)3 u()(x, 0)-’- Uo(X), U5)(X, 0)"-- Ul(X),

and we choose 6o> 0 and small enough so that

(3.11) ce := inf [y(x, t)+a(io)fl(x, t)]>0.
x[O,1]
te[0,T]

Observe that

(3.12) y(x, t) + a(O)fl(x, t) >= a__ Vx[0,1], te[0, T], 6e(0,o].

An integration by parts in (3.10) produces

Ut,(6) (X, t) IT + a(O)]Uxx(’(x, t)+ a’(t--a’)[u(](x, ’) d’r

(3.13)
=ft(x, t)+ a(t)(x, O)u’(x).

It follows from a standard argument (cf., e.g., [26]) that for each 5 e (0, 6o], the
initial-boundary value problem (3.13), (3.10)2, (3.10)3 has a unique solution u( with

() (,s) (,s) 1() (,) (,s) () () ()(3.14) u, ux u, Uxx x,, u, Uxxx, Ux,,, Ux, -,, e C([0, T]; L:(0, 1)).

Moreover, this solution satisfies

()tO ()(1, [0, T].(3.15) Uxx t)= Uxx. t)=O Vte

It is clear that u( is also a solution of (3.10). Our objective is to obtain a priori
bounds for u( that guarantee the existence of a sequence {6n}=l tending to zero
such that u(- converges to a solution of (3.1). For the purpose of obtaining these
bounds, we shall extend u(, Uo, Ul, f(), y and fl periodically in space, in such a
way that the extended functions are smooth and (3.10), (3.10)3 hold for all x e R.
This will allow us to employ spatial difference operators.

We extend u(, Uo, Ul and f() (spatially) to be odd periodic functions of period
2, and we extend y and/3 to be even periodic functions of period 2. By virtue of (c)
and (c*), the extended functions have the same regularity as the original functions.
Moreover, (3.10) and (3.10)3 are satisfied for all x e N.
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In the estimates that follow we use K to denote a generic positive constant that
can be chosen independently of U0, F, B, F, T and 8. Moreover, to simplify the
notation we suppress the superscript on u and f We note that the elementary
inequality

1 D2(3.16) ]CDl <= rIC2 +

will be exploited in several places.
For each h > 0, we define the spatial difference operator Dh by

(3.17) (DhV)(X, t):= v(x + h, t)- v(x, t).

Applying Dh to (3.10) we obtain

(3.18) DhU,, Dh[yUx]+ a(t--r)Dh[(flux),](x, 7") dr+ Dhf.

We multiply (3.18) by Dh[(flUxx),] and integrate over space and time. After several
integrations by parts we let h0 and obtain

-2 {u2xx’ + flyu2xxx)(X t) dx + limho 1 Q(Dh[(flUxx) ], t, a)

(3.19)

=fofo (fltUx)xUt,(x,s)dxds+Rl(t) /t[0, T],

where Q is given by (2.1) with X := L(0, 1) and R is given by

llo’ rux,,,,}(x, o) dxRl(t) - {flu,,, + fl 2

(3.20) + , xx, +flytu-fl,yu]x
xyUxxxUxx, + yxUUx, yxUxUxx + ByxxUxUx,

x,VUxxUx x,rxUx+fxxUt + ,LUxx) X, s) dx ds.

It is not evident a priori that limh,o(1/h2) Q(Dh[(flu),], t, a) exists for a.e.
[0, T]. However, the limits of each of the other terms involved in the derivation of

(3.19) exist for a.e. [0, T]. Consequently, the limit in question exists for a.e. [0, T].
We choose e suciently small and apply Lemma 2 (and some straightforward

calculations) to conclude that the left side of (3.19) is bounded below by

(3.21)

where

(3.22)

-fl_Ux,,t+u,x (x, t) dx-K" R2(/)

2 2R2(t) := {[(SUxx)x(X, 0)]2 + flxUxx(X, t)} dx

+ [(flUx)),(x, s)-(flUx)(x, 0)]2 dx ds.
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It therefore follows from (3.19) that

2 2{Uxx+Uxxt}(x, t) dx<-K R(t)+K. R2(t)
o

(3.23)
+ K u u,(x, s dx ds.

We now divide (3.18) by h and employ Lemma 1 to conclude that

h- [Ohuu--Dh(TUxx)--Dh2(’,s)

1 fofot(fo(3.24) -- a(s- r)Dh[(fluxx),](" r) dr dxds
-h2

A
Q(Dh[(flUx),], t, a).

Letting h0 in (3.24) we obtain

(3.25) [Ux, + (u)x -fx](x, s) dx ds A. lim
1
(,[(u,], , a.

h0

It follows easily from (3.25) that

(3.2) (X, S) dx d < K" R3() + K" lira
1

Ux, Q(Dh[(Ux),], t, a)
h$O

where

(3.27) R3(t) := {[( yux)x]2 +f2x}(X, s) dx ds.

The combination of (3.19), (3.23) and (3.25) yields the estimate

fo’ Io fo2 2
Uxx -- Uxxt}(X t) dx + Uxtt(X S) dx ds

(3.28)
<= K{R(t)+ R(t)+ R3(t)}

+ K ([3tblxx xblxt (x, s dx ds.

We apply (3.16) (with r/ sufficiently small) to the integrand on the right of (3.28) to
obtain

{Uxxx + uxt}(x, t) dx + ut,(x, s) dx ds
o

(3.29)
----< K{RI(t)+ R2(t)+ R3(t) + R4(t)}

with

(3.30) R4(t) := [(fltUxx)x]2(x, s) dx ds.

To proceed further, we introduce

fo’ 2 2(:3.31) E[u](t):=ess-sup {Ux,x+U,,,}(x,s) ds.
s[O,t]
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Using calculations similar to those on pages 209-211 of [15] to bound the remainder
terms Ri(t), we arrive at the following estimate:

foIo 2 (x,s) dxds<K{F+(I+B+BT)Uo}[u](t)+ Ux,,

(3.32)
+K(l+r) E[u](s) ds.

(In our deviation of (3.32) we have exploited Poincar6’s inequality; this is not essential,
but it leads to a slightly simpler estimate.) Gronwall’s inequality applied to (3.32) yields

r

fo’ (x,s)dxds<K{F+(I+B+BT)Uo}exp[K(I+F)T].(3.33)E[u](T)+ Uxtt

It follows from (3.33) that ux,x, -xx, are bounded in L([0, T]; L2(0, 1)) and u,tt
is bounded in L2([0, T]; L-(0, 1)) independently of & Therefore, there is a function
u "[0, 1] x [0, T] R and sequence n$0 such that

(8.) (8n) (Sn) (8) (8) (8n) .(8ux u, ux" -xt", uxxx ,ux -+ u, ux, etc.(3.34)
weakly * in L([0, T]; L(0, 1)),

(3.34)2 8 weakly in L([0, T]" L(0, 1))U tt l,l xt ’’) Utt l’ixtt

It follows from (3.34) and the convergence properties of a8 andf8 that u is a solution
of (3.1) and that u satisfies the estimate (3.33). The uniqueness of a solution with the
regularity (3.6) follows from a straightforward argument.

4. Proof of the theorem. For M, T> 0 we denote by Z(M, T) the set of all functions
w’[0, ] x [0, T] --> R satisfying

(4.1) w, Wx, wt, Wxx, Wx,, Wx,x, Wxxt L([0, T]; L2(0, 1)),

(4.1)2 wit, Wxtt L2([0, T]; L(0, 1)),

(4.1)3 w(0, t)= w(1, t)=0 Vt6[0, T],

(4.1)4 Wxx(O,t)=Wxx(1, t)=O Vt6[0, T],

(4.1)5 w(x,O)=uo(x) x [0, 1],

fo(4.1)6 ess-sup ( 2 2 M2.wxxx+ wx,}(x, t) dx + wxu(x, t) dx at <=
t[O,T]

We note that Z(M, T) is nonempty if M is sufficiently large.
We assume temporarily that

(4.2) inf q’(sc) > 0, inf [X’(sc) + a (0+) @’(so)] > 0.

(As in [15], this assumption will be removed later.) Identifying
with @’(wx), it follows from Lemma 3 that for w Z(M, T), the initial value problem

u.(x, t=x’(wu(x, + a(-l[’(wu(x, ].+f(x, tl,
(4.3)

xe[O, 1], te[0, T],

(4.3)2 u(0, t)=u(1, t)=0, t[0, T],

(4.3)3 u(x, 0) Uo(X), u,(x, 0) u(x), x [0, 1],
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has a unique solution satisfying (3.6). By virtue of (4.2), the corresponding/3 and _A
can be chosen independently of M and T.

Let S be the mapping that carries w E Z(M, T) into the solution of (4.1). We want
to show that for appropriately chosen M and T, S has a unique fixed point in Z(M, T);
such a fixed point is obviously a solution of (1.1) on [0, 1] x [0, T].

Existence of the desired fixed point will be established by means of the contraction
mapping principle. For this purpose we equip Z(M, T) with the complete metric p
defined by

p(W, 1’)2 max {(Wx- Ixx)2-"(Wx, lxt)2}(X, t) dx
tel0, T]

(4.4)

+ (,,- fftt)2(x, t) dx dt.

It follows from the definition of Z(M, T) and the a priori estimate of Lemma 3
that S maps Z(M, T) into itself if M is sufficiently large and T is sufficiently small
relative to M.

Let M, T> 0 and w, E Z(M, T) be given and put u := Sw, := S, W := w ,
U := u- . A simple calculation shows that U satisfies

(4.5)1
u,, x’(Wx) Ux + [x’(w)- x’(x)]axx

+ a(t-’)[q,’(wx)Uxx(x, ’)+(q,’(wx)-l,’(x))xx(X, ’)], d’,

(4.5)2 U(O,t)=U(1, t)=O,

(4.5)3 U(x, O)= U,(x, O)= O.

To show that S is contractive we first multiply (4.5) by (I)t, where

(4.6) := ’(Wx) ux + [q,’(w)- q,’()]axx,

integrate the resulting equation over space and time, and exploit Lemma 2 (as in 3).
This yields an estimate for

(4.7) { Ux + U,}(x, t) dx + Q(t, t, a).

We then apply Lemma 1 to (4.5) to obtain an estimate for

forfo’ Utt(x,t) dxdt.(4.8) 2

Combining the estimates obtained for the quantities in (4.7) and (4.8) and employing
calculations very similar to those in 4 of [15] we obtain an inequality of the form

(4.9) p(Sw, Sift) <- P(M, T) exp [R(M, T)]

(valid for M large and T small) where P, R:[0, o)x[0, )[0, o) are continuous
functions with P(M, 0)=0VM>0. If we fix M sufficiently large and then choose T
sufficiently small relative to M then S maps Z(M, T) into itself, and (4.9) guarantees
that $ is strictly contractive with respect to p. The rest of the proof can be carried out
as in [15], and we omit the details.

Note added in proof. A forthcoming article of M. Renardy ("Coercive estimates
and existence of solutions for a model of one-dimensional viscoelasticity with a
nonintegrable memory function," submitted to J. Integral Equations Appl.) develops
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an alternative existence proof based on coercive properties of the linearized problem.
Global existence for small data and local existence for large data are established for
an equation of motion more general than (1.1)1. Roughly speaking, the analogue of
the kernel a is required to have a singularity at zero that is at least as strong as a
negative power of t.
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UNIFORM L BEHAVIOR FOR THE SOLUTION OF A VOLTERRA EQUATION
WITH A PARAMETER*

RICHARD NOREN"

Abstract. Consider the (scalar) initial value problem

(P) u(t,A)+A (d+a(-r))u(%A)dr=O, u(0, I)= 1,

where d >-- 0 is a constant, I -> is a parameter, and the subscript denotes differentiation with respect to
The kernel a e Lo[0, oo) is assumed to be nonnegative, nonincreasing and convex. Let u(t, be the solution
of (P) and define

w(t) sup lu,(t, A

Sufficient conditions (and weaker necessary conditions) concerning the kernel a(t) are established in order
that

limw(t)=0 and w(t) dt<

Implications of the results are studied regarding solutions of the abstract initial value problem

y’(t)+ (d+a(t-s))Ly(s)=f(t), t>0, y(0) x,

where L is a self-adjoint densely defined linear operator on a Hilbert space _/-/with L-> I.

Key words. Volterra equation, uniform, Hilbert space, parameter, Fourier transform

AMS(MOS) subject classification. 45

1. Introduction. We study the solution u u(t)= u(t, A) of the (scalar) initial
value problem

(1.1) u’()+ (d+a(-r))u(’)d’=O, u(0)=l, t>--0 ’=

where I -> 1 is a parameter. Assuming that

(1.2) d_->0 is a constant, a e Lod0, oo) is nonnegative, nonincreasing, convex
and 0 a(oo) < a(0+) -< oe,

we give necessary conditions (and weaker sufficient conditions) concerning the kernel
a (t) in order that

(1.3) (i) w(t) dt < 0% and

(ii) lira w(t) 0

hold where w(t) sup
____

lu"(t, I )I-1. The necessary conditions are stated in Theorems
2.1 and 2.2. The main theorem that gives sufficient conditions is Theorem 2.5.
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The parameter problem (1.1) arises in the study of the Hilbert space problem

(1.4) y’(t)+ (d+a(t-r))Ly(r) dr=f(t), t>-O, y(O)=yo,

where L is a self-adjoint linear operator, defined on a dense domain D of Hilbert
space H, whose spectrum is contained in 1, oo). Let

U( t) =- u( t, h dEx,

where u is the solution of (1.1) and {Ex} is the spectral family corresponding to L.
The function f belongs to the class of locally Bochner integrable functions from [0, c)
to H.

Carr and Hannsgen establish the resolvent formula

(i.5) y(t)= U(t)yo+ V(t-r)f(r) dr

for (1.4). They also give sufficient conditions in order that

(1.6) [[U(t)[[ dt<o and Ilv(t)L-’/ll dt<o

hold, where V(t)=- u’(t,h)dEa, and denotes the operator norm for linear
operators from H to H (see [2], [3]). In particular, (1.6) holds when a(t) satisfies
(1.2) and

(1.7) -a’ is convex.

The main work in their proof is to show that the two inequalities

(1.8) (i) sup lu(t, A )1 dt < oo, and

(ii) sup [u’(t, A)A-/21 dt < oo
A_>I

hold. Then (1.6) follows by the functional calculus. See [2], [3] for a discussion (with
references and an example) of applications of (1.5) to problems in viscoelasticity.

The condition (1.3) implies that

W(t)L-1 <oo and lim W(t)L-1=0dt

hold where W(t) o u"(t, h dEx. We show that (1.3) holds for wide classes of kernels.
In particular, Theorem 2.4(ii) below shows that (1.3)(ii) holds if a(t) satisfies (1.2)
and (1.7), while Theorem 2.5 below implies that (1.3)(i) holds when a(t) satisfies (1.2),
(1.7) and one of the following: a(0+)<oo, a(t)=t-p, 0<p<l, a(t)=-logt (small
t), a(t)= t-l(-log t) -q (small t), q > 2. Theorem 2.2 below shows that when (1.2)
holds, then

(1.9) (-log t)a( t) dt < oo

is necessary for (1.3)(i) to hold. No analogous growth restriction is necessary for (1.8)
to hold. We note that (1.9) rules out the locally integrable kernel a(t)= t-l(-log t) -q

(small t), for 1 < q -< 2.
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The simple example a(t)= e-’ shows the need for the scaling factor h -1/2 in
(1.8)(ii) and h -1 in the definition of w(t). In this case, (1.1) reduces to the equation
u"(t) + u’(t) + hu(t) 0, u(0) 1, u’(0) 0, and the solution is

u(t, A) e -t/2 cos t+-- sin t

where =(4A- 1)1/2/2. Differentiation shows the need to scale u’, u" by A -/2, A -1,
respectively, before taking the supremum over A _-> 1, in order to obtain a finite valued
function of t.

Equation (1.1) is studied to establish (1.6) for more general classes of kernels in
[6] and [12], with application to viscoelasticity given in [6]. The related problem of
how the solution u u(t, A) of (1.1) behaves as A oe is studied in [7]. (The answer
depends on whether a’(0+) is finite or not. For a(t) satisfying (1.2) and (1.7),
lim_,oo u(t, A) 0 if and only if -a’(0+) oo.)

We remark that quasilinear versions of (1.4) have been under active study in recent
years. See, e.g., [9] and [10] and the references therein.

In 2 we give explicit statements of our results for (1.1). In 3 we state applications
in Hilbert space and give an example. The last two sections contain the proofs.

2. Statement of results for (1.1). Throughout this paper we assume that d + a(t)
satisfies (1.2). The assumptions we use to prove (1.3) involve a sufficient transform
condition which then implies a (stronger) direct sufficient condition. We denote the
Fourier transform of a by

(. ,(- e-" a( 4,(,) i’0(,, ’>0.

By Lemma 1 in [13], is in C1(0, oo) and by [4], 4 and 0 are nonnegative.
Formally, we have

-i7.D(r)
(2.2) att(7.,A)=-- forz>0, A->l,

D(, )
where ttt(7., A e -iv’ u"(t, A dr, and

(2.3) D(7., A )-- D(7.) + i7.A -1-- (7.) d7.-l+ iT.A -,
so u"(., A) is not in L(0, ) if D(7., A)=0 for some 7.. By [4],

(2.4) 4)(7")>0, 7">0,

unless a(t) is piecewise linear with changes of slope only at integral multiples of a
fixed number to (taken as large as possible) and 7- is an integral multiple of 2r/to. In
all other cases, D(7., A) 0 for 7.>0, and Theorem 2 of [13] yields u"(t, A) is in L(0, o)
and (2.2) holds. Throughout this paper we restrict ourselves to this case by assuming
(2.4). Note that (1.7) with (1.2) implies (2.4).

To give our first necessary condition for (1.3)(i), we introduce the continuous,
strictly increasing function to w(A), defined on some interval [Ao, ) by the formula

(.5) -= 0(,o) + d,o -,
where W(Ao)= p > 0. Extend o to [1, ) (if Ao> 1) by defining w(A) =p on [1, Ao] (see
[3]). By (2.2) and (2.5), it follows that

0(o),o]u"(t, A)lA - dt>= O(oo)la,(w)[>=>-
a6(,o)- 6(oo)"

This establishes our first result.
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THEOREM 2.1. If (1.2) and (1.3)(i) hold, then

(2.6) lim sup<o.

We now state our other necessary condition for (1.3)(i).
THEOREM 2.2. If (1.2) and (1.3)(i) hold, then

j.(2.7) (-log t)a(
o

Define
[,o* 0(,o*)]

(2.8) C(A)=
(o*)

where to* to*(A is defined to be any number in [to/2, 2to such that 49 (to*)
min,,/2_<_=<2,, b (r).

We may now give sufficient transform conditions for (1.3)(i).
THEOREM 2.3. (i) Suppose that (1.2), (2.4), (2.7) and

c(z)
(2.9) sup<c

,-1 A(A / tr2)
are satisfied, where A and o-= r(Z are defined by

(2.10) A(x) a( t) dt

and

(2.11) A-’ tr-lA(tr-’).
Then w( t) dt <.

(ii) Assume that (1.2), (2.4) and (2.6) are satisfied. Let a(t)= b( t)+ c( t) where
b(t) and c(t) both satisfy the conditions stated for a(t) in (1.2), except that b(0+) =0
or c(0+)=0 is permitted (but not both). Assume that

(2.12) f b( t___) dt < o and -c’ is convex.

Then it follows that 7 w( t) dt < o.
Combining the two parts of the above theorem and noting that (2.9) implies (2.6)

yields the following result.
COROLLARY. If (1.2), (2.4), (2.7), (2.9) and (2.12) hold, then (1.3)(i) holds.
For purposes of comparison, we restate the transform conditions sufficient for

(1.8)(i), (ii) to hold (see [2], [3]).
THEOREM A. Suppose (1.2), (2.4) and (2.12) hold. Then (1.8)(i) holds if and only

()
(2.13) lim,_,sup 4(r) <"

THEOREM B. Suppose (1.2), (2.4) and (2.12) hold.
(i) Then (1.8)(ii) implies that

(2.14) lim sup <.
()
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(ii) Then

7"0(7")3/2- 1
(2.15) limsup,_o 4(’)

<oe for some e>O, O<e<2,
implies that 1.8) (ii) holds.

Note that (2.9)- (2.6)- (2.14) (2.13), and none of these implications may be
reversed. See [3] for all but one of these facts; the fact that (2.9) (2.6) may not be
reversed is contained in [11]. Also, note that lima_ tr2/A a(0+), by (2.11), therefore
(2.6) and (2.9) are equivalent when a(0+) <c.

Although the direct conditions in Theorem 2.4(ii) and Theorem 2.5 below are
slightly stronger than the transform conditions in Theorem 2.4(i) and the above
corollary, they are generally much easier to check.

THEOREM 2.4. (i) Suppose that (1.2), (2.4) and (2.6) hold. Then (1.3)(ii) holds.
(ii) Suppose that (1.2) and (1.7) hold. Then (1.3)(ii) holds.
Define the functions

(2.16) B(x) sa’(s) ds, x > O,

and

(2.17) A(x) sa(s) ds, x > O.

THEOREM 2.5. Assume that (1.2) and (1.7) are satisfied.
(a) If a (0+) <, then 1.3) (i) holds.
(b) If in addition (2.7) and any one of the following holds:

(i) There exist constants c, c2> 0 such that

(2.18) crAl(r-)<=B(r-)<=c2’Al(r-), p/2<= r,

(ii)

,rA (-r-1
(2.19) !irn a(r-’)-0,

(iii)

B(’r-’)
lim

a2(t)
O, =a,i t) is increasing for small t, and

dt < for some e > O,

(iv)

B(’-’) rA3(r-’)
lim=0 and --<=M<oo forp/2<=r,

then 1.3 (i) follows.
The four cases in part (b) say roughly this about 8(r): (i) Re and Im 8 have

the same order of magnitude as r oo; (ii) Im (r) is smaller than Re (’) as
(iii) and (iv) Re 8(z) is smaller than Im d(z) as - oo. This is shown in the discussion
preceding the proof of Theorem 2.5. An easy calculation shows that if a(t)--t -p,
0 < p < 1, then (b)(i) applies. If a(t) t-l(-log t) -q (small t), q > 2, then (b)(ii) applies.
If a(t)= (-log t) (small t), then both (b)(iii) and (iv) apply.
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The kernel

a( t) E ag(xg t)2X[o.xk)(t),
k=0

with ag 211 x22k Xk 2-4x22k k 0, 1, 2,.-., is an example satisfying (1.2), (1.7) (and
therefore (2.6) by Lemma 2.2(iii) of [1]) and (2.7), but neither Theorem 2.5 nor the
corollary to Theorem 2.3 applies. However a modification of the proof of Theorem
2.3 shows that (1.3)(i) holds with this example (see [11]).

We close this section with the following.
CONJECTURE. Assume that (1.2), (1.7) and (2.7) are satisfied. Then (1.3)(i) holds.

3. Results in a Hilbert space. In this section, we shall see that the operator
W(t)= u"(t, A)dE may be used to solve a variant of (1.4) when (1.3)(i) holds.
Then we will discuss an example of a weakly nonlinear problem where the behavior
of the solution can be studied if (1.3)(i) holds.

We begin with the relation between W, V and U.
THEOREM 3.1. Suppose (1.2) and (2.6) hold. Then for t>0, W(t)L- is a bounded

operator on H which is strongly continuous on (0, o). Moreover,

d d
W(t)y - V(t)y -d U(t)y, >- O, y D.

Now consider the following variant of (1.4):

(3.1) z’(t)+ (d+a(t-s))[Lz(s)+g(s)]ds=f(t), t>-O, z(O) zo,

where zoeD,feC([O, oe);H) with f(t)eD(t>-O), LfeBo([O, oo);H) and ge
B,([O, oo); D).

THEOREM 3.2. Assume that Zo, f and g are as above. If (1.3)(i) holds, then the
function z z( t) given by

z(t)= W(t-s)L-1G(s) ds

is the unique solution of (3.1).

G(s) =- g(x) dx

The proofs of these theorems are analogous to those given in [3] and will therefore
be omitted. The results of Carr and Hannsgen concerning weakly nonlinear problems
also hold in the present setting. We illustrate this with a simple example.

Consider the solution U U(t, x) of

Ut(x,t)+ (d+a(t-s))(Ux,(s,x)+U2(s,x)a(s))ds=f(t,x),
(3.2)

U( t, O) U( t, r) O, >- O, U(O, x) Uo(x),

where ce Lo[0, o) and I a(s) ds _<- M <c for some M independent of > 0. If

U(x) + u,(x) < odx

and one of the two quantities

ioIF(t, x)l2 dx dt, ess sup IF( t, x)l- dx,
O<t<oo
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are sufficiently small, then (3.2) has a unique solution U such that

ess sup U2(t, x) + U2x(t, x) dx <
0<t<oo

The details are worked out in the same way as those in the example given in [3]
and therefore will be omitted here.

4. Proofs. For the remainder ofthe paper M will denote a positive constant whose
exact value may change each time it appears.

Proof of Theorem 2.2. If we make a change of variable in the integrand of (1.1)
and then differentiate the result we obtain

(4.1) -u"(t)A-l=a(t)+du(t)+ a(r)u’(t-r) dr, t>0.

The next lemma gives an important estimate on the integral term in (4.1).
LEMMA 4.1. Suppose that (1.2) and (2.4) hold. en there exist constantsN N> 0

such that

2 0 2
(4.2) N T sup u’(t r)a(r) dr N2 T’ A 1.

t>0

The proof of the lemma relies on [3, Thm. 2.2] which says that, under the
assumptions (1.4) and (2.4),

1
(4.3) -suplut(t,A)lk, AI,

holds for some constant k. The proof of (4.3) also contains the inequality

1 1
(4.4) u(t,a) for0 t 2T,

2(8 + dC2)

where C2 is a positive constant. In [5] it was shown that (1.2) implies

(4.5) lu(t,A)l 1, to, AI.

If 1 / #, use (4.2) and (2.11) to obtain

(4.6) u z)a(r) dr M#A(I)M#A(#-I)= M2/A.

If 1/ < t, we use (4.6), (2.11) and (4.5) to obtain

U’(t r)a(r) dr M#2/A +

Mo-2/, +

’(u r)a(7") d’r
1/,

--a() -I- a(o--1)u( o--l) + a’(’)u(t -)
1/o-

< Mo’2/a + 2a(r-’) =< Mo2/a.
Taken with (4.6), we have shown that the second inequality in (4.2) holds. For

the other inequality, we will need the inequality

(4.7) 2-3/2A(r-’)<-Ia(r)l<-4a(r-), r>0,
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which is established in [13]. Now we let T <- t<-_2T, and use (1.1), (4.4) and (4.7) to
obtain

Jt t(u t-z)a(r)dr A u(’-s)a(s)dsa(t-’)dz
0

>--_- a( t- ’) a(s) ds dr
2 t/2

(4.8) - a(s) ds
2 o

MA a(s) ds MalA,
0

where the last inequality follows by a change of variables and (1.2). This proves the
lemma.

To prove Theorem 2.2, we use (1.2), (4.5), the definition of w(t) and (4.1) to
observe that w(t) dt < if and only if

sup a()u’(t r) dr dt <.
By (4.8), it follows that

a(r)u’(t-") d" _-> Mtr2/a Mo" fot a(s) ds

M f 2t(8+dC2)
>- a(s) ds
-4(8 + dC2)t Jo

>---- a(s) ds

for T_-< 2 T. By (2.11), it follows that tr --> c as A --> , and then T-> 0 as A -> o.
Therefore, for each in (0, e) (for some e >0), there exists T with T_-< t-<_2T. Thus
the inequality w(t)dt < implies that -1 a(s) ds dt < c, and then we have

Iooo> - a(s) dsdt= -logsa(s) ds.

This completes the proof of Theorem 2.2.
Proof of Theorem 2.3. Except for minor details, the proof of (ii) is the same as

the corresponding proofs in [2] and [3] and we will therefore not give it here. (The
proof is given in 11 ].)

To prove (i), we will need the inequalities

(4.9) to ClO" A C2O’2, / 1, C1, C2 > 0 (C > 12),

from [3], which hold when a(. satisfies (1.2). (Recall that to is defined in (2.5).) We
will also use the inequality

Io(4.10) a(s) ds>-k a(s) ds, 0<k<l, 0<x<,

which follows by (1.2) and a change of variables. Finally, we will need the next lemma
which will be used for Theorem 2.4 as well. We defer the proof to 5.



278 RICHARD NOREN

LEMMA 4.2. Under the assumptions (1.2) and (2.4), it follows that

(4.11) lutt(t,A)A-11=<Mt-’(tr/A+C(A)) forA >=l, t>0.

Now we partition S {(t, A)" -> 0, A_->I} into S, LJS2 where S,-=
Sfq{(t, A)" tr2/A<=a(t)} and S2=-Sfq{(t,A)" tre/A>a(t)}. On S1, we use (4.1), (4.2)
and (4.5) to obtain

[tltt(t A)A-11 < a(t)+ d + Mtre/A <=(1 + M)a(t)+ d L’(O, 1).

On Se, we use (4.1), (4.2), (4.5) and (4.9) to obtain

lutt( t, A )A-’ <= a(t) + d + Mcr/A <-- M -I- 1 + Ced)o’e/ A.

Now partition Se into Se $3 LJ $4 where

S {( t, A )" lutt( t, A )A-’ -1/2} I"] $2,

and

S4------ {(t, A)" -’/e < lutt(t, A)A-’I} ["1S2

On S3, lu,(t, A)A-’I=< t-/2 L’(O, 1). On $4, we use (4.11) to observe that

Mt-ale < A)A-’I (C(A) + o’/A).

Thus, on S4 we have

(4.12) <-- Mt ’/2 and [u,t(t, A)A-’I =< Mcre/A.
l;t + C(;t )-

Define h(x)=xA(x-’) and g(x)= 1/A(x-’). Clearly g(x) is nondecreasing. To see
that h(x) is nondecreasing, we write

h’(x) A(x-’) x-’a(x-1) >= O.

Thus, on $4 it follows that

lu,,(t, A )A-11 h (lu,,(t, x)lx-’)g(lu,,(t,

<-h ---(C(A)+o’/I) g(Moe/)

M(C(a +/(
A(A/tr2)t

M
<=--A(tl/e)ELl(O, 1),

where the first inequality follows from (4.11), (4.12) and monotonicity, the second
inequality is a consequence of (4.12) and (4.10), the last inequality follows from (2.9)
and the estimate,

/ A(r-’) A(o’-’)
<_(4.13) a(A/tre) a(r_lA/o.)_ a(Mtr_l)

(we use (4.10) and (4.11) to obtain (4.13)) and a simple calculation using (2.7) shows
that t-A(t/e) LI(O, 1). This proves Theorem 2.3.
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Proof of Theorem 2.4. Theorem 2.4(i) follows immediately from .Lemma 4.2
because o-/h A(cr-1) is bounded. In [14], Staffans proved that for a LI(0, oo), (1.2)
and (1.7) imply (2.6). In his thesis [1], Carr relaxed this showing that (1.2) and (1.7)
imply (2.6). This result, along with Theorem 2.4(i), proves Theorem 2.4(ii).

Discussion and proof of Theorem 2.5. Before proving Theorem 2.5 we give a
preliminary estimate and make some comments. To do this we will need the following
inequalities: Assuming (1.2) and (1.7), it then follows that

(4.14) CB(7--I)<=b(-)KB(7"-I), ’>0,

where C, K are positive constants. Assuming (1.2), it then follows that

(4.15) (i) Al(w-1) -< A-l=< ClAd(w-I), A >= 1,

(ii) AI(r-1)-< O(r) <= 12A(r-), "r>0.

The inequalities (4.14) and (4.15) are shown in [7] and [3], respectively.
In the following we assume that (1.2) and (1.7) are satisfied. Using (4.7), (4.15)

and (4.14) we obtain

Hence,

8-’A2(.-’) =< I(r)12 b(-) + rz02(r) =< (12B(r-’)) + rz(12A, (--’))2

< 144(B(r-1) + rA,(r-1))2.

2-3/2A(r-’) <- 12(B(r-1) + rA,(r-’)).

Also, we have

(4A(--))- > I(t)2= 2(-)+r202(.)>=(5-B(--I))2+-2(5-1A (r-’))2

Hence,

=> 50-’(B(--’)+ ’A,(r-’)):.

4A(’-’) => 50-’/2(B(7"-’) +
Combining these into one inequality yields

(4.16) A(z-) =< (1152)/2(B("-) + a(’-))<= 960A(--’).

In view of (4.7), (4.14) and (4.15), the behavior of [i()l, 4()= Re ti(z) and
’0(’) Im 8(’)1, as -oo, is like that of A(’-), B("-) and -A(’-), respectively.

In view of (4.16), condition (i) in Theorem 2.5(b) corresponds to the case where
18(r)l, Re t/(-) and IXm ti(-)[ have the same order as -- oo. Theorem 2.5(b)(ii) corre-
sponds to the case where Jim t/(’)] is small compared to 18(-)1 as -oo, It/(-)l and
Re t/(-) having the same order as -oo. Theorem 2.5(b)(iii) and (iv) are both in the
case where Jim 8(-)1 and 18(-)1 have the same order as " oo and Re 8(r) is small by
comparison, as ’oo. To treat this case the additional assumptions a2(t)/-a’(t) is
increasing for small and a2(t)/-ta’(t) L(O, e) for some e are made in (iii), and in
(iv) the extra assumption we use is wA3(w-)/B(w-)<oo for o in (p/2, oo).

For the proof of Theorem 2.5(a), we differentiate (1.1), multiply both sides by
A -1 and estimate using (4.5) to obtain

lut,(t,,),-’l<-_(d+a(O+))lu(t,,)l+ -a’(t-’)lu(’,,)[ d"

_<- d +2a(0+).
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To complete the proof, we use this bound on (0, 1) and Theorem 2.3(ii) with the fact,
mentioned above, that (1.2) and (1.7) imply (2.6).

Let us turn to the proof of (b). By (2.11), (4.9), (4.15) and (4.10), there exists a
constant K such that

1 1 A(oo-’)
(4.17)

r AA(tr-’)_=5A(tr-’)= A(w-’)
In case (i), use (4.16), (4.17) and (2.18) to obtain

(4.18)
1 KAy(to-) MA(to-)

>
MAl(tO-) M-- -1) -1 -’-"

O" A((.o -1 B(.o

Partition the set S --- {(t, )" 0 =< -< 1, , _-> 1} into

S=Sfq{(t,A): t-<-o"-} and S:=Sfq{(t,A)" t>o’-l}.
For (t, ) in S use (4.1), (4.3), (4.5) and (2.7) to make the estimate

[un(t,h)h-’l<-a(t)+d+Ktr a(-)d-<-_a(t)+d+t-1 a(z) dreL(O, 1).

For (t, A) in $2, we use (4.11), (4.14) and (4.15) to obtain

]utt(t,h)h-ll<=7-+C(h) <=7 A(cr- + B(w,_)

-M(II+I2).
By the definition of $2 and by (2.7), it follows that

t-Ill <-- -1 a(s) ds e LI(0, 1).

By (4.7), (2.18), (2.7), (4.10) and (4.18), it follows that

t-I2 <_ Mto*A1 (to*-) _< Mt-A(2to-) <__ Mt-lA(tr-)
<- Mt-lA(t)a L(O, 1).

Therefore w(t) dt < oo. With Theorem 2.3(ii), this completes the proof of Theorem
2.5(b)(ii).

To prove (b)(ii), .we will show that (2.9) is satisfied and then Theorem 2.3(i) and
(ii) yield (1.3)(i). Now we use (4.15) and (2.11) to write

h 1 A(to-) A ((3) -1
______

(./) --1L(/
r ZA:(er_,) 5A:(r_,) 5o9_,A2(o._1)= o9

There are two possibilities: L(A) -> 1 or L(A) < 1.
For L(A)=> 1, we have A(A/o’)>=A(o-’). Now we use (2.8), (4.14), (4.15), (4.16)

and (2.19) to obtain

C(A) Mo*2A(w*-1)
A(A/tr) A(A/o-:)B(w *-’)

,2 2 ,--1

< Mw, Al(tO
A(o0-1)B(o9 *-1
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We have shown that

c(;)
sup < oo.
>_ A(h/r)

For L(h)< 1, (4.10) implies that

A(A/o-2) -> A(o-L(, )) >= L(h )A(o-1);
then (4.16), (4.9) and (4.10) yield

to *2A2 w *-1 o *2A2 w*-1

B( *-1)A(A / r2) B(o*-)A(oo- L(A

5w *2A12 ro ,--1 )(.0-1A2(o.-1)
B(o*-l)A(o-1)A,(o-1)
MoA21(o- A2(w-B(os-1)A(w-1)Al(W-)

<-_ MoA(o-) <-_ M,

where we have used the following easily obtained inequalities:

(4.19) A(2x)_<- 4A(x) and B(2x)_-<4B(x), x > 0.

This shows that

c(;)
sup

L(h)<l A(A/o"2)
which establishes (2.9) and finishes the proof.

To prove (iii) we use (4.16), (4.17) and the assumption of (iii) to obtain

KA,(o-’)
>
Mo-lA(w -’) --I(4.20) -’ A(w-’) A(w -1)

Mw

Thus - Mw- as in (4.18) and the rest of the proof follows exactly as in the lines
following (4.18) except for the term t-I2 which we shall treat next. By (4.19) and
integration by pas, we have

*2A(o*-I 2A(-1II2<Mt-m Mt-
B(o-’) B(o-’)

-2 (-1- a )+ -s2a’(s) ds
2n(

< Mt-’ ( a2(-1) 2 (-’-s2a’(s) ds)2)(

Mt-(J + J2).

By definition of $2, (4.20) and assumption (iii), we have

a(o -’)t-J1 M
-ta’(o -1)

<
Ma2(Mlt) LI(-ta’(Mt)

O, (some M> 0).
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Also,

t-lj2<=
Mto [.-’-sa’(s) as --s3a’(s) as

tB(to -)

Mto --’ -s a’(s) as

<= Mt- -sa’(s) ds

<= Mt-1 -sa’(s) ds

<-_Mt-A(t)Ll(O, 1),

where we have used the Cauchy-Schwarz inequality, the definition of $2 (4.20), (4.19)
and (2.7). Note that on [elMs, 1], (4.1) can be used to show that

lu,( t, A )A-I _-< a(e/M,) + d + 2a(e/M) _-< M.

Together with Theorem 2.3, this finishes the proof of (iii).
To prove (iv), we will show that (2.9) holds and then Theorem 2.3 applies, finishing

the proof. To do this use (4.15), (2.11), (4.9), (4.14), (4.16), (4.10) and (4.19) to obtain

MA2(oo*-)to*2A21(o)*-)
<

"20(o*)
<

0(to *)A(A / 0"2) n(o) *-’)A(A / 0-2) B(to *-I)A(A / 0-2)

This finishes the proof of Theorem 2.5.

5. Proof of Lemma 4.2. When (1.2) and (2.4) hold, we have the inversion formula

Io i’( iT"2D’(7.)+AD(7.)2)D(7.,A
e

)2 dr, t_>0, A_->I(5.1) 7ru,(t,A)=Re
tA

where the integral is absolutely convergent at both r 0 and 7. oo. This was established
in 1 1 ]. Thus, we have that

1

do

7-2D’(7-)
D(7., A )2

dT’,

But, (5.19) and (5.21) of [3] and Lemma 1 of [13] imply that

(5.3) iD(,,)i>=max {(),d-2} 1
>- 0< 7.< p,

r M’ d>0,

ID(z, ,x)l max {2-3/2A(7.-’)-7., b(7.)} M,(5.4) 0<7._--<p, d=0,
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and

(5.5) la’()l 40A(-), r>0.

We use (5.3) and (5.5) to obtain (for d > 0)

D()
AD(% X

2

2r2
<-_ 2 +

12
dr

---<2p+5 -- dr <= M

and

r2D’(r)
dr <- M -2dr<=M.

When d 0, we use (5.4) to obtain

D(r)
D(%A)

dr <- 2+
2r2 M fo’ r2a 21/i7, A)I2

dr_-< 2p +5 dr=M.

Also,

r2D’(r)
D(r, * )2

rA(r-1) dr
dr<_- M

(max {2-3/a(r-)- r, 4,(r)}y --< M,

where we have used

lim rA(r-) 0
r-+O

and

0<8-1 a(s) ds lim (2-3/2A(r-’) r)2 -<_ o0.
r-0+

Therefore, we have

(5.6) A21
r2D’(r)
D(r, *)2

aD2(r)
D(7-, ,)2 dr <__ Mt-cr/ A.

For our estimates on (p, oo) we will need the inequalities

(5.7) ’l’--I < MID(,
A(-I)<-MID(r,,)I, p/2<=r<=w/2, 2w-<_ r<oo,

(5.9) h -< Mw2, A --> 1,

(5.10) MA(7"-1) -< b (to*) + to* 0(to*), w/2<=r<-2w,

(5.11) ,2 MID(, X )12, r<=p/2,

which are contained in [3].
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First we use (5.7), (2.11), (4.10), (5.5) and the Fubini theorem to obtain

r2D’(r)
D(r, X )2

dr<=X2M (dr-2 + ml(r-’)) dr

A2M O"-1+ sa(s) ds dr
Cr dO

fl/2Cl )<=MA 2 o’/ + a(s) ds <=MAre
dO

Also, by (5.7), (4.10) and (4.7), it follows that

A2( r-1
dr<= MA2 2

Co- T
dr

<= MA 2 7.--2 drA2(tr-1/2C1
ClO-

<= MA2o-1A2(o’-1) Mtr.

Therefore, we have

(5.12)
r2D’(r)
D(r, X )2

Next we use (5.8), (5.5), (4.10) and (2.11) to obtain

A -2 +
p d2o

r2D’(r)
D(r, A)2

r2(dr-2 + A,(r-,))
dr<= MA -2

p a(r-1)2 dr

--<MA -2 A-2(r-) + rA-l(r-1) dr

<= MA -2(o.A-2(1/2 C, o-) + o--2A-1(1/2ClO-))

<= MX-2(rA-2(r-’) +

M(r-’ + o’/A <= Mr/X,

where the last inequality is due to the fact that 0< a(0+)= lim_o O’2/A <oo. Also, by
(5.8), (4.9) and monotonicity of the function h(x)- x/A(x-1), we have

d(,,)

/2 2r2

dr <= a- 2 + dr

ro/2 2

--<w/A +MA -3 r

A(r-’)
dr

<= M +A3A2(1/2ClO.

<= Mr/X.<=M + A3A2(o._l)
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Also, by (4.7), (5.8), (5.9), and (4.10), it follows that

(A(r-’)+ dq’-2)2
dr <- Mh -1

A2 ),I 2 (3"-

-<M- 1-
X oA(r-)
o"

1)2
o"

-< M- (1 +tr- _-<M-.

Thus, we have the estimate

1 (f ’/2

-t- f2Cl’)(r2D’(r) AD(r)2 ) Mtr
(5.13) th ao/2 g,o , V(z, h)2 +

V(z, h) dz---.th
On the interval (/2, 2), we use (5.11), (5.5), (4.9), (5.10) and (4.15) to obtain

I r2D’(r) I ra(r-)dzA-2
/ o(,h)

gMh-
/2()+((-)/h)

rdr
A(2w_M

)2 [r-
rdr

M ) [_/2 ((*)h + [2 A(2-)

dr ,
/ ((*)h +[-

*((*) + *0(*))
M

h(*)

Also, by (4.9), (5.11) and (4.15), we may write

/2 D(% h)

2

o- (,o*0(,o*))’<-_M -I-
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These two estimates on (to/2, 2to) together with (5.13), (5.12), (5.6) and (5.2) yield
(4.11) (see (2.8)), thus proving Lemma 4.2.

Acknowledgment. The author thanks Professor Kenneth B. Hannsgen for many
enlightening discussions on this material.
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HOMOGENIZATION OF STATIONARY FLOW OF MISCIBLE FLUIDS IN A
DOMAIN WITH A GRAINED BOUNDARY*

A. MIKELItf AND I. AGANOVItt

Abstract. The purpose of this paper is to obtain phenomenological equations for stationary miscible
displacement in a domain with a grained boundary (porous medium), with the help of homogenization of
fluid mechanics equations. It is assumed that the viscosity of the mixture depends on the concentration of
the solvent.

Key words, homogenization, miscible flow, porous medium
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1. Introduction. In this paper we consider the homogenization of fluid mechanics
equations of stationary miscible flow through a porous medium, assuming that the
viscosity of the mixture depends on the concentration of the solvent.

We use the standard notation required for the homogenization method. Let
Y= ]0, 1[", n 2 or 3; let c y be an open set strictly included in Y and locally
placed on one side of its boundary S C and Y*= Y\. For k Z", we define
Yk Y+ k, k + k. Let fl c R be a bounded domain locally placed on one side
of its boundary F C2. For sufficiently small e > 0, we consider the sets

T ={kZ"" eYk}, K ={kZ"" eYkF(},
and define

u , s=, =\.
ke T

Obviously, 0fl F U S. The domains and 12 represent, respectively, the solid and
fluid part of the porous medium f/. We consider the Stokes flow of a mixture of two
incompressible fluids in the domain I, upon stationary diffusion of one of them
(solvent) into the other.

Notation. v, p= the velocity and the pressure of the mixture, respectively; s=
the concentration of the solvent; e2/z (s) the viscosity of the mixture; f the density
of the external body force; d const > 0 the diffusion coefficient of the mixture.

Taking into account the simplest model of diffusion, for the velocity, the pressure
and the concentration we have the following equations and boundary conditions (e.g.,
[6]):

(1.1) -Zp + ez div (tx(s)Vv)+f=O in

(1.2) div v 0 in f,

(1.3) v=h onF, v=O onS,

(1.4) -dAs+v. Vs=0 in,

Os
(1.5) s=g onF, -0 onS.

Ou
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Here h and g are given functions and u denotes the unit vector of the outward normal
on the boundary of a domain. We assume that

(1.6) / e C’([0, 1]), / >0 on [0, 1],

(1.7) fe (C(fl)) n,

(1.8) h (C(1))) ", fr h. v dr=O,

0 _-< g _-< 1 on(1.9) g e C2(1),
and consider/ extended to R as follows"

(s) {(0), s<0,
/(1), s>l.

By use of the Leray-Schauder Fixed Point Theorem and the Maximum Principle,
one can prove the following result.

THEOREM 1.1. Under the assumptions (1.6)-(1.9), the problem (1.1)-(1.5) has at
least one solution

(1.10) (v, p, s) (H(I))) x (L2(f)/R) x (H(I’) (3 C());
the inequality

(1.11) 0s1 a.e. in

holds true for each solution.
We shall prove that the limit of solutions (1.10) (as e tends to zero) satisfies the

equations and boundary conditions ofthe simplest phenomenological model ofmiscible
flow through a porous medium (e.g., [3]).

2. Macroscopic and constitutive equations. In this section, C > 0 denotes a generic
constant which does not depend on e and has possibly different values at different
places.

LEMMA 2.1. Let (v, p, s) be a solution to problem (1.1)-(1.5), and

in.

Then

C

There exists the extension La(II)/R of the function p, such that

LEMMA 2.2. Under the notation of the preceding lemma, there exist subsequences
of {t } and {i6 } (denoted again by {t}, {/}) andfunctions v (La(fi)), p LE(I’)/R,
such that

weakly in L2(),
strongly in L:(fl)/R,
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as e 0. The function v satisfies the following (macroscopic) equation and boundary
condition"

divv=0 in l,

v.h=v.h onF.

LEMMA 2.3. Under the notation of Lemma 2.1, there exist the extension
HI(I) (3 L(I)) of the function s, such that

Let

Then

{trY= dVs inl,
0 in .

div5-’.V=0 in

LEMMA 2.4. Under the notation of the preceding, lemma, there exist subsequences
of {’}, {} (denoted again by {g}, {&}) and functions s HI()L(), o’

(L2()) ", such that - s weakly in H1(12) and weakly* in L(12),

tr weakly in L2((I),
as e O. Thefunctions s and tr satisfy thefollowing (macroscopic) equation andboundary
condition:

divtr-v. Vs=0 in,

s=g onF.

Let q H (y.)),/R be the solution to the problem

Aq =0 in Y*,

(Vq+I)v=O onS,

q is Y-periodic

(where I denotes the unity matix), and

A f Vq dy, O meas Y*,
y*

D=d(OI+a).

LEMMA 2.5. The functions s and tr, defined by Lemma 2.4, satisfy the following
(constitutive) equation:

tr= DVs.
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The proofs of Lemmas 2.1-2.5 can be performed by adapting the method of
L. Tartar, applied in the linear case (see [8, Appendix], [4] and [7]).

i) L2Let (w,rr (H (Y*))"( (Y*)/R)(i=l,...,n) be the solution to the
problem

(2.1) -VTr + Aw + e =0 in Y*,

(2.2) div w 0 in Y*,

(2.3) wi=0 onS,

(2.4) w, 7r are Y-periodic

and

K (Ko), Ko= I (wi)sdY.
y*

In the sequel, we consider w extended by zero to
LEMMA 2.6. The functions v, p and s, defined by Lemmas 2.2 and 2.4, satisfy the

following (constitutive) equation Darcy’s law)"

1
(2.5) v K(f-Vp)

Proof Let

As a consequence of the basic lemma on periodic extension [8, p. 57], we obtain that

(2.6) (w’)s-+ Ko weakly in L2(f),

as e 0. Using the regularity of the functions w and 7r we obtain the inequalities

C
(2.8) IIv w "=

E

(2.9) C.

(Here we consider ri’ extended in a simple way to e_k, k K.) The functions w’,
7r’ satisfy the equations

(2.10) -eVrri’ + e2Awi’ + ei =O inl2\ U ek,
keK

(2.11) div w’ =0 in 11\ U ek.
ke Ke
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Under the notation of Lemma 2.1 and Lemma 2.3, for q (f) we have (because of
(1.1) and (2.10))

(-V/ + (/z (ff)V t;) +f) dx=O,62 div

’ + + =0.82W,e e) dx

(Here we have assumed that e is sufficiently small, so that supp e6k for k K.)
Subtracting these equations and performing the integation by pas (and using (1.2),
1.3) and (2.11 )), we obtain

2J,i + eJ,i + e Jz,i O, 1, n,(2.12)

where

f
J,,= | (w’. Vq +f. w"q-lz(g) ei. eqg) dx,

J,i -, r"fi. V((g)) dx,

j,i f ((ffe)e (vwi,e)Vffe + (e)e (VWi,e)V

-()w’,. (V)V) dx.

Using (2.6)-(2.9) and Lemmas 2.1-2.4, we find that

,,f (p(Kv),+(Kf),-(s)v,) dx,

as e - O, and

C

Now (2.5) follows from (2.12).
3. The homogenized problem and convergence theorem. Taking into account

Lemmas 2.2, 2.4, 2.5 and 2.6, we conclude that (v, p, s) is a solution to the following
homogenized problem:

(3.1) div v 0 in f,

1
(3.2) v K(f-Vp) in fI

(3.3) v. u=h. v onF,
(3.4) div(DVs)-v. Vs=O in

(3.5) s=g onF.

Because of (1.6), the inequality

(3.6) 0 =< s

holds true.
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LEMMA 3.1 ([8, p. 139], [2, p. 149]). The matrices K and D are symmetric and
positive definite.

LEMMA 3.2 ([1, p. 231]). Let w be the solution to the problem

div(w+F)=0 in 12,

w=0 on F,

and, for r > 1,

r(F)

Then

ar at(12) sup r(F) < c.
OFLr()

LEMMA 3.3. Let the function tz satisfy the condition

1
(3.7) osc/x <--max

3

and let v, p, s) be a solution to the problem (3.1)-(3.5). Then p W(12), and there exists

a constant fl > 0 (depending on 12, G and Ix), such that for each f and h the inequality

holds true.

Proof. The conclusion follows from Lemma 3.1 and the results of the book [1,
Thm. 4.2, p. 234], where the constant/3 is defined.

THEOREM 3.1. Let the function Ix satisfy the condition (3.7). Then there exists a
constant y > 0 (depending on 12, , d and tx) such that under the assumption

(3.8)

problem (3.1)-(3.5) has only one solution"

(v, p, s) e (L2(Y)) x (L2(f)/R) x (H’(12) f’] L(12)).

1 82.Proof. Let (v,p,s), i= 1, 2 be solutions and v _v2, p=p _p2, s=s

These functions satisfy the following equations and boundary conditions:

(3.9) div v 0 in 12,

1 /x(s2) -/X(Sl)
(3.10) v KVp + K(f- Vp2) in 12,

(s,) (s,)(s)

(3.11) v. v=0 onF,

(3.12) div(DVs)-v.Vs-v. Vs2=0 in 12,

(3.13) s=0 onF.

In the sequel, Ck > 0 (k 1,’’ ", 5) denotes a generic constant, depending generally
on f, t, d and/x. By use of (3.6) and Lemma 3.1, from (3.9)-(3.13) we obtain the
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inequalities

(3.14)

Using the inequality

(3.15)

and Lemma 3.3, we obtain

(3.16)

Let s # 0; from (3.15) and (3.16) we conclude that

Let 3’ 1/C5; assuming (3.8), we obtain a contradiction. Therefore s 0 and, because
of (3.14), Vp =0; from (3.10) we obtain v =0.

THEOREM 3.2. Let pc, fand h satisfy the conditions (3.7) and (3.8). Let (v, p, s)
and (v,p,s) be solutions to problem (1.1)-(1.5) and problem (3.1)-(3.5), respectively.
Then there exist extensions v fi and of the functions v p and s respectively, such
that

weakly in (L2(12)) ",
strongly in L2(I)),
strongly in L2(1),

as e-O.
Proof Because of Theorem 3.1, the functions v, p and s are unique cluster points

of {}, {/} and {g}, respectively. Therefore, the conclusion follows immediately
from Lemmas 2.2 and 2.4.
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THE NEUMANN PROBLEM FOR NONLINEAR SECOND ORDER SINGULAR
PERTURBATION PROBLEMS*

BENOIT PERTHAMEf AND RICHARD SANDERS$

Abstract. Singularly perturbed second order elliptic partial differential equations with Neumann boun-
dary conditions arise in many areas of application. These problems rarely have smooth limit solutions. In
this paper, we characterize the limit solution for a wide class of such problems. We also give an abstract
rate of convergence theorem and apply the abstract theorem to certain finite difference approximations.

Key words, singular perturbation, viscosity solution, viscosity inequalities
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1. Introduction. In this paper, we study the singular perturbation problem for
partial differential equations which have the form

-eAu+H(x,u,Vu)=O,
(NP)

on(X)=,(x), xeoa,

where fl is a bounded domain in Rd, n is 12’s outward unit normal, u is a scalar
unknown and H is a continuous function on 1) x R x Ra. One application that motivates
the study of singular perturbation problems of the form (NP) is found in the theory
of optimal stochastic control. There, H depends on the deterministic part of a stochastic
ODE, a control space and a specified cost function, u can be identified as the optimal
cost function. The positive parameter e in (NP) can be regarded as the intensity of
noise in the dynamics equation. Control problems whose trajectories reflect at a
boundary give rise to Neumann problems of the type studied here; see [ 1] or 17] for
a detailed treatment of this topic. One could ask, for instance, is the optimal cost
function of a stochastic control problem related to the optimal cost of its associated
deterministic problem? Are the two close in any way when the noise is small?

As e $0, it is well known that solutions of (NP) do not generally converge to a
classical solution of

(NPo)
H(x, u, Vu)=O, xcfl,

o_U_uon(X)=,(x), xeoa.

Indeed, (NPo) does not generally admit a C solution, as can easily be seen by
considering the simple example

du
+u =0, x[0, 1],
dx

du du

xx (0) O’ dx
(1) 1.
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This example is clearly overdetermined and here the data at 0 is not compatible with
the data at 1. For this reason, a more general class of solutions to (NPo) must be sought.

A new notion of continuous weak solutions to equations of Hamilton-Jacobi type
has recently been introduced. In [4] and [5], M. G. Crandall and P. L. Lions have
developed techniques that have been extremely successful in establishing a number of
new results concerning continuous, but not necessarily differentiable, weak solutions
to first order, fully nonlinear, partial differential equations. In their work, Crandall
and Lions have utilized the "vanishing viscosity method," so named because of the
link to the classical technique of vanishing viscosity from fluid mechanics, and they
show that the method ofvanishing viscosity gives rise to a specific notion of a "viscosity"
weak solution.

In [15], and here as well, the notion of a viscosity solution for the generally
overdetermined Neumann problem (NPo) is given and is shown to include all L
e-limits of solutions to (NP). All L e-limits are shown to satisfy the so-called viscosity
inequalities of 2; additional details in this direction can be found in 15]. Remarkably
(with additional hypotheses of course), these viscosity inequalities uniquely determine
all such limits. In 3, we introduce what we call "approximate viscosity solutions"
and we show there that any reasonable approximate viscosity solution is approximately
equal to the viscosity solution of (NPo). More precisely, we give an abstract minimal
rate-of-convergence theorem, Theorem 2, for approximate viscosity solutions to (NP0).
We also show that this rate is essentially sharp. A particular application of Theorem
2 gives an easy to determine measure of how far the solution of (NP) can be away
from the viscosity solution of (NPo). In 4, the abstract rate-of-convergence theorem
of 3 is applied to numerical approximations which are obtained from a class of finite
difference schemes. Moreover, we show in 4 that these schemes have "computable"
solutions and we motivate how they can be obtained.

The reader is encouraged to see [2], [18] and [19] where similar results as those
above are obtained for divergence form singular perturbation problems with mixed or
Dirichlet boundary conditions. See also [6], [7] and [21] for a further treatment
of approximations for time-dependent Hamilton-Jacobi equations without spatial
boundaries.

2. Viscosity solutions. As mentioned in the previous section, as e$0, the corre-
sponding solutions to (NP) do not in general converge to a classical C solution of
(NPo). In this section we offer a characterization of viscous limits to (NPo) and we
show that this characterization often allows for only one solution in the class of
continuous functions. Throughout, we shall assume that is a bounded domain in
Rd which has a C2 boundary Oll. The outward normal of ll at a point x e 012 will be
denoted by n(x) and we write the outward normal derivative of o at x012 as
(a/an)(x).

We should like to mention that previous to the writing of this paper P. L. Lions
had introduced the same viscosity characterization of solutions to (NPo) as .we give
below (see [15]). For this reason, we borrow much of the notation and hypotheses of
[15] and in this section we omit all proofs but those Which motivate the results of the
next sections.

We now state the viscosity characterization (see Proposition 1) of continuous weak
solutions to (NPo).

DEFINITION 1. Suppose that H(x, u, p) C( x R x Rd) and u(x) C((I). We say
that:

(a) u(x) is a viscosity subsolution of (NPo) if for all test functions 0 CI(Rd)
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with (Oq/On)(x) >- y(x), we have

H(xo, U(Xo), V(xo))_-< 0,

where Xo c f satisfies

U(Xo)- p (Xo) max (u(x)- p(x)).
x

(b) u(x) is a viscosity supersolution of (NPo) if for all test functions p c CI(Rd)
with (Op/On)(x)<= y(x), we have

H(xo, U(Xo), 7p (Xo)) _-> O,

where Xo c f satisfies

U(Xo)- q (Xo) min (u(x)- p(x)).

(c) u(x) is a viscosity solution of (NPo) if it satisfies both (a) and (b) above.
The fact that our test functions are required to satisfy (Op/On)(x)>= y(x) (resp.

(Op/On)(x)<= y(x)), in our definition of viscosity subsolution (resp. supersolution),
may at first seem superfluous. This is, however, precisely the mechanism that "sees"
the Neumann boundary conditions when vanishing viscosity is taken into account (see
Proposition 1 below).

Remark 2.1. Any C solution of (NPo) is also a viscosity solution. This fact is
nontrivial only for the case when max (u- p) or min (u- p) is attained for some
XoOf. To see that u must indeed be a viscosity subsolution, take an arbitrary

CI(Rd) with (Op/On)(x)>= y(x). First choose a sequence {p,,}, such that for every
m, q,. (Xo) q (Xo), q.,(x) > q(x) for x Xo, (Oo.,/On)(x) >= (Oq/On)(x) and with q., o
in C as m oo. We then have that (u-q)(Xo) =max (u q.,) and Xo is the point where
the strict maximum of u- q., is attained. Next, for any fixed m, choose a sequence
{q,} such that (Oq,/On)(x) > (Oq.,/On)(x) and with q, - q., in C as n o. Denoting
by x. the points where max (u q ,) is attained, we must have that x. Xo as n -* .
This is true because (u-q.,)(Xo) is a strict maximum of U--qm. For x 012, we also
have that (O/On)(u-q,)(x)< 0, which implies x. 12. Therefore, since now x. is an
interior maximum of u q ,, 7 u (x.) 7q.(x.), and so by taking limits we have

H(xo, U(Xo), Vq(Xo)) lim H(x., u(x.), Vq(x.)) 0.

Remark 2.2. Obviously, the converse of Remark 2.1 is false. That is, a smooth
viscosity solution need not satisfy the boundary conditions of (NPo).

PROPOSITION 1. Let u C2(ff) be a solution of (NP) and suppose that p C2().
Then:

(a) For (Op/On)(x) >- y(x) and u(xo) -,(Xo) maxxa (u(x) p(x)) we have
that H(xo, u(xo), Vp(Xo)) _-< eAqg(x0).

(b) For (Op/On)(x) <= y(x) and u(Xo) -,0(Xo) minxa (u(x) p(x)) we have
that H(xo, u(xo), Vp(Xo))_>- eAp(Xo).

If in addition, we have that u - u in L(ff) for some sequence e$O, then:
(c) u lim u is a viscosity solution, that is, u satisfies Definition l(c).
The proof of Proposition 1 can be found in [15]; however, the interested reader

can easily reproduce its proof by taking limits as in Remark 2.1.
Before stating the main result of this section, we give a simple lemma.
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LEMMA 1. Let 1) be a bounded domain in Rd having a C2 boundary 01). Then
(a) There exists a constant Ca < oo such that for all x

Ca>=sup ( -(x- y) n(x).)
(b) There exists a function w C2(() such that

o__w
On

(x) max (C, 0), x 0f,

IV w(x)l <= max (Ca, 0), x ft.

Proof Ca w(x)=-0 would suffice in the case of convex . For nonconvex 1,
(a) is shown in [12]. (b) can be shown by constructing a particular example. Under
the hypotheses of the lemma, it is known that the distance function d(x) d(x; 0)
is C2 in a neighborhood of 0f [23], [10]. That is, d(x)GC2(), where
{x " d(x)< r} and r > 0 is chosen sufficiently small. Set 0 < ro < r and verify that

fq(7"o--d(x)) if x e 1),o,w(x) =/30r if x e fill,o,
is a particular example that satisfies (b).

Now, consider the following set of assumptions.
Assumption A. H(x, u, p) is strictly increasing in u for all x e f and uniformly

for p Rd. That is, for all R > 0 and -R -<_ v <= u <- R, there exists a -/’R > 0 such that

H(x, u, p)- H(x, v, p) >- tZe(U v).

Assumption B. Let a,/3 Ra satisfy ]a], I/3] <_- max (Ca, 0), where C is as defined
in the previous lemma. Then, for all such a,/3 and all x , x + : f, all u] =< R and
any A > 1, assume that

H x :, u, a:+l:l, o() x, u,

where we(s) is some function such that lim+o we(s)=0.
Remark 2.3. Assumptions A and B are standard (see [5], [8] and [15]). In the

following theorem, Assumption B may always be relaxed so that a =/3 0 and 0() 0
except for x in a neighborhood of 0fl. Assuming additional regularity on the class of
solutions allows Assumption B to be neglected entirely.

THEOREM 1. Suppose that H(x, u, p)6 C(( x Rx Rd) and that it satisfies Assump-
tion A above. Let u C(I-I) be a viscosity subsolution of (NPo) and let v C(12) be a
viscosity supersolution of (NPo). Finally, assume one from the following three sets of
hypotheses"

(i) fl is convex and Assumption B holds with t O.
(ii) Assumption B is satisfied.
(iii) Either u o_z v is Lipschitz continuous.

We then have that

max(u(x)-v(x))<-O.

Obviously, establishing this result would imply that a viscosity solution to (NPo)
is unique in the specified class of functions.
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Proof. Given a 6 > 0, define the function (x, y) by

(2.1) (x, y)- p(x)p(y)lx-yl2/8,
where p(x)=exp (w(x)) and w(x) satisfies the second conclusion of Lemma 1. For
x e 012 and any fixed Yo e 12, observe that

OW(x) +2(x- Yo)" nO--(X’Onx Yo)= (x, yo){n i---ol5 J’
and Lemma implies that the bracketed term above is nonnegative. Therefore,

0

Onf,(x, yo) >-0

and, similarly, for y e 012 and any fixed Xo e 12

0(Xo, y)_-> O.

Now, choose qe C() such that (8O/On)(x)--y(x). By the construction above, we
have that for any fixed Yo e 12

el(X)-" 6(X, yo)+ @(x)

is an admissible test function according to Definition 1 (a) and similarly for fixed Xo

2(Y) -(Xo, y)+ b(y)

is admissible according to Definition l(b).
The next step is to note the obvious inequality

(2.2) max (u(x)-v(x))<-max (u(x)-v(y)-((x,y)+q,(x)-O(y))).

We denote by x, y the points in 12 where the right-hand side of (2.2) is attained and
we rewrite (2.2) as

(2.3) max (u(x)-v(x))<-u(x)-v(y)-((x,y)+O(x)-q(y)).

Using (2.3), we easily arrive at

(2.4)
(x, y) <= Iv(x)- v(ya)l + q,(xa) q’(ya)l,

and recalling the definition of a(x, y), (2.4) gives us that

(2.5)

Furthermore, since u, (or v), and are continuous, (2.4) combined with (2.5) shows
that

(2.6) lim Ca(xa, ya)=0.
a+o

The object now is to show that the right-hand side of (2.2) can be made arbitrarily
small by choosing 8 sufficiently small. From above, we see that the test functions
defined as

,(x) v(y) $(y) + (x, y) + 0(x),

2(Y) u(x)- (x)- (x, y)+ ,(y),
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are admissible according to Definition l(a) and Definition l(b), respectively. Inserting
these into Definition 1, and using the fact that u is a viscosity subsolution and v is a
viscosity supersolution, allows us to conclude that

H(xa, u(x), Vxl(X5))0

and

because x satisfies

and y satisfies

H(ya, v(ya), VyCh2(ya)) >- 0

u(x)- 6,(x) max (u(x)- 4,,(x))
x

v(y)- t2(y8)=min (v(y)- b2(y)).
y

Combining the inequalities above and rearranging, we obtain

(2.7)
H(x, u(x), Vxq,(x))- H(x, v(y),

<-_ H(y, v(ya), Vyb2(y))- H(x, v(ya), Vxl(Xt3)).

By a direct calculation, the right-hand side of (2.7) can be written as

(2.8)
( )H y, v(y), h(x -y)+-lx _y]2 +Vq(y)

(- x, v(yl, (x-+lx-yl+4,(x

where

A 2p(x)p(y)/3, a =Vw(x) /3 Vw(y).

(Recall from Lemma 1 that if 1 is convex we may assume that a =/3--0 and p(x)=
p(y) =-1.) Assumption B allows (2.8) to be bounded above by

(2.9) wR(h[x-y12+lx-y[),
where R max ([u[,

To complete the proof of conclusions (i) and (ii), we again use inequality (2.3)
to write

max u(x) v(x)) <- u(x) v(y) + lq(xa) 6(y)[,

which is bounded above by

(2.10) max ((u(x)-v(y)), O) + Iq(x)- q(y) 1.
Assumption A applied to the left-hand side of (2.7) combined with (2.8) and (2.9),
allows us to bound (2.10) by

1
(2.11 to (h [X y[2 + IX6 y[) + t(X) (y)l.

Recalling that h[x-y12=2(x, y), (2.6) along with (2.5) show that (2.11) tends
to zero as tends to zero, thereby proving that

max(u(x)-v(x))<=O.
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To establish (iii), observe that if u (or v) is Lipschitz continuous, inequality (2.4)
leads to an improvement of (2.5). That is, we may conclude that

(2.12) [x -y[ _-< const. 8.

This improved estimate implies that the p term of H(.,., p) in (2.8) remains bounded.
Therefore, conclusion (iii) follows by noting the uniform continuity of H(x, u, p) on
a compact subset of 1) x R x Rd.

Remark 2.4. The combined results of Proposition 1 and Theorem 1 imply that if
the family {u}>o of solutions to (NP) is relatively compact in L, then limo u
exists in L. For further results concerning the compactness of {u}>0 see 13] or 14].

3. Viscosity approximations and a rate of convergence. In this section we consider
the rate at which certain approximations converge to the viscosity solution of (NPo).
We show in a precise sense below that if an approximation "almost" satisfies the
viscosity inequalities of Definition 1, then the approximation is "almost" equal to its
associated viscosity limit solution. The abstract rate of convergence theorem given in
this section is then applied in 4 to particular approximations generated by a class of
numerical schemes.

Before making a precise statement of "almost satisfies the viscosity inequalities,"
recall the definitions of the test functions used in the proof of Theorem 1"

(3.1) b(x, y)= p(x)p(y)[x-y[2/8,

where 8>0, p(x) =exp (w(x)) and w(x) satisfies the second conclusion of Lemma 1.
Also recall the function p, which satisfies

q,(x) e c(fi),

Aq=O in 12,
(3.2)

"O--(x) y(x) on 012,
On

and the specific test functions

(3.3a)

(3.3b)

bl(x) 6(x, yo)+ q,(x),

b2(y) -b(Xo, y)+ q(y),

where Xo, Yo are arbitrary fixed points in 1. Notice that Vp is uniquely determined
by (3.2).

We now give the following definition.
DEFINITION 2. Suppose that H(x, u,p) C(IxRxRd) and u C(). We say

that:
(a) u is an approximate viscosity subsolution of order e to (NPo) if there exists a

family of test functions of the form (3.3a) so that

H(xo, u(xo), Vx(Xo)) =< eAx(Xo) + _Ce,

where Xo 612 satisfies

u(Xo) dpl(xo) max (U(X) fI(X))

and C is some fixed constant.
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(b) u is an approximate viscosity supersolution of order e to (NPo) if there exists
a family of test functions of the form (3.3b) so that

H(Yo, u (Yo), Vyb2(yo)) -> e Ayb2(Yo) _Ce,
where yo< fl satisfies

u(yo)- b2(yo) min (u(x)- b2(x)).
x

(c) u is an approximate viscosity solution of order e if it satisfies both (a) and (b)
above.

In the proof of Theorem 1 we showed that (Och/Onx)(x) >- ),(x) and (Oqb2/Ony)(y) <=
y(y); therefore, the statement of Proposition 1 implies that if u is a C solution of
(NP), then it is also an approximate viscosity solution of (NPo) as defined above.

With Definition 2, we now state the following.
THEOREM 2. In addition to Assumption A of Theorem 1, assume for ease of

presentation that y(x) =- O. Furthermore, assume that NPo) admits a Lipschitz continuous
viscosity solution u, with say Lipschitz constant L, and assume that H(x, u, p) is locally
Lipschitz continuous. Then, for any approximate viscosity solution to NPo), say u, we
have that

lu, uloo<= 1----[(8dLHL(1 + 2CaL)e)/2 + O(e)]

where

sup
XI,X2’lul_--<Ro

IPI,IPeI<-3L

Ro sup ludlow,

IH(x,, u, P,)- H(x, u,

The definition of Ca is given in Lemma 1.
Remark 3.1. We may replace the assumption that (NPo) admits a Lipschitz

continuous viscosity solution by the assumption that u is Lipschitz continuous,
uniformly in e > 0.

Remark 3.2. The interested reader can easily modify the following proof to include
inhomogeneous boundary data to obtain the same x/ rate of convergence. Relaxing
the hypothesis on H(x, u, p) and the regularity of u can also be done to obtain a more
general (and slower) rate of convergence. This, however, will not be done here.

Proofof Theorem 2. Mimicking the proof of Theorem 1, we arrive at the analogue
of inequality (2.7)"

H(x, u(x), Vx6,(x))-H(x, u(y), Vxl(X)
(3.4)

<-- H(y, u(y), Vyb2(y))- H(x, u(y), Vxb(x)) + eAxb(x) + _Ce,

where Vxbl and Verb2 are given by (3.3) (with ,0) and x and y are as in (2.3).
Recalling (2.4) and using the fact that u (or u) is Lipschitz continuous, we have that

(3.5) dp(x, y) <= lu(x)- u(ya)l <- Llx -YI,
or

(b (x, Y) --<-lu (x)- u(y)l--< Llx YI),
which, with the definition of b, gives us that

L
(3.6) Ix- yl <- .

p(x)p(y)
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Furthermore, a direct calculation shows that

Ivx(x)- v,,(y)l--< 2Cab(x, y),

where Ca is as in Lemma 1. This inequality, along with (3.5) shows that

(3.7) IVxbl(X) Vy2(y6

Returning now to inequality (3.4), we use (3.7), Assumption A and the fact that
H is (locally) Lipschitz continuous to obtain

m max ((u(x) u(y)), O)

Calculating A and inseing (3.6) into the right-hand side above, we find that

m max ((u(x)- u(y)), O)
(3.8)

8 p(x)p(y)
+ const. (e + e6),

where L L,(1 + 2CL). By setting

p(x)p(y)-kLL e

which can be done for L 0 by the continuity of the left-hand side with respect to, we minimize the bracketed term in (3.8). This yields

max ((u(x) u(y)), O) (8dLe)’/ + const. (e + e3/),
and using the fact that

max (u(x)- u(x)) u(x) u(y),
x

as done in the proof of Theorem 1, we have established the desired result for
max (u- u).

An identical estimate can be obtained for max (u u) by a similar argument and
so the proof of Theorem 2 is complete.

Remark 3.3. When the domain is convex and ff0, the term O(e) in the
estimate of Theorem 2 is precisely e. In addition, if the approximate viscosity solution
is the solution of (NP), the constant C is zero.

Next, we show that the order of the rate of convergence obtained above cannot
in general be improved. To see this, consider the example

d2e
-e dx+ u O,

(3.9)
du,

The exact solution of (3.9) is given by

u(x) cosh (x/)/sinh (1/)
and it is an easy exercise to show that u 0 uniformly as e0. In fact, one easily finds
that

u -0={1 + O(exp (-2/))},
which is exactly the order obtained by Theorem 2. We should mention, however, that
the rate constant of Theorem 2 is not the best possible.
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We conclude this section by analyzing the specific example:

(3.10)

-e dx---5-+ dx ]
+u=0,

due du
dx

(0) yo,
dx

(1) -yo.

Setting e 0 and solving the reduced differential equation, we find that u lim u
should be built from functions having the form -(x-c)2 and 0. The objective now is
to piece things together in such a way that the constructed function satisfies the viscosity
inequalities of Definition 1.

We have three basic cases (which depend on Yo). Set

ut.(x)=- x- ue(x)=- x+---1
and note that UL satisfies the left boundary condition of (3.10) and /dR satisfies the
right boundary conditions.

Case 1. For 1 >_- Yo>--0, consider the candidate limit solution:

uL(x), 0 _-< x _-<
yo

2’

u(x) =]0,
yo

<_ x< 1
yo

2- 2’

IIR(X), 1-Y<--_x<--_ 1.
2

The analysis of this case is trivial since u(x) is a classical C solution to the reduced
problem. By Remark 2.1, it must therefore be a viscosity solution.

Case 2. For yo > 1, consider the candidate limit solution"

u(x)={u(x), o<-_x<-1/2,
UR(X), 1/2<=X<=I.

Obviously, we need only check the viscosity inequalities at Xo 1/2, the corner of u2. In
this case, however, min (u2-4) cannot occur at Xo=1/2 for any C function 4. If
max (u2- 4’) occurs at Xo- 1/2, it is easy to check that we must have (uL),(1/2)_>-4,,,(1/2)-->--
(UR)x(1/2). Computing these derivatives, we have that all possible values of 4,(1/2) lie in
the interval 1- yo, yo-1 ], in which case

(1/2,, (1/2))2 + u2(1/2) (1/2b, (1/2))2 (1/2(1 To))2 <__ 0.

Therefore, u2 is a viscosity solution.
Case 3. For Yo < 0, consider the candidate:

u3(x)-0.

Here, u3 does not take on its boundary condition at x-0 or at x-1. However,
max (u3-4) cannot occur at x-0 for any admissible test function, (8k/Sn(O)>-_-yo).
If on the other hand, min (u-4) is attained at Xo 0, we must have that ,,(0) lies
in [Yo, 0] and in this case

(x(o)) + u(O) _>- o.
A similar argument shows that u3 satisfies the viscosity inequalities if max (u3-4) is
attained at Xo-- 1.
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In these specific examples, we have demonstrated that these candidate limit
solutions are viscosity solutions of (3.10) since they satisfy Definition l(c). They are
furthermore Lipschitz continuous and so by Proposition 1 and Remark 3.2 of Theorem
2, they satisfy lug-ulo-<const. 47 where u is the exact solution of problem (3.10).
However, for these examples (as well as other nonlinear examples) there is evidence
that indicates a convergence rate faster than the v/--, [3]. We believe that there is a yet
undiscovered mechanism that links certain nonlinearities in H to diffusion which often
gives rise to a faster rate of convergence than Theorem 2 predicts.

4. Numerical approximations. In this section, we introduce and analyze a class of
numerical schemes that generate approximations of the viscosity limit solution to the
one-dimensional version of (NP), which we write here as:

(-e dx---y+H x,u, dx]=O,
(4.1)

du (0)yo, due (1) y,.
dx dx

Throughout this section, we make the following assumptions concerning H(x, u, p),
which for ease of presentation only, is assumed C smooth.

Assumption A’. For all x [0, 1], lu[ R and IPI-<-K, there exists a/xK > 0 and
an 0 =< r/ < 1, such that

0
mH(x, u, p)>= K/(max (R, 1))’,.
Ou

Assumption B’. For all x[0, 1] and Ipl-K, there exists an 0-<r/2<l and a
constant C(lul) such that

OH(x, u, p) <-/zr (max (K, 1))=C(lul).
Ox

Assumption A’ is merely a refined version of Assumption A of 2. Assumption B’
guarantees that the viscosity limit solution of (4.1) is Lipschitz continuous and therefore
supercedes Assumption B of 2.

The numerical approximations that are considered here are built from a piecewise
linear interpolation of grid values { Juj}j=o. That is, we partition the interval [0, 1] as

J-1
(-Jj--o [x, x/], where we shall assume that

2(xj xj_,) => (xj+,- x) => 1/2(xj x_,),
and then define ua(x) by

J

(4.2) ua(x) E uT(x),
j=O

where

(x-xj_,)/(x-x_,)
if x[x_,,xj],

T(x)= (xj+,-x)/(x+,-x) if x[x,x+,],
0 otherwise.

In (4.2) the superscript A is to represent a measure of grid refinement and we set it
equal to maxo____j_<_j_ (xj/-x). For each O<=j<=J, the grid values u are required to
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satisfy the difference scheme

(4.3)
I xj, uj, D+

uj D uj O,

-D-uo Yo, D+
uj

where D+uj (U+l- Uj)/(xj+,-xj), D-ttj (ttj-- Uj_l)/(Xj--Xj_l), and fit(x, U, pl, P2) is
some difference operator that does not explicitly depend on any grid parameter.
H(x, u, Pl, P2) is assumed to be locally Lipschitz continuous and it is also assumed to
satisfy three basic properties.

Property 1. H(x, u, Pl, P2) is consistent with H(x, u, p). That is, H(x, u, p, p)=
H(x,u,p).

Property 2. H(x, u, p, P2) is nonincreasing in the pl argument and nondecreasing
in the P2 argument.

Property 3. For all ]pl] <_- K and ]P21 K, H(x, u, Pl, P2) satisfies Assumption A’
above.

Of course, Property 3 simply says that H(x, u, Pl, P2) is strictly increasing in u at
the rate prescribed by Assumption A’. We now give the following theorem.

THEOREM 3. With Assumptions A’ and B’ above, suppose that u A
comesfrom scheme

(4.3), where H(x, u, p, P2) satisfies Properties 1, 2 and 3. Then, (4.3) generates a unique
approximate solution ua, and moreover ua converges to u lim u at least as fast as

]ua- u] -< const, x/,
where above, u is the viscosity limit solution of (4.1) and A =maxo_<_j_<_j_ (x+-x2).

Remark 4.1. In fact, the hypotheses of Theorem 3 guarantees that lim u exists.
This is seen by checking that in the present situation the derivative of u remains
uniformly bounded for e > 0. The Arzela-Ascoli theorem combined with the results
of Proposition 1 should now make the remark obvious.

Before proving Theorem 3, we give two examples of finite difference operators
which satisfy Properties 1, 2 and 3. Furthermore, we show that the rate above is the
best possible under the hypotheses of Theorem 3.

Example 1. The Lax-Friedrichs difference operator [11], [20], is based upon
approximating H(x,u, du/dx) by a convex combination of H(x,u,D/u) and
H(x, u, D-u) along with the introduction of an artificial numerical viscosity term. To
be more specific, H is given by

H(x, u, Pl, P2) OH(x, u, p)+ (1 O)H(x, u, P2)- c(p-pz),

where 0 is chosen in [0, 1] and

c _->max (0 sup Hp, (0-1) inf Hp, 0).

Clearly, this difference operator satisfies Properties 1, 2 and 3 above. Moreover, if
Hp >-0 (resp. Hp =< 0), we could have chosen 0 0 (resp. 0 1), and c 0, thus giving
a scheme based on backward (resp. forward) differencing.

Example 2. The Godunov difference operator ([9], [20]) is given by

min H(x,u,v) ifp2<pl,
v[p2,p

H(x, u, p, Pz)
max H(x,u,v) ifp-<p2.

v[Pl ,P2]

This difference operator clearly satisfies Properties 1 and 2, and a straightforward
exercise will verify that it satisfies Property 3 as well. Again, when H(x, u, p) is
monotone in p, the scheme reduces to either a backward or a forward difference scheme.
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Next, we show that the rate of convergence of Theorem 3 is sharp. We again
consider the trivial example (3.9) and we approximate its viscosity limit solution (u 0)
by the Lax-Friedrichs difference scheme; however, we intentionally add too much
numerical viscosity (we take c- 1 rather than the allowable c- 0). Setting xj/l-xj- h,
where h- lJ, u is required to satisfy:

(4.4)
D+

uj D-uj + uj O

D-uo O, D+u 1.

One easily computes the exact solution of (4.4)

h [ 1 1 j+l]J+l a’+l "" t 2U a+ a 1- a a2-1

where

a,=l+-x/" 1+ a2 =l++x/" 1+

and furthermore, since u-> O, we have that

Finally, calculating the right-hand side above, we arrive at

1/2)
-,

x/+ O(h),

which is exactly the rate of Theorem 3.
We shall prove Theorem 3 via three lemmas.
LEMMA 2. Assume that H(x, u, p, P2) satisfies Properties 1, 2 and 3 above. Then,

U
A

if the difference scheme (4.3) had a solution, say u A, is bounded and has a bounded
Lipschitz constant, uniformly in A > O.

Proof We first prove that u A must be uniformly bounded. Suppose that
maxo=<j=<j u_->0 is attained for some l<-_jo<-_J 1. Since at an interior maximum
D+

Uo <-_ 0 <- D-Uo, (4.3) and Property 2 imply that

(Xo, Ujo, 0, 0)_--< (Xo Uo, D+Uo, D-uo) 0.

Therefore, we have from Property 3 that

/XoUo-< (max (Uo, 1))’,lH(Xo, O, O,

Similarly, if maxo_<_j==j u _-> 0 is attained at j 0 or j J, we would have that

/XlvolUo=< (max (Uo, 1))"’IH(0, 0, 0, -3’o)1

or

=<(max (ua, 1))"l(1, O, 1, O)l,

which proves that uA(x) must be bounded above independent of A> 0. An identical
argument would show that mino_<__<_j u must be bounded below independent of A > 0.
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Next, we show that [D+u-i[ must be uniformly bounded. Suppose that
maxo<__j_<_j_ D+uj->_ max (-7o, Y, 0) is attained at jo. Again using (4.3), we must have
that

+ D+
Uo D Uo_)0= H(X-io+, U-io+, D U-io+ Uo -(Xo Ujo D+ +

+_-> H(Xo+, Uo+, D Uo, D+uo) -/(Xo, Uo, D Uo, D+Uo)
H(X-io+, U-io+l, D+ U-io)- H(Xo Uo, D

/

Uo).

Setting K -D/U-io >-0, we have from above and Property 3 that

0
/zKK <_-- --H(, Uo K) (max ([Ujo], 1)) ,

OX

and this inequality combined with Assumption B’ implies that

K _-< (max (K, 1))’2C(lu-io[)(max ([Uo[, 1)) ",.

Therefore, D+u-i is bounded above, again independent of A> 0. A similar argument
would show that D+ug is bounded below independent of A > 0. This proves the lemma.

LEMMA 3. Assume that H(x, u, Pl, Pe) satisfies Properties 1, 2 and 3. Then, the
difference scheme (4.3) has a unique solution.

Proofi Consider the map F" RJ+- RJ+, defined by

(4.5) ((u)) u.i vH x uj D+
u-i D-u-i),

for O<-j<=J, where -D-uo= 3’0 and D/uj y. We show below that F has a unique
fixed point and obviously this fixed point is the desired solution of difference scheme
(4.3). We may assume that H(x, u, p, p_) above is globally Lipschitz continuous, since
H could be modified in a smooth way outside the bounded a priori domain established
by the previous lemma.

We now claim that (F(u)) is a nondecreasing function in u_, uj and
provided that , is chosen sufficiently small. Assume for simplicity that H is smooth.
We then find upon differentiating that

for 1 --_<j--_< J,

(F,.(u))-i=-vHp,/(x-i+l-Xj) for 0-<j-<J- 1,

and Property 2 implies that these quantities are nonnegative. Furthermore,

0
(4.6) Ou-i(F,,(u))-i 1 v{H,-Hpl/(Xj+a-x)+ Hp2/(xj-x-i_)},

for 1 =<j -< J 1, and Hp2 0 forj 0 and Hp, 0 forj J. Therefore, since H is assumed
to be globally Lipschitz continuous, we can choose v small enough so that these
derivatives are nonnegative as well.

Next, we show that F has the fixed-point property for v as above (v should be
thought of as an artificial time parameter and the restriction on v imposed in (4.6) as
a CFL condition). Let u RTM and v6 RJ+ and define r= v-u. Now consider

(4.7) F(v)- F(u) F(u + )- F(u).

Setting ZM max (maxo__<-i__<j ’, 0), we have by the claim above, that

(4.8) (F(u+’r)-F(u))-i<=(F(u+7"-)-F(u)).
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Now, recalling the definition of F in (4.5), we see that the right-hand side of (4.8) is
equal to

/- v H xj uj + ’4 D uj D uj I xj uj D
/

uj D-uj

which by Property 3 is bounded above by

"r 1 uk ),

where /2 is the appropriate positive constant of Property 3 governed by the a priori
domain of Lemma 2. Setting ---min (minoj ’, 0) and repeating the argument
above, we find that

(4.9) %(1 v12 <-_ (F(v) F(u))j <= 7M(1 U/ ).

Therefore, the Banach fixed-point theorem guarantees a unique fixed point of F, for
v sufficiently small, which is the desired result.

Remark 4.2. Inequality (4.9) tells us that implementing an artificial time method,
(u"+= F(u")), to obtain a solution of difference scheme (4.3), converges at an
rate of e-’. This, of course, is computationally slow in light of the increment restriction
imposed by (4.6). We recommend a few iterations of artificial time to pull the initial
approximation into the domain of attraction for Newton’s method, which with some
"smoothness," converges at a much faster quadratic rate.

The next lemma is crucial to establish the fact that u A satisfies the approximate
viscosity inequalities.

LEMMA 4. Suppose b(x) K]x--y[2d d/(X), where y[0, 1] is fixed, is a constant
and (x) is an affine function with -d/’(O)= 70 and ’(1)= )’1. Then"

(a) If >-0 and maxxtO.ll (uA(x)--ck(x)) is attainedfor some xj, O<-j<-J, we
have D/Ujo D-Ujo <= A. Ckxx(), where Xjo is the nearest grid point to .

(b) If <-0 and minxto,ll (uA(x)--ck(X)) is attained for some xj, O<-j<=J, we
have D/Ujo D-Ujo >= A. dPxx(), where Xjo is the nearest grid point to .

Proof. We prove (a) only since the proof of (b) is identical. Let Xjo be the nearest
grid point to . We have three basic cases to examine" Xjo- 0, Xjo 1 and 0 < Xjo < 1.

Case 1. When Xjo=0 we must have D/uo x() since (0, xl) is where the
maximum of uA--th occurs. However, because is quadratic, x()- x(0)+ :xx().
Therefore, D+uo :b,x(:) + bx(0)=< qbxx()-’yo.

Case 2. The case when Xjo 1 is identical to Case 1 above.
Case 3. Suppose now that (Xjo_, Xjo and choose an arbitrary r (Xjo, Xjo+l) (if,

on the other hand, : (Xjo Xjo+l the argument below is essentially the same). Using
the definition of uA and the fact that (ua-b)(:) is maximum, we have that

Ujo + D-ujo Xjo b >- Ujo + D+
ujo r Xjo) b (r),

(4.10)
D-Ujo= Ck,().

Therefore, a simple calculation will show that (4.10) implies

(4.11) D+ujo_ D_uj <= bx()(- "r) + b(’r) b().
’T-- Xjo

Taylor’s theorem allows us to write the right-hand side of (4.11) as

2 -Xjol
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Recall that we have assumed our grid satisfies the constraint (Xj+l-Xj)>-(xj-xj_).
This allows us to minimize the bracketed term above by choosing r 2xj-:. Doing
this, we have

+V Ugo- U Ugo_-< 2(Xgo- :)bx,,(:),

and since Xgo is the nearest grid point to s, the proof is complete.
Proof of Theorem 3. The proof of the theorem is complete (Lemmas 2 and 3),

except for showing that u satisfies the approximate viscosity inequalities of Definition
2. With this in mind, set thl(X)= Ix--yo[2/t-+-(X), where yo [0, 1], is fixed and q,(x)
is affine, with q,’(0)=-yo and q,’(1)= y (as in Definition 2(a)). Suppose now that
u-4 is maximum at : [0, 1 ]. To show that ua is an approximate viscosity subsol-
ution, we must verify that

(4.12) H(:, u(:), thlx(S))_-< (K A). 4,x() + _CA,

where K is some constant, independent of A, and as always in this section, A=
maxo=_j_ (x+ xi).

Using difference scheme (4.3) and Property 1, we have that for every

H(, ua(), th,x())=/(st, ua(), lx(), (])lx())- I’(Xj, Uj, D+u., D-Ui),

and we rewrite this identity as

H(:, u’(), blx())= [/-it(x2, uj, 61x(), 61x()) I(x2, Ui, D+uj, D-u2)]
(4.13)

-H(x2, u2, 4),x(), blx())].

The second term on the right-hand side of (4.13) is bounded above by

(4.14) Lxl- xl + LuL[- xjl,

where L and L, are the Lipschitz constants ofH in the x and u arguments, respectively,
and L is the Lipschitz constant of u. The first term on the right-hand side of (4.13)
can be written as

(4.15) /_]rp,. (blx()- D+uj)+ -,2" (bl/()- D-U,),
where, again, we have assumed that H is smooth for simplicity.

If : =Xo for some 0_-<jo_-< J, we have nothing to prove since it is an easy exercise
to determine that in this case D+uo<= 4’x() <- D-Ujo when Xo (= so), is a maximizer
of ua 1. (Recall by the definition of (1 that 1(0) D-uo and bx(1) -> D+uJ in the
event that 0 or 1.) Therefore setting j =jo in (4.15) and recalling Property 2 (which
says that He, <-_ 0 <-_ Hp), verifies the approximate viscosity inequality of Definition 2(a)
here in a trivial way.

If, on the other hand, sc x for all 0-_<j-<_ J, take Xjo to be the nearest grid point
to :. Set j=jo in (4.15) and insert the identity thlx(:)= D-Ujo, (or (lx()-’- D+uo) into
it. Using the result of Lemma 4 allows us to combine (4.15) with (4.13) to arrive at

H(st, ua(sc), blx(:))=< (K A).

where K max (-He, Hp:) and _C is given by 1/2(L,, + LL).
An identical argument will show that ua is an approximate viscosity supersolution,

(see Definition 2(b)), and so by applying the abstract result of Theorem 2, the proof
of Theorem 3 is complete.
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STABILITY AND INSTABILITY FOR SOLUTIONS OF
BURGERS’ EQUATION WITH A

SEMILINEAR BOUNDARY CONDITION*

HOWARD A. LEVINE

Abstract. In this paper, we present several results concerning the long-time behavior of positive solutions
of Burgers’ equation u, uxx + euux, 0<x < 1, t>0, u(x, 0) given, subject to one of two pairs of boundary
conditions: (A) u(0, t)=0, ux(1, t)= auP(1, t), > 0, or (B) u(1, t)=0, u(0, t)=-auP(O, t), where 0< p <
oz. A complete stability-instability analysis is given. It is shown that some solutions can blow up in finite
time. Generalizations replacing euu by (f(u)), and au p by g(u) are discussed.

Key words. Burgers’ equation, stability, instability

AMS(MOS) subject classifications. 35K05, 35K20, 35K55, 35K60, 76E99

1. Introduction. In this paper, we consider two nonstandard initial-boundary value
problems for Burgers’ equation, namely

Ut lxx + EI,[i

ux(1, t)=au’(1, t)
()

u(O, t)=O

u (x, O) Uo(X) prescribed

and

(B)

on (0, 1) x (0, oo),

on (0, oo),

on (0, oo),

on[O, 1]

u, u + eUUx on (0, 1) x (0, ),

u(1, t)= 0 on (0, o),

-ux(O, t)= auV(O, t) on (0, o),

u(x,O):uo(x) on [0,1].

Here p>0, e, a>0, while u p is defined as [ulP-lu. We observe that in this case
if(x, t)=-u(1- x, t) defines a one-to-one, onto correspondence between the solutions
of (A) and those of (B). This observation permits us to construct all the stationary
solutions of (A) (or (B)) for all real e, if we know only the positive stationary solutions
of (A) and (B) for e >_-0. (Nontrivial stationary solutions of (A) and (B) are necessarily
of one sign.)

Our interest in these problems is twofold. First, when e =0, (A) and (B) are
essentially the same problem. They have been studied from the point ofview ofpotential
well-theory (in several space dimensions) in a recent series of papers [6], [7]. The
arguments used therein establish the existence of a potential well for which solutions
starting in the well remain in the well and for which solutions starting in the exterior
of the well are unstable and, indeed, fail to exist for all time. However, when e 0,
such arguments, which demand the existence of a potential energy functional, cannot
be applied to problems (A) and (B), for which no such functional exists.
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This research was sponsored by the U.S. Air Force Office of Scientific Research, Air Force Systems Command,
under grant 84-0252.
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Second, in [1], [15], the authors have obtained partial results and done some
numerical experiments for

ut Uxx + euux + au p

(C) u(O,t)=u(1, t)=O

u (x, 0) prescribed

in (0, 1) x (0, oo),

on (0, oo),

on[O, 1].

It has been observed in [6], [7] that with e =0, potential well theory for (C) closely
parallels that for (A) (even in several space dimensions). We might therefore expect
that when e >0, the study of (A) or (B) might provide additional insight into the
behavior of solutions of (C).

Although this is true in some generalized sense, the analysis of the bifurcation
diagram for (C) is much less well understood than those for (A) or (B). However,
numerical calculations show that it is closer to (B) than to (A) in structure.

Our results are in the spirit of the framework considered by Hirsch [3] and Matano
[9], [10] for strongly order preserving systems. However, application of their general
results to our problem is complicated by the presence of the nonlinear term in the
boundary condition. Also we make very strong use of the qualitative dependence of
the stationary solutions upon e, which is probably special to the one space dimensional
character of our problem. We hope to pursue this matter in a later work.

Some (but not all) of our local existence results have been obtained by Amann
[14], in a more general setting. However, we include these proofs here to make our
work self-contained.

The plan of the paper is as follows. In 2, we characterize the set of nonnegative
stationary solutions for a generalization of (A), (B). We then obtain the set of stationary
solutions of (A), (B) and give the bifurcation diagrams. Verification of the nature of
the diagrams is given in Appendix I. In the third section we examine the questions of
stability and unstability of the set of stationary solutions. Finally we briefly discuss
the question of local existence and continuation in 4.

(A1)

and

(B1)

2. Stationary solutions. Here we consider stationary solutions for

u,:uxx+(f(u))x on (0, 1) (0, c),

u:(1, t)= g(u(1, t)) on (0,

u(0, t) =0 on (0, c),

u(x, O): Uo(X) on [0, 1]

u,:u,,,,+(f(u)),, on (0, 1) (0, c),

u(1, t)=O on (0, o),

-ux(O, t)= g(u(O, t)) on (0, ),

u(x, O)= Uo(X) on [0, 1 ],

where f, g are real valued, continuously ditterentiable functions defined on R with
f(0)=g(0)=0 and where ug(u)>O if u0. We will impose additional hypotheses
below. However, these will include the choicef(u) eu2/2, g(u)= alulP-lu with p > 0.
We shall focus on the behavior of nonnegative solutions of (A1), (B1) and their
corresponding stationary problems.
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The following lemma is a simple consequence of the first and second maximum
principles for elliptic equations. No particular sign assumptions need be placed on f’,

LEMMA 2.1. Letf be twice continuously differentiable. Nonzero stationary solutions

of (A1) and (B1) cannot change sign. Positive solutions w(x) of (A1) satisfy w’(x) > 0
on [0, 1], while positive solutions of (B1) satisfy w’(x)< 0 on [0, 1].

Proof The first statement follows from the maximum principle. For the first part
of the second statement, we must have w’(0)>_-0. This inequality is strict unless w 0.
If w’ changed sign on [0, 1), w would have an interior maximum which cannot happen
unless w constant 0. If w’(1) 0, then, from the Hopf second principle, w(x) =- w(1)
and consequently w(x) =- O. If, for some Xo 6 (0, 1) w’(xo) 0 and w’(x) >-_ 0 otherwise,
then w"(xo)=0 also. However v=w’ then satisfies v"+f’(w)v’+f"(w)v2=O with
V(Xo) v’(Xo) 0. By uniqueness, v =- 0 and again w(x) =- w(1).

A similar argument holds for the second part of the second statement. [3

THEOREM 2.1A. Let f’ > 0 for u > O. Let w(x) be a positive stationary solution of
(A), C2 on (0, 1) and C on [0, 1]. Let w =- w(1). Then

w() do"
(2.)

o g(w)+f(w)-f()-x
for 0 - x 1. Conversely, if w > 0 solves

(2.2)
do-

g(14]1) +f(11) --f(O’)
1,

and w solves (2.1) with this degree of smoothness, with w(1)= w, then w is a positive
staionary solution of (A).
TORM 2.lB. Let f>-0 for u >-O. Let w(x) be a positive stationary solution of

(B), C2 on (0, 1) and C on [0, 1]. Let wo w(0). Then

w() do"
(2.3)

g(wo)-f(wo) +f(,)
1 x

for 0 -- x -- 1 and g(wo) -f(wo) > O. Conversely, if w(O) Wo > O, g(wo) -f(wo) > O, Wo
solves

do"
(2.4)

g(wo)-f(wo)+f(o’)
1,

w solves (2.3) with this degree ofsmoothness, and w(O) wo, then w is a positive stationary
solution of (B).

Proof. To prove the first of these, we note that (2.1) and (2.2) follow from

w"(x+(f((xl’=o, 0<x < ,
w(0l -’( + g(w(ll =0,

after noting that w’(x)= -f(w(x))+f(w)+ g(w)>0 and a second quadrature.
For the converse, we observe that if w(. satisfies (2.1), then w(x) < w if x < 1.

To see this, suppose that w()->_ w for some e[0, 1). If h(o.)--g(wl)+f(w)-f(o.)
has no roots, then h(o-)> 0 and

Iow-do" (x) do"
1

h(o") h(o")
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SO that g=l. If h(o’) has a root, say 6., then this root is unique. Moreover,
6.>sup{w(x)[O<=x<=l}; otherwise there would be g(0,1) with 6.=w(g). But
h(r)=f(6.)-f(r)=f’(6.)(6.-r) so that

= h(cr) f(6.) -f(o’)
+cx"

Thus w(x) <- 6"- 6 for some 6 > 0 and all x [0, 1]. Therefore we may differentiate
(2.1) to find that w’(x)+f(w(x))=g(Wl)+f(wl) and w"(x)+(f(w(x)))’=O. Thus
w’(1) g(wl). Also, if ff [0, 1) is such that w(1) < w() < 6., then by the argument
above we find again that if_-> 1, which is impossible. Therefore w(x)<= Wl and thus
w’(x)>=f(wl)-f(w(x))>=O. Thus w(0)-limx_.o+ w(x) exists and, by (2.1), must be
zero.

The proof of Theorem 2.1B is similar. We note that if w is a stationary solution,
then the conservation law w’(x)+f(w(x)) constant yields (since f(0) =0), f(w(O))
g(w(0)) w’(1) which is negative by the lemma.

Equations (2.2) and (2.4) can have several solutions, each corresponding to a
stationary solution. With somewhat further restrictions on f, g we can prove that these
solutions are ordered.

THEOREM 2.2A. Let ul, Vl be solutions of (2.2) with Ul > Vl > O. Let u(x), v(x) be
the corresponding solutions of (2.1) with u(1) Ul v(1)
f(vl)+ g(vl) (which holds iff+ g is strictly increasing). Then u(x)> v(x) for x in (0, 1].

THEOREM 2.2B. Let Uo, Vo be solutions of (2.4) with Uo> Vo>0, g(uo)-f(uo)>0,
g(vo)-f(vo) >0 and let u(x), v(x) denote the corresponding solutions of (2.3). Iff’ is

strictly increasing, then u(x) > v(x) on [0, 1).
Theorem 2.2B is an easy consequence of the maximum principle. If w(x)=

u(x) v(x), then w(0) > 0, w(1) 0 and, on (0, 1),
w"+f’(u)w’+ (f’(u)-f’(v))v’= O.

Since v’ < 0 and f’ is strictly increasing, the usual arguments show that w cannot have
an interior negative minimum. Therefore w _-> 0. If w had an interior zero at Xo, it would
also have a positive maximum on (Xo, 1). However from (2.5) we see that this is false
also.

(The hypotheses on f, g do not imply that there are any solutions at all of (2.2),
(2.4).)

To prove Theorem 2.2A, we see from the conservation laws that for any x (0, 1)

u,,(O) g(ul) +f(ul) Ux(X) +f(u(x))
and

vx(O) g(vl)+f(vl)= v,,(x)+f(v(x)).
From the hypothesis we find u(0)> v(0). Since u(0)= v(0)=0, u(x)> v(x) in a
neighborhood of x 0. If is the first point in (0, 1] where u()= v(), we see from
the above that u()> vx(). This inequality holds in a left open neighborhood of ,
say (-3, ]. But then we obtain a contradiction from

(2.6) 0 u(X)- v(:) (ux(x)-vx(x)) dx+[u(X-6)-v(X-6)]. Iq
-6

Example 2.1. f(u) 1/2eu 2, g(u) alulP-lu, a, e > 0. In this case, (2.2) is equivalent
to

dr 1
(2.7) F(wl)=- (2a/e)w-2+ 1 0

.2 -EW1
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We find that for p=2 there is one solution for all e>0. For p>2, F’(wl)<0,
F(wl) + as wl0 and F(wl)O as wl-+ so that there is only one solution for
all e > 0 in this case also. If 1 < p < 2, we set v (2a/e)wP-2, al/(2-P)(e/2) (p-1)/(p-2)

and seek the number of positive solutions of

do.
p--1)/(p--2)Q( v) v v, + (1 )

5v R(v,).

It is easy to see that Q(0) 0, Q’(v) > 0, Q(+) 1 while R’(v) < 0, R(Vl) 0 as
Vl+, R(v)+ as Vl0+. Therefore problem (A) has exactly one positive
stationary solution for all a > 0, e > 0 in this case also.

The case p 1 must be treated separately. Wc observe that when p 1, wc must
solve Q(v): a. Therefore there is one and only one positive stationary solution when
0<a<l and none when al.

The case 0 < p < 1 is more difficult. We try to solve

(v,)=vl/_> d

Vl + (1 )
where, after an abuse of notation, we let

6(a) (a- 1)"a - In ((a + 1)/(a 1))

on (1, ), with q= 1/(2-p) and a =(v + 1)/. It is easily seen that < q < 1 and that

6,() (-1)--K(.)
where

and that

K(a) =[(2q- 1)a2+1] In ((a +l)/(a-1))-2a

1/2K’(a) (2q- 1)a In ((a + 1)/(a 1))-2qa2/(a2-1).
We see that, as a- +, K’(a)/2a’-2(q-1)a/(o2-1)<O and that

2 -(a-l)[2(1 q)a+ (6q-2)]

which is positive. Therefore K’ is negative on (1, oo). However lima_+1 K(a) +oo
while K(a) 4(q 1)a (<0) as a oo. Therefore K has exactly one sign change and

4b first increases and then decreases on (1, oo). We note also that lim<,_>+ (a)=0 and,
by L’Hopital’s rule (a)(2/(2q-1))a -2(-q) as a-+oo so that lim<_++oo b(a) =0.
Thus the equation (a)- 6 has zero, one or two solutions accordingly as

e > 2(6)(v-2>/(P-’>a ’/(p-i>, e 2(qb)(P-2)/(P-’)a’/(P-’)

or

where

8, <2(d)(P-2)l(P-1)all(v-1)

= max (a).

For (2.4) we have, in this case,

Io do.
(2.8) F(wo) (2a/e)wg_2_
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with the additional condition that

(2a/e)wg-2>l.

In this case, it is convenient to define

=(2a/e)wg-2-1

and seek positive solutions of

Io d"
(2.9) G(fl) 2-6(+I)’/P-2)=H(fl)

/3+or

with 6 as above. If p => 2, we see as above that there is exactly one positive solution
of (2.9) and hence (2.8). On the other hand, if 1 <p<2, we examine the equation
(with 2__ , a > 0)

(a+l)’/)--p)

(al__)I(a)= tan- =6.

We see that with q 1/(2 p),

where

We have

I’(a)=(a2+

K(a)=((2q-1)az-1)tan-’ (l/a)- .
K’(a) 2(2q- 1)a tan-’ (1/a)-2qaZ/(a2+ 1).

Moreover, K’(a)> 0 on (0, oo) while

g(a)-- as a0+

and

K(a)--.[2(p- 1)/(2-p)]a

as a- +o. Therefore I’(a) changes sign exactly once on (0, oo), I(a)+o as a-0+

and as a- +. Therefore (2.9) has zero, one or two solutions according to whether

e <2(_)-(2-P)/(P-’)a ’/(p-’), e 2([)-2-P)/P-’)a ’/p-’)

or

where

e > 2([)-(2-P)/(P-’)a ’/(p-’)

I= min I(a).

When p 1, the situation is somewhat different than the case p > 1. We must solve
(with 6 a when p 1)

J(a) tan-’ (l/a)- 6a/(a2+ 1)=0.

It is easy to see that when 6(0, 1], J’(a) <0 and the range of J is (0, r/2) so that
we have no positive stationary solutions in this case. If 6 > 1, then J’(a) has a unique
positive root at 6=[(6+ 1)/(-1)] 1/2 while J’(a) > 0 if a> 6 and J’(a) <0 if a <.



318 HOWARD A. LEVINE

Since 6 corresponds to a negative minimum of J, we see that there is a unique solution
of J(a) --0 in (0, 6) and none on [6, ). Thus, when a -> 1 there is a unique positive
stationary solution for all e > 0. Otherwise there is none.

In the case 0 < p < 1, K(a) -c as a - +c. We write K’(a) aQ(a) where

2
Q’(a) (a2 +1)[(1- q)a2- (3q- 1)].

We see that Q’ changes sign from -(6q-2) near a =0 to nearly 2(1-- q)a2/(a2+ 1)2

for a large. Therefore since Q(a)-, (2q- 1)r as a -0+ and zero at a +oo, Q changes
sign exactly once and hence so does K’(a). The unique root of K’ will correspond to
a maximum of K(a). Calling this root 6, we have

We find

(2q- 1) tan-1 (l/a)= qa/(a+ 1).

-1
K(6)

(2q-1)(62+1)" [(1-q)(2q- 1)63+(3q-

which is negative.
Therefore K(a)<0 and I’(a)<0. Since I(a)---a -2(1-q as a- +o, we see that

in this case I(a)= 3 has exactly one solution when 0 <p < 1.
The bifurcation diagrams then have the form indicated in Figs. 1.1, 1.2, 2.1 and

2.2. In Appendix II we establish the qualitative shapes of the curves in Figs. 1.1, 1.2,
2.1 and 2.2.

3. Stability-instability-global nonexistence. Here we examine the questions of sta-
bility and instability for the time dependent problems (A1), (B) with particular attention
focused on (A), (B). We shall assume all solutions are C2 in x and C in on
(0, 1)x (0, T)-= Dr and continuous in the parabolic cylinder [0, 1] [0, T)--- Dr
We shall assume f is C, for convenience. (See Appendix I.)

LEMMA 3.1A. Suppose that f’ is increasing and that either g(u)/u is bounded in a
neighborhood ofu 0 or else that u > 0 on { 1 } x [0, T). Let u(x, t) solve (A). Ifu(x, O) > 0
on (0, 1 ], then u > 0 on DT [_J [’T except at x O. Suppose also that g(u)/u is increasing
on (0, c). If w(x) is a positive stationary solution of (A1), o- [0, 1), and u(x, O) <-
(1 tr)w(x), then u(x, t) <- (1 tr)w(x). If u(x, O) >-_ (1 + tr)w(x), for some tr > O, then
u(x, t) >= (1 + tr)w(x) on Dr U

Proof If u had a negative minimum in DT_ for some 3 > 0, then for any h,/ > 0,
v e-(x+’)u also would have a negative minimum in/)T-. We choose h so large that

A >sup {g(u(1, t))/u(1, t)]0_--< t_--< T-3}

and then choose so large that

/ > h2+ h sup {f’(u(x, t))[ (x, t) 6/)T-}.
Then for v we have, in DT_,

V Vxx’3[-(21 +f’(u))vx + (hf’(u) + h2- )v
while

Vx=(g(u)/u-A)v

when x 1 and 0 < _-< T- 3. From the first of these, a negative minimum cannot occur
in DT_ or at T- 3 and 0 < x < 1, while from the second it cannot occur on x 1,
0 < _-< T- 3. Since it cannot occur at x 0, we have u(x, t) > 0 in DT_ except at x 0.
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To prove the second statement, we let v(x)= (1-o-)w(x) and note that

Vxx+f’(v)vx <=(1-cr)[w,,+f’((1-o’)w)w,,]
(3.1) _-< (1 tr)[w +f’(w)w,]

_-<0

since w > 0 on [0, 1] and f’ is assumed increasing. Moreover on x 1,

v, g(v) (1 o-)g(w) g((1 tr)w)

(3.2) (1 tr)wig(w)/w g((1 tr)w)/((1 tr)w)]
_->0.

We now set

d/(x, t) e(;’"+")(v(x)- u(x, t)).

We find that in DT_

qt >_-- q,:, + (-2A +f’(v))d/x+[Az-tz-Af’(v)+f"()ux]b
and at x 1, 0< t_-< T-6, we have

G _-> (g’(/) + A)q.

We choose A,/ to make the coefficients of q, in these last two inequalities negative.
Therefore, if q, has a negative minimum in Dr-s, it must occur at x =0 or at (1, 0).
At (1, 0), however, q(1, 0)>_-0. Therefore q, >_-0 and the second statement is proved.
An argument similar to the above shows us that if u(x, O) >- (1 + cr)w(x), then u(x, t) >-

(1 + r)w(x) on D U
We then have, in consequence of the local existence and continuation results, the

following theorem.
THEOREM 3.2A. Let f+ g be strictly increasing on [0, oo). Suppose also that f’ is

strictly increasing and g(u)/u is increasing on [0, oo) and that the roots of (2.2) are
isolated. Then there is at most one positive stationary solution of (A1), call it w(x).
Moreover, ifu(.,. solves (A1) on DT-UFrand 0 <- u(x, 0) =< (1-tr)w(x) on [0, 1], then
we may take T=+oo and O<= u(x, t) <-_ (1-cr)w(x) for atl x [O, 1], t[0, oo). Therefore
the null solution is stable from above and w(x) is unstable from below and above (when
it exists).

Proof Let wl, w2 be two stationary solutions of (A) with 0< w(1)< w2(1) and
assume that there are no solutions of (2.2) in (w(1), w2(1)). By Theorem 2.1A, we
have w(x) < w2(x) on (0, 1]. Moreover, wl(x) >0 for i= 1, 2 on [0, 1] by Lemma 2.1.
With q(x)= w(x)/w(x), we have q’(x)=(f’(wz)-f’(wl))q>O on (0, 1]. From this it
follows that w(0)_-< w.(0) which, by uniqueness, must be strict. Moreover,

w(1) g(wl(1))
0<

w(1) g(w2(1))
Wl(1)g(wl(1))/Wl(1) w,(1)=< <1.

g(w2(1))/w2(1) WE(l) W2(1)

Set yi 1-w(i)/w’2(i), i=0, 1. Then yi (0, 1) and, on (0, 1],

(1 To)W2(X) < Wl(X)< (1 T1)W2(X).

Let u(x, t) solve (A,) with u(x, O) (1-- T1)l/2w2(x). Then

(1 ’yl)--I/aWI(X) < U(X, 0) (1 /1)l/2w2(X).
By the lemma and this inequality,

(1 yl)-/2Wl(X) <- u(x, t) (1 yl)’/Zw(x)
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on Dr [-J Ft. From this a priori bound and the continuation theorems below, T +c.
Since u, =< 0 on [0, 1 x [0, ) (see Appendix I) lim,_. u(x, t) b(x) exists and

Wl(X ( (1 T1)--a/Zwl(X) <---- (X) <= (1 T1)I/ZWz(X) < Wz(X)
on (0, 1]. Let

where

F(x, t)= G(x, y)u(y, t) dy

G(x, y { x if0-<-x=<Y -<-1,
y if0_-<y_<-x=<1.

Then lim,_ F(x, t)= I1o G(x, y)c(y) dy and is finite. If we calculate F,, we see that

F,(x, t)= G(x, y)u,(y, t) dy

=-u(x, t)- f(u(y, t)) dy+x[g(u(1, t))+f(u(1, t))]

- d(x)+ f(d(y)) dy +x[g(d(1))+f(4)(1))]

as oe. This limit, which is nonpositive, is in fact zero for x e [0, 1]; otherwise F
would not have a finite limit as t- +oo. Therefore,

d(x)+ f(d(y)) dy= x[g(d(1))+f(d(1))]

and hence 4 is a stationary solution of (A) with 4(1)e (w(1), w2(1)), which is the
desired contradiction. (If g(u)/u is strictly increasing, then one can relax the condition
that the roots of (2.2) are isolated. It then follows that

Wl(1 )/W2(1 < 1 Wtl(1)/w(1) < Wl(1)/w2(1)
which is a contradiction and the rest of the argument may be omitted.)

The second statement of the theorem follows from the lemma and the continuation
theorems. The null solution is therefore stable from above in the class of continuous
functions on [0, 1] vanishing at x 0 while w(x) is unstable from above and below in
this class.

Although the positive stationary solution is unstable (when it exists), there remains
the question of the long-time behavior of solutions of (A) when u(x, O)> w(x).

LEMMA 3.3A. Suppose that f’(u)>-O, g(u)>-O for u>-O and that u(x,t) is a
nonnegative solution of (A) on DT‘ U FT with Ux(X, O) >- 0 and ux(1, 0) g(u(1, 0)). Then
u, x, t) >= 0 on DT‘ [_J F 7- and consequently,

u(x,t)>=v(x,t)
where v solves

(C,)

v,- Vxx, O<x < l, 0<t<T,

v(O, t) =0,

v(1, t)= g(v(1, t)), O=< < T,
v(x, O) <= u(x, O), O=<x-<l.

Proof Since u,-> 0 on the parabolic boundary and satisfies a linear parabolic
equation, u,->_ 0 in D, t_J F-. It follows that u, Uxx in DT‘ so that w u-v satisfies
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Wxx-Wt<=O in Dr, w>=O when t=0, w=0 on x=0, w,=A(x,t)w on x=l where
A(x, t)=-(g(u)-g(v))/(u-v). By the maximum principle again, w>=O.

LEMMA 3.4A. Define G(u)=o g(y) dy and suppose that g satisfies the structure
condition

(3.3) (p+ 1)G(u)=< ug(u)

on R where p > 1 is given. Let v(x, O) =- Vo(X). If Vo(X) >= O, v(x) >= 0 and

(3.4) v(1) g(vo(1)),

(3.5) Vo(0) =0,

1 fo )2(3.6) - (V’o(X) dx < G(vo(1)),

then the solution of (C1) blows up in finite time; i.e., T < c and

lim sup v(x, t)=+.
t’T 0xl

Proofi The solution (which is nonnegative) fails to be global by the concavity
arguments given in [8]. If the solution remains bounded on Dr, then by the continuation
arguments below, it may be continued to Dr+ for some 6 > 0. Hence v blows up
pointwise in finite time.

(A variant of this result can be obtained from [13] provided g’ exists, an assumption
not needed here.)

THEOREM 3.5A. Let u solve (A1) with u(x, O)= Vo(X) and f, g as in the preceding
lemmas. Then u(x, t) blows up in finite time.

Proofi By Lemmas 3.3A, 3.4A u cannot exist for all time. By the continuation
theorems it is continuable if it is bounded on Dr. Therefore u blows up pointwise in
finite time.

Example 3.1. Suppose f(u) eu2/2, g(u) au p, p > 1. In order to construct such
a Vo as required in Lemma 3.4A, we let

(3.7) Vo(X) A[(r2- (c x)2)1/2- (r2- O2) 1/2]

where A, a, r are positive and r > a > 1. The constants A, a, r are to be chosen below.
Notice that Vo(0)--0, Vo(X)>0 on (0,1] and V’o(x)=A(a-x)(r2-(a-x)2)-’/2>O.
For any a, r define A by the condition v(1)= avg(1), i.e., by

aAP-’(2a-1) p a-1

[(r2 a2),/2 + (r2 (a 1 )2),/2] p (r2 (ce 1)2)1/2"

The final condition of Lemma 3.4A then holds if and only if

p+l
(a- 1)(2a- 1). A2 1P+’

)2 r2 2),/2 r2
,,0 (1)

(r2 (a-1)/2[(-a +(-(a-l)2)1/2] p+l

llot { [(r-a+l)(r-+a)]-l}"A2(r+a1)(r-a)
>- (V’o(X))2 dx= rln

2

which will hold if r > O
2 >> 1. One uses the approximation (valid for x small) In (1 + x)

x x2/2 + x3/3 to verify this.
There is a second form of an instability-stability result for (A,). Somewhat stronger

regularity is required however. (See Appendix I.)
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THEOREM 3.6A. In (A1) replace f by ef where e >= 0 is a parameter. Suppose that

ef+ g andfare C increasing functions on [0, ) with f’ > O for u>0. Let w(x, e) be a
C (in e) branch of positive solutions on some e interval and let wl(e) =- w(1, e). If
w(e) > 0 on this branch, the solutions are stable while if w(e)< 0 on this branch, the
solutions are unstable. (Here w(e) =- Ow(1, e)/Oe.)

Proof We know that
w(x.) dtr

(3.8) x
o g(wl(e)) + e(f(wl(e))-f(tr))

on [0, 1]. Differentiating with respect to e, we obtain

(3.9)

OW
{g(wl(e))+ e[f(wl(e))-f(w(x, e))]}-l- (X, 6)

dtr
{[g’(wl) + ef’(wl)]w(e)+(f(wl)-f(o’))} D2(o.)

where D(o-) is the denominator in (3.8). Thus, if w(e)> 0, Ow(x, e)/Oe >0 on (0, 1].
Therefore w(x, el)< w(x, e2) on [0, 1) if [el, e] is contained in the domain of this
branch. Also w,(x, ei)> 0 on [0, 1].

Suppose that u(x, t, el) is a solution of (A1) with u(x, O, e)= w(x, e2). Then, on
(0, 1),

u,(x, O, e)= Wxx(X, e2)+ elf’(w(x, e2))" w,(x, e)

< w(x, e2)+ ef’(w(x, e_)). Wx(X, e)

-’0.

Therefore since ut satisfies a linear problem with homogeneous boundary data, u, < 0
on Dr (.l Fr except at x 0 and

(3.10) w(x, el) < u(x, t, el) < w(x,

(The first inequality follows from standard comparison theorems. Note that u and the
w’s satisfy the same boundary conditions.) Thus, from the continuation theorems and
(3.10), T and

(x, e)-= lim u(x, t, el)

exists. From (3.10), w(x, el)<--(x, e)< w(x, e2) so that, letting e2$el, we obtain
(x, el)= w(x, e). This suffices to show that w(x, el) is stable from above. Similarly,
with el > e2, one easily shows that w(x, el) is stable from below.

In the second case, from w(e)<0 on [el, e2] we have that w(1, e2)<w(1,
and consequently w(x, e)< w(x, el) is a left open neighborhood of x 1.

Suppose that u(x, t, e) is a solution of (A1) with u(x, O, e2)= w(x, el). Then since
f’>0, Wx >-0, on (0, 1),

Ut(X O, 62) Nxx(X 61)-- e2f’(w(x, 61))Wx(X, 61)

> Wxx(X, el)+ elf’(w(x, 61))Wx(X 61)=0.

Since u, is nonnegative at x 0 and satisfies a homogeneous linear condition at x 1,
u, > 0 in Dr. Therefore u is increasing in t. Hence w(x, 62) is unstable from above. A
similar argument with 61 > 62 shows that w(x, 62) is unstable from below, l-I

We have the following corollary of Theorem 3.6A.
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COROLLARY 3.7A. Let f, g be as in the preceding theorem. If g’(wl(0))< 1, the
branch of stationary solutions emanating from e-0 is stable while if g’(w(O))> 1, it is

unstable.
Proof. We need to compute w(e) on such branches. Setting x= 1 in (3.9), we

find that
w,

w()1-g(wl)(g’(wl)+ ef’(w,)) O2(tr)
(3.11)

where D(o-) denotes the denominator in (3.8). When e =0, g(wl(0)) wl(0). We find
from (3.11) that

Wl
(3.12) [1- g’(w(0))]w(0)

1 (o)

w(0)
[f(w,(O))-f(tr)] dt.

Therefore w(0) < 0 or w(0) > 0, accordingly g’(wl(0)) > or g’(wl(0)) < 1. From
(3.11), it follows that the sign of w(e) cannot change along the branch unless the
coefficient of w(e) changes sign. Since the product is strictly positive, w(e) will be
of constant sign.

As an example, with f(u)--1/2eu2, g(u)= au p, we find that Wl(0)= a -1/(p-1) and

(3.13) 1 g’(wl(0)) 1-p.

Thus, positive solutions of (A) are unstable if p > 1. From Theorem 3.2A, the zero
solution is stable. For 0<p < 1, on the branch emanating from (0, wl(0)), we have
w(e) > 0. Therefore stationary solutions are stable on this branch. For w(e)< 0 (the
upper branch in Figs. 1.1 and 1.2 with 0 < p < 1) the stationary solutions are unstable.

There remains only the question of the stability of the positive solution when p 1
and the stability of the null solution when 0 < p <= 1. When p 1 and 0 < a < 1, we see
from Example 2.1 that w(e)= 2a/(ev(a)). Thus w(e)< 0 and the branch of positive
solutions is unstable. Therefore, from Theorem 3.2A, the null solution is stable.

In order to demonstrate the instability of the null solution when p 1 and a > 1
or when 0<p<l, suppose Uo(X)>0 on (0, 1] and Uo(0) =0, U’o(1)>-au(1). Choose
A > 0, 6 > 0 so small that

a -> 3 -PA coth A (sinh A -P,
Uo(X) >= 6 sinh (hx).

Then

(3.14) v(x, t)= 6 sinh (hx)

is a subsolution. That is, vxx+eVVx>-_O, vx(1, t)<-a(v(1, t))p. Therefore u(x,t)>=
6 sinh (Ax) for all in the existence interval and hence zero is unstable from above.
(When a 1, use v 6x.)

We next turn our attention to (B). As noted earlier, the structure conditions on

f, g are somewhat different in this problem. There are parallel results however.
LEMMA 3.lB. Let f’(u) be increasing. Let g(u)/u be bounded in a neighborhood of

u 0 or u > 0 on {0} x [0, T). Let u be a solution of (B1) on DT- [_J F-. If u(x, O) > 0 on
[0, 1), then u>0 on Dr(.J Frexcept atx= 1. Suppose that g(u)/u is decreasing on (0, o).
Suppose that w(x) is a positive stationary solution of (B1) and u(x, O)<-(1 + tr)w(x) on
[0, 1], then u(x, t)<-(l+tr)w(x) on DT-t-JFT-, while if u(x,O)>-_(1-tr)w(x) on [0, 1],
then u(x, t)>-(1-cr)w(x) on Drt-JFr.
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Proof The proof of the lemma proceeds (mutatis mundanis) in the same manner
as that of Lemma 3.1A. We note that this time w’(x)<0 on [0, 1]. Therefore, with
v(x) (1 r)w(x) (0 < r < 1) we have

(3.15)

While at x 0,

v,x +f’(v)v, (1 o-)[ wxx +f’((1 o-) w) w,]

(1 o’) wx[f’((1 o’)w) -f’(w)]

v, + g(v) g((1 o’)w) (1 -o’)g(w)

(3.16) (1 or) wig((1 o’)w)/(1 o’)w g(w)/w]

=<0.

The inequalities (3.15) and (3.16) are reversed for v(x) when v(x)=
+ )w(x).
THEOREM 3.2B. Letf’, -g(u)/u be increasing on [0, ) withf’, g strictly increasing.

Suppose that the roots of (2.4) are isolated and satisfy the conditions of Theorem 2.lB.
Then there is at most one positive stationary solution w(x) of (B1) and it is stable. The
null solution is unstable from above.

Proof The stability and instability follow from Lemma 3.1B and the continuation
theorems below. Let wl, w2 be two positive stationary solutions and suppose w(x)<
Wz(X) on [0, 1) and that there are no roots of (2.4) in (w(0), w2(0)). It follows from
Lemma 2.1 that w’i(x)< 0 on [0, 1]. Exactly as in the proof of Theorem 3.2A, there is
a constant 3’o 1 w’(0)/w(0) in (0, 1) such that

w,(x) < (1 yo)W(X).

(If 3,0=0, then w(0)= w[(0) or g(w(0))= g(w(0)). Then wl(0)= w2(0) and wl--w2.
If yo 1, then w(O)=O=g(w(O))=O and hence w(0)=0. Then Wl-=0.) Let 3>0
such that

If we set

(1 yo)w(O) < (1 + 6)Wl(0) < w2(0).

v(x) (( 1 + 6)/( Yo) )W,(X) w2(x)

( + )w(x)- w(x),

then v(0) > 0, v(1) 0 and

v"(x) -(1 + 6)f’(wl)w +f’(w)w
< -f’(w)v’(x).

Consequently v cannot have a minimum on (0, 1) and v(x)> 0 on [0, 1). Therefore

(1 + 3)w(x)> (1- yo)W(X).

If we let u solve (B) with u(x,O)=(l+6)w(x), then, by the lemma u(x, t)>0
except at x-- 1 on DT-U F- and by the first and second maximum principles

u(x, t)<(l+6)w(x)

on DT- and F T-. The lemma assures us that for all x,

u(x, t) > (1 yo)W2(X).
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Therefore, by the continuation theorems, we may take T +c. However, by the lemma
u(x, t)<=u(x,O) on [0, 1] so that u,-<_0 for all (see Appendix I) and hence
limt_. u(x, t)= b(x) exists for all x[0, 1]. Exactly as in Theorem 3.2A, we easily
establish that b is a stationary solution and hence b(0) is a root of (2.4). Since

wl(0) < (1 -yo)w2(0)< b(0)< (1 + 6)w(0) < w2(0),

we have reached the desired contradiction.
As in Theorem 3.2A, if-g(u)/u is strictly increasing, the proof may be shortened

and the zeros of (2.4) need not be assumed to be isolated.
The choice f(u) 1/2eu, g(u) au P, a > 0, 0 < p < 1, together with the observations

in Example 2.1, provides an illustration of this result.
Sometimes solutions of (B1) can blow up in finite time.
LEMMA 3.3B. Suppose that g(u) >= 0 and that u solves (B) on Dr t3 FT-with u(x, O) >

0 on [0, 1). Then u(x, t) > 0 on DT- FT- except at x 1. If u,(x, O) <- O, then u,(x, t) <- 0
while if ut(x, O) >- 0 then ut(x, t) >- 0 on Dr t.J Fr.

The proof of this rests on straightforward applications of the maximum principle
and is omitted.

LEMMA 3.4B. Let f’>=O and definef(u)=of()) dq, G(u) =o g() drI. Suppose
that u solves (BI) on Dr [-J FT-and that the hypotheses of Lemma 3.3B hold. Define, for
t<=T,

Io’(3.17) F(t)= u:(x,v)dxdv+(T*-t) u:(x,O) dx+(t+to)

where to, fl, T* are positive constants with T* >- T. Then, for any ce > O, on [0, T), we have,

FF"-( + 1)(F’)>_- 4(c + 1)F G(u(O, 0))- u(x, O) dx

-(2a+ 1)fl/(2ce +2)1 +2FQ(u(O, t))

where

Q(v)= vg(v)-2(a+ 1)G(v)+f(v)-vf(v).

Proof The proof is a straightforward calculation, variants of which can be found
in [7], for example (in the case f=0). We find

FF"-(a + 1)(F’)2 4(a + 1)$2+ 2FQ(u(O, t))

+4(+ ((o,o- (x,O ax
(.9

-( +/(+]
-4( + 1)F. UxU,f’ u dx dn

where
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In view of the preceding lemma, we see that the double integral on the right of
(3.19) is nonpositive and (3.18) follows immediately.

THEOREM 3.5B. Let u solve (B) with f, g as in the above lemmas. Assume that

(3.20) u(x,O)>O on [0, 1), u(1,0)=0,

(3.21) u,(x, O) >= 0 on (0, 1),

(3.22) ux(x, O) <= 0 on (0, 1),

(3.23) - ux(x, O) dx < G(u(O, 0)),

(3.24) There is a > 0 such that Q(v) >= O,

(3.5) -u(O, o)= g(u(O, o)).

Then u cannot exist for all time.

Proof If we can establish the theorem, the continuation theorems below permit
the conclusion that u blows up in finite time. By choosing/3 such that

2(a + 1)
O(u(0, 0))- (x, 0) dx0</3<_- +

and noting (3.24) we see that FF"-(a+ 1)(F’)-> 0 on [0, T) and therefore (F-)"_-< 0
there. If T oo, T* will be at our disposal. We find that F has a zero at some value
?<-F(O)/aF’(O), provided F(O)/aF’(O) does not exceed T*. These conditions are
satisfied if we take to aT* and

r* (- u(x, o x
while then

Example 3.2. Let f(u) =1/2eu, g(u)= au p and

A[(y-x)-(y-1)1U(X, O)=x/r_(y_ l)2+x/r2_(y_x)2
where A>0, r> y> 1. We shall choose A, y, r so that (3.20)-(3.25) hold. Clearly
u( 1, 0) 0 and u(x, 0) > 0 on [0, 1 ). Also u(x, O) -A(7 x)/(r2 , x)2)/2 < 0. We
choose A so that (3.25) holds, i.e.,

A Y (x/r2 y)- + /r2 (), 1)2) p

a(2y- 1) P/r2 " ,y2

If r, 3/>> 1 and r >> % then

A

In order to check that u,(x, 0)-> 0, we compute

W(x) =- U,,x(X, O)+ eu(x, O)u,,(x, O)

A
=,/re_ (y_ x)2 (r:-(,-x)Z)-,/r:-(/-1):+4rZ2-(--Zl"

Since (y 1)2 _< (3, x)2 < y2 on [0, ], we find that

A
W(x) >= r2_ y_ x)2)3/2[r2- eY2/r- Y 1)2].



BURGERS’ EQUATION WITH A SEMILINEAR BOUNDARY CONDITION 327

For r, 3’ >> 1 and r >> y, the factor in brackets is larger than 1/2r2. Conditions (3.20), (3.21),
(3.22) and (3.25) thus hold.

Condition (3.23) is verified exactly as in Example 3.1. We note that

while

a(u(O, 0)) p+’ -u,,(0, 0)u(0, 0) A2y-p+ 1 (p+ 1) (r2- y2)(p + 1)

l for _{ r [(r- y+ 1)(r+ y)]}- u2,,(x,O) dx= -l+ln (r+y-1)(r-y)

In order to check (3.24) we see that for u > 0,

Q(u) a(1-2(c + 1)/(p + 1))uP+I--1/2eU3.
For p 2, Q(u) => 0 for u => 0 provided a > e. For p > 2, Q(u) is positive to the right of

fi=
(p-1

a-1/(P-2)"

Since ut(O, t) >= O, u(O, t) >= a and Q(u) >= O. provided

u(O,O)>-a

which in turn holds for r, y >> 1, 0 < r >> y if

a>
3(p-1

The question of finite time blow up remains open if e >> a.
We next replace f by ef in (B1). We prove the following.
THEOREM 3.6B. Let f’>O on (0, oo) and suppose that w(x, e) is a C branch of

positive stationary solutions of (B1) with f replaced by ef along which g(wo)- ef(wo) > 0
(Wo(e)=--w(O, e)). If w(e)=Ow(O,e)/Oe>O, this is a branch of unstable stationary
solutions. Iff">= 0 and W’o( e < O, this is a branch of stable stationary solutions.

Proof. Suppose w(e)> 0. Then if el < e2, w(x, el)< w(x, e2) in a neighborhood
of x =0. Then, with u(x, t, el) a solution of (Bl) with e- el such that u(x, 0, el)=
w(x, e2), we find that on (0, 1),

Ut(X, O, 62)-- W"+ e, lf’(w)w’

w"+ ef’(w)w’+ (el e)f’(w)w’
>0

since w’ < 0, f’ > 0 and el e2 < 0. From this we conclude as before, that ut (x, t) > 0
on Dr U FT and hence that w(x, el) is unstable from above. A similar argument with
u(x, O, e2)= w(x, el) shows that w(x, e2) is unstable from below.

Suppose next that w(e)<0. Then v(x)=Ow(x, e)/Oe solves, on (0, 1),

v"+ ef’(w)v’ + ew’f"(w)v= -f’(w)w’> O,

since f’(w) > 0 if w > 0 and w’ < 0 on [0, 1]. Therefore, since v(0) < 0, v(1) 0, v(x) < 0
on [0, 1). It follows that if 0< el < e2 on the branch, then w(x, el) > w(x, e2) on [0, 1).
Again, with u(x, O, el)= w(x, e2), we find that

ut(x, O, el)= w"+ elf’(w)w’

w"+ e2f’(w)w’-(e2- el)f’(w)w’

>0
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and consequently on Dr U FT, by this and comparison

W(X, E2) U(X, t, /1) W(X, /1)-

(Again note that u and the w’s satisfy the same boundary conditions.) Thus, we may
take T=+ and lim,_, u(x, t, el) d(x, el) exists. Moreover, w(x, e2) <= oh(x, e) <=
w(x, e). Letting e2 decrease to el, 4(x, e) w(x, e). This shows that w(x, el) is stable
from below. A similar argument shows that w(x, e) is stable from above. [3

From (2.4), in this case, we have
w() do"

(3.26) 1
ao g(wo(e))+ e(f(o’)-f(wo(e)))

Differentiating with respect to e along a branch of solutions of (2.4), we find

{ f w() dtr } fw()[f(o’)-f(wo)]1 [g’(Wo) ef’( Wo)]g(Wo) w(e) g(Wo)
ao D2(r) ao Da(o)

dT

where D(cr) is the denominator in (3.26). If the branch is defined on an interval [0, Co),
we have, at e 0,

[1 g’(wo(O))]W’o(O)
w()

[f(wo(O))-f(tr)] dtr
Wo(0) o

because again g(wo(0))= Wo(0).
Thus, the corollary dual to Corollary 3.7A is the following.
COROLLARY 3.7B. Let f g be as in the preceding theorem. If g’(w(0))> 1, the

branch of stationary solutions emanating from e =0 is unstable, while if g’(w(O))< 1,
this branch is stable.

The convexity of f in Theorem 3.6B is not necessary.
COROLLARY 3.8B. Let f’>O on (0, ), and suppose that w(e)<0 on some C

branch w(x, e) of stationary solutions of (B) with f replaced by ef If g’(wo(e))-
ef’( wo( e > 0 along this branch, then the branch consists only ofstable stationary solutions.

Proof It suffices to show that Ow(x, e)/Oe < 0. However, we must have
w(x,) do-

(3.27) 1 -x=
a o g(Wo) ef(Wo) + ef(o’)

along such a C branch of stationary solutions and therefore

[g(wo(e))-ef(wo(e))+ ef(w(x, e))]-lOw(x’
e)

Oe
w(x.) do"

ao
{[g’(wo)-ef’(wo)]W(e)+[f(o’)-f(wo)]} D2(o.)

where D(tr) is the denominator in (3.27). By hypothesis, the integrand in the integral
is negative while the coefficient of Ow/Oe is positive. [3

As an example, we again take ef(u)=u2, g(u)= aup, u >--0. We find again that
W0(0 a -1/(p-) and

g’(wo(O)) 1 -p.

Thus, if p > 1, the branch of positive solutions emanating from zero is unstable. For
p > 2, this branch exists for all e > 0. Therefore, for all e > 0, the null solution is stable
from above. For 1 <p < 2, the upper branch is stable since w(e)< 0 there. When
0 < p < 1, w(e) < 0 and the branch of positive solutions (which also exists for all e > 0)
is stable. Thus, by Theorem 3.2B, in this case the null solution is unstable from above.
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There remains only the question of the stability of the positive solution when p 1
and a -> 1 and of the null solution when 1 -<_ p =< 2. (For 1 < p < 2 we have this stability
for e < e(p).) When p 1 and a => 1, we find from Example 2.1 that

Wo(e)=2a(a+l)/e

where aj is the unique root of J(a). Therefore w(e) < 0 and this is a branch of stable
stationary solutions. Again by Theorem 3.2B, it follows that the null solution is unstable
in this case.

Whenp=l and a<l or whenp>l, set, forA>0,6>0

v(x, t)= 6 sin ((1- x)h) e-2’.

Then one easily checks that vxx + evvx <= v, and that v(0, t) -<_ --avP(0, t) provided that
A, 6 > 0 satisfy

a _-< A cot h (6 sin h)-(P-).

If Uo(X)<= 6 sin ((1- x)h), it then follows that u(x, t)<= v(x, t) and the null solution is
thus stable from above (indeed asymptotically stable from above).

Finally, it is perhaps worth noting that for both (A) and (B) when a 0, there
are no nontrivial stationary solutions. It is not difficult to show that the null solution
is asymptotically stable.

4. Local existence and continuation. In this section we shall establish the existence
of solutions of (A) and (B) on DT (.J FT for sufficiently small T and certain initial
values. This result follows from results in [2]. However, we include an elementary
proof here for completeness.

We assume that f, g are defined on R , that g(u) > 0 for u > 0 and thatf(0) g(0)
0. We shall also assume that f is uniformly Lipschitz in compact subsets of R, that
g is continuous and is uniformly Lipschitz on compact subsets of R 1-{0}. (This last
restriction is necessary to include functions such as g(u)=lulp-u where 0<p<l.)
We shall also define

(4.1) f4-- sup If(u)l

and

(4.2) gt------ sup Ig(u)l.

We shall discuss problem (A). The arguments for (B1) are similar and are omitted.
Let (3(x, y; t) denote Green’s function for

Lu=ut-Uxx, tr<x<l, t>O

with boundary conditions

u(O,t)=Ux(1, t)=O, t>0,

G(x, y;t) 2 Y sin (h,x) sin (A,y) e-x"t
n-----1
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where A, =1/2(2n- 1)zr. Then Gx(1, y; t)= Gy(x, 1; t)= G(0, y; t)= G(x, 0; t)=0 and u
is a solution of (A) on [0, 1] [0, T) if and only if for (x, t) [0, 1] x [0, T),

Io  o;Iou(x, t)= G(x, y; t)uo(y) dy- Gy(x, y; t- q)f(u(y, l)) ely d?

(4.3) + a(x, 1; -n)[f(u(1, n))+g(u(1, n))] dn

In order to show that (4.3) is solvable for sufficiently small T, we use a contraction
mapping argument. We define

(4.4)1 ul(x, t) =0

and then, iteratively define

(4.4)2 Un+I(X t)= Tun(x, t).

THEOREM 4.1. Let the initial datum for problem (A) be continuous on [0, 1] and
satisfy

(4.5) 0 < dl < G(1, y; t)uo(y) dy

for 0 < <- 1, say. Then for sufficiently small T, (A) has a unique solution which satisfies
(4.6) u(1, t) >- d/2

on [0, T]. The solution is C in and c2 in x on (0, 1)x (0, T) and continuous on
(Ifg is uniformly Lipschitz continuous on compact subsets ofR, (4.5) and (4.6) may be
omitted.)

Proof The proof is fairly standard. We shall only sketch the arguments.
First, define

d2 sup [Uo(X)[,
Oxl

/x(t) sup G(x, 1; t’-r/) drt,
O_<x__<l

Ot’<t

u(t) sup IGy(x, y; t’-r/)[ ay dn.
0xl
Ot’t

Clearly (t) 0 monotonically as 0+. Inspection of the principle pa of G shows
us that the same is true for v(t). For fixed M > d, choose T so small that T 1 and

(4.7) v(T)f + (T)(f + g) <max (M-d,dl),
(4.8) fl, u(T). sup If’()l < 1,

(4.9) f12 (T)( sup If’(#)l + sup Ig(#z)- g()[/l- 1) < 1.
11M dl/2<2 M /

-M2<<-d/2

It then follows from (4.4), (4.4)2, (4.7) and induction that on DT
(4.0) Ilu.II sup lu.(x, t)l M
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for all n 1, 2,.... Moreover, on x 1, we have from (4.4)2 and (4.7),

(4.11) u,,(1, t)>-1/2dl
for n 2, 3,. .. A standard estimate then shows us that

-= Ilu.+,(1,"
(4.12)

sup lUn+l(1, t)- u,(1, t)]
O<_t<= T

and therefore

(4.13) 6, ( f12 tl"
From this it follows that the boundary values u,(1, t) are uniformly convergent. (From
(4.4) u,(0, t) 0.)

Again, a standard argument shows that if

(4.14)

then

(4.15)

Letting

Y,+ <= fl 3’, + 6,.

/33 max (/3,,/32) < 1

we obtain from (4.13), (4.15) and the discrete version of Gronwall’s inequality
n--1(4.16) y.+ <- /fl + nt$1fl

Therefore {u,} is uniformly convergent on Dr and

(4.17) u(x, t)= lim u,(x, t)

solves (4.3) with u(1, t)>=1/2d.
The asserted interior regularity follows from the properties of G and the continuity

of u in Dr. We omit the (standard) arguments.
A similar statement and argument holds for (B).
This result allows us to establish a precise version of the statement "If lu]--< M

on Dr and u(1, T)> 0 and u is a classical solution of (A) on Dr U Fr, then u may
be continued as a classical solution on Dr/ LJ Fr/ for some 6 > 0, with u(1, t)> 0
on [T, T+8)."

Appendix I. We have used, in Theorems 3.2A, B, 3.6A, B, the maximum principle
applied to ut in a rather cavalier fashion. Here we will state and sketch the proof of
the precise result. It is similar to that of Lemma 2.3 of [5]. We shall only state it for
solutions of (A1) although it is true for solutions of (B) also. A weak form of the first
statement was used in Theorems 3.2A, B while second was applied in Theorems
3.6A, B.

THEOREM. Letfbe C2 on R and g be C exceptpossibly at u =0. Let u solve (A)
in DT-, be C2 in x, C in in Dr and continuous in Dr

(a) If
(H1) u(x, t)> u(x, O)>O (0< u(x, t)< u(x, O)) in DrUFr except at x=0,

then ut x, t) > 0 (<O) in DT- and on x 1, 0 < < T.
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(H2) (i) If either g’(O) exists or u > 0 on x- 1, 0 <-_ < T,
(ii) u, is continuous in Dr up to -0 on (0, 1),
(iii) ux(1, 0)- g(u(1, 0)) (corner compatibility),
(iv) u, is continuous in Dr up to x -0 and x- for 0 < < T,
(v) ut(x, 0)>0 (<0) on (0, 1], u,(O, 0)_->0 (=<0),

then u, x, t) > 0 (<O) in DT and on x 1.

Proof. We dispense with the second statement first. Corner compatibility assures
us that u, is continuous in DT_a for all small > O, except possibly at (0, 0). Let v u,.
Then we have

v, v,, +f’(U)Vx + uf"(u)v in DT,

Vx=g’(u)v, x=l,

v(O, t) =0,

v(0, x)> 0, 0<x<l,

while v(0, 0)_->0. It follows from arguments similar to those used to prove Lemmas
3.1A, 3.2B that v cannot have a nonpositive minimum in Dr_ except at (0, 0). Therefore
v(x,t)>OinDr and onx=l.

The proof of the first part is more difficult. To prove it we work in Dr_ and let
0 < h < 6/2. We let

v(x, t) u(x, + h)- u(x, t).

Then v(0, t) 0 if 0 < < T, v(x, 0) > 0 on (0, 1 and v satisfies

v vxx +f’(u(x, + h))v +f"((x, t, h))uxv

where s is between u(x, + h) and u(x, t), while for 0< <_-T-6,

vx= g’(l(1, t))v

where r/is between u(1, + h) and u(1, t). The hypotheses are such that the coefficients
of v, v are bounded in Dr_ and therefore, by the first and second maximum principles,
v >_-0 in Dr_. It follows that u, >_-0 wherever it exists. By interior regularity, ut exists
in Dr and by boundary regularity arguments, ut exists on x 1, 0 < < T.

Now q u, satisfies, q, >_- 0 and

b, d/xx +f’(u)d/, +f"(u)q,
in DT-,

at x= 1, 0< t=< T-6,

forO<t=<T-6and

q& g’(u)q

(o, t)=o

q,(x, o) >_- o
on (0, 1). Therefore 0 > 0 in DT_ unless 0 0 by the strong maximum principle. But
then q 0 implies u(x, O) =- u(x, t). D

Appendix II. Here we shall establish the signs of w(e), w(e) along the various
stationary solution branches for problems (A), (B). These are crucial in determining
the stability of these branches.
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In the case of Figs. 1.1 and 1.2, we write (2.7) in the form

Iot do.
(1.1A) w=F(w,e)=

aw +1/2e(1 _o.2)
where we have agreed to drop the subscript on Wl. When 1 <= p < c, w w(e) and we
may differentiate implicitly to obtain

(1.2A) dw_ Fe
de -Fw

we see that

1

o
( (1 D2(0.)-o.2)do.(1.3A) F(w, e)=- <0

where D(o.) is the denominator in the integrand in (1.1A). Using (1.1A) we may
calculate Fw in a similar manner. We find that with

(1.4A) X
e w2--P,
2a

we have

dw w2o (1 _o.2)do./D2(o., X). Ff [(p-1)+ x(1- o.2)]
(1.SA)

de 2 1o do’/D(o’, X) LJo D2(o’, X)
provided the integral in brackets does not vanish. We have set

(1.6A) D(o’, X) 1 + X 1 o’2).
Thus, when 1 <_- p < m, w’(e) < 0. Moreover, in this case,

(1.7A) lim w(e) 0.

This follows from the Dominated Convergence Theorem. Let denote this limit. From
(1.1A) we have

Yo’ do"
lim 0

aw p-2( e __1e( 1 0"2)
if if(p-2)> 0, which is impossible.

If 0<p< 1, the bracketed integral in (1.5A) can vanish. Therefore we view
e e(w). We know in this case, from the discussion in the example of 2, that this
function is bounded with bound e(p) and defined on some interval [a -1/(p-l), B).
However, we may take B +, since as e -> 0, one of the solution branches wl(e) of
equation (2.8) satisfies

lio ewP-2’=-O.

This tells us that wl (e) --> + as e --> 0. Thus B and the variable X in (1.4A) ranges
over (0, ).

Therefore, we may write

(1.8A)
de 2 j’lo (1-0"2) do./D2(o., X). (p_ 1)+ X(1 o.:’)

do
dw w2 I’o do./D(o., X) D2(o., X)

The bracketed integral can (and does) change sign exactly once. Therefore we find
that for small X, on the upper branch in Figs. 1.1 and 1.2, dw/de < 0 while dw/de > 0
on the lower branch.



334 HOWARD A. LEVINE

0<p<l
unstable

(e(p),w1(e(P)))

unstable

FIG. 1.1. w(e) where w’(1)=awP(1), a> and Wl(O)--a-1

w,()

0<p<l
unstable

(e(p),w,(e(p)))

stable

p unstable

p>l
unstable

FIG. 1.2. Same as for Fig. 1.1 except 0 < a < 1.
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wo(e)

1/a

e(2) e

FIG. 2.1. Wo(e) where w’(O) -awP(O), O< a < and Wo(0) a -1/(p-I).

Wo()
1< <2
stable p 2

unstable

p>2
unstable

0<p<l
stable

1/a
l<p<2

p=l
stable

FIG. 2.2. Same as Fig:. 2.1 except a > 1.
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For problem (B), the argument is similar. In the cases 2-< p < and 0 < p-<- 1, we
have

dw w2’o(1-tr2) dtr/D(tr, X) [fo’ (1-p)+X(1-o’2) ]-12 I’o X) O (X
where now X e (0, 1). Clearly,

1-p <(1-p)+X(1-cr:)<2-p-or2

for X in this range. Thus, if p -> 2, dw/de > 0 while if 0 < p _-< 1, dw/de < 0. In the case
1 < p < 2, the argument is similar to that of problem (A) for the case 0 < p < 1.

It is possible to establish, at least in some cases, the precise curvatures in Figs.
1.1, 1.2, 2.1 and 2.2. However, such an analysis appears to add nothing to the stability
results so we omit it.
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STRONG SOLUTIONS OF A QUASILINEAR WAVE EQUATION WITH
NONLINEAR DAMPING*

DANG DINH ANG AND A. PHAM NGOC DINH$

Abstract. We study the following initial and boundary value problem

N

u,-Au,- y. (u,)u.... /lu, sgn ut=0,
i=1

0<a<l (x,t) inflX]0, T[,

u 0 on Of,

u(x, o)= Uo(X), u,(x, o)= u(x)

where fi is a bounded domain in RN with a sufficiently regular boundary 0fi. In 1, it is proved that for

Uo in H(fi), u in L2(fi), ri in C(R, R) nondecreasing and inducing mappings of L2(fl) into itself, taking
bounded sets into bounded sets, the problem admits a global weak solution. If, in addition, the ri’s are
assumed locally Lipschitzian, then the solution is unique.

In 2, it is proved that for N 1, Uo in H(fi) N H2(fi), U in L2(fi and r in CI(, ) with r > 0
nondecreasing and locally H61der continuous, there exists a unique strong solution u of the initial and
boundary value problem with the following properties: t-> u(t) is continuous on >_- 0 to H(fi) fq H2(fi),
is continuously differentiable on > 0 to H(fi)fq H2(f), is continuously differentiable on t->_ 0 to L2(fi),
and is twice continuously differentiable on > 0 to L2(fi ).

Key words, strong solutions, nonlinear PDE, analytic semi-groups

AMS(MOS) subject classifications. 35, 35B, 35K, 35L, 47H

Introduction. We shall consider the following nonlinear initial and boundary value
problem

(0.1)

(0.2)

(0.3)

where

0
u,,-Au,-oi(u,.)+f(u,) =0,

OX

u 0 on Of,

U(X, 0)--- U0(X), Ut(X 0)"-" Ul(X

(x, t) f ]0, T[,

Ou Ou
f(ut) ]u,[ sgn ut, 0 < a < 1 U U

Ot Oxi

In (0.1), II is a bounded domain in R rv with a sufficiently smooth boundary 0II, and
o’i, 1,..., N are continuous functions, satisfying certain monotonic and other
conditions to be specified later.

Equations of the type (0.1), with f= O, were given the first systematic treatment
by Greenberg, MacCamy and Mizel [9] in the case of space dimension N 1. They
were proposed by the authors [6] as field equations governing the longitudinal motion
of a viscoelastic bar obeying the nonlinear Voight model. Since the appearance of the
work of Greenberg, MacCamy and Mizel, there has been a rather impressive literature
on equations of the type (0.1) above, e.g., Caughey and Ellison [2], Clements [3], [4],
Dafermos [5], Kozhanov, Larkin and Janenko [10], Yamada [16], [17], to name but
a few. Of particular relevance to the present paper are the works of Clements and of
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Webb [15]. The paper of Yamada [17] should also be consulted for reference. The
remainder of the paper consists of two sections. In 1, it is proved that for each given
interval ]0, T[, there exists a unique weak solution of (0.1)-(0.3) on the interval, under
certain monotonic and other conditions on the o’i’s.

The method used here is a combination of compactness and monotonicity; such
a method has enabled us to avoid the smoothness conditions as imposed, e.g., in
Clements [3] (while the solution obtained here is weaker). For uniqueness, the cri’s
should satisfy certain contractive properties. In 2, it is proved that for N 1, Uo in
H(I") fq H2(f), u in L2(’ and r in C(R, R) with r locally Hflder continuous
and positive, a unique strong solution of (0.1)-(0.3) exists for t>0. Note that the
derivatives rl are not used to satisfy any Lipschitzian condition. As a consequence,
the usual method using semigroup theory to formulate the problem (0.1)-(0.3) as an
integral equation and solve it by means of the contraction principle would not work
in our case. Instead, we have found it efficient to use a combination of Galerkin
approximation and analytic semigroup theory. The Galerkin method gives us a weak
solution, which will be proved to be a strong solution, using Pazy’s results on analytic
semigroups 13].

1. Let

L2 Lz(12), H- H(f), H- H(f).
Here H(f) and H2(’)) denote the usual Sobolev spaces on f. Let denote either
the L-inner product or the paring of a continuous linear functional with an element
of a function space. Let I1" Ilx be a norm on a Banach space X and let X* be its dual.
We denote by Lp(O, T; X), 1 p , the space of functions f on [0, T] to X such that

[[flle(o.r;x) [If(t)[[ dt for 1 p<,
Ilfll(o,r;x ess sup IIf(t)llx for p o.

Then we have the following.
THEOREM (Weak solution). Let w, 1,..., N be real-valuedfunctions satisfy-

ing the following:

(1.1) cri in C(, ), nondecreasing, try(0) 0 each ’i L2 L2, where #f ri ffor
f in L2

(1.2) takes bounded sets into bounded sets and

(1.3)

(1.4)

is locally Lipschitzian

Uo in H and Ul in L2.
Then for each T> 0, the initial and boundary value problem (0.1)-(0.3) admits a unique
weak solution u(. on ]0, T[ with the following properties:

(1.5) u in L(O, T; n) and u, in L(O, T; L2)f)Lz(0, T; Ho),
(1.6) u(. locally H61der continuous on [0, T[ to H.

Remark 1. If o’ is in C(R, R) with a bounded derivative as in [3], then obviously
o- satisfies (1.2).

Proof The proof is a combination of compactness and monotony arguments, and
consists of several steps. Step 1 is devoted to constructing Galerkin approximations
and establishing a priori estimates. Step 2 is concerned with existence of the solution,
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which will result from appropriate limiting processes. The final Step 3 will settle the
question of uniqueness.

Step 1. Consider a special basis of H: wl," , wn," formed by the eigenfunc-
tions of Laplacian A on H. Let (wl,..-, wn) be the linear space generated by
w, wn. Let

(1.7) u"(t) Ck,.(t)Wk
k=l

be a solution of the following system:

(1.8)

N

(u’)(t), Wk)+ _, (tri(UxT)(t)), Wk,x,)--(AU")(t), Wk)
i=1

+(f(u")(t)), Wk) 0,

(1.9) U<")(0) Uo., U{")(0) U,.

where 1 --< k _-< n

Uo. --> Uo in H,
un--> ul in L2.

Note that such a solution u")(t) clearly exists on a sufficiently small interval [0, T.[.
Note also that the a priori estimates which follow allow us to take T. equal to T.

A priori estimates. Let us multiply each equation of (1.8) by Ok..(t), sum up and
integrate with respect to the time variable from 0 to t. Then, we shall have, after some
rearrangements

Ilu")(t)llz/2 Ilvu ")( )ll = ds+2 hi(u7)(t))(x) dx

o’(1.10) +2 (f(u")(s)), u, s)) ds

where

(1.11) h,(z) cr,(s) ds,

since we have the formula

d-- O’i(tt(n)(t)) u")(t)

u")(x, t) being equal to 0 on 01).

By (1.1)

(1.12) Ia hi(u7)(t))(x) dx >=0, i= 1,..., N.

By (1.2),

(1.13) 0 <- f h,(uo..x,)(x) dx <- C

where C is a constant independent of n.
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Noting that

(1.14) (f(v), v)>-_O

it follows from (1.10) that

(1.15) Ilu(t)ll/ [[Vu(s)ll ds <- C, 0<= t<= r
where C is independent of n.

From (1.15), we deduce that, in particular, t- Vu((t) is H61der continuous on
[0, T] and that

(1.16) [IV u(")(t)II _-< M,

where M depends on T.
Define

(1.17)

Then

Therefore,

(1.18)

A" H- H-’()= H-’
N

Au"-., o’i(Ux,)x,.

O<-t<-T for all n

(the dual of H),

N

(Au, v)= E (O’i(Uxi), )xi), U, v in HA.

I(Au("(t), v)l ,(U(xT(t)) =

By (1.16) and (1.2), it follows that

(1.19) [[au(")(t)ll, --< Mr,
where ]]. ][. is the dual norm on H-.

On the other hand, we have

(1.20) ][f(u’)(t)][ <-- C,

(since 12 is bounded and 0 < a < 1).

O<_t<=T

O<__t<_T

We need an estimate on the u’). From the approximated problem
(n)(1.21) u, (t)-Au")(t)+ Au(")(t)+f(u")(t))=O,

we can deduce the following for each v H:
(1.22) [(U)(t),
By (1.15), (1.19) and (1.20) it follows that

(1.23) [[u(t)[[ dt2 ([[Vu t)l[2+M) dtMr.

The M always indicates constants independent of n, but depending on T. Therefore,
r

(n)(1.24) ]]u, (t)]]-,dtM, OtT foralln.
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Consequently,

"( ,-(1.25) IlAu t)[I ,dt<-MT, O<-t<-T for alln.

By (1.16), (1.15), (1.24), (1.19) and (1.20), we can extract a subsequence of u(" still
denoted by u(", such that

(1.26) u("-> u in L(0, T; H) weak.,

(1.27) Vu" --> V u, in L2(0, T; L2) weak,

(1.28) u’--> u,t in L2(0, T; H-1) weak,

(1.29) Au("-> in L(0, T; H-1) weak.,

(1.30) f(un) --> X in Lo(0, T; L) weak ,.
Using a lemma on compactness [12] applied to (1.26) and (1.27), on the one hand,
and to (1.27) and (1.28), on the other hand, we can extract from the sequence {u (n}
a subsequence, still denoted by {u("}, such that

(1.31) u (n --> u strongly in L(Q) with Q f x ]0, T[,

(1.32) u" --> u, strongly in L(Q).

Step 2. Existence of a solution through a limiting process. Letting n--> c in (1.8),
we find from (1.26)-(1.30) that u satisfies the equation

d
d-(u,(t), v)+(Vu,(t), Vv)+(:(t), v)+(X(t), v)

(1.33)
=0 a.e. tin]0, T[ for allvinH.

The initial conditions are satisfied since

(1.34) u(" and u are in C(0, T; L) implying that u,(0)= Uo,--> u(0) strongly in

L2 and hence u(0)= Uo, and

(1.35) (U"(t),Wk) and (u,(t),Wk) are in C(0, T;) implying that (u"(0)
ut(O), Wk)--> 0 for n--> eo and hence u,(0)= u.

So, we shall have proved the existence of a weak or distributional solution of (0.1)-(0.3)
once we have shown that

(1.36) =Au and X =f(u,).

We shall require the following two lemmas the proofs of which are immediate.
LEMMA 1. The operator A defined in (1.17) is a monotone and hemicontinuous

operator from H to H-1, i.e.,
(i) (Au Av, u v) >= O for all u, v in H,
(ii) the map s-->(A(u+ sv), w) is continuous on to .
LEMMA 2. Thefunction u -->f(u) generates a monotone and hemicontinous operator

on L_ to L2.
We can now complete the existence proof.
Let

(1.37) (t) {Au(’(s)-Av(s), u(’(s)-v(s)) ds, 0<-_ < T.
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We have, since A is monotone,

:._->0

From the relation

(1.38)

<
1 1- Ilv u(t) z+ uoll

(1.39)

{(s), u(s)} ds+ lim sup {u’/(s), u(’(s)} ds

a.e. in ]0, r[.

u satisfies the equation

(1.40) u, Au, + + X O,

which has a meaning in L2(0 T; H-) as can be seen from (1.25) and (1.28)-(1.30).
Taking the inner product of (1.40) with u which belongs to L(0, T; H), integrat-

ing with respect to the time variable from s to t, we obtain

(utt(t), u(t)) dt+ ((t), u(t)) dt

(.41)

From (1.41) we have, passing to the limit as s 0:

(.4
>1 ) o=(lluoll%-[[Vu(t)ll (x(t), u(t)) dt.

Then, by viffue of (1.42), the inequality (1.39) can be rewritten as

lim sup (Au((s), u((s)} ds ((s), u(s)) ds

(.4 + (u,(s, u(s as

(Io+ lim sup (u2(s), u((s)} ds a.e. in ]0, T[.

for all v in L2(0, T; H).

we obtain by passing to the limit

lim sup {Au((s), u((s)} ds
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Integrating by parts, we have the relation

(1.44)

(u)(s), u(n)(s)) ds=- [lun)(s)ll 2 ds+(u(")(t), u)(t))

(UOn Uln for all in [0, T[.

Passing to the limit in (1.44), we finally obtain

(1.45)

since

im (u(s), u()) d=- Ilu()ll ds+u(t), u(t))-(Uo,

(u.(s),u(s))ds

(1.46) lim (u(’)(t), u"(t))=(u(t), ut(t))

as can be seen from (1.31) and (1.32).
Therefore,

a.e. in [0, T[

a.e. in [0, T[

(1.47) lim sup (Au(n(s), u("(s)) ds <-_ ((s), u(s)) ds a.e. in [0, T[

which implies that

(1.48) 0 <- {(t) Av(t), u(t) v(t)} dt for all v in L2(0, T; g).

In (1.48), if we choose v=u-sw with s0 and w in L(0, T; H) and use the
hemicontinuity of A, then we get

(1.49) Au.

Now, from (1.30) and (1.32) we have

(1.50) i (f(u"(s)), u"(s)) ds (X(s), u,(s)) ds.

Using Lemma 2, we conclude that

(1.51) g

The existence proof is completed. Now, it is clear that

(1.52) IlVu(t)-Vu(t’)[I lt- t’l l/ IlVu,(s)ll = ds

and hence, that u(t) is H61der continuous from [0, T[ to H.
Step 3. Uniqueness proof Let u and v be two weak solutions of the problem

(0.1)-(0.3). Then w u-v is a weak solution of the problem

(1.53)

(1.54)

(1.55)

N

wtt-Awt-Aw+f(ut)-f(vt) _, (O’i(Uxi)--O’i(1)xi))xi -mw,
i=1

w(0): 0 w,(0),

w 0 on 0f.
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Multiplying (1.53) by wt and integrating over , we obtain

1 d

2 dt
(1.56)

--(llwr(t)[[+ I[Vw(t)ll)+ I}Vw,(t)ll2+(f(ut(t))-f(vt(t)), ut(t)-

N

i:1

Using (1.3) and the monotonicity off, we get from (1.56)

1 d
(1.57) - d(llVw,(t)ll/ [[Vw(t)[[ =) _--< allVw(t)l] 2

for some a > 0. From (1.57) we deduce that

(1.58) IIw,(t)ll2/
Thus w=0.

The proof of the theorem is completed.

2. We shall consider the problem of global existence of strong solutions of
(0.1)-(0.3). To this end, we shall have to strengthen conditions on the initial data and
on the ri’s. The role of the space dimension is important in this connection, and, in
order to simplify matters, we shall limit ourselves to N 1. With the latter restriction,
it will be sufficient, from our point of view, to place the following requirements on
the initial data on the coefficients of the field equation:

(2.1) u0 in

(2.2) ri in C(, ), o’ > 0, o’(0) 0 and cr’ locally HiSlder continuous.

Then, we have the following.
TI-IEOREM 2. Let N 1 and let (2.1) and (2.2) hold. Then, there exists a unique

solution u(. of (0.1)-(0.3) with the following properties"

(2.3) u( is continuously on >-O to H H, continuously differentiable on > O
to Hlo f’l H;

(2.4) t u(t) is continuously differentiable on t>=O to L and twice continuously
differentiable on > 0 to Le;

(2.5) t- Au(t) is continuously differentiable on > 0 to L2.

Proof The idea of the proof is as follows. We take the weak solution w of
(0.1)-(0.3) (which will presently be shown to exist), and then, using the analytic theory
of semigroup, we shall prove that w is in fact the strong solution of the theorem. The
proof consists of two steps. In Step 1, we shall establish the existence of a unique
weak solution on R+. In Step 2, we shall prove that such a solution is in fact a strong
solution.

Step 1. We shall only sketch the proof since it is very similar to (in fact considerably
simpler than) the proof of theorem 1. According to the a priori estimates already
obtained in the proof of Theorem 1, we had

(2.6) Ilu"(t)ll <- M for all n and 0 < t<_- Tn,

(2.7) [Iv"(s)ll = ds<=M forall n and0-<t-< Tn
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where u(n)(t) is a Galerkin approximate solution of (0.1)-(0.3) as in the proof of
Theorem 1, and [0, Tn[ is its interval of existence. Now, using the hypothesis that Uo
be in Hf3 H2, we have the following bound on Au(n):

(2.8) Ilau(")(t)ll<-M forall n and0=<t=< T,.

Note that we can take T, T for all n, where T is an arbitrary positive number. Since
N 1, we have

(2.9) IIVu"(t)ll<-gllau(t)ll forall t_-< T

where K is independent of n and t; from (2.9) and (2.8) we deduce that, in particular.

(2.10) IlVu")(t)ll<-_KM forall tin[0, T].

By passing to the limit much as in the proof of Theorem 1, this time using the inequality
(2.10), we conclude that there exists a weak solution w of (0.1)-(0.3) on ]0, T[ with
the following properties:

(2.11) Ilaw(t)ll<-_M for all 0-< =< T,

(2.12) IIw,(t)ll<-M for all 0=< =< T,

(2.13) IIVw,(s)ll ds<-M for all 0-< < T.

Uniqueness is proved in a standard manner, much as in the proof of Theorem 1. We
conclude that there exists a unique weak solution w on R/ with the same bounds as
in (2.11)-(2.13).

Step 2. Let w be the weak solution of (0.1)-(0.3) on R/ as in Step 1. Then w is
the solution of the following (equivalent) equation

(2.14)

where

Here

(2.16)

w, =AW+Ul-Auo+ G(w)+F(w)

G(w(t))= H(w(s)) as, F(w(s))=- f(wt(s)) ds.

H(w)=r’(w)Wxx.

Since (2.14) is equivalent to (0.1)-(0.3), w is its unique solution. Consider the
differential equation

(2.17) u, Au + ul Auo+ G(w) + F(w)

with the initial condition

(2.18) u(0) Uo.

Let S(t) be the semigroup on L2 generated by the Laplacian A(dom A Hf-)H2).
Note that S(t) is in fact an analytic semi-group, a fact which will be crucial for what
follows. The solution of (2.17)-(2.18) is given by

u(t)= S(t)Uo+ S(t-s)(u-AUo) ds

(2.19)
+ S(t-s)(G(w(s))+ F(w(s))) ds.
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From (2.19), we get

Au(t) S(t)Au0+ S(t)(Ul -Au0)- Ul + AUo
(.0)

+ s(-s((w(s-(w,(s s-G(w(-(w(.

We note from (2.20) that Zu(t) is continuous on t_>-0, and hence, by (2.17) that
is continuous on t-> 0. From now on we shall use freely Pazy’s results on analytic
semigroups [13]. Since S() is an analytic semigroup, we deduce from (2.20) that

Au(t) is H61der continuous, and hence, by (2.17), - ut(t) is also H/51der continuous
on > 0 to L2. Now, by the uniqueness of w as a solution of (2.14), we see that u
Thus, w(. and w,(. are HiSlder continuous. Thus f(wt(. )) is H61der continuous. By
(2.9), the H61der continuity of o-I and by the H61der continuity of ZXw(. noted above,
it follows that H(w(. )) is H61der continuous. Thus, it follows from Pazy’s results that

Zw(t) is continuously ditterentiable on >0 to L2, and that, similarly by (2.17),
t- w, is continuously ditterentiable on > 0 to L2. Thus w is the (unique) strong
solution of (0.1)-(0.3) in the sense that it satisfies (2.3)-(2.5) (with w=u). This
completes the proof of the theorem.

Remark 2. It was established in the course of the proof that the strong solution
w satisfies the following inequalities (cf. (2.11)-(2.13)):

(2.21) IIAw(t)ll<-_M forall t->0,

(2.22) w, (t) =< M for all ->_ 0,

(2.23) II w,(x)ll ds<-M forall t_->0.
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DENSE SETS AND FAR FIELD PATrERNS FOR THE VECTOR
HELMHOLTZ EQUATION UNDER TRANSMISSION BOUNDARY

CONDITIONS*

PETER WILDE? AND ACHIM WILLERS?

Abstract. We study the set of far field patterns which are generated by entire incident fields scattered
by a bounded penetrable obstacle. Necessary and sufficient conditions are given for the set to be dense in
the set of all square integrable vector fields defined on the unit sphere and it is shown how these results
can be generalized to Sobolev spaces and to classical function spaces.

Key words, far field pattern, scattering theory, Helmholtz equation, Fredholm integral equation

AMS(MOS) subject classifications. 78A45, 35J05, 45B05

1. Introduction. In the theory of direct problems in acoustic and electromagnetic
scattering by bounded obstacles it is shown how the solution of a boundary value
problem and the related far field corresponding to an incident field and to a given
obstacle can be calculated. For further details see Colton and Kress [4].

Wilde 10], 11] has investigated the more general direct problem of electromag-
netic scattering by a penetrable physical medium. To follow his considerations, let Di
be a bounded, simply connected domain in 3 with boundary S belonging to the class
C2 and define De := 3\Di. We assume that the normal vector n to S is directed into
the exterior domain. To simplify notation, for any domain G with boundary 0G of
class C2 we introduce the linear space of vector fields

F(G)::{H’-oC3IHC(G)C(), curl H, div H C(6)}.

Given an exterior wavenumber /e>0, an interior wave number /(i 50 with
Im (Ki) >= 0 and an entire solution H of the vector Helmholtz equation AH + K2eHi 0
as incident field we con’sider the magnetic transmission problem TH(m) and the electric
transmission problem TH(e).

Problem TH(m). Find two vector fields He H + H F(De) and Hi F(Di)
satisfying the vector Helmholtz equations

(1.1) AHe+ceHe=O inDe, AHi+ciHi=O inDi,

the magnetic transmission conditions

(1.2)

In, He] In, H,] =0,
div He div Hi 0,

fie[[curl He, n ], n -/3i[[curl H/, n ], n 0,
Cee( n, ne) ol.i( n, ni) =0 onS

and the radiation condition

(1.3) [curl HS,]+ div H’-rueH’:o(1/Ixl),
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? Institut fiir Numerische und Angewandte Mathematik, Lotzestrasse 16-18, D-3400 G6ttingen, Federal

Republic of Germany.
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uniformly for all directions := x/Ixl, where :=x/Z-i is the imaginary unit and
e, i, ae, ai C\{0} are given complex numbers. H is called the scattered field.

By (a, b), [a, b], and (a, b, c) we denote the scalar product, vector product, and
triple scalar product of the vectors a, b, c C3, respectively.

In electromagnetic scattering the transmission parameters fie, i, Oge and ai are
related to the dielectric constants, the permeability, the electric and magnetic conduc-
tivity, and to the frequency of the incoming wave (cf. Wilde [11]).

The problem obtained by replacing the magnetic transmission conditions (1.2) by
the electric transmission conditions

fl-’ [n, He] fls, [n, Hi] =0,
a- div He a- div Hi O,

(1.4)
[[curl He,/1], hi-[[curl Hi, hi, n]=0,

(n, He) (n, Hi) =0 onS

is called Problem TH(e).
The corresponding inverse problem, i.e., to determine the shape of the penetrable

scattering obstacle by measuring the scattered fields, is in many cases of more interest
for physical application. Recently, Colton and Monk [6] presented an optimization
scheme for solving the inverse scalar transmission problem. It is based on the decompo-
sition of the space of all square integrable functions defined on the unit sphere into
the set of all far field patterns corresponding to all incoming plane waves and a finite
dimensional space of Herglotz kernels. This decomposition theorem, obtained by
Kirsch [8], is equivalent to the assertion that, under certain circumstances, the class
of far field patterns corresponding to a fixed scattering obstacle and all entire incident
fields is dense in the set of all square integrable functions defined, on the unit sphere.

Therefore, the classification of the class of far field patterns corresponding to the
scattering of time harmonic incident fields by a penetrable bounded obstacle is one
of the basic problems in inverse scattering theory for acoustics, electromagnetics and
elastodynamics. Far field patterns for acoustic and electromagnetic scattering problems
have been considered by many authors, e.g., Colton [1], Colton and Kitsch [2], [3],
Colton and Kress [5], Kirsch [8] and Willers [12]. We shall carry out an analogous
investigation for the transmission problems for the vector Helmholtz equations. Wilde
11 has shown that transmission problems for the vector Helmholtz equation are slight

generalizations of transmission problems for the Maxwell equation. This may be the
first step in solving the corresponding inverse problem.

As opposed to the authors mentioned above we shall only use integral equations
in classical function spaces and avoid the theory of generalized boundary value
problems.

In order to reduce the transmission problems to integral equations of the second
kind we introduce the function spaces

C"(S) := {a’S--> C3}(a, n)=0, a C’"(S)},

Co (S):= {a C"(S)]Div a C’"(S)},
o,a cO, o,, cO,,P, (S):= C(S) (S) x Cr (S) (S),

O,a cO,aP’(S) := C’(S) C’"(S) CD (S) (S),

and equip C’(S), CiY(S) with the usual H61der norms, C5’(S) with the norm
a I1,, := a / Div a and P’(S), P’(S) with the product norms. Furthermore,
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we define the integral
P’(S) by

o,a o,a ,.operators Mm, Me" P; (S) -> P (S), Mm, Me (S) ->

[ (I + Le)H at- (I-
Mm :--

[He(I + L’e) + Oi(I- L)
M::

R Ri

[r’(I + Le)+ FT’(I L,)
M:=

ReF2 -iRiF

Re Ri
Fe(I-L’e)+Fi(I+L)]

-ere+(I+iri]’

F-Rl-le F-1RHi
( ’)a, + (t + )ai},

-Qe+Oi )He(I-Le)+O,(I+L,)

where the 2 x 2 matrix operators Le, L’e, Re, Qe and Li, L’i, Ri, Qi are the operators
L,L’,R, Q from [4, pp. 132, 138], [11] with respect to the wave numbers Ke, Ki,

respectively, and where Fe, -e, Fi, Hi are given by

F:= FI := % 0 I0 ajI

with

1 if Re (K)_>- 0,
%:= j=e,i.

1 otherwise,

Note that the operators Mm, M’m and the operators Me, M’e are adjoint with respect
to the nondegenerate bilinear form

(., .)" P (S) x (S)-C,

(X, Xo) := fs { (a’ ao) + AAo + (b, bo) + 660} ds,

X := (a, a, b, 6) T P’(S), Xo := (ao, Ao, bo, 6o) T P’(S).
Before starting our analysis we summarize some results obtained by Wilde [11].

In these theorems i(x, y) and e(X, y) denote the fundamental solution

,(x,):=
47fix yl x, y e [13, x y,

of the scalar Helmholtz equation with respect to the wave numbers i and e.
0,ceTHEOREM 1.1. (i) Ifx,, := (a, A, b, )r pr (S) is a solution ofthe integral equation

MraXm :fm
with f, := 2(-[n, Hi],-div Hi, fle[[curl H’, n], n], Cee(n Hi)) T, then the fields

Hi(x) := curl fs a(y)O,(x, y) ds(y)- f n(y)A(y)dPi(x y) ds(y)

-1-O’i12i fs[n(Y), b(y)]Pi(x, y) ds(y)

ri grad f_ (y)dpi(x, y) ds(y), x Di,+
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(1.5)

are a solution of the magnetic transmission problem.
(ii) Ifthe homogeneous magnetic transmissionproblem admits only the trivial solution

then the operators Mm and M’m are invertible and the Problem TH m is uniquely solvable.
0,ceTHEOREM 1.2. (i) IfXe := (a, A, b, 3) 7" p (S) is a solution ofthe integral equation

MeXe --fe

with fe := 2(--fl-l[n, Hi], -c;-1 div Hi, [[curl H i, hi, n], (n, Hi)) T, then the fields

(1.6)

+ ’eKe Js In(y), b(y)]de(X, y) as(y)

+ o- gradx Is t$(y)e(X, y) ds(y),

are a solution of the electric transmission problem.

xe D,

(ii) If the homogeneous electric transmission problem admits only the trivial solution
then the operators Me and M’ are invertible and the Problem TH e is uniquely solvable.

2. Dense sets and far field patterns. To start our investigations we prove an integral
equation based on the representation theorem.

LEMMA 2.1. Let the incident field H be an entire solution of the vector Helmholtz
equation and let H be the scattered field under magnetic transmission conditions. Then
the Cauchy data X := (fle[[curl He, n], hi, ae(n, He), [n, He], div He) , on S, of the
exterior field satisfy the integral equation

(2.1) M’x:f,

with f,:= 2([[curl H i, n], n], (n, H ), treKe[n, H ], tre div Hi)r P’(S).
Proof. From the investigations of Colton and Kress [4] we obtain

(2.2) ( [n’ He] [n, ge] ([[curlge, n],n])=2([n, gi]
div He)- Le (div gel+Re\ (n, He) divHi]
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(2.3)
div Hi ]

L,
div Hi ]

+ Ri (n, Hi)
0,

(2.5) ([[curlHi, n],n]) ([n, Hi] ([[curlHi, n],n])=O.(n, Hi)
Qi

div Hi /
+ LI (n,

Inserting the transmission conditions into (2.3) and (2.5) we deduce

(In, ne] (In, He] lI ([[curl He, n l, n l)(2.6)
divHe] +Li

divHe] -RIFT ek (n, ge)
=0,

(2.7) r;-re [[curl He, n], n] + Qi -LF)-IFe =0.
(n, He) div He ] (n, He)

Adding (2.7) and (2.4) we obtain the first part of (2.1). To prove the second part we
have to multiply (2.2) by e and (2.6) by i and add the equations.

Now we write some definitions that we need in order to formulate the main
theorem of this paper.

DEFINITION 2.2. :e is called an eigenvalue of the magnetic transmission problem
if there exist nontrivial vector fields G, We F(Di) satisfying the vector Helmholtz
equations

(2.8) AW+KeW=0
and the boundary conditions

(2.9)

inDi, AG+K2G=0 in

In, w] In, G] =0,
div W div G 0,

fle[[curl W, n], hi- fli[[curl G, hi, hi=0,
ae(n W) ai(n G) =0 onS.

The field W is called the corresponding eigenfunction. e is called an eigenvalue of the
electric transmission problem if we have

(2.10)

/37’[n,W] #7’[n,G] =0,
-1 71O div W a div G 0,

[[curl W, n], n]-[[curl G, n], n] =0,
(n, W) (n, G) =0 onS

instead of (2.9).
Such eigenvalues may exist. This is shown by the following example.
Example 2.3. In the special case where S is the unit sphere in R we define

sin K /sinG(x) :=
3 grad

liKe k

W(x) := grad

XG Di,

XE Di,

where Ke and Ki are different solutions of the equation tan t.
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Now {G, .W} is a solution of (2.8) and from

sin K [ K COS  ,lxl
G(x)

W(x)
sin i(i(K cos elXl sin

we easily see that the homogeneous boundary conditions (2.9) are satisfied.
On the other hand it can be shown that under certain assumption on

Ke, Ki, ae, ai, e, and/3 the boundary value problem (2.8), (2.10) admits only the trivial
solution.

Example 2.4. Let the following relations be fulfilled:

Oe e
3’ ..... with 3’ J , K > 0 and Re (Ki) 0.

oi i

Then the first vector Green’s theorem yields

Io (-1 w[+lcur wl)-/ Idiv Wl:) dx-- Is ((n, , curl W)+(n, IY) div W} ds

{(n, G, curl G)+(n, G) div G} ds

/I {-/l GI + Icurl GI + Idiv GI) dx
D

and we obtain G W 0.
DEFINITION 2.5. An entire solution W of the vector Helmholtz equation is called

a Herglotz field if

lim -1 f W(x)[2 dx < o0.
r dlxl <=r

Let Y be the set of all square integrable vector fields defined on the unit sphere.
Applying the results of Hartman and Wilcox [7] to each coordinate of W we obtain
Lemma 2.6.

LEMMA 2.6. An entire solution W of the vector Helmholtz equation A W+ tc2W 0
is a Herglotz field if and only if there exists a vector field w Y such that W has the
representation

W(x) | w() eK()’) ds(),

Furthermore, w is uniquely determined by W.
By using the representation theorem for solutions ofthe vector Helmholtz equation

Colton and Kress [4] have shown the relation

H"(x):4lxlF())+O Ixl oo,
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uniformly for all directions c 3, where the vector field F is defined by

F() :"- I,K fs [’ In(y), He(y)] e-Ke(’y) ds(y)

-I. n(y) div He(y) e-Ke(’y) ds(y)

-I.s [curl He(y), n(y)] e-Ke(’y) ds(y)

-rr, f (n(y), He(y)) e-Ke’y ds(y),
.Is

where F denotes the unit sphere in R3. Furthermore, they have shown that F 0 implies
H 0. The vector field F is called the far field pattern of the scattered field H.

Now we are able to prove a theorem on the set F offar field patterns correspondingKe

to all entire incident fields under magnetic transmission conditions.
THEOREM 2.7. If the homogeneous magnetic transmission problem has only the

trivial solution, then we have:
If K is not an eigenvalue of the electric transmission problem, then F is denseKe

in Y. If K is an eigenvalue of the electric transmission problem, then Fe is dense
in Y if and only if none of the corresponding eigenfunctions is a Herglotz field.
Proof. Let F be dense in and let W be a Herglotz field which is an eigenfunction

in Di. W has a representation of the form

(2.11) W(x) := w(fi) e-’’; ds(fi), xR3,

for some w Y.
If F Fme is a given far field pattern and He, Hi is the corresponding solution of

the magnetic transmission problem in De, Di, respectively, then from the second vector
Green’s theorem we obtain

(w(), F()) ds()

=Is (n, He, curl W) dS+ fs (n, He) div Wds

-Is (n, W, curl He)dS-fs (n, W) div Heds

-f (n, G, curl Hi)ds-f (n, G) div Hids =0.
.is 3s

Now the density of F in Y implies w 0 and therefore W 0.
Conversely, suppose that there exists a vector field w such that

(w(, F()) d()=0

for all F e
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(2.12)

Defining W as in (2.11) and using the integral equation (2.1), we obtain

O- f (w(), F()) ds()

-Is (n, He, curl W) dS/ fs (n, He)div WdS- fs (n, W, curl He) ds

Js (n’ W) div He ds

/ fl3eE[curl He, hi, n]

://
\\ div He

#2’[n, w]
a div W

[[curl W, n], n]
-(n, w)

[curl H, n], n] -’[ n, W]

2 ’)-’ (n, H’) a div W
2tree[n, H [[curl W, n], n]

re div H -(n, W)

<(Mte)-I ofm, g)=(f,M’g),

where g is given by g := (BT[n, W], a div W,-[[curl W, n], hi,-(n, W)) and f
was defined in (2.1). With X := (a, A, b, 6) :=-2Mg we define vector fields G and
Gi as in (1.6). We observe that Gi and Ge := G + W form a solution of Problem TH(e).
Defining

v(x) := hL’(elXl) Y(;), u(x) :=jk(elX[) Y(),

where h denote the spherical Hankel function of the first kind of order k,j
the spherical Bessel function of order k and Y the spherical harmonics of order
k, k 0, 1, 2, , m k, , k, and using the expansion
gKe2k=ok=_ v(x)u (y), lyl < xl, for all suciently large Ix[ and every unit vector
c, we obtain

(c, G(x)) fs (a(y), curly {Ce(X, y)}) ds(y)

[o (c, n(y))A(y)e(X, y) ds(y)

+ J-s (c, n(y), b(y))e(X, y) ds(y)

--e fS 8(Y) divy {Ce(X, y)} ds(y)

k

--Ke E E v(x)2(R, M21g),
k=0 m=-k

where R := ([[curl E, n], n], (n, E), [n, E], div E)r and E:= cu.
Since in (2.12) we can especially choose H=E as incident fields, it follows

from the analyticity of G that G vanishes in D Thus W is an eigenfunction of the
electric transmission problem and the proof is completed by the second pa of Lemma
2.6.
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Denoting with F the set of far field patterns corresponding to all entire incident
fields under electric transmission conditions we are able to prove the following theorem
in an analogous way.

THEOREM 2.8. If the homogeneous electric transmission problem has only the trivial
solution, then we have:

If Ke is not an eigenvalue of the magnetic transmission problem, then Fo is dense
in Y. IfKe is an eigenvalue of the magnetic transmission problem, then F]e is dense
in Y if and only if none of the corresponding eigenfunctions is a Herglotz field.
Remark 2.9. Sufficient conditions for Problem TH(m) and Problem TH(e) to have

at most one solution are given in [10], [11].

3. Far field patterns in Sobolev spaces. In this section we shall briefly discuss the
denseness of far field patterns in Sobolev spaces.

Analogous to Neas [9] for re (0, 1) we define the Sobolev space yr to be the
completion of the set of continuous differentiable vector fields defined on the unit
sphere with respect to the inner product

(), W)r := f D() ds()

+fll (v()-v(.),w()-w(.))
21=1 l =1 i 12r+2 ds() ds(.).

Now, motivated by Lemma 2.6, we generalize Definition 2.5 in the following way.
DEFINITION 3.1. An entire solution W of the vector Helmholtz equation AW+

2W 0 is called a Herglotz field of index r if there exists a vector field w Yr such
that W has the representation

W(x)= Y. (w, ej e-K(x"))re, Xt3,
j=l

where ej,j 1, 2, 3, denote the Cartesian unit coordinate vectors.
Using this definition we can state a theorem analogous to Theorem 2.7.
THEOREM 3.2. If the homogeneous magnetic transmission problem has only the

trivial solution, then we have:
If t( is not an eigenvalue of the electric transmission problem, then Fo is dense
in Y. Ife is an eigenvalue of the electric transmission problem, then Fe is dense
in Y if and only if none of the corresponding eigenfunctions is a Herglotz field of
index r.

Proof Let F Fe be a given far field pattern and He the corresponding solution
of the magnetic transmission problem in De. If W has the representation

W(x)= E (, eeK(x"))re, Xe3,
j=l

for some w e Y, then by interchanging the order of integration we obtain

(F, w)= Is (n, He, curl W) ds+ (n, He) div Wds

(n, W, curl He) ds- (n, W) div He ds.
S

The rest of the proof is exactly the same as in Theorem 2.7. [-1
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Analogous considerations are possible as well for the electric transmission problem
as for arbitrary r > 0. Furthermore, using Sobolev’s embedding theorems, we are able
to consider the denseness of far field patterns in the sets of continuous and H61der
continuous functions, also.

Finally we emphasize that we had not to require the boundary S to be smoother
than Ca throughout this paper.
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Abstract. We prove a Morse lemma for functionals that are of class C (in a weak sense) on a Banach
space. We also give a splitting lemma for C functionals.
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1. Introduction. In this paper we prove a Morse lemma that, in some ways,
improves Golubitsky and Marsden’s theorem [5] as well as that of Tromba [12]. Indeed
we relax the C3-regularity condition required in [5] for the functional; under assump-
tions that are slightly different from those of Golubitsky and Marsden, we show that,
when the functional is of class C and admits a gradient which is "generator-differenti-
able" in the sense of Hugues and Marsden [6], it is equal to its quadratic part up to
a homeomorphism, which is "Cl-generator-differentiable in the sense of [6]. Further-
more we give a "splitting lemma" which is useful in the study of bifurcation problems
and is true for C2 functionals; it also contains a generalization of the "generalized
Morse lemma" of Mawhin and Willem [10]. Actually, we have two things in mind
here: the first is to complete the papers of Golubitsky and Marsden [5] and of Buchner,
Marsden and Schecter [1]; the second is to give results that are applicable to elliptic
variational problems (which have only few regularity properties) and also, after some
minor modifications, to their approximate (or discrete) versions. In order to easily
extend our results to approximate problems, we have used elementary and rough
enough tools in our proofs; for instance, the change of variables in our Morse lemma
is given by an explicit formula, which can be easily adapted to the approximate case.
As the generalization to the approximate case is somewhat technical, we shall not give
it here. (For the statement and the proof of the approximate splitting lernma, we refer
the reader to 11 ].)

An outline of the paper is as follows. In 2 we state and prove our generalization
of the Morse lemma (see Theorem 2.1) as well as parametrized versions of it; we also
give an example of application. Section 3 is devoted to the proof of the splitting lemma;
moreover, we describe the relationship of the splitting lemma with the Morse lemma.

2. The Morse lemma.
2.1. Let X be a (real) Banach space equipped with the norm I1" IIx and let H be

a Hilbert space such that X is included in H with a continuous and dense imbedding.
We denote by (.,.) the inner product of H and by I1" IIn the associated norm. We
identify the space H with its dual space so that we obtain the continuous imbeddings"
X H X’. We also introduce a functional f on X as well as a continuous linear
operator T from X into X, (which will be the second derivative of f at the point 0).

We assume that T and f satisfy the following hypotheses:

(H.1) T is an isomorphism of X onto X and is a symmetric operator with respect
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to the inner product (.,.), i.e.,

(2.1) VxeX VyeX (Tx, y)=(x, Ty);

(H.2) there exists a neighbourhood V of 0 in X such thatf CI(V; R) and

(2.2)

(H.3)

f(0) =0, Df(O) =0;

Df(x) C(V; H) and converges to Tx in the following way:

(2.3) Wx IIf(x)- Txll,-, -Ilxll,-,,(x),

where

(2.4) lim e(x) O.

(In order to simplify our notation, we set e(0)= 0.)
The assumption (H.3) actually means that f admits a gradient relative to (., .)

that takes its values in H and is generator-differentiable at 0 in the sense of Hugues
and Marsden [6]. Let us recall that a mapping F from an open set 0//in X into H is
"generator-ditterentiable" if, for any x in , there exists a continuous linear operator
DF(x) from X into H such that

IIF(x+ h)-F(x)-DF(x), hll.-0

If X and Y are two normed vector spaces, let us denote by (X; Y) the space
of all continuous linear operators from X into Y and by (X) the space ’(X; X).

Now we may state the following main result.
THEOREM 2.1. Assume that the hypothesis (H.1) is satisfied. Then the assumptions

(H.2) and (H.3) hold ifand only if there exists a homeomorphism ofa neighbourhood
of 0 in X onto a neighbourhood t/V of 0 in X satisfying:

(2.5) Vx f(x) 1/2( T(x), (x)),

(2.6) c(; x) c’(- {o}; x),

(2.7)

(2.8)

(0) O, D(O)

D C(; (H)).

In Remark 2.3, we shall show that, if the assumptions (H.2) and (H.3) hold, the
homeomorphism obtained above is actually C -generator-ditierentiable (let us recall
that a mapping F from an open set 07/ into H is C-generator-ditterentiable if it is
generator-ditterentiable and DF(x) belongs to C(a//; (X; H))).

Theorem 2.1 together with the implicit function theorem give us the following
corollary, at once.

COROLLARY 2.2. Assume that the hypothesis (H.1) is true and that X H. Then
the assumptions (H.2) and (H.3) hold if and only if there exists a Cl-diffeomorphism
ofa neighbourhood of 0 in X onto a neighbourhood Wof 0 in X satisfying the properties
(2.5) and (2.7).

Let us point out that the mapping , given in Theorem 2.1, is not the same as
that of Golubitsky and Marsden.
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Now let us replace the hypothesis (H.3) by the following hypothesis:

(H.3 bis) Df(x) C(OK; H) and converges to Tx in the following way:

(2.3 bis) Vx e OK {[f(x)-1/2(Tx,IIDf(x)- Txllx Ilxll . =(x).
where

(2.4 bis) Vx e OK r/2(x) + e(x) <- C,

C being a positive constant.

THzortM 2.3. Assume that the hypotheses (H.1), (H.2) and (H.3 bis) hold. Then
there exists a C-diffeomorphism ofa neighbourhood of 0 in X onto a neighbourhood
iV of 0 in X such that (2.5) and (2.7) are satisfied.

Let us make a few remarks before proving Theorem 2.1 and Theorem 2.3.
Remark 2.1. Let us recall that Golubitsky and Marsden [5] proved that, if the

assumptions

(A. 1 there exists a neighbourhood OK of 0 in X such thatfe C c; N) andf admits
a gradient Vf relative to (.,.) that belongs to C2(OK; X), i.e.,

Vx K Vx’ X Df(x)x’= (Vf(x), x’) with Vf C2(OK; X)(2.9)

and

(A.2) f(0) =0, Df(O)= 0, D2f(0)= T, where T is an isomorphism of X onto X,

hold, there exists a C l-ditteomorphism p of a neighbourhood N of 0 in X onto a
neighbourhood M of 0 in X, satisfying:

(2.10) Vx N f(x) 1/2(rq(x), q(x)).

The conditions required for the existence of a homeomorphism of a neighbourhood
of 0 in X onto a neighbourhood o/g, of 0 in X satisfying (2.5) and (2.7) are weaker

than the conditions (A.1) and (A.2); in particular, we need C--regularity assumptions
at most. Indeed, using Lemma 2.4 below, the reader will at once see that the hypotheses
(H.1)-(H.3) are satisfied if the assumption (A.2) holds and if f and Df belong to
C(OK; ) and CI(OK; X), respectively.

As stated in Theorem 2.3, the homeomorphism becomes a C-ditteomorphism
when we replace the hypothesis (H.3) by the hypothesis (H.3 bis). Note that the
condition (H.3 bis) is a kind of three times differentiability assumption at 0. But the
assumptions (A.1) and (A.2) are neither weaker, nor stronger than the conditions (H.1),
(H.2) and (H.3 his). For instance, if X C([0, 1]), H= L2(0, 1) (provided with its
usual inner product) and f(x)=j[(x(t))2W(x(t))3] dt, the assumptions (A.1) and
(A.2) are clearly satisfied, while the condition (H.3 his) fails; conversely, if we keep
the same spaces X and H and if f(x)=(x(t)) dt+[g(t)x(t) dt]3, where ge
L(0, 1), but g C([0, 1]), the conditions (H.1), (H.2) and (H.3 bis) hold, but (A.1)
is not satisfied.

Finally, let us remark that the hypothesis (H.3 bis) holds if, for instance,

(2.11) [IDf(x)- TxII. -Ilxll 6(x).
where, for any x in OK, g2(x)_-< C.

Now let us state an auxiliary result which will be useful in the proof of Theorem
2.1.
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LEMMA 2.4. IfA is a continuous linear operator from X into X and satisfies
(2.12) Vx X Vy X (Ax, y) (Ay, x),

it extends into a continuous linear operator from H into H, still denoted by A, and the
inequalities

(2.13) IIAIl(.--< px(A) <--IIAll(x.
hold, where px (A) is the spectral radius ofA considered as an operator from X into X.

The proof of Lemma 2.4 can be found in [4, Vol. I, p. 346] or in [8], for instance.
Remark 2.2. Lemma 2.4 implies in particular that, if T is an isomorphism of X

onto X, it can be extended into an isomorphism of H onto H.
Proof of Theorem 2.1. (1) Assume that there exists a homeomorphism of

onto /4/" satisfying,(2.5)-(2.8), and that (H.1) holds. Without any loss of generality we
may assume that is path-connected. Using the properties (2.6) to (2.8) together with
a Taylor formula, we at once show that

(2.14) Vx o IIq.(x)ll. <- CIIxll..
where C > 0 is a constant independent of h, and that,

Vx 7 !l,I,(x)- xll,, Ilxll,,(x),(2.15)

where

(2.16) lim e3(x) O.
Ilxllx-,O

Owing to the property (2.5), we may write

(2.17) Df(x) (Dcb(x))tT(x),

which implies, due to (2.8), that fe Cl(; R) and Dfe C(; H). From (2.17) we
also derive"

(2.18) Df(x)- Tx (DCb(x)- IdH)tTdP(x)+ T(dP(x)- x).

Equality (2.18) together with the properties (2.8), (2.15) and (2.16) give us the conditions
(2.3) and (2.4).

(2) Now assume that the hypotheses (H.1) to (H.3) hold. First of all, let us remark
that, thanks to the hypothesis (H.3), we have:

ioIf(x) -1/2( Tx, x)l (Df(sx) T(sx), x) ds

or

(2.19)

where

Ilxll, SI?,I(SX ds,

If(x)-1/2(Tx, x>l Ilxll e4(x)

(2.20) lim e4(X 0 and e4(O O,
IlxllxO

As by Lemma 2.4 and the hypothesis (H.1) (see Remark 2.2), T- belongs to
(H), we infer from (2.19) and (2.20) that there exists a (convex) neighbourhood V
of 0 in X such that

(2.21) Vxe V 1(2f(x)--(Tx, x))(T-lx, x)I<--1/2I[XlI4H,
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which allows us to define the function a in C(V; R)(q CI(V-{0}; R) by

2f(x)-(Tx, x)
forx O,(X) =,/llx , + (2f(x)-( Tx, x))( T-1x, x)+

(2.22)
(0) =0.

Indeed, by (2.19) to (2.21), we get

(2.23) Vx v }(x)l = 24(x).

Fuhermore, the function a satisfies, for all x in V,

(2.24) 2(x)llxll + (x)2< T-*x, x> 2f(x)-< Tx, x>,
so that we obtain,

(2.25) Vx v f(x) ( T(x), (x)),

where

(2.26) (x) x + a(x) T-x.

(Let us point out that the mapping is given by an explicit formula.)
Clearly the properties (2.6) and (2.7) are satisfied. We also have for x 0 in V,

(2.27) D(x)=Id+a(x)T-+(Da(x),.)T-lx,

where, thanks to a differentiation of (2.24) with respect to x, Da(x) may be written as

1
(2.28) (x) llxll + (x)(r_lx, x

Therefore D is in the space C(V-{0}; H) and D obviously belongs to
C( g-{0}; (H)). Moreover, from the equality (2.27), we deduce that, for x

(2.29)

Using (2.28) together with the hypothesis (H.3) and the propey (2.23), we at
once prove that, for x 0 in V,

(2.30) IIO(x)ll.llZ-’xll. CIIT-ll.)((x)+ 4(x)),

Finally from (2.29) and (2.30), we derive that IIo(x)-Idll.)tends to 0 as
tends to 0, and the propey (2.8) holds.

Now it remains to prove that is a homeomorphism of a neighbourhood of
0 in X onto a neighbourhood of 0 in X. Let o> 0 be a real number such that

(2.31) {x x; Ilxllx < o} v,
and that we have, for [[x x < o,

(2.32)

and

(2.33)

We set

D(x)- Idll.(H) < 1/2.

={xX;llXl[x<r/o} and W=().
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As

x y (x) -(y) ((x) -(y) -(x y)),

by (2.33), we obtain, for x and y in

(2.34) ]}x-- ylIH <=21I(X)--(y)]IH
which proves that is a one-to-one mappin.g from 7/" onto W. Let us now show that
-1 is a continuous mapping from W into 7/’. From the equation,

(a(x)- a(y)) T-x (x)-(y)-(Idx + a(y) T-1)(x-- y),

we deduce, using the property (2.32) and the inequality (2.13) of Lemma 2.4, that

which becomes, owing to (2.34),
(2.35)
But x-y can be written as

x-y (x)-(y)- a(y)T-l(x-y)- (c (x)- c (y)) T-ix,
so that, by (2.32),

From (2.35) and (2.36) we infer, for x # 0,

IIx yllx 2[[(x)- (y)llx + 8 r-xll [l<(x)- (y)llx,IIT-’xll
or

(2.37) Ilx-yll C(x)ll(x)-(y)ll.
Inequality (2.37) proves that the mapping - is continuous from X into X at the
point (x), for x 0. But

y=*(y)-a(y)T-’y,
so that, by using the property (2.32) again, we obtain

which proves that -1 is continuous at the point 0.
Now we have shown that is a homeomorphism of o//. onto W; it remains to

prove that W is a neighbourhood of 0 in X. To this end we are going to check that

Let y 0 be an element of X such that Ilyllx <1/2wo. We introduce the sequence
(x.). defined by

(a) xo=y,
(2.38)

(b) Xn+l=y--og(xn)T-1xn y--(f(Xn)--Xn).

Obviously x, belongs to X, for all n; using the property (2.32), one also proves, by
induction on n, that x, belongs to , for all n. The relation (2.38)(b) implies, thanks
to the property (2.33),

(2.39) IIx,+- x, II, < 1/21Ix, -/,-ill 8.

Therefore, we get, for all n e N,
1

(2.40) ]]X,,+I--X,,IIH <--I]YHH"2"
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From (2.40) it follows that (x,), is a Cauchy sequence in H. Hence, (x,), converges
in the space H to an element x 6 H. By (2.32), we have

and also

(2.41) IIx[I- ->-
which means that x 0. Furthermore, using the following equality

(2.42) --(Ol(Xn+l) Ol(Xn)) T-lxn (Xn+2-- Xn+l)’ Ol(Xn+l) T-l(Xn+l Xn),

as well as the properties (2.32) and (2.40), we obtain

<1I(x.+,)- (x.)l T-x,[[, =2--g IlYlIH.

Therefore, as x is not equal to zero, we get, thanks to Lemma 2.4,

C(x)
(2.43) la (x.+)- c (x.)l-<-

2"

where C(x) is a positive constant (depending on x). From the equality

xo+,- x. (x,,)T-’(x._,- x.)- ((x.)- (x._,))

we derive, thanks to the properties (2.32) and (2.43), that

1 C*(x)
(2.44) IIx,,+,-x. ll, ---< IIx.-x.-llx / 2

,
where C*(x)> 0 is a constant (depending on x). Therefore, we obtain, for all n

1 nC*(x)
(2.45) IIx./,-x.ll,, -<--2" [[xl-ytlx +

2
-g’

which proves that (x,), is a Cauchy sequence in X. Therefore x belongs to 7/" and the
relation (2.38)(b) gives us:

x y o(x) T-lx,

y (x).

Proof of the Theorem 2.3. Part (2) in the proof of Theorem 2.1 may be followed
up to (2.28); according to the implicit function theorem, we have only to prove that

belongs to cl(v; X) and even that IID(x)-Id,,ll,, tends to 0 as Ilxll, tends
to 0.

Taking into account the equality (2.27), we get:

(2.46) IID,(x) Idll,,) <--_ l(x)l T-’ll,,) / llD(x)ll,,.ll T-lxll,.
Using (2.28) together with the hypothesis (H.3 bis), we at once prove that, for x 0
in V,

(2.47) IIDa(x)[Ix,-< C([ez(x)l-I-lq2(x)[),

where C > 0 is a constant independent of x. From (2.46) and (2.47) it immediately
follows that [ID(x)-ldllx tends to 0 as Ilxll, tends to 0.
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Remark 2.3. Let us recall that a mapping F from an open set 0-// in X into H is
"generator-differentiable" if, for any x in o//, there exists a continuous linear operator
DF(x) from X into H such that

IIF(x+h)-F(x)-DF(x)’hllt4O as Ilhll-0.(2.48)
Ilhll,

F is said to be "C-generator-differentiable if, moreover, DF(x) belongs to
C(a//; (X; H)). J. Marsden has asked one of the authors if the homeomorphism
constructed in Theorem 2.1 is C-generator-ditterentiable. The answer is positive. As
we have already proved that D(x) belongs to C(V; (H)), it remains only to show
that (2.48) holds for F . But

(2.49)
,(x + h)-(x)- O.(x)h (x + h)r-h

+ (a(x + h)- a(x)-(Da(x), h}) T-ix,
which implies, at the point x 0, that

[[(x+ h)-dP(x)- DdP(x)h[[H

-< la(x + h)[ T-Ilia(H) +
I.; (Da(x + sh)- Da(x), h) ds

and also, because Da belongs to C(V-{0}, H), that

(2.51)

II<(x+ h)-(x)- D(x)hIIH

<--[(x/h)lllT-111(,/ sup IID(x/sh)-D(x)ll,.
O=<sl

From (2.51), we at once infer that (2.48) holds for xS0. At the point x=0, (2.49)
gives us"

and (2.48) still holds.
Remark 2.4. Assume that f and the inner product (.,.) are invariant with respect

to the group representation R :F GL(X), where F is a group. Then it is an easy
matter to prove that the homeomorphism is equivariant with respect to the
representation R.

2.2. Let us now turn to parametrized versions of the second part of Theorem 2.1.
Let f(x, A) be a functional defined on X x A where A is a Banach space. Assume that
f satisfies the following hypotheses:

(B.1) There exist two neighbourhoods V1 of 0 in X and V2 of 0 in A such that
f C(V1 x 7#2; ) and D,f C(Cl X 02; H); furthermore f(0, h)=0 and
V,f(O, h 0;

(B.2) There exists a continuous mapping h Ta of T’ into (H); moreover,
/h V, T is a symmetric operator (with respect to the inner product (.,.)
of H) and, for h 0, T To is an isomorphism of X onto X;

(B.3) For all (x, h) in V x V2, one has

(2.52) Iloxf(x, A)- Yxll. <
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where

lim el(x) =0.
Ilxllo

PROPOSITION 2.5. Assume that the hypotheses (B.1), (B.2) and (B.3) hold. Then
there exists a homeomorphism (x, h) (q(x, h), h) of a neighbourhood OF of (0, O) in
X x A onto a neighbourhood of (0, O) in X x A satisfying

(2.53) V(x,A)6 7/" f(x,A)=(Taq(x,A), q(x,h)),

(2.54) q(0, h 0, Dx(0, Id,,

(2.55) Dx C(F; W(H)).

Proof Here we introduce the function a(x, ) given by"

a(0, ) 0 and, for x 0,
(2.56) 2f(x, -( T,xx, x)

(x,,)
/(T T-’x, x)2+(2f(x, A )-(Tax, x))(T T-’x, T-’x)+(T T-’x, x)

and we set

(2.57) (x,

Then, arguing as in the proof ofTheorem 2.1, we show that (x, A is a homeomorphism
of OF onto o/ and satisfies (2.53), (2.54) and (2.55). (The only difference is that here
one has to check that qt(x, A) and -(x, A) are continuous mappings in A; but this
does not involve any difficulty.)

Let OF and OF2 be two neighbourhoods of 0 in X and A, respectively, such that
OF; one can prove as in Remark 2.3 that, for A 2, (’, A)" x OF (x, A

is C-generator differentiable.
From Proposition 2.5 one deduces at once the following result.
THEOREM 2.6. Assume that the hypotheses (B1), (B2) and (B3) hold; assume

furthermore that T C(OF2; (X)). Then there exists a homeomorphism *(x, )=
(*(x, A ), A) of a neighbourhood 7/’* of (0, O) in X A onto a neighbourhood t4;* of
(0, O) in X A satisfying"

V(x, ) e OF* f(x,A)=1/2(r*(x,A),p*(x,,));

q*(O, A O, Dxq*(O, O) Idx,

(2.58)

(2.59)

and

(2.60) D,,* C(OF*; (H)).

Proof The operator T can be written as

Tx T(Id + T-l( Tx- T)).

There exists a neighbourhood if2 of 0 in A such that, for A W2,

[[T-I(Tx- T)llx<-1/2 and IIT-(T,x- T)II.-<_.
Then we introduce the operator:

(2.61) L, Id + Z e,,( T-’( T,, T)),
k=l

where the real numbers Ck, <--k <-00, are defined by

(l+x)’/2=l+c,x+...+c,x’+ for Ixl< 1.
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For A in 2, La is well defined by (2.61) and is an isomorphism of X onto X and of
H onto H. Moreover, Lx and (La)-1 belong to C(V2; (X)f’)(H)). One easily
checks that

(2.62) T L TL.
The mapping p* defined by

(2.63) q*(x, A)= Lq(x, A),

where q is given by Proposition 2.5, clearly satisfies the requirements ofTheorem 2.6.

2.3. Example. We consider the functional

(2.64) f(u, A) f, a(OoU(X), Ou(x), Ozu(x), x, A) dx,

where f is a bounded open subset of with a smooth enough boundary, x (x, x2)
is a generic point in , A is a real parameter and where OoU u, Ou=Ou/Ox, for
i= 1,2. We assume that the function a belongs to the space C2(6; ) and can be
written as

a(uo, u, u2, x, A) aij(Uo, Ul, u2, x, A)uiuj
i,j =0

where a0 C(6; ) and a a, for s j. The above equality means that the function
a and its first partial derivatives (with respect to Uo, u and u2) vanish at the points
(0, 0, 0, x, )=-(0, x, h). We suppose that there exists a real number a > 0 such that

2

(2.65) / Z ao(O, x, 0) _>- 2a Z sc2
i,j=O i=1

and that

u H(12) and ’qv6 H(12) ]
:: U =0"(2.66)

ao(O x, O)OuOv dx 0
i,j ----0

We set X H(f)fq W’(f), /4= H(f), A=. We now introduce the following
inner product on H:

(2.67) (u, v) 2 I aj(O, x, O)OuOjv dx + fl lft uv dx,
i,j =0

where fl > 0 is a real number such that, for all v in H(I),

i=0

The assumption (2.65) insures the existence of such a number/3. We are now able to
formulate our last assumption; we suppose that the operator G (H) given by

Gu H() and /v Ho(l),
(2.68)

(Gu, v)=fn uv dx,

is a compact operator of ’(X). (This property is true in particular if the coefficients
a(0, x, 0) belong to the H61der space C() for 0< 6 _-< 1.) Let us verify that the above
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functional f satisfies the hypotheses (B.1), (B.2) and (B.3). It is clear that f belongs
to C2(X x A; R). We introduce the linear operators Ta defined by

Tau H(f) and, for all v in H(Yt),

(Tu, v)=2 Ia aij(O,x,h)OiuOjvdx.
i,j =0

It is not difficult to prove that the property (B.1) is satisfied, T belongs to C(R; (H))
and (B.3) holds. In order to prove (B.2), it remains to prove that T= Toe (X) and
is an isomorphism of X onto X. We remark that T Id-G. As G is a compact
operator of (X), the assumption (2.66) implies that T is an isomorphism of X onto
X. Thus the hypotheses (B.1), (B.2) and (B.3) are satisfied and the Proposition 2.5
applies.

3. The splitting lemma.
3.1. Now we give the splitting lemma which allows us to replace infinite-

dimensional problems by finite-dimensional ones. In particular, it allows us to reduce
the study of the minima of a C2 functional defined on a infinite-dimensional Banach
space to the study of the minima of a functional defined on a finite-dimensional space.
But, contrary to Magnus [9] and to Golubitsky and Marsden [5], we need not use the
Morse lemma in our proofs. However, at the end of the section we shall show how to
use our Morse lemma (Theorem 2.6) in the proof.

We keep the notation of 2. Let f(x, A) be a functional defined on X x A where
A is a Banach space. Assume that the following properties hold"

f CP(X x A; R) and Dxf CP(X x A; X) with p_-> 1,

(h.2)

and

(h.3)

(3.1)

D,f(O, O) O,

there exist two closed subspaces Z and V of X satisfying

X Z03 V, where V and Z are orthogonal with respect to the inner product

and the restriction of T D2f(O, 0) to Z is an isomorphism of Z onto Z.

Remark 3.1. The condition (3.1) holds, for instance, if T is a Fredholm operator
from X into X of index 0 (with V Ker T and Z Im T).

Let F be the Cp mapping from Z x V x A into Z defined by

(3.2) F(z; v, Z PzDxf(Z + v, A ),

where Pz denotes the linear projector from X onto Z corresponding to the,decomposi-
tion X Z03 V. We remark that F(0; 0, 0)=0 and that DzF(0; 0, 0)= T .is an iso-
morphism of Z onto Z; therefore, by applying the implicit function theorem, we obtain
the following result.

LEMMA 3.1. There exist three neighbourhoods , and of 0 in Z, V and A,
respectively, and, for any (v, Z) x , a unique element H(v, A) such that

(3.3) PzD,f(n(v, Z )+ v, A) =0.

Moreover the mapping H belongs to CP( l/" x ; Z) and satisfies
(3.4) H(0, 0) 0, DvH(O, O) O.

Now, if V # {0}, we introduce the following "splitting"; we set, for (v,)t e x ,



MORSE LEMMA IN INFINITE DIMENSION 369

(3.5)

Of course,

(3.6)

fv(v, A f(H(v, A)+v, A),

fz(z; v,A)=f(z+H(v,A)+v,A)-fv(v,A).

f(z+H(v,A)+v,A)=fz(z; v,A)+fv(v,A).

Remark 3.2. For any (v, A) e T" x , we have

(3.7) fz(0; v, A) 0;

and, as V and Z are orthogonal with respect to (.,.), (3.3) implies, for any (v, A)e
T’x,

(3.8) Vz* Z, Dzfz(O; v, A )z* O,

and

(3.9) Vv* V Dfv(v,A)w=(Dxf(H(v,A)+v,A), w).

Moreover, fz and Dzfz belong to CP(Nx VxW; R) and CP(Yx Vx 5f; X), respec-
tively; and fv and Dofv belong to CP(T’x; R) and CP(Vx; X), respectively.

THEOREM 3.2. For any A , the mapping v H(v, A)+ v is a bijection between
the critical points offv (’, A in T" and those off(., A in T’.

Proof It is an obvious consequence of Lemma 3.1 and of relation (3.9).
Now we introduce the additional hypothesis:

(h.4) The operator T is positive on Z, i.e.,

(3.0) VzZ (Tz, z)>=O.

LEMMA 3.3. Assume that the hypotheses (h.1), (h.2), (h.3) and (h.4) hold. Then
we can choose the neighbourhoods , T’, in Lemma 3.1 in such a way that

(3.11) V(z,v,A)xT’x withz#O, fz(z; v,A)>O.

Proof Using a Taylor formula, we show, thanks to (3.7) and (3.8), that there
exists a real number ]0, 1[, depending on z, v and A, such that

(Dzzfz( tZ; v, A )z, z)fz(z; v, A 2

or also

(3.12)

where

f(=; v,;t)=<7"z, )+<,z, ),

(3.13) B, Dxf(tz+ H(v, A)+v, A)- T.

The Cauchy-Schwarz inequality

Ty, z) <= Ty, y)( Tz, z),

with y -z, z z Z, implies

(Tz, z)(-iz, z) > Ilzll 4.By
therefore, thanks to Lemma 2.4, we obtain

(3.14) Vz Z (Tz, z) -’llz
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On the other hand, using Lemma 2.4 once more, we get

(3.15)

Now we at once deduce the property (3.11) from (3.14) and (3.15) by choosing the
neighbourhoods ’, and , introduced in Lemma 3.1, in such a way that

1
(3.16) Vt[O, 1] v(,,,a)xr II ,ll  x <llf_,ll   

The following theorem is an obvious consequence of Theorem 3.2 and the previous
lemma.

THEOREM 3.4. Assume that the hypotheses (h.1), (h.2), (h.3) and (h.4) hold and
that the neighbourhoods Lr, 7/’, are chosen in such a way that (3.11) is satisfied. Then,
for any A , the mapping v- H(v, A)+ v is a bijection between the minima offv(’,"
in and those off(., A in 0) 7/’.

3.2. A few comments. (1) We can also prove Lemma 3.3 and Theorem 3.4 by using
the Morse lemma given in 2. Indeed, applying the Theorem 2.6 to the function fz,
we obtain the following result.

THEOREM 3.5. Assume that the hypotheses (h.1), (h.2), (h.3) hold. Then there exists
a homeomorphism *(z, v, A) (qg*(z, v,A), v,A) ofa neighourhood Lr*x *x* of
0 in Z x V x A onto another neighbourhood of 0 in Z x V x A satisfying

(3.17) V(z, v,A)Lr*x *x* fz(z, v,A)=1/2(T@*(z, v,A), @*(z, v,Z))

and

(3.18) p*(0, v, A)=0, Dzq*(0, v, A)= Idz.
(Let us remark that Theorem 3.5 is a generalization of the "generalized Morse

lemma" of Mawhin and Willem [10].)
Now Lemma 3.3 is a direct consequence ofTheorem 3.5 and ofthe hypothesis (h.4).
Of course this second proof of Lemma 3.3 is shorter. Nevertheless the first method

of proof admits more generalizations than the second one and is well adapted to
approximate problems encountered in numerical analysis (see [11, Chap. II] for such
a generalization). In particular, the first method of proof enables us to show Theorem
3.4 when Vf(0, 0) is near zero, but does not vanish (see [11, Chap. II]).

(2) When V Ker T and Z Im T, the Theorem 3.2 is the variational counterpart
of the Lyapunov-Schmidt procedure on the Euler equation Dxf(x, A)=0 and, of
course, the two procedures give the same change of coordinates. But our point of view
also gives a bijection between the minima of fv(’, A) and those of f(., A). In [2], a
simplified procedure for the computation of the Taylor expansion offv(’, A) is given:
it uses the Faa di Bruno formula.

(3) Examples of applications of the splitting lemma can be found in [1], [2], [3]
and [9]. The splitting lemma is especially useful in the problems of elasticity. In [11,
Chap. III], one applies the splitting lemma and its discrete version to the elasticity
problem studied in [3] and to its approximation, respectively.
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Abstract. In communication theory, it is convenient to deal with bandlimited signals obtained by
convolving an arbitrary bounded function with a filter kernel k(t; a,/3) whose Fourier transform is over
the interval (-a, a ), and vanishes outside the interval (-/3,/3), 0 < a </3 < c. For a//3 near 1, the sharp-cutoff
case, the L-norm of the kernel must be large. In this paper, estimates are given for ltl> T Ik(t; a,/3)1 dt, the
norm in the tails of the kernel, which show that T must grow like (/3 a)- as a /3 in order for the norm
in the tails to be (say) less than 1. This result confirms a conjecture of J. C. Lagarias and A. M. Odlyzko
who used such filter kernels in a method for computing 7r(x), the number of primes not exceeding x.
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The notion of bandlimiting time signals by ideal filtering is pervasive in communi-
cation theory, owing to the fact that the resulting signal can be represented by a
countable number of data or "samples". For a suitable class of signals, e.g., L2, this
bandlimiting can be accomplished (in theory) by convolving the signal with the filter
kernel

sin at
(1) k(t)

rt

However, this kernel is not L1 (absolutely integrable) so the convolution with arbitrary
bounded signals is not always defined. In order for a kernel to belong to L1, it is
necessary that its Fourier transform be continuous and tend to zero at +o. Here we
consider filters characterized by kernels k(t;
satisfy

foo {10 fr-c--<-w--<a’(2) /(w; a, fl)= k(t; a, fl) e

where 0< c </3 < o. The collection of such kernels will be denoted by K(a, fl). If
(fl-a), the "cut-off interval," is small compared to (fl + a) or, say a, then it is quite
easy to show that the L1 norm of k(t; a, fl) must be large. J. C. Lagarias and A. M.
Odlyzko [1], in using sharp cutoff filters in a method to compute rr(x), the number
of primes not exceeding x, raised the following question concerning the norm in the
tails of the kernels. If a ->/3, how small can one take T (depending on c and fl) such
that (for the best choice of k(t; a,))

Ik(t; a, fl)[ at <= 1.(3)

They conjectured that (/3- a)T could not tend to zero with (3) holding for any k in
K (a,/3). We show here that the conjecture is true. One would really like to determine

inf II Ik(t;a,/3)ldt.(4) mT(a, fl)
K<,,) _,l>r

This appears to be a very difficult problem to solve (except in special cases with T 0),
but inequalities are fairly simple to obtain which answer the question at hand.

Received by the editors October 14, 1986; accepted for publication April 12, 1987.
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It is convenient to rescale the kernels so that they may be described in terms of
one parameter A. We denote by Kx K(A- 1, A / 1) the collection of kernels k(t) in

L whose Fourier transforms k satisfy

I { 1 fr-(A-1)=<w-<A-l’
(5) k()= k(t) e-’’ dr=

0 forllA +1

where A > 1. The "cut-off interval" is now fixed at 2, and we are interested in the case
where A . We wish to obtain inequalities for the quantity defined by

inf [ Ik(t)l dt.(6) C)
kK J] t]>c

Now any kernel in L of the form

sin A
(7) k( t) g( t), A>I

t

where the Fourier transform of g vanishes outside [-1, 1] and g(0)= 1, belongs to K.
This is not the most general representation for kernels in k, but it suces for obtaining
an upper bound for (A, c). Let B(1) denote the collection of functions g which are
restrictions to the real line of entire functions of exponential type 1, which, in engineer-
ing terminology, are the bandlimited functions whose (generalized) Fourier transforms
vanish outside [-1, 1]. Then from (6) and (7) we have

(8) (A, c) inf [ ]g(t)]. ]sin At] tit.
g B(1) "l’l>cg(O)=

It has been shown elsewhere [2] that

(9) inf
Ig(t)l

dt
2
log

l+e

g<) tl> It[ 1-e-’
g(O)=

the extremal function in (9) being

c sin 4t2- C
2

(10) g(t)=g(t; C)-sinh c x/t2-c2

Thus we have

2 l+e
(11) k(A, c) <-- log---:-_.

r 1-e

In (8) we can expand Isin At in a Fourier series (absolutely convergent)

(12) isin At
2

al cos 2At- a2 cos 4At

and then as A --> oo only the constant term 2/ will contribute to the integral, provided
c > 0 is fixed. We have equality in (9) for g(t)= g(t; c); hence

1 Ig(t;c)[
]sinAt]dt 421ogm+e(13) (A,c) j (A) (c>O).Itl 1-e

It is believed that this is the correct asymptotic behavior of (A; c) as A , with c
held fixed, c > O, but we will not attempt to prove that here. (It would be true if the
extremal function had the simple form (7) for all c and A, or tended in norm to that
form as h .)
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Now lower bounds for/x(h, c) are more difficult to obtain. What we need here
are functions s(t; A, c) of unit norm in L which vanish over (-, c) and have spectral
gaps (-h2,-hi) and (hi, h2), where

AI=A-1, A:=A+I (A>I).
Such functions s(t; A, c) have the representation

(14) s( t; A, c) =f(t) + h(t),
where s(t; A, c)= 0, It =< , sup, Is(t; A, c)] 1, and f(t) is a bounded bandlimited
function whose "Fourier transform" vanishes outside I-A1, A 1], and h(t) is a bounded
high-pass function whose "Fourier transform" vanishes over (-A, A). Since the
Fourier transform of any kernel k in K, is 1 over the interval I-A1, All and vanishes
outside (-A2, A2), the convolution of s(t; A, c) in (14) with k(t) [or k(-t)] simply
gives f(t), rejecting h (t). In particular,

(15) [-’ k(t)s(t;A,c)dt= [ k(t)s(t;A,c)dt=f(O), kK,

gives the inequality

(16) If()l --< all,l> [k(t)l dt, k K.

Thus we would like to find s(t; A, c) of the form (14), where f(0) is as large as possible.
This presents ahother difficult problem except in the case c-0, h -n, where n is an
integer not less than 2. In this case the optimal function is

(17) s(t" n, O)=sgn {Sin ntsin J’ n >= 2

and the kernel of minimal norm in K, is

(18) k,(t; 0)-
sin sin nt

rt

To see this, we first note that

(19) s(t+ 7r; n, O) (-1)"-ls( t; n,O).
So in the case where n is odd (->3), s(t; n, 0) has period 7r and a Fourier series of the
form

(20) s(t; n,O)=bo(n)+2 Z bzk(n) cos2kt, nodd>-3.
k=l

In the case where n is even (_->2), s(t; n, 0) has period 2r but, in accord with (19),
has only odd harmonics

(21) s(t; n,O)=2 Y b_+l(n)cos(2k+l)t, neven>=2.
k=0

In either case, s(t; n, 0) has the spectral gaps (n-1, n+ 1) and (-n-1,-n+ 1).
So if k is any kernel in K, we have

fs(t;n,O)k(t)dt=fs(t;n,O)kn(t;O)dt
(22)

=flk,(t;O)ldt=f_sintrt2 sin..;tlsn dt<--f_ [k(t)[dt"
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Now note in the next-to-last integral in (22), on expanding the periodic function

I" (period r) in a Fourier series, that only the constant term contributes to the integral.
Thus we obtain the result

/z(n’ 0) 2rr I/2 Sinsln;tl dt, n>-I

(23)
4
21og n+O(1), n.

(See "Lebesgue Constants," [3, p. 67].)
Now if k(t) belongs to Ka K(A- 1, A + 1), then ak(at) belongs to K(a(A- 1),

a (A + 1)). So setting

a A+I fla- or A-A-I’ A-1 a

we see that the connection between mr(a,/3) defined in (4) and (A, c) defined in (6)
is

(24) rnT( a, fl Iz a’

Now we wish to show that roT(a, fl)--)oo as a fl if (/3- a)T- 0; i.e., we need
a lower bound for/z(A, c) for small c and large A.

For fixed c, it would seem that/z(A, c) should be an increasing function of A. We
are not able to show that here, but we only need the "quasi-monotonicity" (29) to
obtain the desired result from lower bounds for/z(n, c), c < rr/2.

First suppose n<=A <n+l (n an integer ->2). Then if k(t) belongs to K(A-1,
A + 1), the dilation

(25) k,(t)=n+lA+ik(+1)+1
belongs to K((n+I)(A-1)/(A+I),n+I)_ K(n-l,n+l)=K,. We have

(26) inf f [k (t) dt =/x(A, e).
k, K, ,J Itl>c

Using (25) we have

(27) I ]k.(t)] dt f n+l

Itl>c Itl>c A + 1

Thus

whence follows

(28)

dt->l(n,c) (n=<h <n+l).

Iltl>(n+ )c/ h +1)
Ika t)l dt i( n, c);

n+l )/z A,AlC ->tz(n,c), n_--<h <n+l,

or

(29)
h+l )(h,c)>_- n, c
n+l

n=<h<n+l.



376 B.F. LOGAN

It is sufficient then to show that

2 /2 sin
dt, n >- 2, 0 < c <(30) /z(n, c)>--

7r sin 2

To obtain the last result, define the periodic function

o’.(t,c) sgn sin nt c<=t<--r-c
( Sin )

(31)
=0, --c<t<c,

(31a) o’,(t+ -; c)= (--1)n-lo’n(t; C), --X3< <3.

That is, we obtain r,(t; c) by subtracting from s(t; n, 0), defined in (17), its restriction
to the intervals (-c, c) modulo 7r. For n either odd or even, rn(t; c) has the same form
of Fourier series as s,(t; n,O). In particular r,(t; c) has spectral gaps (n-l, n+l)
and (-n- 1,-n + 1). Hence for any k in K,, we have

(32) fk(t)cr.(t,c)dt f sinntsint
trn(t" c) dr.

7rt

So, since ]rn(t; c)]_-< for It[> c, vanishing over (-c, c) and translates of this interval,
we have for c > 0

I,l>c Ik(/)l dt> I_ k(t)r,(t; c)dt

sin nt sin
o’n(t" c) dt

(33)
tl>c 7rt

sin2 sin nt
r(t; c) dt

tl>c 7rt2 sin

_2I/-sinnt (-Tr sint Idt kK,,O<c<

Thus

(34) /z(n, c) >--
sin nt

sin
dt log cot n --> oo, 0 < c <-.

7r 2

Now if 0 < c < e for any positive e < 7r/2, we have

(35) /x(A, c) >/x(A, e).

Recalling the relation (24) between roT(Or, [3) and /z(h, c), and the inequalities (29)
and (34), we see that if T is "little-oh" of (/3 a)- as a -*/3, then mT(a, ) o.
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SOME ISOPERIMETRIC INEQUALITIES FOR THE LEVEL CURVES OF
CAPACITY AND GREEN’S FUNCTIONS ON CONVEX PLANE DOMAINS*
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Abstract. The perimeter and the area of the convex level sets of capacity and Green’s functions in
convex plane domains are shown to satisfy sharp differential inequalities. Isoperimetric inequalities for
capacity problems for optimal conductors are derived.
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1. Introduction. The purpose of this paper is to show how convexity properties
lead to sharp estimates for geometric quantities related to level curves of solutions to
some classical partial differential equations.

We denote by L(t) and a (t) the perimeter and the area, respectively, of the domain
bounded by a closed level curve {u t} {x" u(x)= t}, where u is a real function on
a plane domain.

We start by considering the solution u of the following capacity problem in a
convex plane ring D= Do-D1, where D1 c Do and Do and D1 are plane convex
domains"

Au=0 inD,
(1.1)

on ODo,u to u on ODI,

with

(1.2) to and tl real constants.

We derive isoperimetric inequalities involving the geometric quantities L(t) and
a(t) related to the level curve {u t}.

In Theorem 3.1 we prove that
(i) log L(t) is a convex function of t, and
(ii) log la’(t)[ is a convex function of t.
In the sequel b is called logarithmic convex (concave) if log14,1 is convex

(concave).
In Theorems 4.1 and 4.2 we derive from (i) and (ii) further inequalities for the

level sets of Green’s function g for the Laplacian in a plane convex domain D. More
specifically, if Ix(t) is the distribution function of g, i.e., the area of the level set {g -> t},
we prove in Theorem 4.1 that:

(iii) log tx (t) is a convex function of t.
In Theorem 4.2 a sharp upper bound for the length L(t) of the level curves of g is
obtained, namely, if Lo is the perimeter of D:

(iv) L(t) _-< Lo exp (-27rt).
In Theorem 3.2 we establish properties similar to (i)-(ii) for the following problem:

div (IV u P-2V u) 0 in D,
(1.3)

u to on0Do, u-- on ODI, p> 1.
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In Theorem 3.3 we give an explicitly sharp differential inequality for the length
L(t) of the level curves of the solution u to the following problem:

Au=f(u) inD,

(1.4) u to onODo, u tl on OD, to< tl,

with f_-> O, andf monotone nondecreasing.

In Theorem 3.4 we derive a sharp upper bound for the function L(t) related to the
solutions of problems (1.3) and (1.4). Furthermore in Theorem 3.5 we derive a sharp
upper bound for the area a(t) related to the solutions of problems (1.1), (1.3) in the
case where D1 is a circle.

Finally in 5 we derive isoperimetric inequalities for the capacity problems
(1.1)-(1.4) in the case where u satisfies the Bernoulli condition on the outside boundary
0Do, i.e.,

(1.5) IVu[ const > 0 on ODo.

Usually classical isoperimetric inequalities for the distribution function of Green’s
function or of solutions to elliptic equations are established by analysis and symmetriz-
ation arguments on the level sets (see [2]). Here we use arguments which stress the
convexity properties of the function u. In fact in [5] and [7] it is proved, for an arbitrary
dimension, that the solution u to (1.3) or (1.4), respectively, has convex level surfaces.
An improvement for the problem (1.4) in dimension two is given in [4]. Strict convexity
properties of Green’s function g in a plane convex domain are shown in [4].

An interesting approach to a plasma physics problem [6] shows convexity proper-
ties of the level lines of harmonic functions which imply differential inequalities which
supplement (i) and (ii).

The principal idea in the present paper is the introduction of a special coordinate
system related to the convex level curves of u. More precisely, we consider the
coordinates (0, t) where is the "level" of the curves{u t} and (cos 0, sin 0) is the
direction of the exterior normal vector to the level curve {u t}. Furthermore we
consider also the support function h of any level curve { u t} and rewrite any geometric
quantity such as L(t), a(t), ]Vul and the curvature K of {u t}, in terms of h and its
derivatives with respect to the curve parameters (0, t). When u satisfies an elliptic
differential equation, calculus arguments show that h is a solution to a nonlinear elliptic
equation in 0, t) coordinates. By analyzing this equation we obtain the sharp differential
inequalities for L(t) and a(t), corresponding to (i)-(iv).

2. Support function. In this paragraph we start by recalling the geometric definition
and the principal properties of the support function h of a plane convex domain D.
For the necessary proofs and other details we refer the reader to [3]. Next weconsider
a family of support functions associated with a family of convex level curves of a given
function u and show how certain geometric properties are defined in terms of derivatives
of h.

Let D be a plane convex domain, and let us choose the origin of the coordinates
inside D. Let us consider the exterior normal vector to 0D at (x, x2) given by
n (cos 0, sin 0), for 0 S [0, 2r). The distance from the origin to the support line
r supporting 0D at (x, x2) orthogonal to n is given by the support function

(2.1) h(0) x cos 0 + x sin 0.
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If D is strictly convex r supports OD at only one point (Xl, X2) h is of class
and the derivative of h with respect to 0 is given by

(2.2) h’(0) -xl sin 0 + x2 cos 0.

If OD is c2 and has strictly positive curvature, then h is of class 62 also and

(2.3) h(O)+h"(O)=R(O)>O,

where R(0) is the radius of curvature of OD.
For the proofs of the previous statements we refer the reader to [3, p. 18] and to

[9, p. 3] where the formulas

(2.4) L= f R(O) dO= I h(O) dO,

(2.5)
1 f h(O)R(O) dO,A=-

for the perimeter L and the area A of D, respectively, also appear.
Let us now consider a real function u with strictly convex level curves in a domain

D. Let us suppose also that u is of class 62 and that the derivative un of u along the
outward normal to the level curve {u t} does not vanish at any point in D. For any
value in the range of u we consider the corresponding level curve of u" 3’, -= {u t},
and for fixed let h(0, t) be the support function of the convex domain D, bounded
by %. Furthermore, let L(t), a(t) and R(., t) be the perimeter, the area and the radius
of curvature of D,, respectively. Partial derivatives are denoted by subscripts.

Of course by (2.1)-(2.3) the following equalities hold:

(2.6) h(O, t)= Xl cos 0+ x2 sin 0, (xl, X2)E ]It,

(2.7) ho(O, t)=-xl sin 0 + xz cos 0,

(2.8) h(O, t)+ hoo(O, t)= R(O, t)>0

where (xl, X2) is the unique point on Yt with normal exterior vector (cos 0, sin 0).
Conversely, for any point (xl, x2) in D we can find 0 and by using,

(2.9) (cos O, sin O)= +Vu(xl, x2)/lVu(Xl, x2)l,

(2.10) t=u(xl,x2).

The + or sign in (2.9) are given by the sign u,. Moreover by (2.4) and (2.5) we have

(2.11) L(t) f R(O, t) dO f h(O, t) dO,

(2.12) a(t) = h(O, t)R(O, t) dO.

We now show that certain classical expressions involving the partial derivatives
of u with respect to Xl and x can be rewritten as derivatives of h with respect to 0
and t. More precisely we have the following.

PROPOSITION 2.1. If U has strictly convex level curves and its normal derivative un
does not vanish at any point on D, then

(2.13) u. =(ht)-1,

(2.14) Au [-h. + (h20t + h2t)R-1]h-[3.
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Proof We differentiate (2.6) and (2.10) with respect to to get

ht OXl 022cos 0 + sin O,
ot ot

OX OX2
1 ux, --+ Ux2Ot;

expression (2.13) then follows with the use of (2.9). On the other hand, by differentiating
(2.7) with respect to the exterior normal direction n (cos O, sin 0), we get

(2.15) ho, t, + hoo O, Ox
sin 0 x COS 0 O -["Ox2 COS 0 X2 sin 0" 0,.

On On

By using (2.6), (2.13) and the fact that

OX OX2(2.16) t. u,, cos 0, sin 0,
On On

we can rewrite (2.15) in the form

ho," h- + hoo" O, =-h. 0,.

So by solving for 0, and using (2.8) we derive that the curvature of the orthogonal
trajectories is given by

(2.17) 0, -ho,h-R-.
Differentiating (2.13) with respect to n yields

(2.18) U., -(h,t, + ho,O,)h-2,
and so from (2.13) and (2.17) it follows that

(2.19) U,, (-h, + h2o,R-) h [3.
Now (2.14) follows from (2.13) and the following expression for the Laplacian in
terms of normal derivatives of u and of the curvature K R-1 of the level curves of u:

Au Unn + Kun.
a. Capacity functions in convex rings. We start by considering a harmonic function

u with closed convex level curves ,, (x: u(x) t) in a convex ring D.
THEOREM 3.1. If U is a solution to (1.1)-(1.2), then L(t) is a logarithmic convex

function in t, i.e.,

(3.1) L"L-(L’)2>=O,
and a’(t)l is a logarithmic convex function in t, i.e.,

(3.2) a"’a’-(a")Z>=O.
Moreover, equality holds in (3.1) or (3.2) for some if and only if all the level curves of
u in D are concentric circles.

Proof Under the assumption that Do and D are two convex domains bounding
the convex level curves, {u to} and {u q}, J. Lewis (cf. [7]) has proved that the
function u has the following properties:

(a) {u t} is a strictly convex curve in D,
(b) IVul 0 in D.
Therefore we can consider as in the previous section the support function h(O, t)

of the level curves of u.
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We can suppose that to < tl, for substituting -u for u leaves the inequalities (3.1)
and (3.2) unchanged.

By (2.14) the following equality holds:

(3.3) h,=(h2t+h2 -1to)R h Art.

Since u is harmonic, we derive that

(3.4) h,t > h R-1

Moreover, by ditterentiating (2.11) with respect to we get

(3.5) L’(t)-- I hi(O, t) dO,

(3.6) L"(t) f htt(O, t) dO.

So from (3.4) it follows that

(3.7) L"(t)>- Js h2t(O’ t)R-l(O’ t) dO.

By Schwarz’s inequality we have

(3.8) (IshtdO)<=(IhtR-ldO) .(ysRdO).
So from (3.5), (3.6) and (2.11) we obtain (3.1). Equality in (3.1) holds for some
7" C (to, tl) if and only if equality holds in (3.4) and (3.8) for ’. This implies that

ho,( r) =- 0 on S,
(3.9)

ht( ", r) isproportional to R(., r) on S.

Equivalently, we can say that

(3.10) ht(’, 7-) and R(., r) are constant on S.

From (3.10) it then follows that {u= r} is a circle and IVul-lh, - is constant on
{u r}. From unique analytic continuation arguments it follows that any level curve
of u is a circle concentric to D.

Now we establish (3.2). By differentiating (2.8) and (2.12) with respect to t, we have

Rt ht + hoot,

and

a’(t) =- (htR + hRt) dO,

respectively. Replacing Rt we get

a’(t) =- htR + hh, + hhoo) dO.

Integrating the last term in the previous integral two times by parts with respect to 0
and using (2.8) yields

(3.11) a’(t) f h,R dO.
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By differentiating (3.11) it follows that

(3.12) a"(t) fs (h,Rt+ Rh,) dO,

and using (3.3) it turns out that

a"(t) fs (h,h,oo +2h+ h,2o) dO- fs (Rh: Au)dO.

Integrating the first term in the integral above by parts, we have

(3.13) a"(t)=2 fsh2 dO- I (Rh Au) dO

and so having used the fact that Au 0 we derive

(3.14) a’"(t) 4 Is hh, dO.

Let us now observe that from (2.13) we have h < 0; therefore, from (3.4) and (3.14),
it follows that

(3.15) a’"(t) _-< 4 hR-1 dO.

But Schwarz’s inequality implies

(3.16) h dO < Ih -’tlR dO ]htlR dO

So putting together (3.11), (3.13), (3.15), (3.16) we obtain (3.2). Moreover equality
holds in (3.2) if and only if equality holds in (3.16) and (3.4), i.e., if (3.10) holds for
some r. The same previous analytic continuation argument completes the proof.

The arguments of the previous theorem can also be applied to the solution u of
the capacity problems (1.3) to obtain the following theorem.

THEOREM 3.2. If u is a solution of (1.3), then the length L(t) satisfies
1

(3.17) L. L"-p (L’) >=0’

i.e., (1/a)L is a convex function for ce (p-2)/(p- 1), p 2. Moreover the function
a (t) satisfies

2
(3.18) a’"a’--(a >-0,

P

i.e., (1//3)1a’1t is a convex function for fl =(p-2)/p, p# 2. Equality holds in (3.17) or
(3.18) for some if and only if all the level curves of u are concentric circles.

Proof Using normal coordinates, (1.3) becomes

(3.19) Au+(p-2)u,, =0.

So by (2.14) and (2.19) we have that

(3.20) h"=(p 1

1
2 2) -1, h,+ho, R
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from which it follows that

1
(3.21) htt>h,R-1

p-1

If we now replace (3.4) by (3.21), then arguments along the lines of the previous
theorem establish (3.17) and (3.18). [3

Remark. By (3.3) the inequality (3.4) holds for any subharmonic function u with
convex level curves and negative exterior normal derivative. So under this assumption
the inequality (3.1) holds; moreover, by (3.12) and (3.3) one can show that a"> 0.

Let us now consider the solution u to (1.4).
THEOREM 3.3. If U is a solution to (1.4), then

(3.22)
IL’(t)l

Equality in (3.22) holds for some - if and only if {u -} is a circle and IV u is constant
on {u }.

Proof Cattarelli and Friedman (cf. [4]) proved that u has strictly convex level
curves. Moreover, u, h- < 0 since to < t. So by (3.3) we get

h,, >- hR-1 +f( t)[h,I +3.

By integrating the above inequality on S and by using Holder’s inequality for the last
term, the same arguments in the proof of (3.1) prove (3.22).

We now show that (3.17) (respectively (3.22)) leads to a sharp upper bound for
the length, L(t) of the level curves of the solution u to (1.3) (respectively (1.4)).

Let Do and/ be two concentric circles with the same perimeters as Do and D.
We consider the radial solutions v to (1.3) or to (1.4) with the following boundary
conditions"

(3.23) v to on O/o, v t on O/.
We call v the L-symmetrization of u in Do-D.

THEOREM 3.4. If U is a solution of (1.3) or (1.4) satisfying (1.2) and v is the
L-symmetrization of u, then

(3.24) L(t)<-l(t)

where l( t) is the perimeter of the level circles {v t}.
Proof We first consider the problem (1.3). By (3.23) we have

l(to) L(to), l(t) L(tl).

Moreover by Theorem 3.2 we get that l(t) satisfies

1
(3.25) l(t). l"(t)--, l’(t) 2 0, 6 (to, tl).

p-1

Similarly for the problem (1.4) we get

(3.26) [log l(t)]" f(t) t)]
l(t----’ (to, tl).

By comparing (3.2;) and (3.26) with (3.17) and (3.22), respectively, and by standard
comparison theorems for differential inequalities (cf. [8]), we prove (3.24).
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We now wish to establish an upper bound for the area a(t) in the problem (1.31).
So let Do* and D* be two concentric circles with the same area as Do and D1. Let w
be the radial solution to (1.3), with the following boundary conditions:

W=to on0D*o, w=t on0D*.
We call w the a-symmetrization of u in Do-D1.

THEOREM 3.5. Let u be a solution of (1.3) and let w be the a-symmetrization

of u. If
(3.27) D1 is a circle,

then for any p >

(3.28) a"a- ---(a’)2>-O
9.(p-)

and

(3.29) a(t)<-A(t),

where A(t) is the area of the level circle { w t}.
Proof. First we prove (3.28) and (3.29) for p 2. Let us set

a"(t), a(t)-(a’(t))2

(3.30) M(t)
a(t)

By differentiating, (3.30) becomes

a’a" (a’)
M’--- a"’-2+ 2a a

Since a’< 0, we get from (3.2) that

and so

(a") a’a" (a’)
2+

a’ a a

a_(a"a -}a’)) a__( (a’)2- a’’a) M
a a a’

from which it follows that

(3.31) M’(t)<-_O.

Let us now compute M(tl). By (2.12), (3.11) and (3.13) we get

a" M=-(ffshXt dO) (IshedO)-(IshtedO) 2"
By assumption (3.27) we have R(., h) constant, say R1, and so

e’-i 27" h2t(O, tl) dO ht( O, tl) dO

Schwarz’s inequality implies that

M(tl) =>0.
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So by (3.31) we get M(t)->0, and (3.28) follows from (3.30) for p=2; by standard
comparison theorems (cf. [8]), (3.28) implies (3.29).

For p > 1, p 2, by replacing (3.30) with

M =_ [ a,,a P (a,)2]2(p-l)
a

where a 1/(p- 1), we can establish (3.28) and (3.29) by using arguments similar to
those for the case p 2. l-1

Remark. In Theorem 5.2 we prove that for p 2, in the case where (3.27) is
replaced by the Bernoulli condition (1.5), the opposite inequality of (3.28) holds. So
in general assumption (3.27) is essential for inequalities (3.28) and (3.29) to hold.

4. Isoperimetric inequalities for Green’s function. Usually the point of departure
in level set-analysis of a function u is the coarea formula (cf. [2, p. 52]):

(4.1)

where/z (t) is the distribution function of u, i.e., the Lebesgue measure of the level set
{u => t}. Moreover, applying Schwarz’s inequality to (3.25), the following inequality is
usually considered:

(4.2) I/x’(t)l--> ds IV u ds.

Let us now consider Green’s functions of the Laplace operator in a plane domain
D. It is of the form

1 R(y) +(4.3) g(x, y) =--- log ]X y
H(x, y),

where H is determined such that for fixed y D we have the following"
(i) g(x, y) 0 for x OD,
(ii) H(., y) is harmonic in D and continuous in D,
(iii) H(y, y) O.

R(y) is called the conformal radius of D with respect to y. Let us define D* as the
circle with the same area as D and with center at the origin of the coordinates and
radius R*. Let Dr be a concentric circle to D*, with radius Ry R(y). We consider
the functions g* and gy given by

1 R*
g*(x) -- log

Ixl’
(4.4)

1 Ry
gy(X) -- log ix-,

respectively. For fixed y, we denote the distribution functions of g(., y), g*, gy, by
/x(t), .(t) and Iy(t), respectively. By (4.3), (4.4) it follows that

tz(t) 7r(Ry) exp (-47rt) + o(exp (-47rt)),

(4.5) /x,(t) 7r(R*)2 exp (-4rt),

Iy(t)-- 7r(Ry)2 exp (-4-trt).

Since IVgl ds- 1 on any level curve of g, it follows from (4.2) that

(4.6) ]tz’( t)l >= Z( t).
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From the classical isoperimetric inequality we derive

(4.7) I/x’( t)] >_-- 47r/x (t),

and by integration (see also [2])

(4.8) /xy (t) _-< /x(t) _-</x, (t).

If D is a convex plane domain the following theorem is an improvement of the
inequality (4.7).

THEOREM 4.1. Let D be a convex plane domain and let y be a fixed point in D, then
the following differential inequalities hold"

(4.9) /z"’/z’ (/z")2 _-> 0,

i.e., log I/z’l is a convex function;

(4.10) /x"/x (/x’)z >- 0,

i.e., log/z is a convex function; and

(4.11) "--> 4rl’l.
Moreover D is a circle with center at y if and only if equality holds in (4.9), (4.10) or
(4.11 for some t.

Proof In [4] the authors prove that g has strictly convex level curves, so (4.9)
follows directly from Theorem 3.1. To prove (4.10) we can repeat similar arguments
to those in the proof of (3.28). Another proof of (4.10) follows by considering a
sequence um) of harmonic functions in D-D"), satisfying

u(") 0 on D, u(") C(’) on OD("),
where D(’) is a circle with center at y and such that

IV u (m)] 1.ds
D(m)

Indeed it is easy to see that u(m) approaches g when C()-oo. Now by applying
Theorem 3.5 to u (m) we get that any distribution function a(m) of u (m) is logarithmic
convex. Since/ limm_oo a(m), we derive that/ is also logarithmic convex. This proves
(4.10).

Finally (4.11) follows from (4.7) and (4.10). This concludes the proof. [-1

The following corollary follows directly from (4.10), by applying standard com-
parison theorems for differential inequalities (cf. [8]).

COROLLARY 4.1. Let 0 <-- to < t be fixed constants, and y a fixed point in D. Let Do
and D be the level sets {g >-to} and {g >--tl} respectively. If w is the a-symmetrization
of g in Do- D, then

(4.12) Ix(t) <= A( t) for (to, tl),

where A(t) is the area of the circle {w t}.
We now wish to establish a lower and an upper bound for the length L(t) of the

level curves {g t}.
Of course from the left-hand inequality in (4.8) and the classic isoperimetric

inequality we get

(4.13) 2rRy exp (-27rt) <_- L(t).

Unfortunately a similar argument does not apply to the right-hand inequality in (4.9)
which will give an upper bound for L(t). However, in the following theorem we give
an upper bound for L(t) which only depends on the perimeter Lo of D.
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THEOREM 4.2. Let D be a convex plane domain with perimeter Lo and let y be a

fixed point in D. Then L is logarithmic convex and

(4.14) L(t) _-< Lo exp (-27rt).

Equality holds in (4.14) if and only if D is a circle centered at y.
Proof. As in the proof of the previous theorem we have that g has strictly convex

level curves. So Theorem 3.1 applies and log L is convex. Moreover, by (4.8) it follows
that

log/.Ly :< log / ----< log /X,.

Since log/x is convex and log/Xy, log/, are linear functions with slope -47r, it follows
that

From (4.5) and the previous equality we have that

and so from (4.6),

lim
I’(t)l 47rZR2

,--+ exp (-4rt) Y’

L(t)
lim <- 2rRy.
t-/ exp (-2rt)

By logarithmic convexity properties of L and the previous equality we derive (4.14).
5. Optimal conductors. In [10] the following result is proved: given a convex

domain D and a constant ), > 0 there exists a unique convex domain Do D1, such
that the solution u to (1.1), (1.2) satisfies the Bernoulli condition:

(5.1) IVul y on ODo.
This problem arises in optimal conductors and in some classic free boundary problems
(see 1 ]).

The results of 3 can be applied to obtain isoperimetric inequalities for the optimal
conductor Do-D1. For simplicity, let to 0, t 1 in (1.2). So the logarithmic capacity
of Oo- D is given by

(5.2) C IVul as,
Do

and the constant y in (5.1) is given by

(5.3) r=C/Lo,
where Lo is the perimeter of ODo.

THEORE 5.1. Let Lo, L be the perimeter, and Ao, A be the area ofDo and D,
respectively.
e logarithmic capacity C of the optimal conductor Do-D satisfies the following

1 1 Lo--->log(5.4)
C -27r 1’
1 1log [ Lo2 ](5.5) - <-- 4"-- Lo2- 47r-o- A,)

Equality holds in (5.4) or (5.5) if and only ifDo-D is a circular annulus.

inequalities:
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Proof By logarithmic convexity of the function L(t), Theorem 3.1, we have

(5.6) log L(1)->_ log L(0)+L(O)"

Moreover by (3.5), (5.1)-(5.3) we have

(5.7)
L’(O) 27r.
L(O) C

Now (5.4) follows by (5.6) and (5.7).
Similarly by Theorem 3.2 we derive

a"(0)
(5.8) log la’(t) -> log la’(O)l +a’(O)
and from (3.11), (3.12) we have

47rLo2(5.9) la’(O)l =-, a"(O) C

So by integrating (5.8) and by the equalities above, we get

Ao-AI=4[.
Inequality (5.5) is proved now by solving for 1/C in the inequality above.

Remark 5.1. The length Lo in (5.4) and (5.5) is not explicitly given, since Lo is
the length of the free boundary ODo.

Moreover, by computation one can show that the upper bound given in (5.5) for
1/C is less than in Carleman’s inequality:

1 1 Ao(5.10) ----< log.
C 47r

In the following theorem we give an explicit isoperimetric inequality for the free
boundary ODo.

THZOREM 5.2. If U is a solution to (1.1), (1.2), satisfying (5.1), then

(5.11) L2o-aTrao<= L-aTral
Moreover, the following differential inequalities hold"

(5.12) (L2- 47ra)’ >- 0,

(5.13) a"a -(a’)2<=O,

i.e., a is a logarithmic concave function. Equality holds in (5.11), (5.12) or (5.13) if and
only ifD is a circle.

Proof We obtain (5.11) by comparing the two terms on the right-hand side of
(5.4) and (5.5). More simply, (5.11) follows by (5.12) which we now prove. In fact,
let us set

(5.14) G(t)=- L(t)-4ra(t).
Since log L is convex (Theorem 3.1) we have that L’/L is increasing and by (5.7)

-27r
(5.15) L’(t)>----c--L(t).



ISOPERIMETRIC INEQUALITIES FOR LEVEL CURVES 389

So by (5.14)

G’( t) >_ -47r[ L2( t) + a’( t) ]C

Inequality (5.12) follows now from (4.2) and the inequality above.
Finally to prove (5.13) we consider the function M defined by (3.30). By (5.9) we

have

M(O)=(4zrL-Ao- L 1

C C2]Ao"
So by classical isoperimetric inequality M(0)_-<0 and by (3.31) we derive M(t)-<0,
which implies (5.13). [3

Finally, let us observe that: for the solution u to (1.4), and satisfying (5.1), the
inequalities (5.4) and (5.12) hold. (5.4) and (5.13) also can be extended in a suitable
form to the problems (1.3) satisfying the Bernoulli condition (5.1).
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Abstract. It is shown that under specific conditions the limiting distribution of "i=1 UiZi will be a
uniform distribution on the unit disk where z, , Zk are increasingly dense points on the unit circle and
u=(ul,’", Uk) has a Dirichlet distribution. More general circularly symmetric distributions are also
obtained as such limits. This is motivated by a new representation of starlike functions as expectations over
the unit disk. A new kind of characteristic function and its convergence theorem are used.

Key words. Dirichlet distribution, spherical distributions, Carlson’s R, convergence theorem about
d-transformation, d-characteristic function
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1. Introduction. The study ofunivalent and starlike functions of a complex variable
provides a motivation in 2 for the problem of the limiting distribution of a linear
function of a Dirichlet vector. This problem is also of intrinsic interest in probability
theory as the distribution of the empirical mean of a Dirichlet random process on the
circle as index set. In 3, we define new kinds of characteristic functions. We show
that they have properties similar to the properties of the traditional characteristic
function. We use these properties in 4 to determine the limiting distribution of a
linear function of a Dirichlet vector, under some regularity conditions, as the coefficients
grow increasingly dense on the unit circle.

2. Motivation. Let S be the full class of functions that are analytic on the open
unit disk, one-to-one and normalized (i.e., f(’)= st+ a22+ a33, where r is a
complex variable, f(0)= 0, and f’(0)= 1). The recently proved theorem of Bieberbach
(de Branges (1985)) states that iff S, then ]a,] =< n for n =0, 1, 2,.... Further define

f as a starlike function if and only if tw belongs to the range of f for any [0, 1]
and any w in the range of f. If we let S, be the set of starlike functions, then St is a
subset of S. We have the following well-known representation theorem (see Schober
(1975, Thm. 2.13, p. 12)).

THEOREM 2.1.

(2.1) seS, c,s()=.exp -21og[1-(exp(iO))]du(O)

where u is some probability measure on [0, 2r).
Consider the case that the measure u is discrete (the corresponding functions s

are dense in St), and assume that

We then have

,({0g})=tg, l<=j<=k, tg>0 and E tg=l.
j=l

(2.2)
s(r) I-I (1 zg’)-2

where zj exp (i0). We shall derive a new representation for such s(r).
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DEFINITIONS. The random vector u is said to have the Dirichlet distribution D(b)
with parameter b (bl, , bk)’, where every bi > 0, if u has the density in any k- 1
of its coordinates,

k

(2.3a) f(u; b)= B-l(b) I ub’-,
i=1

for all u in the probability simplex {u: each ui _-> O, u. 1}, where u. u +. + Uk, and

k

B(b) 1-I r(b,)/r(b.).
i-----1

Following Carlson (1977), define Rn(b, z) as the nth moment of the random variable
O jk=l UjZj, where u D(b),

(2.3b) Rn(b, z) E 0 E (u. z) n.
ulb ulb

For a discussion of the relationship between Carlson’s R functions and starlike
functions see Carlson and Shaffer (1984).

LEMMA 2.2 (Carlson (1977, p. 143)). Let b Rk, Z Ck, C (R is the real line,
C is the complexplane andRk and Ck are the kth Cartesianpower ofR and C, respectively).
Assume that maxl__<j_<_k tzj[ < 1. Then

k

(2.4) f(t)=- I-I (1-itz)-b= in" tn" (b.,n____)Rn(l,z)
j=l n=0

using Appell’s notation,

(b., n)= F(b.+ n)/F(b.)= b.(b.+ 1).-. (b.+ n- 1).

The following lemma can be proved by using the previous lemma and the following
equation:

(2.5) (l_y)-a=7o(a,n)n! Y’

for every real number a and lYl < 1.
LEMMA 2.3. Let tXb be a Dirichlet measure with parameter b= (2tl, 2t2," ", 2tk)’

where t’s > O, and Y’. t 1. Then for any in the unit disk, if z (Zl, ", Zk)’ and the

z’s are points on the unit circle,

(2.6) I-I (1-zjsr) -2t= [1-(u. z)sr] -2 d/zb(U),
j--1

where E is the probability simplex {u: each ui >= 0, u. 1}.
By Lemma 2.3 and Theorem 2.1,

(2.7) sr" f [1-(u" z)’]-2 dtxb(u)

is a starlike function for the case of discrete z, (2.1) and b. 2. We remark that
Bieberbach’s theorem is straightforward for any function (2.7). This motivates our
consideration of the following problems.

Our aim is to find the limiting distribution of Ilk. Zk. ,jk__ UkjZkj as k--> oo, where
Uk." O(bk.) and the Zk’S are points on the unit circle. If the set of Zk’S for specified
k becomes dense on the circle as k increases, then our Dirichlet distribution has a
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Dirichlet random process on the circle as limit in distribution (Ferguson (1973)). Thus
the limiting distribution of our random sum is also of interest as the distribution of
the empirical mean of a Dirichlet random process.

3. d-characteristic functions. Lord (1954) shows that a spherical distribution is
determined by its marginal distribution. We shall show that under specific conditions,
the limiting distribution of Uk. "Zk. is spherically symmetric. Therefore, we need only
to find the limiting distribution of the real part of Uk. "Zk. (that is, Uk. Xk. where each
Zkj Xkj + iykj ).

One traditional method of finding the limiting distribution of a sequence ofrandom
variables is to find the limit of the corresponding (traditional) characteristic functions.
But this method seems overly complicated for dealing with our problems. Therefore,
we use the following alternative characteristic functions. For convenience, we shall
call these d-characteristic functions.

Let

(3.1) g(t; W, d)= E[(1-- itw)-d ], It]<, d>0,
W

where W is any random variable on [-1, 1]. More generally, for any finite measure
with supports in I-a, a l, we define the d-transformation of/x as

(3.2) rid (t) (1 itx) -d dtz(x), Itl < a -1, d > O,

where a is a positive real number. We will show there is a one-to-one correspondence
between rid(t) and

LEMMA 3.1. For any finite measures tx and with supports in [-a, a] and any
positive real number d, if we have

(3.3) 12d(t)= d(t),

for all tl < a -, then tx ’.

Proof. Expand the integrands by (2.5), equation (3.3) is then equivalent to the
following equation:

(d, n) f_’(a,n) t". .Y" ni i". x d/z(x)= i". x dr(x)
nO nO t

for all Itl<a-. If we regard as variable, then after equating (for each n) the
corresponding coefficients of t" in the two sums, we have

(3.4) P(x) dl.e(x)= P(x) d,(x),

where P(x) is any polynomial function, and similarly for any continuous function.
This implies that/x--,.

LEMMA 3.2. If Uk. D(bk.), Uk. (Ukl ", lgkk)’ bk. (bkl, ", bkk)’, bk.
jk= bkj and Wk Uk. "Xk., then

(3.5) g(t; Wk, d)= R-d(bk. 1 --itXkl ,’’’, 1 itXkk)

where g is defined by (3.1).
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Proof

g( t; W, d)

E Ukj(1--itxkj)
uk. bk.

R-a(lk. 1 itxkl, ", 1 itxkk).

The last identity follows from the definition (2.3b).
The following corollary can be shown by formula (6.6.5) in Carlson (1977).
COROLLARY 3.3. Let c bk.--jk= bkj, then

k

(3.6) g(t; Wk, c)= I-I (1 -itXkj)-b,.
j=l

We give the important convergence theorem about d-transformations. This is
analogous to the corresponding convergence theorem for the Fourier transformations.
Before we state the theorem, we need to give the following definitions and lemma.

DEFINITIONS. Let 1) be a measured space,/x is a measure on f. Then/x is called
a subprobability measure (s.p.m.) if/x(f) _-< 1. An interval (a, b) is called a continuity
interval of/x if and only if/x(a, b)=/z[a, b]; in other words neither a nor b is an
atom of/x. A sequence {/x,, n ->_ 1} of s.p.m.’s is said to converge vaguely to an s.p.m.
/x if and only if for every continuity interval (a, b] of/x, we have/x (a, b] -/x (a, b].
This will be denoted by

LEMMA 3.4. Iftx and the tz,’s are s.p.m, with supports in [-a, a and ix, - Ix, then

(3.7) Ian(t)ld(t) /d>0 and

where is defined by (3.2).
Proof By Theorem 4.4.1 of Chung (1974), we have

f (1--itx)-ddtz,(x)--f (1--itx)-ddtx(x, ’q’d>0 and Itl<a -1.
JJRR

Given d then by Lemma 3.1, subprobability measures have a one-to-one correspon-
dence with their at-transforms.

Now we are ready to give the following convergence theorem.
THEOREM 3.5. Given d, assume the subprobability measures tx, txl, Ix2,"" (with

supports in [-a, a]) correspond to i d t), 12d t), 12d2 t), ", respectively. Ifforall Itl < a-
(3.8) 12 a -12 a as n - o,

then

(3.9)

Proof For any s.p.m, sequence {/x,}, by Theorem 4.3.3 of Chung (1974), there is
a subsequence that converges vaguely to an s.p.m, say /x, - A, as nk o. Then by
Lemma 3.4, /2,dk(t) d (t), for all Itl < a -. By (3.8), we also have /Z,k(t)’Ad/2 d (t), for
all It]<a -1. Therefore, we have d(t)=t2d(t), for all Itl<a -1. By the uniqueness
property of Lemma 3.1, we have A =/x. Therefore, we have/x, -/x, as nk . If there
is another vaguely convergent subsequence of {/x,} converging to 4’, then, by the same
arguments as above, q =/x. By Theorem 4.3.4 of Chung (1974), this proves



394 JYH-MING JIANG

4. Limiting distributions. Before proceeding with an application of Theorem 3.5,
we need to have the following definitions and lemmas. Define a sequence of random
variables {Xn} to converge in distribution to X if and only if the sequence {/xn} of
corresponding probability measures converges vaguely to the probability measure /x
of X.

Regularity conditions. Given c > 0, b {bkj k >- 2 and 1 <=j _<- k} and z {zkj k >- 2
and 1 <-j <-k}. If b satisfies the following properties:

k

(A) bk. bk;=C Vk=>2,
j=l

(B) Bk= max bk-O ask,
l<--jk

and z satisfies the following properties"
(C) Zk lies on the unit circle with center at (0, 0),
(D) Ok-I <= arg Zkj < Okj, 1 <=j <-- k and for all k -> 2,

where Oko O, Ok (2r/C) J,,= bk, and arg Zkj denotes the argument of Zk, then we
say that b and z satisfy the regularity conditions. Notice that condition (B) is needed
for the next lemma in the transition from a Riemann sum to an integral.

LEMMA 4.1. If Uk. D(bk.), Wk6 Uk." Z chk. and the regularity conditions (A)-(D)
hold, where Zk COS (arg Zk-d? ), we then have

(4.1) lim g( t; W c) [ 2 ]k- l+/l+t2

where g is defined by (3.1).
Proof. By Corollary 3.3, we have

k

g(t; W, c)= H (1-it cos(argzk-b))-%.
j=l

Therefore,

lim g(t; Wk, c)=exp 71j E bkj In (1-it cos (arg zkj-q))
k-o j=l

exp -- In (1 it cos (0 4)) dO

exp -(2)- ln(1-icosO) dO

Since In (1 it cos O) In I1 it cos O + arg (1 it cos O) and arg (1 i cos O)
arg 1 i cos (2 0)), we have

Io lloIn (1- it cos #) d# = In (1 + cos #) dO

l+l+t
=2ln

2

The last identity is obtained by Formula 322.12b of Gr6bner and Hofreiter (1973).
If we rotate axes counterclockwise through an angle b, where 0=< b < r, then z

will be the projection of zk on the new first coordinate. Therefore, W is the first
coordinate with respect to rotated axes through an angle b (counterclockwise) and
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W--Uk. "Xk.. Notice that (4.1) holds for any real numbers c and the right-hand side
of (4.1) does not depend on 4); that is, the limiting function of c-characteristic functions,
g(t; Wk, C), does not depend on b, the angle corresponding to the transform of the
marginal distribution W, under the regularity condition (A)-(D).

In the next lemma, we show that V (X, Y)’ has a spherical distribution if the
first coordinate of any rotational transform of V has the same distribution as X.
Therefore, under the regularity conditions (A)-(D), Lemma 4.1 together with the next
lemma show that if Uk. "Zk. has a limiting distribution this limiting distribution is a
spherical distribution.

LEMMA 4.2. If the distribution of W4" X cos th + Y sin b, where 0 <- dp < 27r, does
not depend on dp (that is, W.-- W for ch ch), then V=(X, Y)’ has a spherical
distribution.

Proof For any t (q, t)’ 0, there is one and only one pair (p, b) such that
t p cos b, t2 p sin b, p > 0 and 0_< b < 27r. The characteristic function ofV (X, Y)’
is

c(t) E[exp (i(fiX + t2 Y))]

E[exp (ip(X cos b+ Y sin b))]

E[exp (ipW6)].

Since W4’s have the same distribution for any b, c(t) depends on t only through/9.
But /9

2-- t21 + t22, i.e., p (t’t) 1/2, and V has a spherical distribution if and only if c(t)
depends on t only through t’t. This completes the proof.

LEMMA 4.3. Let 71 (X1, YI)’ and 72 (X2, Y2)’ be two random vectors, whose
first coordinates with respect to rotated axes through an angle qb are W61 and W62,
respectively, where 0 <- qb < 27r. Wefurther assume that W W62for any oh. Then 71 72.

Proof We denote the characteristic functions of V1 and V2 as c(t) and c2(t),
respectively. By the uniqueness of the characteristic function, we will complete the
proof by showing that cl(t) c2(t), for any real number pair t. For any t= (tl, t2)’ 0,
there is one and only one pair (p, b) such that t =/9 cos b, tz--p sin b, p > 0 and
0 b < 27r. We have

c;(t)= E[exp (ipW)] forj= 1,2.

But, since W W, we therefore have el(t)=
LEMMA 4.4. For any c > O, let Z (X, Y)’ be a vector random variable on the unit

disk with its probability density function

(4.2) (c/r)(1 x2 y2)C-1, 0 _-< x2 + y2 < 1.

Furthermore, let be the first coordinate with respect to rotated axes through an angle
b (i.e., 6 X cos b + Y sin b), where 0 <- ch < 27r. Then the c-characteristic function
of2 is

(4.3) g(t; , c)= l+(l+t2)/2

Proof Without loss of generality, we need only to prove that (4.3) holds for th 0,
that is,

g(t;X,c)= l+(l+t2) 1/2
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The probability density function of X is

Io2 (1-x2-y2)c-’ dy= (l-x2) c-’/2 t-’/(1-t)-’ dt

(4"n’)(1- x2)’:-’/:B (-, c)
=(1-x)-/ B c+, -l<x<l.

The first identity follows by letting y= tl/(1-x2) 1/. The c-characteristic function of
X is

g( t; X, c)= (1 x2) -’/ (1 -itx) B c +- dx
2’

=R_ c+,c+;l+it, l-it

l+(l+t)/

The second and third identities can be obtained by using Exercises 5.1-3 and 6.10-12
in Carlson (1977). This completes the proof.

We have the following theorem on limiting distributions of linear combinations
of Dirichlet vectors under the regularity conditions.

THEOREM 4.5. Under the regularity conditions, the sequence ofthe random quantities
uz, where . D(.), converges in distribution to a spherical distribuion having

probability densicy function (4.2).
Proo By Lemma 4.1, Lemma 4.4 and Theorem 3.5, the sequence of the distribu-

tions of the real pa of uz converges in distribution to the marginal distribution
of a distribution having probability density function (4.2). By Lemma 4.1 and Lemma
4.2, the limiting distribution has a spherical distribution. Lord (1954) shows that a
spherical distribution is determined by its marginal distribution. This completes the
proof.

An alternative proof is given directly by Lemma 4.1, Lemma 4.4, Theorem 3.5 and
Lemma 4.3.
CooA 4.6. Assume the regularicy condiions hold and denoce V=

limjl UkjZkj, where c b.. en
(a) V follows a uniform distribution on the unit disk with center (0, 0).
(b) V follows the circularly symmetric distribution on the unit disk wich probability

density funcion
f(x, (/( rl, o < ,

where r x + y.
(c) Consider the limits in distributions,

lim Vc U, lim V
C0

Then U has a uniform distribution on the unit circle and V has a point mass on the origin
(0, 0).

COROLLARY 4.7. If we hae, for all k,

(4.4) b 1/k, 1 <-_j <- k so bk - 1,
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and Zkl, Zk2, ", Zkk are the kth roots ofunity, then the limiting distribution of jk= UkjZk,
where Uk." D(bk.), will be a uniform distribution on the unit disk with its center at the
origin.

Define the probability measure o(v) on the unit disk by

x) dx dxdo(v)=(2/Tr)(1-xl-

where v x + ix2. By (2.7), Corollary 4.6(b) and the regularity conditions, we have
the following theorem.

TIaEOREM 4.8. The starlike function with representation (2.1) with uniform measure
u can be expressed by

(4.5) ’. f (1 +vsr)-2 dO(v).

The more general starlike functions with representation (2.1) in terms of a
more general measure v would seem to be amenable to study through the Dirichlet
random process, a random set function parameterized by a general probability measure
(Ferguson (1973)).
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ON THE REDUCTION OF CONNECTION PROBLEMS FOR
DIFFERENTIAL EQUATIONS WITH AN IRREGULAR

SINGULAR POINT TO ONES WITH ONLY REGULAR SINGULARITIES, II*

W. BALSER, W. B. JURKAT:, AND D. A. LUTZ

Abstract. Our purpose is to investigate lateral and central connection problems for systems of linear
differential equations near an irregular singularity. In Part [SIAM J. Math. Anal., 12 (1981), pp. 691-721]
we showed how the lateral connection problem can be solved using some associated functions constructed
from a formal fundamental solution. Here, we generalize the associated functions by introducing a complex
parameter and show how certain values of these functions can be used to construct solutions in so-called
Floquet form. We also show how the coefficients of the formal series can be asymptotically represented
using other associated functions and how the central connection problems for the Floquet solution can be
solved. We conclude with an application of the main results to the global solution of a rationalized form
of Mathieu’s equation that has two irregular singularities.

Key words, connection problems, irregular singularity, Floquet solutions

AMS(MOS) subject classifications. 34A20, 34C20

Introduction. We consider systems of linear differential equations of the form

(0.1) x’: A(z)x (o ApZ-P)x
where x is an n-dimensional column vector, the leading coefficient matrix Ao has all
distinct eigenvalues A1, , A,, and the power series converges for Izl > a -> 0. We will
refer to these later on as our basic assumptions.

The classical theory of differential equations near an irregular singularity (see [4]
or [18]) asserts that there exist formal fundamental solutions and two types of actual
solutions that we term normal solutions and solutions in Floquet form. The global
solution of (0.1) involves determining how the normal solutions are related to each
other (lateral connection problem) and how the normal solutions are related to solutions
in Floquet form (central connection problem). Our purpose here is to show how these
connection problems can be solved with the aid of some associated functions that are
constructed using the formal solutions.

Of these types of solutions, the formal ones are by far the easiest to construct (in
general). There exist, as is well known, formal fundamental solutions of the form

(0.2) H(z) F(z)zA’ eAZ, F(z) E FpZ-p,
o

where A =diag {A1,’’", A,}, Fo is any invertible matrix satisfying FIAoFo A, A’=
diag {FAFo}= diag {A ’, A’,}, the coefficients Fp are uniquely determined for
p => 1 (once Fo is selected), and they can be calculated in a straightforward, recursive
manner using only arithmetical operations. In what follows, we will assume that such
a (fixed) formal fundamental solution has been constructed and we will base our
subsequent discussion and calculations on it.
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Next, using the classical asymptotic existence theorem, one can show that there
is a family of actual solutions {X(z)} (which we call normal solutions) and a covering
of the Riemann surface of log z, Izl> a, by sectorial regions {S} (which are slightly
larger than half-planes) such that X(z)-H(z) as z, z $, for every integer ,,
and the X(z) are even uniquely determined (individually) by this condition. (In Part
I of this paper, reference [1], we showed how normal solutions can be constructed
either using Laplace transforms of the associated functions or by summing the formal
series as a factorial series.)

Finally, a well-known classical result (analogous to Floquet’s theorem for differen-
tial equations with periodic coefficients) asserts that every fundamental solution X(z)
may be expressed in the form

(0.3) X(z)=I(z)z,
where L(z)=+Lp_ zp is single-valued and analytic in a <lzl< and the constant
matrix M is called a monodromy matrix. We say that such a solution is expressed in
Floquet form.

In light of these facts, it is natural to consider the following connection problems,
which explain the global behavior of solutions:

(i) Given two consecutive normal solutions, determine the constant matrices V
(called the Stokes’ multipliers) that satisfy

x._,(z)=X(z)V..

(ii) Given a solution X(z) in Floquet form, determine its asymptotic as z o,
z S, i.e., find the central connection factors 12 defined by

X(z)=X(z).

(iii) Given a fundamental solution matrix with a known asymptotic near o, say
one of the normal solutions, express it in Floquet form, i.e., determine a monodromy
matrix and the corresponding Laurent coefficients.

Using the fact that the normal solutions (and hence the Stokes’ multipliers are
uniquely determined by the selected H(z), one can conclude that there should exist
relations (at least in an abstract sense) between the quantities in H(z) and the Stokes’
multipliers. Likewise, since a selected actual solution (say in Floquet form) and H(z)
uniquely determine the central connection factors, there ought to exist relations between
these quantities as well. Our objective is to construct some concrete relations of these
types; more specifically, our main results concern representation formulas for the
formal and Laurent coefficients, which can be applied to solve the connection problems.

The derivation of these results depends upon developing and applying properties
of some generalizations of the associated functions we have considered in [1]. They
not only interpolate the coefficients in the formal series, but are also a natural and
convenient way of assembling the information present in the formal solution that is
relevant for our problems. The particular associated functions we construct now also
involve a complex parameter s, corresponding to the "shifted" equations

x’s=(A(z)-sz-lI)xs
that are obtained from (0.1) by the transformation x xsz. In addition to studying
their analytic properties and connection phenomena in the variable t, we also require
their analytic and asymptotic properties with respect to s.

Aside from this direct role that the parameter plays in our results, it also has a
more indirect, unifying role through the discussion of a nonstandard type of difference
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equation which the associated functions satisfy and whose appearance we motivate as
follows.

For the often-studied case of the "two-term" differential equation

(0.4) x’=(Ao+AlZ-)x,
one constructs the corresponding system of linear difference equations (in the variable
s and parameter t)

(0.5) s(s + 1, t)+ t(s, t)= Ao(S, t)+ Al(S + 1, t),

which has central importance because both the columns of the coefficients Fp in the
formal series as well as the columns of the Laurent coefficients Lp (in case A has
incongruent (mod 1) eigenvalues) are special solutions for appropriate values of s and
t. For example, for a suitable solution of (0.5), c(h-p+ 1, hk)=fk(p), the kth
column of Fp, while (for a generally different ) sc(/xj +p+ 1, 0) lj(p), the jth column
of Lp (when/1," ",/, are the eigenvalue of A and M diag {1,. .,/zn}). Using
this correspondence, Okubo [15] and Kohno [14] have derived relationships between
the coefficients of the formal series, the Laurent coefficients, and the central connection
factors. (See also Hopf [8] and Knobloch [12].) R. Sch/ifke [17] has also considered
connection problems for (0.4) and has derived relations which involve both the lateral
and central connection problems. Some of our results may be thought of as extensions
of these to the "general" case (0.1). Our methods are closer to Schifke’s than Okubo
and Kohno’s, which rely much more heavily on the interplay with the difference
equation.

For a "general" equation (0.1), one can also analogously consider the "difference
equation" (in the variable s and parameter t)

(0.6) s(s+ 1, t)+ t(s, t)=E A(s+ v, t).
o

Even in this case it is easy to see that both fk(P) and l(p) are (at least in a formal
sense) solutions of (0.6). While the vectors fk(P) can still be recursively calculated
from (0.6) (note that the series on the right-hand side terminates because fk(P)= 0 for
p < 0), the same is not true for the coefficients/(p) of the Laurent series. This happens
because, in general, the Laurent series is a doubly infinite series and one is led to an
infinite system of coupled linear equations for which no procedure to recursively
calculate the terms is known. Von Koch [13] has applied the theory of infinite
determinants to the study of these equations, leading to an approximation of a
Floquet-type solution, but his method appears to differ substantially from the approach
we take to construct Floquet solutions. (On the other hand, our approach is restricted
to equations with a pole type singularity, while the procedure of von Koch applies,
in principle, to cases where A(z)=-o ApZ-p.)

Analogous to the case of (0.5), we call (0.6) a difference equation of modified first
order. In contrast to (0.5) where the asymptotic theory of linear difference equations
applies, it is somewhat surprising that certain explicit solutions of (0.6) can be construc-
ted that have a known asymptotic, both as Re s + (Proposition 4) and Re s

(Proposition 5). In fact, the connection problems we consider can all be rephrased in
terms of connection problems for particular solutions of (0.6). But the difference
equation plays a more indirect role in our development because it may have many
other solutions than the ones we consider, which seem to have no relevance to the
differential equation. One reason behind the fact that we can construct particular
solutions to (0.6) and discuss their complete analytic and asymptotic behavior is that
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there exists a Birkhott reduction (see, e.g., [1] for the definition) taking (0.1) into some
equation of the form (0.4) (but not with the same Ao and A1). The Birkhott transforma-
tion can be carried over to relate certain solutions of (0.6) and corresponding ones of
(0.5). But solutions of (0.6) that grow too rapidly (as Re s--> +) cannot be thus
transformed and one can see that only a certain n-dimensional subspace of solutions
of (0.6) can actually correspond to solutions of (0.5).

As a final remark, we wish to alert the reader to the following situation: The values
of the analytic continuations of the associated functions and the constants entering
their connection relations play a key role in our calculations. Since the associated
functions have, in general, branch points at a 1,..., a,, it is necessary before making
their continuations to cut the plane near these points and specify a value for arg (t Ak)
for close to Ak. The values are then strongly dependent on which system of cuts is
used. For each particular application, we choose a system of cuts that most easily
allows the quantities entering the relations to be identified as, for example, certain
Stokes’ multipliers or central connection factors. Thus in 2-5 we use one type of
cuts for the lateral connection problem, whereas in 6 and 7 we use another type for
the central connection problem. Both of these differ from the systems of cuts we used
in [1], which were particularly convenient for integral representations.

1. Some relations between the connection matrices. Throughout this paper we
consider a fixed, but arbitrary, differential equation (0.1) satisfying our basic assump-
tions in the Introduction. We also make a fixed, but arbitrary, selection of an enumer-
ation of the eigenvalues A,. ., A, of Ao and consider any fixed formal fundamental
solution matrix H(z) of the form (0.2). Such an H(z) always exists and is unique up
to a constant invertible diagonal right-hand factor D. The freedom in the choice of
H(z) corresponds exactly to the choice of F0.

Letting {Xy(z) } denote the normal solutions corresponding to H(z) and (Vy), the
associated Stokes’ multipliers, one sees that the circuit factor e2riM for Xy(z) (defined
by X(z e2i)= Xy(z) ei4) is given by

(1.1) e2riM e2riA’vv+m Vy+

(compare [3, Part II, Prop. 4]).
Remark 1.1. If we fix an arbitrary system of representatives modulo one for

the complex numbers, then there always exists a matrix My having its eigenvalues in, such that (1.1) holds, and in fact My is unique (to see the uniqueness, one can use
a proposition in [10, p. 38]). From Vy+,, e-2rriA’gy e2rriA’ [10] we conclude

e2riM Vy e2zriM’-’ V- 1,
i.e., a possible choice for My_ having eigenvalues in is V-MyVy, and from the
uniqueness stated above we conclude that

(1.2) My_ V- MyV for every v.

According to (1.2), the Jordan canonical form of My is independent of v and may
be denoted by M. Then M is unique, if we choose it to be upper triangular and assume
its blocks ordered according to some arbitrarily fixed rule (see [10], p. 34). If we
replace H(z) by H(z) D (with D as above), then Vy resp. My are replaced by D-VyD resp. D-IMyD; hence, M is even independent of the choice of H(z) and therefore
corresponds uniquely to the differential equation (0.1).

According to the above construction, there exists a fundamental solution matrix
X(z) for (0.1) having M as a monodromy matrix, i.e.,

(1.3) ()=X(z)TM
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is single-valued and analytic in [z[ > a. Such a fundamental solution is determined up
to a constant, invertible, right-hand factor C that commutes with M (using again the
proposition in [10, p. 38] or Lemma 1 of[3, Part I]). For each such X(z), there exists
(for every integer u) a constant invertible matrix fly called the ,th central connection
factor of X(z) such that

(1.4) X(z) Xy(z)fy, Iz[> a.

(If X(z) is replaced by X(z)C with C as above, the y is to be replaced by
Remark 1.2. It follows immediately from the preceding discussion that the

knowledge of the matrices

e2’iA’ Vy+I Vy+m

for any fixed, but arbitrary, , determines a solution X(z) in Floquet form and its
central connection factors up to within their natural degree of freedom. To see this,
let My denote the unique matrix satisfying (1.1) (with its eigenvalues coming from Y).
If ’o is an arbitrarily fixed integer and fyo is any invertible matrix satisfying

-1M 1 yo Myofyo,

define

X(z) Xyo(Z)fyo, Iz[> a.

Then (1.4) determines the matrices ly for every integer u, and it is clear from the
definition of Vy that

(1.5) y Vyy-1

for every integer u. From the definition of M we find that L(z)= X(z)z-M is single-
valued and analytic in Izl > a; hence, it has a Laurent expansion. We shall show later
(in 6 and 7) how the Laurent coefficients may be calculated using generalizations
of the associated functions considered in [1].

Since M is selected in some particular Jordan form with its eigenvalues from a
fixed system of representatives modulo one, then fy satisfying

e2riM -1 e2iM

is determined up to a right-hand inveible factor that commutes with e:= (i.e. with
M). This corresponds exactly to the freedom in the choice of a fundamental solution
X(z) for which X(z)z- is single-valued.

It is clear from (1.4) and the definition of V that the knowledge of two consecutive
central connection factors determines a Stokes’ multiplier. We now show that any one
central connection factor together with the knowledge of the circuit factor e=
determine all the Stokes’ multipliers and consequently all the other .

POpOSTION 1. Consider afixed, but arbitrary, differential equation (0.1) satisfying
our basic assumptions and any selected formal fundamental solution matrix H(z) as
above. Let X(z) denote an arbitrary fundamental solution matrix of (0.1) and assume
that the circuit factor e2iM (with M not necessarily in canonical form) is known along
with one central connection factor for any fixed, but arbitrary integer . en the
formal circuit factor e2iA’ and all the normalized Stokes" multipliers , -< < +,
can be explicitly computed; hence, all the remaining central connection factors 1 can be
explicitly computed (without using the differential equation).

Proof Using (1.4) with z Zo and z Zo e2i we obtain

(1.6) e2iM e2iM e2iA’Vu+m V+
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For convenience in this argument, we may assume that 11, A are enumerated so
that (with /x m/2) the matrices V+m,’" ", V+,+I are all upper triangular while
V+,,. , V+I are all lower triangular (cf. [1, 3]). Then

U V+,,. V+,+I, resp. L V+,. V+I,

are also upper, resp. lower, triangular matrices and both have all ones on the diagonal
(since all the V/have ones on the diagonal), hence (1.6) shows that 1 e2=ia4O can
be factored as e2iA’UL. Whenever such a factorization is possible, it can easily be
shown that the factors are unique since the diagonals of U and L are prescribed.
Moreover, the factors e2riA’, U and L can be explicitly calculated using only arithmetical
operations (see [6, p. 33] for the explicit formulas). From U and L, all the components
V+,,. , V+I can be uniquely calculated (see [10, p. 80]) and using

(1.7) V/+, e-2=iA’vI e2=iA’

for every integer l, we obtain the complete collection of Stokes’ multipliers and
consequently all the other fl from (1.5).

Remark 1.3. As mentioned in the Introduction, for a differential equation (0.4)
one can always calculate a Floquet solution in a straightforward manner since 0 is a
singularity of the first kind. In such a case the central connection problem is reduced
to the calculation of a corresponding matrix f for any fixed integer u. Proposition 1
then tells us that all the lateral connection matrices and all the other central connection
matrices can be explicitly calculated with arithmetical operations.

Suppose that a fixed solution X(z)= L(z)z4 in Floquet form is known, say with
M in a particular Jordan canonical form and whose eigenvalues come from a fixed
system of representatives. If we also know one of the matrices My (for some fixed
integer u), then (1.6) was seen to determine f up to a right-hand invertible factor
that commutes with M, and the computation off modulo this freedom is an algebraic
problem. Moreover, as a consequence of Abel’s formula

(1.8) Z
trM det L(z)--ceztrAztrA’exp tr A

,-12

(with a nonzero constant c) we now show that det f is also determined.
PROPOSITION 2. Consider afixed, but arbitrary, differential equation (0.1), a selected

formalfundamental solution H(z) as above, and a given solution X(z)= L(z)z 4. If f
satisfies (1.4), then

Z
trM det L(z) =det Fo det "uZtrA’ eztrA exp -Y. tr A

z +

Proof From (0.3) we have

det X(z) det X(z) det f z S,

while from Abel’s formula (1.8) we find (for a suitable constant c 0)

(1.9) det X(z) ceZtraztrA’exp [-- tr az+I]2 /,1-’1

Hence c c det f. To evaluate the constants, first note that

det X(z) ztrA’ etrAz det F(z) as z o in S;
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hence observing tr Ao tr A we obtain

c det Fo for all v.

This completes the proof.
Remark 1.4. In the special case that A(z)= A+Alz- and A has incongruent

(but possibly equal) eigenvalues /xi, 1-< i=< n (modulo one), then M may either be
selected to be equal to A or to a particular Jordan canonical form of A. In both cases

L(z) Y Lpzp

o

with Lo invertible. In case M A a natural selection for Lo is I while if M is a
particular Jordan canonical form we could select Lo to consist of certain eigenvectors
and generalized eigenvectors of A having determinant also equal to one. Then using

tr M=/xi= Aj

and letting z- 0 as in the statement of Proposition 2 we obtain

1 det Lo det Fo det 12 for all v.

If we also select det Fo 1, then

detl2v=l for allu.

From the fact that the matrices e2=iM and e2riA’g,+m gv+ are similar, one can
derive some other interesting relations which explain in a certain quantitative sense
how the presence of nontrivial Stokes’ multipliers accounts for the difference between
the formal circuit factor e2iA’ and an actual circuit factor e2iM. To see this, observe
that because of the similarity,

(1.10) o’,(eiM) trk(e2riA’v,,+m V+,),

where trk denotes the kth symmetric function of the matrix (i.e.+ kth coefficient in the
characteristic polynomial). For k= n this gives the obvious relation det (e2=i4)
det (e2=iA’v/,, V/), which implies

/xi Aj (mod 1),

but for 1 -<_ k-<_ n- 1 the equations contain some deeper and more interesting informa-
tion. For example, in the case of a "two-term" differential equation (0.4), recall that
if A has all incongruent (but possibly equal) eigenvalues (modulo one), then a choice
for M is A itself. Hence (1.10) can be written as

(1.11) O’k(e2’A’)=trk(e2=’A’v+, Vv+l), k= 1,2,..., n.

Even if A has congruent eigenvalues modulo one, we claim that (1.11) still holds by
analytic perturbation because the quantities on both sides of the equation are analytic
functions of the entries of A (when Ao, Fo and the diagonal A’ are fixed and the
off-diagonal elements ofA are allowed to vary) and in this way one can always arrange
for A to have incongruent eigenvalues.
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In the special case of (1.10) when n 2 and k 1, one can rewrite the equation
by introducing an auxiliary parameter

2 2

(where we use that + 2= &’+ &), and letting

V= 0 V=c,
(here we assume that A and A2 are ordered lexicographically). Then a short calculation
shows that

(1.12) 2 cos2 =2 cos (A- A’) + cc2 e(’-),
and using the explicit expressions for c, c2 in terms of some invariants % ’ that are
related to the asymptotic of the coefficients in the formal series (see [10, p. 182]), we
see that (1.12) can be expressed as

(.3) cos2 =cos (-x)-2ee’.

This equation, which played a key role in the inverse (matching) problem ofconstructing
a two-term equation with prescribed invariants (see [11, 7]), was called for obvious
reasons the "cosine equation." Thus the equations (1.11) are natural generalizations
of this equation for larger-dimensional systems of differential equations.

2. Asymptotic behavior of the coecients in a formal solution. In this section we
consider a fixed, but arbitrary, differential equation (0.1) that satisfies our basic
assumptions and a fixed, but arbitrary, formal fundamental solution matrix H(z) of
the form (0.2). We also assume that a scalar shift x z has been made with an
appropriate (real or complex) number so that

A’ diag { Fff A Fo} diag {A’, ,A}

has the propey that (for each j 1, 2,. ., n) A is not an integer and Re A. < 0.
Recall from 1, p. 693 that for each integer k, 1 k n, associated functions yk(t)

were constructed as

yk(t)= E f(p)r(A+ 1--p)(t--Ak)p-’-I
p=O

wherefk(p) denotes the kth column of Fp and the series converges for It Akl sufficiently
small. Since for each natural number p the function

t-- Ak)X’-Pyk( t)

is single-valued and analytic in a small deleted neighborhood of/k, we obtain (integrat-
ing in the positive direction and for e > 0 sufficiently small) from Cauchy’s theorem

1-1 (t--Ak)X’-Pyk(t) dt.(2.1) f(p)r’(; , + l-p)
27ri

To determine the explicit asymptotic behavior of the integral as p +c, we require
knowledge of the function yk(t) away from the point Ak. Since (see [1, 4.2]) yk(t) is
analytic everywhere in the finite complex t-plane, except for possible branch points
at Aj, 1 -<j <- n, in order to have a definite means for the analytic continuation of yk(t)
outside of It- Akl < e we will cut the plane at each of these points along rays in certain
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directions extending to . Such a direction is called admissible (with respect to
if the cut arg (t- Aj) 7 contains no point , j. It is also natural to make the cuts
nonintersecting so that all points are accessible without having to cross any of the cuts.

One method of making cuts that was convenient for the purposes in is to make
all the cuts have the same direction; we spoke of these as "parallel cuts." For our
present purposes it is natural to make the following "star-shaped" systems of cuts:

Let k be a fixed, but arbitrary integer, 1 _-< k _-< n, and let r/be any fixed, admissible
direction (with respect to Ak). Then we make a cut from Ak to cX3 along arg (t- Ak)=
and from each point A we cut along

arg(t-A)=rlk=arg(A-Ak)(q-27r, rl), jk, l<-j<=n,

if T]jk is admissible with respect to Aj, i.e., if no other /1 lies on arg (t-Aj)= T]jk;
otherwise, turn the cut slightly to the right so that it becomes admissible with respect
to A. Along the right border of each cut (looking toward ) we select

arg (t Aj) rbk 0, resp., arg Ak) r/-- 0

and we use this choice of the argument in identifying the branch of log (t- A), resp.,
log (t-Ag), to be used in defining nonintegral powers of (t-A), resp., (t-Ak). We
denote the complex t-plane with this system of cuts and choices of the arguments
by

It is easy to check that the proof of Theorem in 1, 4.2] extends to k.,; hence,
the associated function yk(t) yk(t’, rI) can be analytically continued to all of k.n and
there exist constants Cjk--Cjk(qO) such that

(2.2) yk(t) CjkYj(t) + reg (t- Aj),
where y(t)= y(t; rlk) is the analytic continuation (in k.n) of the function defined
near Aj by the convergent series with the meaning for the nonintegral power as above.
Note that these functions and constants depend upon the choice of the cuts, but to
simplify the notation we do not specifically display that dependence. (These functions
and constants also generally differ from the analogous quantities treated in [1] in the
case of parallel cuts but for which we use the same notation.)

In order to show how the constants Cjk are related to certain Stokes’ multipliers,
we recall from Theorem 2 of [1, pp. 714-715] that for any fixed integer u and any
between the critical rays )+l and r/ (see [1, 3.1] for the definition of critical rays)
we have

x (z)
2ri

eZ%(t) dt, z(a), l<-_j<-_n,

where

7r 37r }oW(a) Re (z e) < -a; -- c < arg z<- a
2

and y(ce) denotes the loop encircling the ray arg (t- A)= a in the positive direction
and such that no hl, j, is contained on or inside this loop. We also take arg (t A)
(a-27r, a) for on this loop. Since we are assuming Re A <0, we may deform this
loop integral into a ray integral as

(2.3) xj(z)=l-e2i---- l-()eZy(t) dt z5(a), l <=j<-_n,
27ri a

if we integrate along arg (t-A)= a and define y(t) consistent with this selection of
arg (t- A).
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Now let v denote any fixed, but arbitrary, integer satisfying r/- 2r < r/ < r/ and
let a, c be selected close to each other and satisfy

Then from (2.3) we have for z (a) (d)c S(z- w, )

x_,(z) x,(z) 1-e2=a{[() [()} ’ye (t) at
2i

and the selection of the branch of y(t) in the integrals coincides with the selection
in k,,, provided we take a and d suciently close to B (note that if for several j k
we have arg (h- Ak)= , then without loss of generality we may assume that the cuts
from those h to do not intersect with the ray arg (t- hk) a). It is easily seen from
the definition of critical rays that those indices j k satisfying k are precisely
the ones for which h lies on arg (t-hk) Bk- From the definition of the position set
p (see [1, 3.1]) we conclude that this happens iff , k) p. For all these j the cuts
from h to have the same direction a, and with the help of Cauchy’s theorem
we conclude (using (2.2)) (for k as above)

e2zri’x 1
Xv--l,k(z) Xu,k(Z) E27ri

(j,k)pv

(e2ia’- 1) E
(j,k)p.

(e;- 1)
(j,k)ep

eZtyk(t) dt

1 f eZtyj(t) dt

cx,(z).

Comparing this to X,,_(z)=X,,(z)V,,, we find that for every j with (j, k) p the
constant (e2i’--l)Cjk coincides with the element of V in the (j, k) position. We
denote this element by vjk (note that in a sense, this does not depend upon v as long
as we restrict to such u with r/-27r < r/ < r/, since then to every j # k there exists
exactly one such u for which (j, k) p), and we then have for every fixed k, 1 -<- k =< n,

(2.4) Cjk e2rriA’k--1)-l l)jk, j k, l <=j <- n.

Now consider loops in k,, which we denote by/j(R) (1 <=j<- n,j # k), and which
have the following properties.

The loop /(R) (for sufficiently large R>0) extends from the point on the left
border of the cut from Zj to c (looking towards ) for which It--Akl R to the
corresponding point on the right border, encircling the point )tj in the positive direction
and no other one of the points A,. ,

Then deforming the contour in (2.1), using (2.2), (2.4) and observing that

hk);;,-P reg hj)
is holomorphic on/(R) and its interior, we obtain

(2.5) fk(P) VjkPk(g, p)+ Ik(R, p),
.j k

where

(2.6)
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and

l-p))- f (t--Ak)’-Pyk(t) dt.(2.7) Ik(R, p) (2zriF(h’k +
t--Ak]=R

Note that in the integral representation of Ik (R, p) the integration actually takes place
over a set of (n-l) disjoint segments on [t--hkl R, and since yk(t) is bounded on
each such segment, it is easy to see that for R as above (fixed) and every e > 0 (small)

(2.8) Ik(g,p)=F(p)O((g-e)-p) aspoe.

Since Re h < 0, the function y(t) is integrable at h, and deforming the contour
of integration in (2.6) yields

(2zri)2
e (t- (t) dt,

J Aj

where the integration takes place along the right border of the cut and accordingly
[tkl- R, arg tk bk ek with a suitably chosen small ek > O. To find the asymptotic
behavior of %k(R,p) as p- c, we may (with the help of Cauchy’s theorem) replace
the integral from h to h + t.k by a sum of two integrals from h to h + p exp [ibk
resp. from h + p exp iqk to h + tk (with sufficiently small p > 0). Since ek was taken
small, the second integral may be easily estimated as O(([h--hk]+p/2)-p) as p- o.
In the first integral, we make the change of variable

t=t(s)=h+(e-l)(h-hk), Os--6=log(l+p/[h--hk[)
(with arg (h hk) arg (t h) k), and we obtain

Aj+penjk IO(t--hk)+Py(t) dt=(h-h)-p+ e-(P--ly(t(s)) ds.
I Aj

Expanding e(h’+y(t(s)) in the variable s (for s close to 0, i.e., close to h) and
using a standard result on the asymptotics of Laplace integrals (see, e.g., Doetsch [5]),
we find that

Aj+pe inJ

(t--hk)’+PYj(t) dt-(hj-hk)X’-h)-PP E ,kj(m)P
1Aj 0

as p-c (with coefficients gg(m) that can be computed from the coefficients of the
expansion of e"(x’+y(t(s)); in particular g(0)-(0)F(1 +A)F(-A)). The second
integral has been shown to be asymptotically negligible compared to the first (by that
we mean if we multiply with (h--hk)P-X’/)p-, i.e., with the inverse of the explicit
terms in the asymptotic obtained above, then the resulting function is asymptotically
zero). Hence observing that p’F(p-h’k)/F(p) has an asymptotic power series
expansion in p- with leading term one, we obtain

qOkj( R, p) F(p)(Ak Aj )h ’-h}-Pp- E ggj(m )P
o

with arg (hk--h) arg (h- hk)-- zr rbk-- zr, and

gkj(O) k(0)(1 e2=’.}) e-=’}/(2zri)2

=f(O)/(2ri).

We formalize the results of the preceding discussion as follows"



CONNECTION PROBLEMS FOR DIFFERENTIAL EQUATIONS 409

PROPOSITION 3. Let a differential equation (0.1) satisfying our basic assumptions
and an arbitrarily selected formalfundamental solution H(z) of the form (0.2) be given.
Then for every fixed k, 1 <-_ k <-_ n, the coefficients fk(P) can be represented as a linear
combination of n 1 terms, each having a known asymptotic as p-, plus an error term
which is asymptotically negligible compared to the other terms.

More precisely, if hj0 (mod 1) and Re hj <0, and if q is an arbitrarily fixed
admissible direction (with respect to hk), then for R > 0 sufficiently large

(2.9) fk(p) Vjkqgkj(R,p)+Ik(g,p), p->_0,
jk

where pkj(R, p) and Ik(R, p) are given by (2.6) and (2.7), and Vjk is the element in the
(j, k) position of V, with , determined by

r/v r/jk arg (h hk) (r/-- 27r,

As p - o, we have (for sufficiently small e > O)

Ik(R, p)= F(p)O((R e)-P),

(2.10) qkj(R, p) r(p)(A- A;)’-.;-Pp;- 2 gk;(m)P-’,
m=0

with arg (Ak--A;) ;k-- r and gk;(O) f(O)/(2’i).
Remark 2.1. While for the proof of Proposition 3 we required that Aj 0 (mod 1)

and Re A < 0 for all j 1, 2, n, we observe that since a scalar shift of the differential
equation does not change the fk(P) or the asymptotic (2.10), then these assumptions
are not required for the existence of such an asymptotic for the formal coefficients
fk(P) as poo. On the other hand, the assumption that Aj0 (mod 1) is necessary for
the representation of (#k;(R, p) since if A’.--=0. (rood 1) then y;(t) does not exist.

Remark 2.2. The parameter R in (2.9) can be.any sufficiently large real number.
In the special case of a two-term differential equation (0.4), each function y;(t) grows
no faster than a fixed power of as too (when larg is restricted to a bounded
interval), hence for all p sufficiently large we may let R +oo in (2.6). Since Ik(R, p) - 0
as R +co (also for p large enough), one obtains an analogous formula to (2.9) without
error term with the functions

qgkj p qgk CX3, p

having the same asymptotic (2.10). For a general differential equation (0.1), this
argument does not apply since the functions y(t) may have exponential growth as- and the loop integrals to may fail to converge. While there are several artificial
ways to incorporate the error term by redefining the functions qk, there seems to be
no natural or simple way to do it. In 5 we will obtain an analogous formula to (2.9)
without error term but using some other functions, which in the case of a "two-term"
equation (0.4) reduce to k(C, p).

Remark 2.3. For each fixed k, 1 _-< k_-< n, one may use the asymptotic development
ofthe terms in (2.9) to calculate certain )jk (to within any prescribed degree of accuracy).
The j correspond to the highest level exponential terms, namely those j k for which
IAj- Akl is minimal. For each fixed k there is generally only one Aj closest to Ak, but
should there be several at the same minimal distance, all the corresponding 1)jk can be
calculated in the following manner: First observe that without loss of generality we
may assume Ao is diagonal and Fo I. If Re A are all distinct, then the 1)jk can be
calculated successively starting with the j corresponding to max Re A. In doing this
it is important to observe that the vectors gk.j(m) can be explicitly calculated for each
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m->O, hence the functions qk(R,p)(hk-h)P+;’J-a/F(p) can be calculated up to
O(p-1’) for any N and p sufficiently large. In the antithetical case where Re hj are
all equal, then one Vk can be calculated from each component by noticing that (aside
from the leading terms which all have the same modulus) one term (corresponding to
the unit vectors in Fo) grows like pRe(Xj-) times a constant (which we want to
determine) and all other terms grow at most like pRe(X)-;)-l. In the general case, one
may put both arguments together, first calculating the Vk for which Re (hj-h,) is
largest, and then proceeding to calculate the others as indicated.

3. Some interpolating functions for the coefficients of the formal series and their
analytic and asymptotic properties. In the remaining sections we will consider a fixed
differential equation satisfying only our basic assumptions and we assume that a fixed
formal fundamental solution H(z) of the form (0.2) has been constructed. For the
purpose of extending and improving upon the representation (2.9) for the formal
coefficients, we will consider now some generalizations of the associated functions
yk(t), which are also natural interpolants of the formal coefficients. For [t-h[
sufficiently small and all complex numbers s, we define

(3.1) (s, t)= f(/)(h- t)/+s-aJ-1

s--o F(/+s-hj)

Observe that (hj-p+ 1, h)=f(p), while for each fixed s hj (mod 1), the function

2rri(1 e2i(s-?)-l(s, t)

is the associated function y(t) corresponding to the "shifted" differential equation

x’=(A(z)-sz-lI)x

(if we define the powers of (hi-t) and (t-hi) using arg (hj-t)=arg(t-h)+zr).
Hence, one sees (for such s) from the analytic properties of yg(t), that (s, t) may be
continued analytically along every path avoiding the points h i,"’,,n, where the
function generally has a branch-type singularity. To obtain a single-valued function it
is therefore appropriate to cut the complex t-plane from each point hi,"" ", hn to oo
and we choose to do this with a "star-shaped" system of cuts almost identical to what
we did in 2; however, here we do not require the cuts to be turned slightly if more
than two of the h’s lie on the same straight line. Specifically, if j is any fixed but
arbitrary integer, 1-<j =< n, and r/ is any fixed but arbitrary admissible value, we cut
the t-plane from h to o along arg (t-h)=r/ and from each hk, k j, we cut along
arg (t-hk)= arg (hk- h). For not on the cut from hg we select

(3.2) arg (, t)

in defining the powers of h- and we denote the t-plane with this system of cuts and
choice of the argument by .,.

For values of s-= hj (mod 1), the functions (s, t) are related to the derivatives
or integrals of the function p(t-h) we constructed in [1, 5]. To determine the
analytic properties of (s, t) for this set of values, one could modify that discussion
(in particular, see (5.9) in [1]) from the case of parallel cuts to the present star-shaped
system. But the analytic continuation can also be obtained through an analogous
formula (3.5) required here for another purpose, so we will give an independent
argument in this case.

From the recursion relations for the coefficients f(p) one can show that (s, t)
at least formally satisfies the difference equation (0.6). To see that it is, in fact, a
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solution one requires knowledge of the growth of (s, t) as Re s--) +c to establish the
convergence of the infinite series. Such an estimate follows from an explicit asymptotic
for :j(s, t) as Re s--) +c.

We now formalize these analytic and asymptotic properties of the generalized
associated function (s, t) as follows.

PROPOSITION 4. In the situation described above, the function j(s, t) defined by
(3.1) is analytic in both variables for . and all complex numbers s. Moreover, for
every natural number N,

(3.3)
(A- t)N+’-xJ-1 (S, t)-- 2 fj(l)(AJ-t)/+s-xj--1

t=0 i] --- =O(1)

as Re s---) +, where the O-constant is uniform with respect to Im s and locally uniform
with respect to t. Finally, the function j(s, t) satisfies the difference equation

(3.4) s(s + 1, t) + t(s, t) Ak(S + k, t)
k=0

for sC and ,, where the series on the right-hand side of (3.4) is absolutely
convergent due to (3.3).

Proof For arbitrary natural numbers N> Re (A-g) and complex numbers s, g
satisfying Re (s g) > 0, one can show by integrating the expansion of (g, u) termwise
and using a modified form of the standard beta-integral (cf. [1, p. 711]) that for It-AI
sufficiently small

N-1

j(S, t): 2 fj(l)(Aj--t)i+s-’J-1/r(t+s--A;)
/=o

(if one integrates along the straight line segment from Aj to and defines the-power
of (u t) according to arg (u t) arg (A- t)). This formula, first established for

It-AI sufficiently small, now can be used to analytically continue (s, t) everywhere
as long as the right-hand side is analytic. In particular, for g A (mod 1) we have
seen above that (g, u) is analytic for u Q,, hence selecting any such g so that
Re (s-g)> 0, we conclude that (s, t) is analytic for , and any fixed s. (Note
that since j., is star-shaped we can reach any Q, along straight line segments
from A.) Moreover, for any fixed value of ,,, the analyticity of (s, t) with respect
to s also follows from (3.5) (taking any fixed g with Re (s-g)> 0).

To prove (3.3) we select g A in the integral on the right-hand side of (3.5) (hence
N may be any natural number) and obtain by an (N-1)-fold partial integration that

(xj, u)} clu

+(-1)m+’ ft (u-t)’+m-xJ-’{(-u)m }r(+ (;’ ) a



412 W. BALSER, W. B. JURKAT, AND D. A. LUTZ

for every natural number N and every complex s with Re (s-Aj)> 0. Letting Aj-t
]Aj- e i*, it follows that the straight line from A to can be parametrized by

u-t= e’*l;t tl(1-x) for0=<x=< 1.

Making use of (3.5) (with g= Aj), we see that the left-hand side of (3.3) may be
expressed as

fj(N)+(-1)(A-t) (1-x)+-xJ-1 j(Aj, u) dx.

If Kt denotes the maximum of II(d/du) N (Aj, u)] for u between A and t, then the
left-hand side of (3.3) is less than or equal to

ll(N)I] + ]A t[K,/Re (s + N-
which is clearly bounded (as Re s --> ) by a number which is independent of Im s and
locally uniform in (for .,). This proves (3.3).

To prove (3.4), first observe that the series converges absolutely, according to
(3.3). For It-AI sufficiently small one can prove (3.4) by substituting the expansions
for the functions (s+ k, t) into (3.4) and equating like powers of A-t (using the
recursion formulas for the coefficients f(l)). For the other j,,, formula (3.4) holds
by means of analytic continuation with respect to t.

Remark 3.1. The asymptotic result (3.3) can be expressed as a more familiar type
of asymptotic power series in s- times certain explicit functions of s as follows: Using
the usual interpretation for -, we rewrite (3.3) as

(Ak- t) *-x.;-1 F(s)
(s,t)-- F(s) 2f(l)(AJ-t)t Re s--) .

o r(t+s-;)’
(Note that this converges for [t-hjl sufficiently small, but in general is only an
asymptotic series.)

From the known asymptotic expression

r() ; (Z;)s_S ’ C,,I
r(s-,Xj+ 1) :t

as Re s -->+

(where the coefficients Cv,l(l;) can be expressed in terms of Bernoulli numbers; see
e.g., 16, p. 111 ]), we also have

(3.6) (s, t) (Aj- t) s-;-’ aj
F(s)

s u:0 s-
/=o

Cu’l(iJ)fJ(l)(ik- t)l"

Remark 3.2. M. Hukuhara [9] and R. Sch/ifke [17, p. 27] have obtained the
asymptotic behavior of functions related to (s, t) for the two-term differential equation
(0.4). Schfifke’s asymptotic formula is expressed in a manner that could be considered
an "asymptotic factorial series."

4. Solutions of the difference equation having a known asymptotic as Re s--,-o.

We have seen in the previous section that the associated functions (s, t) are solutions
of (0.6) having a known asymptotic behavior as Re s-> +. For the special case of
difference equations (0.5), one may construct formal solutions and use the asymptotic
theory to conclude that there also exist solutions having the formal solutions as their
asymptotic as s-> in appropriate half-planes. For the general case of (0.6), where
no such formal solutions and asymptotic theory are known, it is therefore somewhat
surprising that we nevertheless can construct some explicit solutions with a known



CONNECTION PROBLEMS FOR DIFFERENTIAL EQUATIONS 413

asymptotic as Re s - -. These functions turn out to be related to the functions y*(t)
we constructed in [1], 1 and in this section we want to investigate their analytic and
asymptotic properties. To construct these functions, let r denote any fixed real number,
let R denote any real number larger than a, and let y(r) be the loop-contour coming
from along the ray arg z r-27r to the point Zo R exp [i(r-27r)], then along the
circle Izl R (in positive direction) to the point Zo e and back to c along arg z "r.

For each fixed but arbitrary integer v and each r satisfying

we define

(4.1) *(s, t; v)
27ri

Xy(z)z e-Z’(I e2Cri(sI-M")) -1 dz,

whenever the inverse matrix exists and the integral converges. Recall ( 1) that the
eigenvalues of My are independent of v and coincide with the eigenvalues of M. We
label them as 1, ",/z, (in some fixed, but arbitrary, ordering and repeated according
to their multiplicity) and remark that I-exp [2ri(sI-My)] is invertible itt

(4.2) sN k (mod 1), l<-k<-n.

In order to see for which values of the integral in (4.1) converges, it is best to
interpret the improper integral in the sense of its Cauchy principle value, i.e., we think
of the two ray paths in y(r) as truncated at a common distance p and then let p tend
to . Observing that

Xy(z e-2’)(z e-2’) X(z)z exp [2-i(sI- M)],

it follows that (4.1) may be rewritten (using a change of variable) into a completely
equivalent form as

(4.3)

*(s, t" u)| Xy(z)z e -z’ dz(I-exp [27ri(sI-
2’i d

I e-Zt+ Xy(z)z dz,
2 rri 2

where 71 71(R, r) denotes the circular path z Rei, r-2rr =< q =< r, and 72--" "y2(R, 7")
is the ray z p e i,, R _-< p < oo. Due to the asymptotic expansion of Xy(z) (as z-+ oo in

&= S(ry-rr, r+l)), we see that for each j, 1-<j_<-n, the jth column of the second
integral in (4.3) converges for satisfying

(4.4) -rr/2 <arg (t-aj)+r< rr/2,

while the first integral is an entire function of t. Therefore, :*(s, t; v) exists for every
s satisfying (4.2) and with

(4.5) -7r/2 < arg (t At) + r < 7r/2, 1 <= <- n.

Note that the value of the integral in (4.1) does not depend upon the choice of r (as
long as re (ry-Tr, ry+l) and (4.5) holds).

Letting ’(s, t; v) denote the jth column of sC*(s, t; v) (1 =<j_-< n) and recalling that
the Stokes’ rays arg z zy and the critical values r/y are related by

(4.6) r/y + r 3rr/2 for every v,

we now describe the properties of these functions in the following.
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PROPOSITION 5. Consider a differential equation (0.1) that satisfies our basic assump-
tions, a formalfundamental solution H(z), an integer u, and an index j(1 <-j <= n) to be
given, and let (s, t; u) denote thejth column of (4.1). Then for every s satisfying (4.2),
thefunction (s, t; u) is analyticfor tin the sector (on the Riemann surface of log A.i))

(4.7) r/+1-27r < arg (t--,j)<(

and satisfies there the difference equation

(4.8) s(s + 1, t; )+ t](s, t; v) Ak(s + k, t; v).
k=0

Moreover, for every (fixed) satisfying (4.7), (s, t; ) is meromorphic in s and may
have poles only at the points

(4.9) s =/Zk (mod 1), 1 <- k -<_ n.

Finally, if Ma (for sufficiently small > O) denotes the s-plane with 6-neighborhoods of
the points in (4.9) deleted, then for every satisfying

r/+ 37r/2 <arg (t-Aj) < rl-Tr/2

and every natural number N we have

N-1
l+s-A’-I.ri(s,t;,)- 72 (l)I’(l+;t-s-l)(t-;t)

/=0

(4.10)
=O((t-A)N+s-j-II’(I+A:.,-s-N)) as Res--c, sM,

where the O-constant is locally uniform with respect to Im s and t.

Proof. For every ’(%-7r, r+l), we see from (4.3) that )(s, t; v) (for every
fixed s with (4.2)) is analytic in in the sector given by (4.4), and by varying - we
can analytically continue )(s, t; v) with respect to s. Since r was taken arbitrarily
from the interval (%- 7r, %+1), we see that (s, t; v) is analytic for satisfying (4.7).

If is now fixed and satisfies (4.7), while r is selected in (%-7r, %+1) such that
(4.4) holds, then the jth column of the second integral in (4.3) is easily seen to be an
entire function of s. Hence it follows from (4.3) that since

e-z’ dzX.(z)z

is an entire function of s, the only singularities of sC(s, t; v) (with respect to s) are
among the points where

I-exp [27ri(sI- M)]

is not invertible, i.e., the points satisfying (4.9). At such points (s, t; u) has at worst
a pole-type singularity.

To prove (4.8), we simply insert (4.1), orthe equivalent form (4.3) (with s replaced
by s + k) into the series on the right of (4.8), interchange the order of summation and
integration and then integrate by parts using (0.1). To justify the interchange of the
order of integration and summation and show the absolute convergence of the series,
estimate (4.3) to obtain (for fixed t)

sC(s+k,t;v)=O(R-) askoe

and use R > a.
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To prove (4.10), let 6, Ms, N and be given as in the final statement of the
proposition. Note that for the values satisfying

r/+, 3rr/2 < arg (t- aa) < r/ rr/2,

we may take r=-arg (t-aa) in (4.3). Defining now

N-1

r(N)(s, t)=27rij*. (s, t; v)-- (/)r(xj+ 1-l-s)(t-Aj) l+s-aj-1
/=0

and using (4.3) with the identity

f(r)(t-Aj)-r(a) z-’ e-Z(’-a, dz for Re a > 0,

we obtain (for -Re s sufficiently large)

r(N)(s, t)= r,(s, t)+ r2)(s, t)-r3U)(s, t),

where rl(s, t) denotes the jth column of the first term on the right-hand side of (4.3),

r(gN)(s, t)= x,,a(z) -zxj eaZ 2 f(l) z-! z-S e-Z’ dz,
J Re 0

and

r3U)(s, t)= , f(l)z -1 zaJ e-Z(’-a., dz.
o

Making the change of variable x= z(t-Aa) (hence argx=0 due to the choice of r),
and using the asymptotic of x,a(z), the jth column of the normal solution X(z), for
z , z 5,, we obtain

(t--Aj)’XJ+l-N-S r(2N)(S, t)--
RIt--aJ[

xa5-N- e-Xb(x) dx,

where b(x) is bounded for RIt Aal-< x < c, say by the constant K which is independent
of t. Hence

(4.11)
t)(t- aa)aJ F(Re (Zj-s)-N+ 1)

r(aj-s-N+l)

Letting Aj-s- N+ 1--x + iy with x, y , and using

r(x)
r(x+iy)
----x-iY(l+O(1)) asx- +m,

we see that the right-hand side of (4.11) is bounded by a constant that is locally uniform
with respect to Im s and t. For the other two components of rU)(s, t), one easily
estimates that as Re s-,

[ir,(s t)ll <__/Re s, F(N)(, t)[[ <_--/Res

for a suitably small constant/ that may be taken both independent of Im s and as
long as both vary locally so that s Ms and arg (t- Aa) (r/+ 37r/2, r/- 7r/2). These
statements then prove (4.10).
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Remark 4.1. In Proposition 5 we have observed that C*(s, t; u) has possible poles
(in the variable s) at the points s =/Zk (mod 1), 1 <= k <= n. To attach a meaning to the
residues of :*(s, t; v) at these points, let us assume that satisfying (4.3) is fixed and,
moreover, to simplify the situation we assume that e2EiM has all distinct eigenvalues,
i.e., the eigenvalues of My are incongruent modulo one and are denoted by zl, ,/xn.

Let f be any invertible matrix satisfying

1 exp [27riM] =exp [27riM]

and let X(z) X,(z)f,. Then as we observed in 1, X(z)zTM L(z) is single-valued
for a < Izl <. From (4.1), (1.4) we conclude that

*(s, t" u) 1 f L(z)z a4-S’ e-Z’(I- e2i(I-4))- dz.
27ri v()

For each fixed j(l<-_j<=n) and p(integer) we find that all but the jth column of
*(s, t; u)f are analytic (in s) at s =/xj +p+ 1, while the jth column has a first order
pole there and its residue is equal to

l:(z)z-p- e-’ dz= -__1 (p,b, t)
(2rri)2 v{) 27ri

if/(z) denotes the jth column of L(z), and bj(p, t) is the pth Laurent coefficient of
l;(z) e -z’. This shows (under the additional assumptions made above) that the residues
of sC*(s, t; v) at the points s=/x; (mod 1) (j 1,..., n) can be expressed in terms of
the Laurent coefficients of L(z) e-’.

5. Lateral connection problems for (0.1) and (0.6) and a representation for the
coefficients in a formal solution. We have seen in 3 and 4 that the functions k(S, t),
1 _-< k_-< n, resp., :(s, t; u), 1 _-<j_-< n, are particular solutions of (0.6) having known
asymptotics as Re s--> +o, resp., Re s->-. In the special case of (0.5) where the
solution space is n-dimensional, one can conclude from the theory of difference
equations that since these systems of solutions are both fundamental (this follows from
the asymptotics), then these systems of functions are linearly related using certain
one-periodic functions of s as coefficients (which could, in principle, also depend upon
t). Equations such as (0.6), however, generally have many more than n linearly
independent solutions, so no similar conclusion can be reached in the general case on
the basis of the theory of difference equations alone.

We will nevertheless show in this section that these two systems of solutions for
(0.6) do satisfy certain linear connection relations (5.2) and that the coefficients in
these relations involve the Stokes’ multipliers for the normal solutions of (0.1). We
also show that (5.2) can be interpreted as yielding both a generalization and an
improvement of the representation formulas for the formal coefficients we obtained
in 2 (2.5).

The function k(S, t) was shown to be analytic for in the star-shaped region k.,
while the functions sC(s, t; v), 1-<j-< n, were shown to be analytic in

{t" arg (t--Aj) (r/+,--2r,
j=l

For the purpose of comparing them we first need a common region where they are
both defined; second, we would like (if possible) to also be able to use the asymptotic
(4.10). With these objectives in mind, we now select a particular integer v u for each
column sC(s, t; v) as follows.
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Let k be any fixed integer, 1 _-< k_-< n, and let r/denote any fixed admissible value.
If j k we choose uj u satisfying

while for each j k the integer uj is determined by

(5.1) n <n <n +2 and (k)p.
Note that v depends upon both k and but to simplify the notation we will not
usually display that dependence. From the definition of p (see [1, p. 699]) it is clear
that (5.1) uniquely determines and one also sees that

3/2-

is a possible choice for arg (-), hence the region ,, can be considered part of
the sector

+-2<arg (t-) <.
Therefore from Proposition 5 the function (s, t; ) (for every s satisfying (4.2)) is
an analytic function in ,,, 1 Nj N n, j k. By similar arguments the same is true for
j= k. To simplify the notation, we will mainly write (s, t) instead of (s, t; u), but
it is impoaant to keep in mind how these functions depend upon u(k, ). We
now state the connection relations between these two systems of functions as follows.

TZORZM 1. Let a differential equation (0.1) satisfying our basic assumptions, a
selected formal fundamental solution H(z), any fixed index k, 1 k n, and any fixed,
admissible value be given. Let k(S, t) denote the analytic continuation into the cut

plane ,, of the function (s, t) defined locally by (3.1) and let (s, t)= (s, t; u) be
defined by (4.1) with u determined as above, Nj n. en for every s satisfying (4.2)
and k,, we have

j=l
jk

where Vk Vk( is the element in the (j, k) position of the Stokes’ multiplier V.
Remark 5.1. This result extends Theorem 3.2.3 of R. Sch5e [17] from the

"two-term" equation (0.4) (and the assumption that the position sets p contain just
a single pair) to the "general case" (0.1). Also in the case of (0.4), Sch5e has shown
that essentially the same functions as (s, t) can be expressed as ceain Mellin-type
integral transforms of (s, t) (or equivalently of the yj(t)) with either ray or loop paths
(see [17, Def. 1.2.3 and Thm. 1.2.6]). As we remarked in 2, in this case one can also
take R and Ik(R, p) 0 in (2.5). Then for the special choice in (5.2) of s A -p + 1
and Ak, one sees that (5.2) reduces to (2.5).

Remark 5.2. For the general case of (0.1), the function (s, t) may have exponen-
tial growth as Ill , and we have no representation for (s, t) as an integral transform
of (s, t).

Remark 5.3. Using (5.2) and the propeaies of (s, t) from Proposition 5, one
sees that (s, t) satisfies

(s, t)=(1--e2=i’-))-lk(S t)+reg (t--Ag)

and

(j*.(s,t)=reg(t-Ak) for all k #j.
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Again in the case of (0.4), since the functions (s, t) and serf(s, t), 1 -<j -< n, are solutions
of the same "shifted" associated differential equation

d
d--- (Ao- tI)-(A1-(s- 1)I):,

one can show that (under the additional assumption that Aj 0 (mod 1)) these condi-
tions uniquely characterize the solutions s. Hence it follows (using that 2zri(1-
e2=i(s-a?) -1 (s, t) is the associated function y(t) corresponding to the shifted equation)
that

sC(s, t) (2.rri)-ly(t),

where yj*.(t) corresponds to the shifted differential equation (under an appropriate
condition on s to guarantee its existence). It can be shown using arguments as in the
proof of Proposition 6 in the next section that this is also true for (0.1).

Proof. We assume throughout that s is fixed, but arbitrary, and satisfies (4.2).
First observe that it is sufficient to prove (5.2) for all satisfying arg (t-A)= r/- e/2,

1--> P (for some fixed and sufficiently small e > 0 and some fixed and sufficiently
large p), since then it holds for every ,, by analytic continuation. If p is taken
sufficiently large (while e > 0 is fixed), one sees that for such we have

(5.3) r/- e < arg (t- A) < r/, l<=j<=n,

and we will, from now on, also consider fixed (as above).
Let Uo be such that r/o+,, <... < rto+ are precisely all the critical values in

(r/, r/+2zr), i.e.,

z <- r/- 7r/2 < Zo+ < < Zo+,, < -rt + 3zr/2 _-< q’o+,-+"

Then we claim that for every u, Uo+ 1 <- ,<-,o+ m, there exists a -(u)e (z-7r, ’/)
such that (4.5) holds with z(u) in place of z, hence sC*(s, t; u) may be represented by
(4.1) with -= -(,). To see this, note that for as above,

z+arg (t- A) (q + r- e,

and we just need to show that there exists a r(,) (z-r, r+) such that

[(,)+ n-e, ’(,)+ n] = (-r/2, r/2).

But this follows immediately from the above inequalities.
For every j k, 1 =<j =< n, the corresponding , lies between Uo + 1 and Uo + m, and

the sum of those vj*.(s, t; ,) for which , is some fixed value u, ,o+ 1 _-< ,_-< Uo+ m,
equals the kth column of sC*(s, t; u)(V-I). Consequently, the sum of all the terms
)jkj" (S, t’ llj) (j k) is the kth column of

,o+m
E sC*(s, t; ,)(V-I)
0/1

o/m fY X(z)z-" e-z’ dz(I- e2=’(’-M-))-(V- I).
,0+ 2ri

It easily follows from (1.2) that for every u

(I- e2"(s’-M))-’ V V(I- e2"’(s’-4--,)) -’,
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hence by means of X,,(z)V,, X_l(z) we obtain

t,o+
E :*(s, t; u)( V- I)
0+1

=-o 27ri r((+))
X(z)z e-z’ dz(I- eZi(st-M")) -’

, X,(g)g e -zt dz(I- e2=i(st-M)) -’.
=o+ 2zri

Turning the path of integration continuously in any one of the above integrals does
not change its value provided that it still converges. In view of our choice of t, all the
above integrals along a y(z) converge for r/-e+’ (-7r/2, 7r/2). Hence we find for
u Uo + 1, , Uo + rn- 1 that corresponding terms of the above two sums are equal,
and we therefore obtain

o+
E *(s, t; u)(V-I)
v0+

1 J X,,o(Z)Z e -z’ dz(I-e2i(*t-M"o))-1

2 "a’i (’,( ’o+ ))

1 f X.o+.,(z)z e -zt dz(I- e2"ai(sl-M’o+")) -1.
2zri

Since the largest integer u for which r/. > r/has been denoted by/k we find Pk 10 + m;
hence, :k*(S, t) is the kth column of

*(s, t; /"k)
2zri r((o+m))

Using the identities

and

we find

Xo+,,(z)z e-zt dz(I- e2=i(st-Mo+m)) -1.

(I- e27ri(sl-Mo+’))--1 e2ri(sl-A’) e2ri(sl-A’)(I- e2ri(sI-Mo)) -1

X,.o+.,(z) Xo(z e-2=i) _2"n’iA’

*(s, t; Pk) e27ri(sl-A’)

27ri ((o+,-)-2)
Xo(Z)Z e-z’ dz(I- e2i(s’-Mo)) -1.

The proof will be completed once we show that k(S, t) is the kth column of

(5.4)
l {J f }Xo(Z)z- e-Z’ dz(I-e2=’("-’o))-’

27ri ()

where ’= z(uo+ 1) and ?= Z(Uo+ m)-27r. To see this, recall that by definition
was taken from

(% 7r, %+1) CI (-r/2- r/+ e/2, 7r/2- r/+ e/2) for u= vo+l," , uo+m,
and since Stokes’ rays occur in opposite pairs, then %+ r/> -3/27r and %+1 + r/< zr/2.
Hence, we may take z Zo+ -6 and .7 %-or + 6 for sufficiently small 6 > 0. Since
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the integrals in (5.4) do not change their values when we continuously deform the
paths of integration (provided that the integrals still converge), we find that we may
replace y(’) by fl,,o(6) and y(?) by flo_,,(6). (See [2, p. 156] for a definition of these
paths.) Note that now the value of the integrand in the second integral is actually
taken on the next higher sheet of the Riemann surface, so the change of variable
z--- e-2i in the second integral gives

1 f X,,o(Z)Z e -Z’ dz
2"n’i Jo(

Hence we see that (5.4) equals

1 ft X"(z)z- e-zt dz.(5.5)
27ri __o()

In order to see that the kth column of (5.5) is sCk(s, t), one may either consider inverting
the Laplace transform representation for the normal solutions (e.g. (2.3)) and deform
the path of integration, or else one may verify that the asymptotic for Xo(Z can be
substituted and term-wise integrated for It hkl sufficiently small to obtain the expansion
(3.1). Compare [2, pp. 157-159] where the latter procedure is carried out in a more
general setting.

Remark 5.4. We wish to point out again that in the course of the proof we have
obtained the following integral representation: For every fixed integer k, 1 <-k <-_ n,
every fixed integer u, and all sufficiently small 6 > 0

k(S, t) f x,,,(z)z e-zt dz
2.n’i .] t

for satisfying v+l -+- < arg (t Ak) < and all complex numbers s. If we restrict
to (in the above sector) with It sufficiently large, then

2ri
x,,,(z)z e-zt dz

for all z with
-7r/2 < arg (t- h) + " < 7r/2.

Remark 5.5. In order to solve the system of equations (5.2) for the elements Ujk
one must analytically continue the functions k and sc(1-<j=< n) to some parameter
values s, with s satisfying (4.2), k,,, and such that

det [*, ,*](s, t) O.

It is easy to see using (4.10) that for -Re s sufficiently large the above determinant
will be nonzero from the linear independence of the vectors f(0),... ,f,(0). For the
purpose of simplifying the numerical calculations involved, it is reasonable to try to
find some particularly convenient parameter values where we might either know exact
values for the functions involved or be able to use their asymptotic. That there are
such convenient parameter values which are also at the same time compatible with all
the other requirements is not immediately obvious. But from our choice of the cuts it
follows that we may specialize (5.2) in the following way to obtain a simpler relation.

For fixed k and for all j k, 1 -<j _-< n we observe that sOl(s, t) is analytic at Ak
and

-arg (Ak- Aj) e (%- 7r, %+,)
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according to the definition of u (if consistent with the selection of arg (t-As) for

k.n we take arg (Ak--AS) (r/j--27r, r/j)). Hence we may put t= )tk in :f(s, t) and
also use the asymptotic (4.10). Note that k(s, t) does not exist when Ak for all
values of s, but for the particular choice of s A,-p+ 1, where p is an arbitrary
nonnegative integer, it follows directly from (3.1) that

(5.6) k(A,--p + 1, Ak)=fk(P).

Defining now the functions ces(s)=as(s; k, r/)=sC’(S, Ak), note that the choice s=
A,-p+l satisfies (4.2) if A,/z mod (l _<-j <- n). With these selections, we obtain
as a special case of (5.2) the following.

COROLLARY 1. For arbitrary, but fixed, admissible q and k, 1 <-k <- n, assume

A,/xs mod 1, l<-_j<-_n. Then

(5.7) fk(p) Vs.kaS(A’k--p+ 1), p>--0.
j=l
jk

Remark 5.6. The functions as(A,-p+ 1) have the asymptotic

(5.8) S(A’k--p+ I)=F(p)(Ak--AS)a’-J-Pp5- Y gks(m)p-"
m=0

as p- +c, where gks(O) =f(0)/(27ri) and in defining the nonintegral power of (Ak- As)
we take arg (Ak-AS) as above. If the asymptotic (5.8) for each of the as(A,-p+ 1) is
substituted into (5.7), we see that the right-hand side has a multi-level asymptotic
representation as p + where the different levels are distinguished by the different
exponential orders of growth (Ak- As) -p for j k. For each fixed value of k, generally
one level dominates and the corresponding coefficient VS.k can be calculated directly
as a limit of the formal coefficients fk(P) after dividing out the main terms in the
asymptotic. This extends results of Jurkat, Lutz and Peyerimhoff 11 ], who treated the
case n 2, and R. Schfifke [17] who treated the "two-term" equation (0.4) for general
n. Also see [7], where an equivalent result is obtained for a scalar second order equation
that is already a special case of the results in [11].

To calculate the remaining coefficients VS.k (n > 2) one could either try to use (5.7)
by calculating appropriate values for the functions as(A,-p+ 1) or one could return
to (5.2) and make another selection for that would make other terms in the asymptotic
dominate. For certain configurations of the eigenvalues A,..., A, it is possible to
choose appropriate t-values for which the asymptotic (4.10) is still valid and preselected
terms will dominate the asymptotic. In using (5.2) it is of course necessary to perform
the analytic continuation of the functions k(S, t) possibly outside of the circle of
convergence of its local power series expansion. If this is done for certain values of
s, then either the difference equation (0.6) or the integral representation (3.5) may be
used to calculate values of the analytic continuation of (s, t) at a set of points with
Re s -.

In any case, one may view the functions k(S, t) as a natural interpolation of the
coefficients fk(P) of the formal solution vectors, and by performing the analytic
continuation of these functions to certain values of the parameters one may be able
to solve (5.2) for the lateral connection coefficients.

6. The central connection problem and representation of solutions in Floquet
form. Our goals in this section and the next one are to investigate the relations between
the Laurent coefficients of the single-valued part of a solution (vector or matrix)
expressed in Floquet form (0.3) and the central connection coefficients linking that
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solution with the normal solutions. The main formula expresses the Laurent coefficients
(of a shifted equation) as a linear combination ofthe associated functions (and possibly
their derivatives) evaluated at certain points times certain central connection
coefficients. Two types of applications are indicated: if the Laurent coefficients would
be known, the formulas may be used to calculate central connection coefficients; if
the Stokes’ multipliers would be known, then the Laurent coefficients of a solution in
Floquet form can be calculated.

For our purposes it is convenient to introduce some different systems of cuts from
the ones we used previously for the lateral connection problem. We wish to point out
to the reader that for any fixed system of cuts from the points A1,’’’, An and any
fixed selection of arg (t-Aj) for close to Aj, associated functions may be defined
locally by (3.1) and continued analytically into all of the simply connected domain
determined by the cuts. The values of the resulting continuations at various points
may depend, however, on the location of the cuts. The main reason for preferring
certain systems of cuts over others involves the ability to easily identify quantities
arising from the continuations of the associated functions with some natural quantities
corresponding to the differential equation, such as Stokes’ multipliers.

Let A denote any fixed, but arbitrary, complex number satisfying A A, 1 _-<j _-< n,
and let 0 denote any fixed, but arbitrary, real number satisfying

0 arg (A A (mod 27r), l<=j<=n.

For each such pair (A, 0), which we henceforth call admissible, we cut the t-plane from
A to oe along arg (t- A)= 0, and for not on the cut we define

arg (t-A) e (O-2rr, 0).

Denoting 0j =arg (Aj-A) (0-27r, 0), l<--j<=n, we call a A-value generic if all the 0
are distinct. In such a case we also make a cut from each point A to A along the
straight line segment and denote the t-plane with these cuts by x.0. (Later on it will
be important to discuss nongeneric values of A, for which the cuts are then somewhat
more complicated to arrange.) In order to define the associated functions (s, t) for

,o, it is sufficient to select a branch of arg (Aj t), and we do this here by requiring

Oj < arg (Aj t) < Oj + 27r, l<_j<_n.

If for a certain (fixed) generic value A, and a given 0 there exists a (necessarily
unique) integer v such that

(6.1) r/+l < 0 < r/,, and ’O,+l<Oj’JV"tr<’O,, l<-j<-n,

then the system of cuts is called almost parallel (Here the numbers r/u, the so-called
critical values, are all numbers of the form arg(Aj-Ak), j k; see [1, 3.1].) This
property depends both on the geometry of the numbers A1,’’’, An as well as the
choice of A and 0. We observe that for any (fixed) set of distinct complex numbers
A1," , An and any 0 that is not one of the critical values, there always exists a generic
A, IAI sufficiently large, such that the system of cuts is almost parallel.

If X(z) is any fundamental solution matrix for (0.1), we define

Iv X(z)z-S e-z’dz’(6.2) (s, t; 0) (s, t)

with 3’(r) as in (4.1), - r 0, s e C, arbitrary, ;,0, and Itl sufficiently large. Clearly
the integral converges when It[ is sufficiently large and arg 0-r (using the
asymptotic behavior of solutions). From (1.4) and the integral representation of (s, t)
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derived in the proof of Theorem 1, one sees that the columns of (s, t) may be
expressed as certain linear combinations of appropriate analytic continuations of
sOl(s, t),..., sen(s, t) in ,0. It follows that (s, t) may be continued analytically (in
t) to all of a,o. Moreover, since the vectors sOl(s, t),..., sen(s, t) are all solutions of
(0.6) we see that the columns of (s, t) are also solutions of (0.6). We next consider
the behavior of the columns %(s, t) of (s, t) near the singularities A,..., An and
see how the central connection factors enter into these relations. This result we now
state as follows.

PROPOSITION 6. Let a differential equation (0.1) satisfying our basic assumptions
and a fixed formalfundamental solution be given, consider an admissible pair (A, O) for
which the corresponding system of cuts is almost parallel, and let denote the unique
integer satisfying (6.1). Then the following statements hold:

(a) There exists a unique matrix C(s)-- [Ckj(S)] of entire, one-periodic functions of
s satisfying

(6.3) j(s, t)= k(S, t)(1-e2i(’-;")-lck(s)+reg (t--Ak)

for x,o, sA (mod 1), 1 <--j, k <- n. Moreover, C(s) can be expressed in terms of the
Stokes’ multipliers as

(6.4) C(s) Vy Vy_+ e2Zri(s’-A’)( Vy-z Vy_m+)-, lz m/2.

(b) IfX(z) is afundamentalsolutionfor (0.1) and dp(s, t)= [l(S, t),..., pn(s, t)]
is defined by (6.2), then there exists a unique matrix A(s)=[k(S)] ofentire, one-periodic
functions of s such that

(6.5) %(s, t)= k(S, t)(1-e2’(s-x’)-k(s)+reg (t--Ak)

fort 6 x.0, sh (mod 1), 1 <-_j, k <- n. Finally, ifX(z)= Xy(z)fy, whereXy(z) denotes
the ,th normal solution, then

(6.6) A(s) C(s)fy_ y(I- e:i(sf-lW)),

where ei4 denotes the circuit factor for X(z).
Remark 6.1. In [1] we proved a formula (see Theorem 1, 4.2) corresponding to

(6.3) for the associated functions yj(t) in the case of parallel cuts and it is readily seen
that the same proof may be used to show existence (and uniqueness) of C(s), A(s)
satisfying (6.3), (6.5) for all systems of cuts that occur in 6 and 7. The expressions
(6.4), (6.6), however, generally depend on the particular system of cuts (since the
analytic continuations of (s, t), pj(s, t) depend upon the location of the cuts). We
will discuss the dependence of C(s), A(s) on the selection of the cuts in 7, and it
may be seen from the proof given there that even the existence of these matrices may
be obtained along with expressions explaining how they change, provided the existence
was proven in a particular situation, say the case of almost parallel cuts. To keep the
statements in Lemma 1 ( 7) as simple as possible, we will, however, take the existence
of C(s), A(s) for granted.

Proof. The uniqueness of C(s), A(s) is immediate since for every j, k e
{1, 2,..., n}, equation (6.3), resp. (6.5), holds for at most one entire function Ckj(S),
resp. 8kj(S); observe that for s A (mod 1) no nonzero constant multiple of sC(s, t)
can be single-valued at ’k.

TO show (6.4), note that as a consequence of (6.1), for every j, 1-<j-< n, none of
the cuts in .0 intersects the sector

(6.7)



424 W. BALSER, W. B. JURKAT, AND D. A. LUTZ

and from the Remark 5.4, we have for as above and arbitrary complex s,

1
(s, t) x_,,j(z)z e -z’ dz.

27ri

For j 1, 2,..., n, note that the sectors (6.7) have a nonempty intersection and for
such we may replace/3_,(3) by y(z) with z= 7r-0 (0 as in (6.1)) to obtain

1 f X_,(z)z-e-z’dz.(6.8) (s, t)

Therefore from (6.2) and X(z)= X_,(z)_, we obtain

(6.9) (s, t) (s, t)f_, for a,0 and s 6 C.

Using (6.9) we see that statement (a) in Proposition 6 implies (b) and the first equality
in (6.6). From (6.4), (1.1), (1.5) and (1.6), it is easy to establish the second equality
in (6.6). (Note that (1.1), (1.5), (1.6) do not depend upon M being in Jordan form.)
To prove (a) and (6.4) we will show that they hold under the additional assumption
(4.2) and then extend the formulas to the discrete set of values s--/Xk (mod 1) using
(3.5) and arguing as in the proof of Lemma 2’ in [1, p. 711].

Now assuming (4.2), let z be as above and define

*(s, t)---:*(s, t; ,)

by (4.1) (for t6a.o and satisfying (4.5)). Using (4.1), (6.8) and X_,=
XV. V_,/I, we obtain

(6.10)
:(s, t) :*(s, t)(I. e2=’s’-M)) V... V,_,+,

=*(s,t)C(s)

with C(s) defined by (6.4). It remains to show that these quantities are the same as
in (6.3). Using Proposition 5 we conclude that

:*(s, t)= [:*(s, t),..., :,*(s, t)]

can be analytically continued (with respect to t) into (again use (6.1)) and

:(s, t) reg (t- Ak), j#k, l<-j,k<-n.

Hence for each such j, 1-<j =< n, we have by (6.10)

(s, t)= SCk*(S, t)tTkj(S) + reg (t--hk), l <-k<-_n,

which implies, in particular, for j k and s A ,(mod 1) that

k*(S, t)= SCk(S, t)(1-e2=-a’))-+reg(t-Ak), l<--kn.

Here we have used that V... V_,+ and (V_,... V_m+)- both have ones along
the diagonal, hence Ckk(S) 1 e2=-a;’). These formulas imply ( C, hence we obtain
statement (a) with C(s) as in (6.4), and this completes the proof.

Now consider a fundamental solution matrix in Floquet form, say X(z) L(z)z4,
where M is an upper triangular matrix in Jordan canonical form. Since by an appropri-
ate permutation of the columns of X(z) (which corresponds to a permutation similarity
of M) we can arrange any block of M to come first, and since it is notationally
convenient to consider just the columns corresponding to the first block, we now restrict
ourselves to that case without loss of generality. Let/x, resp. n, denote the eigenvalue,
resp. dimension, of the first block and let/(z), 1 _<-j <= n, denote the first n columns
of L(z).
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If (A, 0) is an admissible pair with A generic, let E .0 with arg 0 r. For
such with Itl sufficiently large (and y(-), r as in (6.2)) we define

(6.11) b(s, t)=1 f27ri
l(z)z --1 e-Zt dz, 1 <=j <= hi,

v()

which converges for all complex numbers s. (Note that b(s, t) also depends on A, 0
but we do not explicitly display that here.) To discuss the analytic behavior in the
t-variable, write

L(z) X(z)zTM X(z) e-M’gz

from which we obtain (with x denoting the jth column of X)

/(z) z- (-lg z) k

k=O k!
Xj-k(Z)’ <-j <= n"

Inserting this into (6.11) and comparing with (6.2) we have

(6.12) b(s, t)= q-k(tX + S + 1, t), l<--j<--n.

This holds first for tl sufficiently large, arg 0-7r, and all s E C, but using the
analyticity of (s, t) for all s and t a,0 we see that b(s, t) can be continued
analytically for all x.o.

If s is an integer, it follows from (6.11) that b(s, t) is the sth Laurent coefficient
of/(z) e-’ (for fixed t); hence b(s, t) is an entire function of when s is an integer.
In particular, we may select Z and define

bj(p) b(p, A

for every integer p and j 1, 2, , nl. (Note that whereas b(s, t) may depend on 0,
b(p) is clearly independent of 0.) As a consequence of interpreting bj(p) as the pth
Laurent coefficient of/(z) e-za we obtain

l(z) e-zx= Z b(P)zp, l <=j<=n,,

with the series converging absolutely for Izl > a and uniformly for a < R,-< Iz[-<_ R2 <
+. Since/(z) e-z is at most of (exponential) order one and finite type as z c then
it is permissible to substitute the series into (6.11) and termwise integrate. To see this
note that y(’) consists of two ray paths to along arg z =-, ’-27r and a circular
segment. Termwise integration along the circular segment is justified by uniform
convergence while termwise integration along the rays is justified for It- ,l sufficiently
large and arg (t- A)= 0 by the dominated convergence theorem. This yields

(6.13) b(s, t) Y bs(p)(, t)’-P/F(1 + s-p), 1 <=j <- n,,

for arbitrary s and as above. But then the series automatically converges for all It- A
sufficiently large, t by analyticity of b(s, t) and we have (6.13) for all such
(provided arg (A t) (0 7r, 0 + 7r)).
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In order to establish our main formula which represents bj(p) in terms of the
associated functions, we need an interpretation for (s, A) (as well as its derivatives
with respect to s) at points s -p +/x + 1, where p is an integer and/z is the eigenvalue
of M for the first block. To do this, we define

to be the analytic continuation of (O/os)k(s, t) along the segment arg (Aj-t)= 0
(k =>0, 1 _-<j-< n), which can always be performed all the way to A since we have
assumed A to be generic. We now state the representation result as follows.

THEOREM 2. Under the same assumptions and notation as in Proposition 6, let
X z L( z zM denote afundamental solution matrixfor (0.1) in Floquetform. Moreover,
let b(p) denote the pth Laurent coefficient of the vector l(z) e -za, where l(z) denotes
the jth column of L(z). Then b(p) can be represented as a linear combination of the
associated functions (and their derivatives with respect to s) with coefficients from the
central connection matrix l). More precisely, ifM is in upper triangular Jordan canonical

form with first block having the eigenvalue Ix and size nl, then for every integer p and
j=l,2,...,n,

(6.14) b(p)=
1

’k(S,h)q-. =, k’j-q\os]

where

s=p+/x+l

r( + s-p) [bj(p)
2ri

(A-t)p-L-Ibj(s, t) dt, l<-j<-n.

For those s such that p > Re s, we may deform the contour into a sum of loops ak(A),
where ak(A) is a simple closed path beginning at A and proceeding toward /k close
to the right border of the cut arg (t-A)= Ok, encircling Ak, and proceeding back to A
close to the left border of the cut. No other AI, k, should lie on Cek(A) or in the
interior of the region bounded by it.

Then using also (6.12) we obtain

27ri

-r(l + s_p) b(p)
(6.15)

i (4j q Id, + S + 1, t) dt.
k(Ak=l

For fixed, but arbitrary, p, A, q, j and k as above, and arbitrary complex numbers s
and g, s 0 (mod 1), consider the integral

_0(, t) at (s, )
2i (

(o)q[ F(I+s-P) I (A_t)p-s-lj_q(,t)dt].
Using (6.5) and Cauchy’s theorem, one may replace %_q(g,t) by k(,t)(1--
e2i(-X))-k.j_q( in the above integral (without changing its value). We claim that

Proof From (6.13) we have for each fixed, but arbitrary, integer p, for each fixed
s 0 (mod 1), and for R sufficiently large
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then it follows that

(6.16) I(s,) (1 e2"s)-l(s)q[tk,j-q()k(p S + , A )].

To see this, first assume that in addition Re (-h,)>0. Then the integral converges
at hk and the path ak(1) may be deformed to consist of two paths along the line
segment from to 1k, resp., from ,k to h, along the right, resp., left, borders of the
cut. Using (3.1) one sees that the integrand on the left border is e2=i(-) times the
value on the right border, hence

I(s, ) (s)
q [ F( I + s --P)

6k
2 ri ’J--q

where the integration takes place along the border with arg (1k u) 0k, hence arg (
u) 0k + 7r. Comparing the above integral with (3.5) (taking and N 0) we obtain

I(s,) (-s)q[I’(I+s-p)F(p-s) i(P-") ]e 6k.-q()k(P--S+,,)
2 zri

from which (6.16) immediately follows under the additional assumption that Re (-
h,) >0. But since both I(s, ) and the right-hand side of (6.16) are entire functions of
s’, then (6.16) holds for all . We also remark that in the same manner one can use
(3.5) to show that

r(1-s)[1-e2=(-)]- f (a t)s-lk(, t) dt
2"n’i ()

(6.17)
(1 e-Z=i")-’sCk(s + , A

for all A , (mod 1) and Re s > 0, s 0 (mod 1).
Now returning to (6.15) and using (6.16) together with (6.6) note that in the case

j 1 (hence q =0) we obtain (6.14). To complete the proof in the remaining cases we
obtain from (6.15) and (6.16)

bj(p) flj(p s, tx + s + 1)(1 e2=") -1 (1 <-j <- nl)
with fl defined by

(p-s,)=
1 o
qi.k=l [($k,j_q(g)k(p--s-t-, A)]

(use Leibnitz’s Rule to differentiate the product). Computing the first Jordan block of
e-z=4 explicitly, we conclude from (6.6)

() e2’’i(-’)
-i (_l),(2,rri) (),%,(g) oq Z o,,_,
o-=0 0"!

(l<-k<-n,l<-j<-_nl),

and after some calculation (using a simple binomial identity) we obtain

($kj_,_q(g)=(1--e2i(’-")) "() (1 <k <,k,-, =n,l<-j
q=O

This implies for j 1,..., nl

This is easily seen to complete the proof.
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Remark 6.2. For j 1, (6.14) reduces to

b(p)= W(kk(p+lz+l,h)
k=l

and from the asymptotic (3.3) we see that for p (positive) sufficiently large

(6.18) det [(p +/z + 1, h ),. ., (p+/z + 1, h)] 0.

Hence if the vector b(p) would be known for one such value of p and if the analytic
continuation of the k(S, t) is performed, then the first column of can be calculated
by solving the system of linear equations. For j 2 we obtain

os(s, ) (p+ +
k=l s=p++l k=l

and if the left-hand side is now considered as known for some p satisfying (6.18), then
the second column of may be calculated. Continuing in this manner (through this
block of M and corresponding formulas for the others) one sees that if for each
eigenvalue of M, (6.18) would hold for a value ofp and the corresponding coefficients
b(p) would be known, and if the appropriate analytic continuations of the associated
functions and their derivatives would be performed, then the central connection factor

can be calculated.
We also remark that using the asymptotic (3.3) for k(P + + 1, h) as p + one

sees that b(p) is a sum of n terms, each having an asymptotic that consists of the
common factor 1/F(p) times (different) exponentials in powers of p, and asymptotic
power series in 1/p. Using these asymptotics, one sees that if we would know the
sequence {hi(p)} asymptotically in this sense as p + then (generally) one element

() l<k <of the column Wk, n, can be calculated as a limit, corresponding to the value
of k for which hk- h[is the smallest.

The other columns b(p), j> 1, also have asymptotic representations as p +m
that consist of a sum of terms of the above type times various powers of log p (up to
the (j-1)st power). This is obtained from (3.3) by differentiating with respect to s
and using

1
_:m/F’(P)-(p)logp--2 Bp 2m.

r(p)

Remark 6.3. Using formula (6.10) and the knowledge of the asymptotic (4.10)
for the functions ](s, t), one could also try using (6.14) to obtain an asymptotic
representation for b(p) as p -. But the leading terms of such an asymptotic would
consist of F(-p) times exponentials and powers of p whereas we know from the
differential equation (0.1) that the Laurent coecients can grow at most exponentially
as p- since the series converges for [z[ > a. Hence the leading terms all cancel
leaving no apparent asymptotic structure for the Laurent coecients corresponding
to negative powers of z. This is indicated by the fact that, as a consequence of Birkhoff’s
reduction theorem, every equation (0.1) may be transformed into an equation (0.4)
for which all Laurent coecients with suciently small negative indices have to vanish
identically.

7. The aoageaeric cases; epenence of the matrices C(s) aa (s) on the selection
of . In the previous section we have considered the case of generic (in fact only
the situation with almost parallel cuts) and from Remark 6.2 one may see that it may
be advantageous from a computational standpoint to select several different generic
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values of h in a single problem. This makes it necessary to understand how the quantities
appearing in the previous section depend upon the choice of h, and in particular, to
see what happens in the case of nongeneric values of h.

Again consider an admissible pair (h, 0) with the t-plane cut from h to oe along
arg(t-h)=0, and define arg(t-h)(0-2cr, 0) for not on the cut. If 0j=
arg (Aj- A) (0- 27r, 0), let tr denote any permutation of 1, 2,..., n such that

(7.1) 0- 2r < 0o-(1)--< 0o-(2) Oo-(n) < O.

In the case that h is generic, inequality holds everywhere in (7.1) and cr is uniquely
determined by (h, 0). Furthermore, tr has the following geometric interpretation" If
we move along a circular arc h e e’ (with e > 0 and small, 0 (0 2r, 0)) in the
positive sense, then we first cross the cut from h to ho-(l, then from h to ho-(2, etc.

If h is exceptional (i.e., nongeneric), then (7.1) holds for several permutations.
Letting tr denote any such (fixed) permutation, we now wish to show that there exists
a system of cuts for which the above interpretation still applies (and which coincides
with the system in 6 in case h is generic). We construct these cuts as follows.

If there is only one point hk on the ray arg (t A) Ok, we cut from h to hk along
the straight line segment. Otherwise, let j and (1 =<j <j + l-n) be such that (with
the conventions 0o-(o)= 0- 2r, 0o-(,+)= 0)

Then the points Ao-(),..., Ao-(+) and no others lie on the ray arg (t-A)= 0o-(:) 0.
We wish to cut from A to Ao-(:), A to Ao-(+), etc., by a set of nonselfintersecting
polygonal arcs (meeting only at A) such that the directed line segments constituting
these arcs all have direction in (0- e, 0 + e), where e is any sufficiently small positive
number (so that these arcs will not cross any of those from h to A for k <j or k >j + l).
First make a polygonal cut from A to A,() (satisfying the above restriction) so that
all points A on the ray arg (t-A)= 0 which are closer to A than Ao-<)lie to the left
of the arc. Next make a cut from A to A o-(j+) starting out from A slightly to the left
of the previous cut and staying always to the right of all points A closer to A that
A o-(+) (except that the cut must pass to the left of A(:) if A o-(+l) is further out than
A o-()). (For the point on the ray arg (t-A)= 0 that is closest to A we will cut along
the straight line segment.) Continuing in this manner, we always begin the next cut
slightly to the left of the previous one and stay to the right of all points that have not
already been treated. This procedure then gives us a system of cuts so that when we
traverse (in the positive sense) a circular arc close to A with argument close to 0, we
first encounter the cut from h to h(), then from h to ho-(j+), etc., and finally the one
from

Remark 7.1. Given an admissible pair (A, 0) and a permutation ty satisfying (7.1),
we call any system of cuts of the type described above a canonical system corresponding
to the data A, 0, tr. (Note that in the generic case there is a unique system, whereas
in the exceptional cases there are infinitely many possible systems. However, if we
would call two systems equivalent when one can be homotopically deformed into the
other without crossing any of the points A,. , A, or the cut from A to , then the
permutation uniquely specifies a system of cuts up to equivalence.) We also remark
that given a canonical system, it would, of course, be possible to select an enumeration
of A1,"’, A so that the cuts in (0-27r, 0) occur in their natural order, but this
ordering clearly depends on the location of A. Since we wish to discuss different choices
of A for the same A,..., A,, that point of view would not be convenient here.

In either case (generic or exceptional) we will use the symbol g g(A, 0, o-) for
the t-plane with a specified canonical system of cuts.
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Given any canonical system of cuts, one sees that the region

O + ’rr/2 < arg (A t) < O + 3/2, It- AjI < e

(for sufficiently small e > 0) is contained in g for every j 1, 2, , n. Hence for such
we may define (s, t) by (3.1) and analytically continue it (with respect to t) into

all of . Likewise, for e we may use (6.2) to define (s, t) and for the same reasons
as stated there and in Remark 6.1, Proposition 6 holds for these functions as well,
except for the expressions (6.4) and (6.6), which depend upon the assumption that
the cuts are almost parallel (with v determined by (6.1)). Our goal is to determine
how the permutation cr influences the expressions for C(s) and A(s) in (6.4) and (6.6)
and to show in the process how to calculate all the matrices C(s) and A(s) if they are
known for a single admissible pair A, 0.

As preparation for this, we consider the following rather general situation: Given
an admissible pair (A, 0) and a canonical system of cuts corresponding to a permutation
or, let g,.o, g denote the plane with these cuts and assume h and are such that
arg (Ah- A )= arg (At- A and the cut from A to At immediately follows the cut from A
to Ah, i.e., tr(l)= tr(h+ 1). Then there exists a polygonal cut r in (of the type
described above) from A to A! that immediately precedes the cut from A to Ah such that
the union of r and the original cut from A to At is a closed Jordan curve containing
Ah in its interior and none of the other Ak, k # h.

Let denote the t-plane with the same system of cuts as in g, but the original
cut from A to Al is replaced by r, and let (s, t) and q3(s, t) denote the corresponding
analytic continuations (with respect to e ) of the functions given locally by (3.1),
(6.2). (We continue to use the notation sc(s, t), %(s, t) for the analytic continuations
of the same germs in g.) Let (s) and A(s) denote the unique matrices associated
with these functions (by Proposition 6). We state the relation between these matrices
and the original ones now as follows.

LEMMA 1. In the situation described above, suppose that AI and Ah are such that the
cut from A to At lies on the left-hand side of the cut from A to Ah (ease I). Then

(7.2)

and

S)Cth(S)Elh)C(s) (I cht(s)Eh,)C(s)(I + e2ri(x;-

(7.3) A(s) (I ch,(s)Em)A(s),

where Em denotes the n n matrix, in which all entries are zero except for a one in the
h, l) position.

If the cut from A to At lies on the right-hand side of the cut from A to Ah (case II)
we have

(7.4) (s) (I + e’i()’;-)cm(s)Eht)C(s)(I-cth(s)Eth)

and

(7.5) 7X(s) (I + e2"’(a"-’)ch,(s)Em) A(s).

Proof We give the proof only for case I; the pr.oof in case II follows similarly.
For fixed j, k, 1 <=j, k =< n, we will choose a path in from Aj to A along which we
will analytically continue our functions. If neither j nor k equals h or else if j k h,
then the path may.be chosen so that it does not cross the cut from A to Ah (in );
hence (s, t) and (s, t) (which are equal by definition for close to A and arbitrary
s) remain equal as approaches A along this path. Hence ?(s)= %(s).
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Next consider k h, j # h. Then using the fact that the cut from h to Ah lies to
the right of the cut from h to hi, one sees that there exists such a path (in ) crossing
the cut from h to A exactly once and in the positive sense (i.e., the selected branch
of arg (t- AI) jumps by -2r as the cut is crossed). Furthermore, we may also take the
crossing point close to At. Since for s h (mod 1),

(s, t)= ,(s, t)co(s)(1-e-is-a;))-1 +reg (t- A/),

and since (using (3.1)) the analytic continuation of l(S, t) across the cut from A to AI
in the positive sense is given by

set(s, t) e-;),
then the analytic continuation of (s, t) along the path to a point close to Ah is given
by

(s, t)-t(s, t)co(s).
But since(s, t) and (s, t) have the same local definition~ near Aj and the above path
stays in , then the above value is by definition (s, t). Hence

(s, t)= (s, t)-t(s, t)co(s),
for close to Ah. This expression has been shown for s A’l (mod 1), but since all the
terms on both sides are entire functions of s, it remains valid for all complex s. Using
this and the relations (6.3) we obtain

(7.6) h2(S) Chj(S)- Cm(S)Co(S), j h, 1 <-j <= n.

Last, we consider the case j h, k # h. Then there is a path (in ) from An to Ak
that crosses the cut from A to At exactly once and in the negative sense (also crossing
close to At). Using the same reasoning as above, the analytic continuation of k(s, t)
along this path to a point near Ak is given by

h(s, t)+ set(s, t)Cth(S) e2i’-),

and comparing this with the analytic continuation in we find

’h(S, t)---h(S, t)’-l(S, t)Cth(S) e2’;-).

Using this and the relations (6.3) we obtain

(7.7) kh(S)-Ckh(S)-l-Ckl(S)Clh(S)e2rri(A;-s), k#h, l<=k<-n.

From (7.6), (7.7) and the definition cj 1- e-?, we obtain (7.2).
In a similar manner, observe that for every j, 1 <=j <- n, q3j(s, t) %(s, t) for close

to Ak, k h, 1 <_- k -<_ n (since %, q3 have the same definition for It[ large, arjg 0
and all points A for j # h are accessible from such points in both and ). But for
close to Ah, we have (using (6.5))

j(s, t)= %(s, t)-t(s, t) 60(s).
This implies (for j 1, 2, , n) that

(s) (s), k#h, 1-<k_-<n,

and

(s) (s) c,(s) 6,(s),
which yields (7.3). This completes the proof of case I and the lemma.
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We now return to the question of how the permutation r affects the matrices C (s)
and A(s). Corresponding to a fixed, but arbitrary, canonical system of cuts, let r denote
the permutation. We define two sets o"+ and o-- of ordered pairs (j, k) according to
the rule

(7.8)
(j,k)cr+ iff o’-’(j) > o’-’(k),

(j, k) r- iff k,j) e r+.
One may think of cr/ as defining a complete ordering of the numbers 1, 2,. ., n; in
case of almost parallel cuts, the ordering coincides with the dominance relation in
S’+ S(r, r+) for v as in (6.1). (Compare [1, 3.1] for the notation and interpreta-
tion of the dominance relation in terms of the ordering of the cuts.) The purpose of
r/ and o-- is to provide (in the general case) the structure that allows C(s) to be
decomposed in a manner similar to (6.4). We state our main result in this section as
follows.

THEOREM 3. Let a differential equation (0.1), aformalfundamental solution matrix
H(z), a solution X(z) in Floquetform, an admissible pair (A, O) and a canonical system
of cuts be given. (Consider all of the abovefixed, but arbitrary, subject to our assumptions
and natural restrictions.) If er denotes the permutation induced by the cuts, let cr be
defined by (7.8). Then Proposition 6 extends to this situation as follows.

(i) There exist unique constant (i.e., independent ofs) matrices C+= C+[cr], resp.
C-= C-[o’] having ones along their diagonals and nonzero off-diagonal elements only
in positions (j, k cr+, resp. (j, k) o’- and such that

(7.9) C(s) C-- e2i’-A’C+.

(ii) There is a unique constant invertible matrix f O[cr] such that

(7.10) A(s) l)(I- e2=ist-t)) with Mas in (0.3).

(iii) If we define
(7.11)

then

(7.12)

e2rriM[r]: C-[o’](C+[o’]) -’ e2riA’,

e2iM[’*l= [o-] e2iM-’[cr].

Proof. First observe that slight changes in 0 do not affect the validity of statements
(a) and (b) in Proposition 6 nor the form of C(s) or A(s). Hence we may assume
without loss of generality that 0 # (for every integer v) and at the same time that
none of the points a, , a, lie on the straight line through a with direction 0. (This
line we denote by g.) Consider such a straight line g now to be fixed and think of
varying a along g, observing that all pairs (a, 0) are admissible for all a e g. For a
suciently far out (and on the proper side of g), the cuts can be seen to be almost
parallel and in this situation it follows from Proposition 6 that statement (i) holds if
we take

C-=V... V_+, and C+=(V_... V_=+,)-’.

(Compare with [1, } 3], to see that C have the required form.) Moreover, using (6.6)
and (1.6) we see that (ii) and (iii) hold with [] and MIni M since

e2iMC-(C+) -’ e2=’a’ e2ia’Vv+m Vv+
(using that for every integer 1, + e-2=ia’ e2iA’).
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(7.13)

(7.14)

and

Note that as A moves along g in an interval containing only generic values, then
using (6.3) and (6.5) it is easy to see that Ckj(S) and 6kj(s) do not change. Because of
the choice of g, the only nongeneric points on g are isolated and there are only finitely
many of them. So to establish the validity of (7.9), (7.10) and (7.12) it suffices to
consider what changes take place in C(s), A(s) for generic values of A and in
adjacent open intervals that are separated by an exceptional value A.

Let the permutations co,,rresponding to the cuts from A, resp., A, be denoted~ by
resp. t7, and note that since A is the only exceptional value between A and A, then both

(;,0, or) and (Â ,0,&)
are admissible data (in the sense that they correspond to systems of cuts of the type
discussed above). Also note that with respect to the points A, At with arg (A-A)
arg (At- A), the difference between cr and & corresponds to a reversal of the ordering
of the cuts. There are only finitely many such rays emanating from containing points
which are thus affected and the permutation taking o- to acts separately on the cuts
corresponding to each of the rays. Observe that in the limiting situation as A A, the
elements in C(s) and A(s) depend only on the permutation r and not on the specific
cuts used in the limiting situation (A, 0, r), since all points A,..., A, are accessible
to each other and A by paths lying in both planes. To now see what changes take place
between (,, 0, o-) and (A, 0, &), observe that there exists a sequence of permutations
taking r into corresponding to systems of cuts such that for two consecutive systems
of cuts the situation of Lemma applies. Hence to show that the conclusions of
Theorem 3 hold for (,Q 0, &) (and consequently for (A~, 0, &)) it is sufficient to prove
the following.

LEMMA 2. In the situation of Lemma 1, let r, resp. , denote the permutations
corresponding to , resp., , satisfying the aforementioned conditions and let cr be
determined by (7.8). Furthermore, assume that the conclusions of Theorem 3 hold for
O, r (with matrices denoted C(s), C +/-, A(s), f). Then for , O, & we have

(S) e2i(s,- A’) +,
(S) -(I-- e2i(sI-M)),

(7.15) , e2iMfi-, (-((+)-1 e2-iA’,
where (in case h, I) tr-) we have

+ (I- c e2=(a’-";)E)C+(I- C+hEh),
+- (I- c,Eh,)C-(I- c,nE,n),

(7.16)

(7.17)

and

(7.18) I-- c-IEhl),

whereas (in case h, l) o"+) we have

+ (I +ch,En,)C+(I cE,h),
~- + Eht C- i c- EthC (I e2ix-)chl

(7.19)

(7.20)

and

(7.21) O (I e2;-)ChlEhi)l).

Hence +, resp. - have ones on their main diagonals and nonzero off-diagonal elements
only for positions in 6"+, resp. 6"-.
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Proof. We will restrict ourselves to the case (h, 1) tr-; the other case follows
analogously. Observe that (h, l) tr- corresponds to case I of Lemma 1, since o--1(I) >

--1o- (h) means that the cut from h to At comes after the cut from h to hh (when traversing
an arc close to h in the positive sense). From (7.9) we find Chl(S)=Ch-l, Cth(S)=
--ei(s-X;)C-fh. From (7.2) we therefore find (7.13) (if we define : by (7.16), (7.17).
Moreover, (7.14) and (7.15) follow immediately, using (7.3), (7.10), (7.16), (7.17),

,+(7.18). It remains to show that C - (defined by (7.16), (7.17)) again have ones
along the diagonal and nonzero off-diagonal terms only in positions (j, k) /resp.
(j, k) t-. In order to do so, observe that re-enumerating the points h,..., An
corresponds to applying the same permutation similarity transform to C(s) and C(s)
(hence to C +/- and (+). So for the purpose of simplifying the arguments, we may
assume (without loss of generality) that h,..., An are enumerated according to the
ordering of the cuts in (from right to left when looking toward h). In this case
(j, k) cr

/ iff j < k, i.e., C/ is upper triangular and C- lower triangular. Moreover, the
selection of cuts and the fact that we consider the case (h, l) or- implies h l+ 1.
Hence it follows easily from (7.16), (7.17) that + (resp. (-) has ones along the
diagonal and a zero in the (l, h) (resp. (h, l)) position, and the only nonzero element
below (above) the diagonal may occur in the (h, l) (resp. (1, h)) position. This completes
the proof.

8. Applications and final remarks. Finally, we will discuss how the previous results
may be used to solve the central connection problem, in the case of an arbitrary
admissible (h, 0) (h generic). For a solution X(z)= L(z)z4 in Floquet form with
monodromy matrix M in upper triangular Jordan form, let A(s)= f(I-e2i(-4)) be
as in Theorem 3. If bj(p), tx, n are as in Theorem 2, then the proof of that theorem
also applies to situations of arbitrary generic h (where the cuts generally are not almost
parallel), and we find for arbitrary p and j 1,..., nl"

q; tok.j_q Srk(S, A)
k:l s:p++l

This expression and the corresponding formulas for the remaining blocks of M allow
the following interpretations"

(a) If a monodromy matrix M in Jordan form and one Laurent coefficient
B(p)=[b(p),..., bn(p)] of a corresponding solution in Floquet form are known,
and if the matrix :(s, A) is invertible (at least) for s=p+/x+l, l<=j<-_n, then the
matrix f tOkj can be uniquely computed from (8.1) and the corresponding formulas
for the remaining blocks of M. Moreover, from (7.12), (7.11), (7.9) we can, successively,
compute C-, C/, C(s), and with the help of Lemma 1 we can explicitly see how C (s)
(and A(s)) changes with respect to A so that in the end we may compute the correspond-
ing matrices for a situation of almost parallel cuts. Using Proposition 6 we can then
compute all the Stokes’ multipliers and all the central connection matrices. We wish
to emphasize that all the computations required above are merely matrix algebraic
operations, except for the evaluation of sO(s, t) (and its s-derivatives) at the point A.
In case the so-called "pentagonal condition" holds, i.e.,

IAy-AI < [A-Akl (kj, l <=j, k<=n),

then for every j 1,. , n, the series (3.1) converges at A and may therefore be
used directly to evaluate :(s, A). Generally one has to analytically continue :(s, t)
(along a straight line) to the point A. This can be done by explicit summability
methods or by rewriting (3.1) as a convergent generalized factorial series in s. (See R.
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Schiifke 17] whose proof, given only for an equation (0.4), also carries over to equations
of the form (0.1).) Concerning the invertibility of :(s, A), we may use either the
asymptotic obtained in (3.3) to see that :-l(s, A) exists for Re s sufficiently large, or,
in the case of an equation (0.4) we can explicitly compute the determinant of :(s, t)
(using both the difference and the differential equation for :(s, t) and its asymptotic;
compare Hukuhara [9] for details):

(8.2) det (s, t) lI (Aj t)’--I

Consequently, if we assume that A has n eigenvalues x,. , x, incongruent modulo
one, then (s, & is invertible for the values s =/xj + 1 (1 _-<j _-< n). Hence ifX(z) L(z)zM

(with M=diag [x,..., x,], L(z)e-z =Yo B(P) zp) is a given solution in Floquet
form, then (8.1) (and the corresponding formulas for the other--one-dimensional--
Jordan blocks of M) imply (with p 0)

b(0)= wk,k(m+l,h) (1--<j <-- n),
k=l

and solving these systems of linear equations gives 12 explicitly. Kohno [14], under
the additional assumption of a pentagonal condition (and considering only the case
A =0), derived an analogous result (even for equations having a singularity of larger
rank at oe and a somewhat more general structure for the formal solution, but zero,
the only finite singularity, being of first kind). To remove the assumptions of a
pentagonal condition from Kohno’s results, it has been observed by Sibuya [24] that
one should in some sense analytically continue the functions in Kohno’s formulas.
One natural way to do this involves continuing the functions (s, t) with respect to
to a convenient value and then one needs to know how the connection constants
depend upon the choice of A.

(b) Using the freedom in the selection of a solution in Floquet form (corresponding
to some fixed M), the result (a) has the following "converse": Suppose that the Stokes’
multipliers are known, then one can compute the matrix C(s) (and vice versa)
corresponding to our selected admissible pair (, 0). From (7.9) we then compute C+,
C-. If 12 is any invertible constant matrix for which

"--1 C-(C+)-1 e’iA’12 e:z’riM

with M in upper triangular Jordan form, then by (8.1) and the corresponding formulas
for the other blocks of M we define B(p)=[bl(p),’", b,(p)], for arbitrary integer
p. The matrix

X(z)=14z)z, L(z) e-Z": Z B(P)zp

then is a fundamental solution of (0.1) in Floquet form whose central connection
coefficients can be explicitly computed in terms of 12 (following the same steps as in (a)).

As a result of the preceding discussion, we now formulate Theorem 4.
THEOREM 4. Consider a differential equation (0.1) satisfying our basic assumptions,

any selected formal fundamental solution matrix H(z) as in (0.2), and any admissible
pair (A, 0), with A a generic value. Then the following statements hold:

(a) If a monodromy matrix M (in upper triangular Jordan canonicalform) and the
pth Laurent coefficient B(p) ofL(z) e -zx (for a solution X(z) L(z)z4 in Floquetform)
are known (with fixed p, sufficiently large), then the matrix 12=A(s) (I- e2=i(s-4)) -1

can be explicitly computed from systems of linear equations involving B(p) and (s, A)
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together with its derivatives with respect to s, for values s p + txj + 1 1 <-_j <-_ n ). Moreover,
from 12 one can explicitly compute all the Stokes’ multipliers and central connection

matrices, using only arithmetical operations.
b If all the Stokes’ multipliers (or equivalently, C (s)) have been calculated from

the global behavior of sO(s, t), and if 1 is any invertible matrix for which

--l C-(C+) -1 e2rih’- e2iM

with M in upper triangularJordanform, then defining B(p) by (8.1) resp. the corresponding
formulas for the other blocks of M, the matrix

X(z) L(z)zM, L(z) e-z E B(P) zp,

is a fundamental solution of (0.1) in Floquet form, and its central connection coefficients
may be explicitly computed from , using the same procedure as in (a).

9. An example. Consider the scalar, second-order differential equation

d2Y t--+ h + 0,(9.1)
dz-- z dz - -g Y=

which we write in equivalent system form as

(9.2) -z dy/dz -h+2/z-h/z -1/z dy/dz
=-A(z)

dy/dz

It is well known that (9.1) is related to Mathieu’s differential equation

(9.3) d237
dO---5+ (- 2h cos 20))7 0

through the change of variable z=e and y(z)=f(O). The quantities h and are
complex parameters with h 0: We use the same notation as in Meixner and Schifke
[22] except we have been forced to replace their A by A", since A has already a special
meaning for us from 6-8.

Traditionally, it has been more popular [22] to treat (9.3) using Floquet’s theory
for periodic differential equations rather than (9.1) or (9.2), which are meromorphic
differential equations having irregular singularities at 0 and c. Our goal is to apply
the preceding theory to represent a fundamental matrix for (9.2) in Floquet form, that
is, as a convergent Laurent series times a matrix power z. In terms of (9.3) this
corresponds to calculating the Fourier expansion for the periodic part of a Floquet
solution as well as the Floquet exponents. The formulas we derive here are not intended
to supplant or duplicate the rather extensive literature on Mathieu functions, much of
which is motivated by applications to eigenfunction expansions, but instead to indicate
how the results of this paper could be applied to an interesting differential equation
with multiple irregular singularities.

Near , we select for (9.2) the formal fundamental solution matrix

(9.4) H(z)--F(z)zA’eaz,
where A diag {ih,-ih}, A’= diag {-1/2,-1/2}, F(z) =o Fpz-p with

Fo
ih ih
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and h is selected so that -Tr < arg h -< 0, replacing h by -h if necessary. This selection
corresponds to ordering the pair (ih,-ih) lexicographically (in decreasing order, first
by real, then imaginary parts).

In the study of (9.3) it is convenient to use its special form and periodicity to
minimize the required calculations. For (9.1) this corresponds to its invariance with
respect to each of the substitutions z z e=i and z 1! z. For (9.2) this implies that if
X(z) is a fundamental solution matrix (actual or formal), then

diag {1,-1}X(ze =i) and diag {1,-1/z2}X(1/z)
also are fundamental solutions. (We remark that all solutions are considered to be
defined on the Riemann surface of log z with arg z selected consistent with the treatment
in the earlier sections.)

It follows that there exists a constant, invertible matrix C such that

(9.5) diag {1,-1}H(z e) H(z)C

and using (9.4) we find that

-i 0

and

(9.6) diag {1-1}F(-z)= F(z)(0 10)1

Also, since

(z) diag {1,-1/z2}H(1/z)
=diag {1,-1/z2}F(1/z)z-A’ eAz-’

is a formal fundamental solution, we may select this H(z) as our formal fundamental
solution near z 0.

The Stokes’ rays for (9.2) with respect to the singularity at are those rays arg z r
for which Re (2ihz) changes sign. We let

ro =-arg h and define r ro + vTr

for all integers v. Let X(z) denote the vth normal solution (with respect to the
singularity at m and our selected (H(z)) and let (V) denote the corresponding system
of Stokes’ multipliers. From

X(z)- H(z), z

we have (using (9.5))

diag {1, -1}X(z e=’)C-’- H(z),

arg z e (r_,, r+

zo, arg z e (r._2,

hence (by uniqueness of the normal solutions)

(9.7) X,_(z) =diag {1,-1}X(z e=)C- and V_I CV,,C-
for all v, i.e.,

(9.8) V_ =(0 10) V( ;)1

Normal solutions can be represented, for example, as Laplace integrals using results of A. Erd61yi
19], [20].
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In particular, due to the ordering of (ih,-ih), we have

Vo and V
0

where v is a complex constant.
Define (z)= diag {1,-1/zZ}X,,(1/z), where we select arg (l/z)=-arg z. Then

the Stokes’ rays with respect to the singularity at z=0 are those rays for which
Re (2ihz-) changes sign. To simplify the notation we can enumerate them as -’
and note that arg z e (’-1, ’+1) itt arg (l/z) (’-l, "+). It follows that (z) is the
,th normal solution (at 0 with respect to the selected/-it(z) and the Stokes’ multipliers
at 0 are exactly the same as the V).

Hence there is just one quantity v that determines all the Stokes’ multipliers at 0
and ; to calculate v we apply (5.7), which in this case reduces to

(9.9) fl(P) vce2(A -p+ 1)
with c2(A’l--p + 1)-F(p)(2ih)-t’(f2(O)/(27ri)+ o(1)) as p +c.2 In using Corollary 1
we take r/= r/ arg (ih) (-7r/2, 7r/2], r/o r/ + 7r, and also assume that A /z
(mod 1).

Recalling our selection for Fo, this implies

27r f2(p)(2ih)’lim(9.10) v=
+ r(p)

where f(p) (f(p), f21(P)) . We remark also that from the results in 2 as well as
in [11], (9.10) holds without the extra assumption on A , while the construction of the
function ce2(. and (9.9) depend upon that assumption. (The case when A --/x (mod 1)
will be seen shortly to be an especially simple one.)

The coefficients fl(P) are easily seen to satisfy

(9.11) (2ihp)fl(p)=((p-1/2)-)f(p-1)+hZf(p-3), p>-I

and

(9.12) f(p+ 1)- -(p+ 1/2)fl(p)+ ihfl(p+ 1), p_>--1

withfl(-2) =f(-1) 0 andfl(0) 1. Defining d(p)=(2ih)Pf(p), p>=-2, one sees
that (p+ l) d(p+ l)=(p+1/2+) (p+5 ) d(p)-4h4 d(p-2), p>_-o, where /32=-,
Also defining

F(p+l)
l_ forp ->0,c(p)=d(P)F(p+1/2+)F(p+- )

one sees that

4haF(p + 1) d(p-2)
c(p+ l) c(P)-F(p++ )F(p+_), p>-O,

which implies that
p-’ F(j+ 1) d(j-2)

c(p) c(0)-4h4 o/= F(j + +/3)F(j + 23__/3), p_->0.

Since F(p ++/3)F(p +1/2-/3 )/F(p + 1) F(p) as p - +, we conclude from (9.10) that

f(p)(2ih)p

v 27ri lim 2ri lim c(p),
p-+ F(p) p-+

Also see [21] where the case of a scalar, second-order differential equation is described in detail.
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where we have used that the first limit exists also from (9.9). (Also see [21], where the
matrix formulas have been translated to the scalar case.) Hence it follows that

v 1 F(j+ 3) d(j)
27ri F(1/2 + /3 )F(1/2 /3

-4h4
=0 r(j ++/3)F(j +-/3)

and since the d(j) are easily seen to be polynomials in/3= ; and h and of order
O(F(j)) as j-, then the above series can be shown to converge compactly with
respect to both variables, hence to an entire function in , and h. Note that the Stokes’
factors are not defihed for h 0, but the function v has a removable singularity there,
in any case.

In terms of the Stokes’ multipliers, one can construct a circuit factor for X_l(z)
as -V1Vo, hence the most general circuit factor is given by

(9.13) 1)-( V Vo) --1(-l-v2 --)- e2"triM

V

where 1) is an invertible matrix. To put e in Jordan form, use an auxiliary parameter
t defined (up to sign and modulo 2) by the equation

2i cos rt v.

For every possible fixed selection of t, the values Xl e2=", x e-=" then are the
roots of

(9.14) x + (2 + vZ)x + 1 0

(hence are the eigenvalues of eZiM). The roots are equal in the cases v =0, resp.
v2= -4, in which cases they are -1, resp. 1. Both special cases are of particular interest"
In case v 0, i.e., 2/x an odd integer, both columns of F(z) converge, and a solution
in Floquet form is given by H(z). In case v2= -4, i.e.,/z an integer, a Jordan canonical
form for e2triM is

and M can be selected as

(1 1)

When v2-4, we select 1 as

(9.15) 1=
-i

and we may take M =diag {/x,-} in (9.13); but every selection M=diag{,
with e2=% x., j 1, 2, will also satisfy (9.13). When v2= -4 we may select

(9.16) f=(1 0 )q:i +i/2
in case v +2 i.

To calculate the Laurent coefficients, we first construct the associated functions

,(s, t)=2
f(l)(ih-t)

o r(t++)
and (2(s, t) Z fz(1)(-ih t) t+s-’/2

o F(/+s+1/2)
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where (consistent with the discussion in 6) we may choose A 0 and cut the complex
t-plane from +/-ih to 0 along the line segments and from 0 to along arg (ih) + 37r/2 0,
with 01 =arg (ih) (-7r/2, 7r/2].

For in the cut plane, denoted , we select

arg(ih-t)6(Ol, 01+27r) and arg(-ih-t)6(Ol+r, Ol+37r)

(for close to ih, resp. -ih) to define the nonintegral powers. The identity (9.6) has
the following interpretation for the associated functions.

Replacing by -t in the definition of 1(s, t) and using (9.6), we have

(9.17) (ih + t)l/2-l(s -t) diag {1, -1}(-ih t)l/2-2(s, t)

for such that t, -t6. For t with Re(te-i,)<O we find arg(-ih-t)=
7r + arg (ih + t); hence

l(s, -t)= ei<1/2-) diag {1,-1}2(s, t).

Using the above relations in

l(s, t) c21(s)(1 e2=i<-/2))-lcsz(s, t)+ reg (t + ih)

with +- t, one sees that

C12(S) C21(S) e2i(s-/2): --c21(s)e2Eis,

which agrees with (6.4) when we take u =-2 in (6.1).
Note that the above choice of A 0 is generic (in the sense of 6) but the system

of cuts is not almost parallel. This choice for A is especially convenient, however,
because both power series converge absolutely there (like geometric series) and the
Laurent coefficients are produced directly rather than multiplied by the power series
for e-z if A 0.

To apply formula (8.1), let/zl,/z2 be defined as above and let

k(p+ tX + 1, O)= E
f(l)[(--1)k+l(ih)]l+P+’+/2

=o F(l+p +/x + 1)

for j, k 1, 2 and p . (Note that in defining the nonintegral powers above, we must
select the "forbidden" values arg (ih)= 0 and arg (-ih) 7r+ 0 according to the
discussion preceding the statement of Theorem 2.)

In case va-4, take fl- (Wk) as in (9.15) and form

(9.18) l(p)=-b(p,O)=wl,(p+m+l,O)+w.iz(p+l.i+l,O) forj=l,2.

Then from Theorem 4(b), Z+_ [/(p), l(p)]zp+ is a fundamental solution matrix for
(9.2) in Floquet form.

If v -4, then/z 0 is a double root and we calculate k(P + 1, 0), k 1, 2, just

=+1 =o r(/+p +)

as above and also

Z
f(1)[(-1)+lih]’+"+l/2 log((-1)k+lih)

Z
fk(1)[(--1)k+lih]t+P+l/z

,:o (F(/+p+)) r’(/+p +), k=l,2..

Then using l-I as in (9.16) and forming (according to (6.14))

/,(p) sC,(p+ 1, O)q: iz(p+ 1, O)
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and

12(p) +/ 0 0
2sC2(P+ 1 0)+--Sol(p+ 1 0)q i--(p+ 1 0),

Os Os

we obtain a solution for (9.2) in Floquet form for the case v= -4 as

2 Ill(p) I2(P)] 2p
1 log 27ri

While we have constructed the Laurent coecients Lp by the preceding infinite
series for each integer p, it is interesting and useful to observe that because of the
symmetries and special form of (9.2), it is only required to calculate a few such
(transcendental) quantities in this manner; the remaining ones can then all be calculated
recursively from the difference equation (0.6) and the symmetries as we now describe
in the "main" case v: 0, -4 (which corresponds to the nonperiodic case for (9.3)).

Let X(z)= L(z)z denote the solution in Floquet form constructed above, where
for definiteness we take

M diag {1, -/xl},

where/x =/x + k, with/x denoting any fixed solution of 2i cos 7r/x v and k denoting
an integer. Then 2i cos r/x (-1)% and we will see below how the integer k affects
the parity of the functions in L(z). Observe that in our case (v e0, -4), 2/x is not
an integer.

Since

diag {1, -1}X(z ei) =diag {1, -1}L(-z) ei4zM

is also a fundamental solution matrix for (9.2), there exists a constant, invertible matrix
R such that

diag {1,-1}L(-z) e’a4z L(z)z1R,
from which it follows that z4 RzTM is single-valued. Since 2/xl is not an integer, it
follows (see [10, p. 38]) that R is diagonal and

(9.19) diag {1,-1}L(-z) L(z)D where D diag {dl, d}= R e-4.
Letting L(z) +o(Y-oo lo(P)zP), 1 -< i, j < 2, it follows that for each integer p,

(9.20) (-1)Plj(p) dll(p) and (-1)P+ll2(p)= d12.j(p),

j= 1,2. Moreover, from Jacobi’s identity one has det X(z)= det L(z)= cz- for some
nonzero constant c; hence from (9.19) det D dld: 1. Since neither column of L(z)
can be identically zero, it follows that either d da 1 and

(9.21) lj(2p + 1) 0, 12(2p) 0 forj 1, 2 and all p

or d d=-I and

(9.22) 11(2p)=0, /z(2p+ 1)=0 forj= 1,2 and all p.

Which one of these cases occurs depends upon k =/z-/x being even or odd, as
we will now see. From (9.17), setting =0 and recalling that in this event one must
have arg (-ih)= arg (ih)+ 7r according to Theorem 2, we find

2(s, 0)=diag {1,-1} e(s-’/2)(s, 0).

Using (9.18) and (9.15), it follows that

(9.23) l(p)=e diag{l+ei(P+’,-’),l-ei’(P+l-)}l(P+tXl+l,O);

hence (9.21) holds if[/x-/x is even while (9.22) holds if[/xl-/x is odd.
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The difference equation (0.6) for the first column of L., in this case reduces to

(9.24) [(p+)-]l,(p)+hl(p-2)+hl,(p+2)=O
and

(9.25) l,(p) ( +p+ 1)/(p + 1).

Hence one sees that if 111(p) and l(p+ 2) are known for some value of p such that
at least one of them is different from zero, then all the coefficients in the first column
of X(z) can be calculated recursively.

To generate the second column, one can use the fact that

diag {1,-1/z2}X(1/z)
is also a fundamental solution matrix, hence there exists an invertible, constant matrix
P such that

diag {1,-1/z2}L(1/z)z-M L(z)zMP.
From the single-valuedness of zMPz and recalling 2/z is not an integer, one sees
diag P 0 and

(9.26) diag {1 -1/z2}L(1/z)= L(z)P with P=
p 0

Setting z 1 and taking the determinant, we have pp2 1. Hence from (9.25) it follows
that

(9.27) 1,(p)= pl(-p) and -l(p)= ptz(-p-2)

for all integers p.
Since for all p sufficiently large, it follows from the asymptotic (3.3) that the first

component of s(p +/1 + 1, 0) is different from zero, then from the preceding discussion
of the two cases (9.21) and (9.22), if we would select k =0, then /(2n)S0 for all n
sufficiently large. From (9.24) one sees that if two values l(p), /1(p+2) would be
zero, all the l(p+2m) would be zero, hence if we are in case (9.21) then at least one
of l(p), /(p+2) is different from zero for every even integer p. If l(p)O, then
p can be determined from (9.27) (by calculating l(-p)) and then all the other entries
of the second column of L(z) as well. On the other hand, if we just want some
fundamental solution matrix in Floquet form, we could select p =p= 1, which
corresponds to multiplying the second column of L(z) by a scalar, nonzero, constant
(and also corresponds to changing the second column of the selected in (9.15) by
the same scalar factor). Since that 12 was not selected for any special purpose other
than concreteness, if one just wants a fundamental solution in Floquet form, that point
of view would be appropriate.

Hence we see that to calculate some solution for (9.2) in Floquet form according
to this method, one must calculate three scalar quantities v, l(p), l(p+2), which
are defined as the limits of infinite series. All other quantities in a Floquet solution
can be recursively generated from these.
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ASYMPTOTIC INTEGRATION OF A PERTURBED CONSTANT COEFFICIENT
DIFFERENTIAL EQUATION UNDER MILD INTEGRAL SMALLNESS

CONDITIONS*

WILLIAM F. TRENCH?

Abstract. The problem of asymptotic behavior of solutions of an nth order linear differential equation
is reconsidered, and a result obtained by Hartman and Wintner under integral smallness conditions on the
perturbing terms which require absolute integrability is shown to hold under weaker integrability conditions
requiring only ordinary (perhaps conditional) convergence of some of the improper integrals that occur.
The estimates of the asymptotic behavior of solutions of the perturbed equation are also sharper than in
the classical result.
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1. Introduction. We consider the scalar equation

(1.1) Xn)+axn-1)+’’’+akXn-k)+pl(t)xn-1)+’’’+Pn(t)x=f(t),

where al,..., ak are complex constants, with

(1.2) 1--<k--<n-1, ak 0.

t>0,

It is assumed through that P1," ", Pn, and f are complex-valued and continuous on
(0, c). We give conditions on them which imply that (1.1) has a solution which behaves
asymptotically like a given polynomial of degree <n- k.

The following theorem of Hartman and Wintner [1, Thm. 17.3, p. 316] addresses
this question. (We use "o" and "O" in the standard way to denote behavior as .)

THEOREM 1. Suppose that the polynomial

Q(A) A k q- alAk- +. .d- ak

has no purely imaginary zeros, and that

(1.3) IP(t)ltqdt<, ljk+l,

and

(1.4) IP( t)ltJ-k-l+q at < o, k + 2 <-_j <-_ n,

for some q >-_ O. Then, for each O, 1, , n k- 1, the equation

(1.5) x(n)-k-ax(n-1)+ "+akX(n-k)wp(t)x(n-1)+ "+P,(t)x=O, t>0,

has a solution Xl such that

xt(t)-
o(-r-q), O<-r<=n-k-1,
o(t-n+l+k+l-q), n_k<=r<=n_l.

Prevatt [3] has obtained the conclusion of Theorem 1 under weaker integrability
conditions on [PI,""", [P,[, and nartman [2] has recently extended Prevatt’s results

* Received by the editors March 31, 1986; accepted for publication (in revised form) December 22, 1986.
? Department of Mathematics, Trinity University, San Antonio, Texas 78284.
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to the case where Q(A may have purely imaginary zeros. Here we retain the assumption
that Q(A) has no purely imaginary zeros, and we obtain results which imply the
conclusion of Theorem 1 under integral smallness conditions on P1,’", Pn and f
which allow conditional convergence of some (in some cases all) of the improper
integrals involved. We also give more precise estimates of the asymptotic behavior of
the desired solutions.

The results obtained here are anaolgous to those obtained in [8] for the equation

(1.6) x(n)+ P( t)x(-) + "+ P( t)x f( t)

(see also [7]); however, the condition (1.2) necessitates a distinctly nontrivial extension
of the methods used in [7] and [8]. (For example, see Lemma 1 and its proof.)

In work related to the present paper in the sense that the integrability conditions
on P,. ., P,, and f are stated in terms of possibly conditional convergence, ,ima
[4]-[6], has studied (1.1) with k n, regarding it as a perturbation of the constant
coefficient equation

x(n) + ax("-1) +. + ax O.

The author [9] has also considered this problem.

2. The main theorem. It is to be understood below that improper integrals appear-
ing in hypotheses are assumed to converge, and that the convergence may be conditional
unless, of course, the integrand is necessarily nonnegative.

It is convenient to collect some technical definitions in the following standing
assumption, which holds throughout the paper.

Assumption A. Let

(2.1) Q(A) (A-A,)d,... (A-,)

where ,X =/Jq + ie are distinct,/ 0 (1 <_- _-< L), and/z <-/2 <--" "--</-eL- Let N be the
unique integer in {1,..., L+ 1} such that

(2.2) /_ < 0 ifl_-<l_-<N-1

and/.t > 0 if N_-< 1_-< L. Suppose that p is a given polynomial of degree <n- k, and
define

(2.3) g=f Pp("--)
j=k+l

Let m be an integer in {0, , n k }. Let b be continuous, positive, and nonincreas-
ing on [a, o) for some a>0. If m #0, suppose that tVdp(t) is nondecreasing for some
y< 1. If N_>-2 (so that (2.2) is nonvacuous), let there be a number a such that
0< a <-/zN_ and e’t-n+’+k+d(t) is nondecreasing on [a, o).

The following is our main theorem.
THEOREM 2. Suppose that Assumption A holds, that

(2.4)

and that

(2.5)

S"-’-k-lg(s) ds= O(6(t)),
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Suppose further that

(2.6) F(t) P(s) as o(t-J+k+l), k+2<-j<-n,

and that

(2.7) Ij(t) ft o(dp(t)), k+2<-j<-_n.

Then (1.1) has a solution such that

(2.8)
O(dp(t)tm-r),(r)(t)--P(r)(t) O(dp(t)t-n+m+k+l),

O<=r<=n-k-1,
n-k<_r<=n-1.

Moreover, if (2.4) can be replaced by

(2.9) S"-’-k-lg(s) ds o(d(t)),

then (2.8) can be replaced by

(2.10) r)( t) --Pr)( t) ! O( dp( t) tm-r),
O(qb(t)t-n+m+k+),

O<=r<=n-k-1,
n-k<_r<__n-1.

The proof uses the Banach contraction principle. It is convenient to introduce the
new dependent variable h x-p, which transforms (1.1) into

(2.11) Q(D)h"-k)= g-Mh,

with g as in (2.3) and

(2.12) Mh= Ph"-j).
j----1

We will construct a transformation - which, for to sufficiently large, is a contraction
of the Banach space B(to) consisting of functions h in C"-)[to, ) such that

O(dp(t)tr-r), O<-r<_n-k-1,
(2.13) hr)(t) O(qb(t)t_,+,+k+l), n-k<-r<-n-1,

with norm

n-1

(2.14) Ilhll =sup (th(t)) -1 t.-mlh(r)(t)l+ n-m-k-1 ]h(r)(t)l
r=O -k

For reference below, we define

(2.15) Bo(to) {h B(to)l (2.13) holds with "O" replaced by "o"}.

If h is a solution of (2.11) which is in B(to), then the function

(2.16) :=p+/
is a solution of (1.1) on [to, c) (which can be continued over (0, o)), and has the
desired asymptotic behavior (2.8); moreover, if fBo(to), then 5 satisfies (2.10).
Therefore, we wish to construct - so that if -/ h", then/ satisfies (2.11).
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To this end, let A1,’", A/ be the uniquely defined polynomials such that
deg A! < dl (see (2.1)) and

L

(2.17) [Al(t)ea"](r)l,=o= r.k-,, 0<= r <- k- 1.
/=1

If v C[ to, ), define w v formally by

(lV)(t) al(t-’r)ea’(t-*)t(’r) d’- , al(t-’r) ea’(t-*)lg(’r) d’.
/=1 l=N

Then formal differentiation and (2.17) imply that

(2.18)

and that

(lv)(r)(t) Air(t-7") e’(’-)v() dr
/=1

, A,r( -) e’’-)v(r) dr,
l=N

(2.19) Q(D),v=v,

where Air is the polynomial defined by

Air(t) e-"[Al( t) e,’]r),

(2.20)

If w C[to, c), define 2w formally by

(2w)( t) f t- s) "-k-’

(n- k- 1)!

or by

O<__r<_k-1.

w(s) ds if m=0

(;t s)
dZ (n-Zrn_ 1)!

G 92(1g (see (2.3)),

h :(, Mh

(2.21) (2w)(t)
(t-A)

,o (m- 1)!

In either case,

(2.22)

Now define

(2.23)

(2.24)

and

(2.25) ffh G + ’h.

w(s) ds

(see (2.12),

O<=r<=k-1,

ifl<=m<__n-k-1.

Formal manipulations using (2.19) and (2.22) show that

Q(D)(-h)"-k= g- Mh;

therefore, a fixed point (function) / of - satisfies (2.11). We will show that - is a
contraction of B(to), and therefore has a fixed point in B(to), provided that to is
sufficiently large. It is convenient to present the lengthy proof of this assertion in a
series of lemmas.
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LEMMA 1. Suppose that v is complex-valued and continuous on to, 3) with to >- a >
O, and that tqv( t) dt converges for some nonnegative integer q. Let

(2.26) (t) sup sOy(s) ds
,rt

Let h IX + it, be a complex number and X be a polynomial. Then
If tx > O, the functions

(2.27) f(t) .If, X( t- ’) eX’-*v(’) dr

and

(2.28) f2(t) s q ds X(s-r) eaS-)v(r) dr= sqfl(s) ds

are defined on to, ) and satisfy the inequalities

(2.29) If(t)l<- gt-q(t), t>- to,

(2.30) ]f=(t)l =< g=(t), _-> to,

where K1 and K2 are constants which depend only on a and X.
(ii) If Ix < O, suppose that (t) O(rb (t)), where qb is nonincreasing and continuous

on [a, c), and e’t-qqb(t) in nondecreasing on [a, ) for some a such that

O< a <-IX.(2.31)

Let

(2.32) Ol(t) sup
._>_, b(t)’

and define

(2.33)

Then

f3(t) X(t-’) e’-*v(r) dr.
to

(2.34) If3(t)]<-- K3b,(to)t-qb(t), >= to,

where K3 is a constant depending only on X and A, and the function

(2.35) f4(t) s ds X(s-) e-)v(r) dr= s"f3(s) ds

is defined on to, 3), and it satisfies the inequality

(2.36) Ifa(t)l =< K4q(to)b (t), => to,

where K4 is a constant depending only on X and A.
Finally, if

(2.37) 4,(t) o(b(t)),

then

(2.38) f3(t) o(t-q6(t))
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and

(2.39) fn( t) o( 6( t)).

The lengthy proof of this lemma is given in 4.
(Note that because of (2.29) and (2.30), (2.37) implies that fl(t)= o( t-qch( t)) and

f2( t) o(ch( t)).)
LEMMA 2. Suppose that 4’ and m are as in Assumption A and w C[to, o) for

some to>= a. Suppose also that tn-"-k-lw(t) dt converges, and that

(2.40)
Jft sn-’-k-w(s) as o(ch(t)).

Define

(2.41) p(t) =sup (b(z))- s-k-’-lw(s) ds

Then 2w E C(n-k)[to, o) (see (2.20) and (2.21)), and there is a constant K which does
not depend on w or to such that

(2.42) I(2w)r(t)lKp(to)(t)t-, tto, Orn-k-1.

Moreover,

(2.43) lim p(t) =0,
t

then

(2.44) (2w)r(t)=O((t)t-), Orn-k-1.

This lemma follows immediately from Lemma 1 of [8]. Since its conclusion follows
trivially from the assumption that

ds

it is impoaant to emphasize here that the covergence in (2.40) may be conditional.
(Note" The existence of the constant y in Assumption A is required for this lemma.)

LEMMA 3. Suppose that v is complex-valued and continuous on [to, ) with to a,
and that j t"--k-v( t) dt converges. Let

(.45 ( =sup

and define 1 as in (2.32). en che function
(2.46) u (v)

is in B(to), and

(2.47) Iull w(to),

where W is a constant independent of to and v. Moreover,

(2.48) 6(t)=o(6(t)),

then

(2.49) no(to) (see (2.5)).
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Proof From (2.18), lv and its first k-1 derivatives are linear combinations of
integrals of the forms (2.27) and (2.33) with X =Air: hence, Lemma 1 with q=
n-m-k-1 (specifically, (2.29), (2.32) and (2.34)) implies that Wlv c(k-)[to, o),
and that

(2.50) [(v)i)(t)l<-_ceqq(to)dp(t)t-n+"+k+, O<-j<-k-1,

where a is a constant independent of to and v. Lemma 1 also implies that
tn-’-k-(V)(t) dt converges (since it is a linear combination of integrals of the

forms (2.28) and (2.35), again with q n-m- k-1 and X Air), and that

(2.51) S"-’-k-(LIV)(S) as =<ab(to)b(t), t_-> to,

where a is a constant independent of to and v. (See (2.30), (2.32), and (2.36).)
Now we apply Lemma 2 with w lv. Then (2.51) implies (2.40) and (2.41), with

p( t) <- ab( to). Recalling (2.46), we now see from (2.42) with w=v that

(2.52) lur(t)l<-_Ka2q,(to)Ch(t)t"-r, O<-_r<-n-k-1.

Moreover, since

(2.53) lg
(n-k+j) -(v)/), 0-<j _-< k- 1

(from (2.22) with w Wlv), (2.50) implies that

(2.54) lur)(t)l<-_aqt(to)Ch(t)t-"+’+k+ n-k < r < n-1

Now (2.14), (2.52) and (2.54) imply (2.47), with W=max {a, Ka2}.
It remains only to show that (2.48) implies (2.49). From the closing paragraph of

Lemma 1, (2.48) implies that

(.Liv)i)(t)=o(qb(t)t-+’+k+l), O<-j<=k-1,

and therefore

(2.55) Ur)(t)=o(c(t)t-+m+k+), n-k<-_r<-n-1,

because of (2.53). The closing paragraph of Lemma 1 also implies that

S"-’-k-(.V)(S) O(qb(t)),ds

because of (2.48). Therefore, (2.43) holds if w= Wv in (2.41), and so

(2.56) u(r)(t) O(p(t)tm-r), 0 <- r <- n- k- 1,

from (2.44). Since (2.55) and (2.56) are equivalent to (2.49), this completes the proof
of Lemma 3.

LEMMA 4. Suppose that the assumptions of Theorem 2 hold, and let be as defined
in (2.24). Suppose also that h B( to) for some to>= a. Then h Bo( to) and

(2.57) h --< Wet(to) h

where tr is defined on [a, ),

(.58)

and W is as in (2.47).

lim or(t) 0,
t-->
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Proof We first consider the integral

J(t; h)= s’-’--(Mh)(s) ds

(2.59)
s"-"-k-lp(s)h("-J)(s) ds.

j=l

We will show that the integrals in this sum converge, and estimate them. We remind
the reader that Ilhll is defined in (2.14).

From (2.5),

(2.60) s"-"-k-lP(s)h("-J)(s)ds -< [[hll/(t), 1--<j--<k+l.

If k + 2_-<j-< n, then integration by parts yields

(2.61)
n-m-k-lej(s)h(n-J)(s) dss

t"-’-k-lh("-J)(t)Fj(t)+ f, Fj(s)[sn-m-k-lh(n-J)(s)]’ ds

To justify this we first observe that

lim Tn-m-k-1 h"-)(T)(T) O,
Tc

(see (2.6)).

k+2<=j<=n,

because of (2.6) and (2.13). Moreover, since (2.13) and (2.14) imply that

(2.62) I[s"-"---lh("-(s)]’l<-_(n-m-k)llhllck(s)s--, k+2<-_j<-n,

(2.7) implies that the integral on the right side of (2.61) converges (absolutely). We
now conclude that J(t; h) exists on [to, oo) if h B(to); moreover, (2.59), (2.60), (2.61)
and (2.62) imply that IJ(t; h)l < IlhllI’(t), where

k+l

F(t)= I(t)+(n-m-k) I(t)+dp(t) d--lF(t) I.
j=l j=k+l j=k+2

(See (2.6) and (2.7).) Now define o-(t)=sup,__>, F(r)/b(r), and note that r satisfies
(2.58), because of (2.5), (2.6) and (2.7).

We now apply Lemma 3 with v= Mh; then the function q defined in (2.45)
satisfies the inequality

0(t) =< IIh IIF(t)= o(q(t)).

Since u h in (2.46) when v Mh (see (2.24)), we conclude that h Bo(to), and
(2.47) with qq-llhll implies (2.57). This proves Lemma 4.

We can now complete the proof of Theorem 2. From (2.4) and Lemma 3 (with
v= g), G as defined in (2.23) is also in B(to). Now (2.25) and Lemma 4 imply that
-(B(to))C B(to); moreover, ff is obviously a contraction if is, and the latter is so if

(2.63) or(to) < 1/W (see (2.57)).

From (2.58), we can choose to to sasfy(2.63). By the contraction mapping principle,
there is an / in B(to) such that -h h; hence, 9 as defined in (2.16) satisfies (1.1)
and (2.8).
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Now suppose that (2.9) holds. Then Lemma 3 implies that G6 Bo(to). Since
h Bo(to) (by Lemma 4) and

/=-G+/ (see (2.25)),

it now follows that h Bo(to). This and (2.16) imply (2.10), which completes the proof
of Theorem 2.

3. Corollaries. If P C[a, ) and IP(t)[ dt <, then obviously

lP(s)lb(s ds= o($(t))

if $ is nonincreasing. Also, if t]P(t)] dt < for some a > O, then

P(s) ds o(t-) and - P() d dt <

(see Corollary 3 of [8]), which in turn implies that

s- e( (s s=o((

if is nonincreasing. Since the converses of these statements are false, the integrability
conditions (1.3) and (1.4)even with q =0are stronger than (2.5), (2.6) and (2.7).

We remind the reader that Assumption A is still in force.
CooA 1. Let be an integer in {0, 1,. ., n- k-1}, and suppose that

(3.1) s--(s) ds=O(t-q), n-lNjNn,

for some q 0 such that

qO, 1,..., I.(3.)

Let

(3.3) Pj(s) ds=o(t-J+k+l), k+2<-j<=n-l-1,

and define

/3=’q-[q ifl>=[q] (= integerpart ofq),(3.4)
q-l ifl<[q].

Finally, suppose that

(3.5) IP(s)l- d o(t-),

Then (1.5) has a solution xt such that

(3.6) Xl(t)-l. O(tt-"+k+l-q),

Moreover, if (3.1) can be replaced by

(3.7) P(s) ds o(t-J++l-q),

l_-<j_-<k+l.

O<__r<__n-k-1,
n-k<_r<_n-1.

n-l<=j<--n,
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then (3.6) can be replaced by

(3.8) x(t)- o(t,_,++_q) n-k<-r<-n-1.

Proof. We start by observing that if 0 < a < b and

(3.9) P(s) ds O(t-b),

then

(3.10) sP(s) ds O(ta-b).

Iff=0 (as in (1.5)) and p(t)= till!, then

(3.11) g(t)=- P(t)
j=n--!

(see (2.3)); hence, (3.1) implies that

tl-n+j

(l-n+j)!

S"-m-k-lg(s) ds O( l-m-q)

if l-m < q. We now apply Theorem 2 with

(3.12) m=max{O,l-[q]}

and

(3.13) th(t) O( ,--q) O(t-3),
with/3 as in (3.4). (Note that if m >0, then/3 q-[q]< 1, and b as in (3.13) satisfies
Assumption A with y =/3.)

Now (3.1), (3.2) and (3.3) imply (2.6), and (3.5) is the same as (2.5) with b(t) -.
Since (3.2) and (3.4) imply that /3 > 0, (2.6) automatically implies (2.7) with b as
in (3.13), without any absolute integrability assumptions on Pk/2,’’’, Pn. Now
Theorem 2 implies that (1.5) has a solution Xl such that

( tl) (r) { O(t"-r-), O<__r<__n-k-1,
Xl(t)--l O(t,,-n+k+-3), n_k<_r<_n_l,

which, in view of (3.4) and (3.12), is equivalent to (3.6).
If (3.9) holds with "O" replaced by "o", then so does (3.10). From Theorem 2,

this also implies the assertion concerning (3.7) and (3.8).
We now consider the exceptional cases where (3.2) is not satisfied.
COROLLARY 2. Let q and be integers, with 0 <= q <-1 <-n- k-1. Suppose that the

integrals

(3.14) tJ-k-+qPj(t) dt, n <-j <-_ n,

converge, that (3.3) holds, that

(3.15) IPj(t)l dt <, l_-<j-<k+l,

and that

(3.16) f t--lF(t)l at < o
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for k + 2 <-_ j <-_ n l- 1. Then 1.5) has a solution X which satisfies (3.8) ifq > O. Ifq O,
the same conclusion is valid if the above assumptions hold and, in addition, (3.16) also
holds for n <-_j <-_ n.

Proof. Now (3.14) implies that oo tn-,-k-lg(t)dt converges (see (3.11)) with
m l-q, and that (3.7) holds. We apply Theorem 2 with th 1, in which case (2.5) is
equivalent to (3.15). Also, (2.7) is then equivalent to (3.16) for k+ 2-<j =< n. Since the
convergence of (3.14) implies (3.7), which automatically implies (3.16) for n _-<j _-< n,
the proof is complete.

Corollaries 1 and 2 imply the following corollary, which in turn implies
Theorem 1.

COROLLARY 3. Suppose that the integrals

(3.17) tJ-k-l+qPj( t) dt, k + 1 <-j <= n,

converge for some q >- O. Suppose also that

(3.18) ds=o(trq-q), l_-<j_-<k+l.

Then the conclusions of Theorem 1 hold if either (i) q > 0; or (ii) q 0 and

(3.19) s-- P(’) dr ds<oo, k+2<-_j<-n.

It is important to note that (3.17) implies (3.19) if q>0; therefore, it is not
necessary to assume (3.19) in this case.

Corollary 1 implies that if

(3.20) s--lp(s) ds=O(d(t)), k+l<-j<-n,

where 4(t)-0 as t-oe like some positive power of I/t, then (1.5) has solutions
x(t)--, t/l! (0_-< l-<_ n k- 1), without any further integrability assumptions on
P+,..., Pn, provided that P,..., P satisfy (2.5). The following corollary shows
that this conclusion remains valid even if 4 decays more slowly than this.

COROLLARY 4. Suppose that b is as in Assumption A, and also that vdp(t) is
eventually nondecreasing for 3/< 1, and

(3.21) f cb2(s) ds o(dp(t)).
S

Suppose also that (2.5) and (3.20) hold. Then (1.5) has solutions Xo, , X-k-1 such that

( t--./l.)r (O(qb(t)t’-r), O<-r<n-k-1
(3.22) Xl(t)- O(dp(t)t-"+l+k+), n-k<_r<=n-1.

Moreover, if (3.20) holds with "O" replaced by "o," then so does (3.22).
Proof For each 0, 1, , n k- 1, we apply Theorem 2 with p(t) tl/l! and

m =/. The assumption (3.20) implies (2.4) and also that

F(t) P(s) ds=O(4(t)t-++l), k+2<-j<-n.

This implies (2.6) and (2.7) (the latter because of (3.21)), which completes the proof.
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A similar argument yields the following related corollary.
COROLLARY 5. Let b be as in Corollary 4, except that (3.21) is replaced by

ds: O((t)).
( s____)
S

Suppose also that (2.5) holds, and that

I s--P(s) ds= o(4)(t)), k+l<-j<-n.

Then (1.5) has solutions Xo," X,-k-1 which satisfy (3.22) with "O" replaced by "o."
Remark 1. Although we have assumed (1.2) throughout, our results are also valid

for (1.6), which corresponds to the case where k 0, provided that obviously vacuous
conditions (i.e., those involving 0_-<j _-< k 1 and n k =< r =< n 1) are ignored. To see
this, one has only to modify (in fact, simplify) the arguments as follows:

(a) Omit the now vacuous assumptions on the zeros of Q(A).
(b) Let 91 be the identity operator; i.e., v v.
(c) Omit Lemma 1.

Viewed in this way, the present results improve on those in [7] and [8], since we
assumed in those papers that io [P(t)[ dt < oo, which is stronger that (2.5), (3.5) and
(3.18) with k 0 and j 1.

Remark 2. While preparing this paper the author discovered errors in [7] and
[8], caused by his overlooking the need for special treatment of the exceptional cases
where (3.2) does not hold. Theorem 2 of [7] requires the additional assumption that

f fpl(r) dr tl-2dt<oo, 2<--l<--n-r-1

(the notation here is that of [7]). Our present Corollary 2 (with k-0) extends this
corrected result. Example 1 of [8] requires the additional assumption that a #

1,..., n- 1. (The notation here is that of [8].) Corollary 1 (with k =0) extends this
corrected result, and Corollary 2 deals with the excluded cases where a 1, , n- 1.

4. Appendix. Proof of Lemma 1. We assume throughout that _-> to => a. If

(4.1) Vr(t) srv(s) ds, 0<= r <- q,

then (2.26) implies that

(4.2) Vq( t)[ <-_ d/( t),

and by writing sty(s)= sr-q(sql)(S)), integrating by parts, and again invoking (2.26),
we find that

(4.3) Iv(t)l<-2tr-qd/(t), O<=r<--q-1.

Proofof (i). Now suppose that/x > 0. If to_-< s _-< T, then integration by parts shows
that

X(s-’) ea(S-’)v(z) dz=X(s- T) eX(-r)Vo(T)+ Vo(7")[X(s-z) eX(S-’)] d’.
T T

Hence, (4.3) implies that

(4.4) fX(s-z) e(S-)v(z)dz _-< T-qq,( T)2( T- s) e’<’- T), to <= s < T,
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where X is a polynomial with nonnegative coefficients determined by X and A. Setting
s T= in (4.4) yields (2.29), with K1 ’(0).

To prove (2.30), we consider the integral

(4.5) I(t, T) I T

where

sqf(s) ds Ii(t, T)+ I2(t, T),

I T

(4.6) 11(t, T) s q ds

and

(4.7)

From (4.4) and (4.7),

X(s-r) eaS-)v(r) dr

I2(t, T)= s q as X(s-r) eaS-)v(-) dr.
T

T

lib(t, T)I <= O(T) f(( T- s) e"-T as

< 4,(r 2(n e-" an;

hence,

(4.8) lim I2(t, T) 0.
T-c

Changing the order of integration in (4.6) yields
T

(4.9) Ii(t, T)= F(t, r)v(r) dr,

where

(4.10) F(t, ’)= sX(s-") e-) ds.

Repeated integration by parts shows that

q

(4.11) F(t, ’) [X(0)" trXr(t r) eX(t-)],
r=O

where Xo,"" ", X are polynomials determined by X and A. Substituting (4.11) into
(4.9), we obtain I(t, T) in terms of integrals which converge as T ; therefore, (4.5),
(4.8) and (4.11) imply that the integral f(t)= I(t, ) (see (2.28)) converges, and that

(4. f(= x(ov(- 2 x(-,l e"(’-’v(
r=0 r=0

(see (4.1)). Replacing X by Xr in (4.4) and letting s T= shows that

e<’->v() d Klt-qO( t),

where KI is a constant determined by A and X (and therefore by X). This, (4.2),
(4.3) and (4.12) imply (2.30) for suitable K, a constant determined by X and A. This
proves (i).
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Proof of (ii). Now suppose that/x <0. Integrating (2.33) by parts yields

f3(t) Vo(to)X(t-to) eX(’-t)-X(0)Vo(t)+ Vo(r)[X(t-’) eX(t-’)] dr.
to

Therefore, from (4.3) with r 0,

[f3(t)] _-< 2tff(to)lX(t- to)[ e"(’-’) + 2[X(0)[(t)t-q
(4.13)

+2 (7)7-q2(t-7) e"(t-r) dr
to

where X is a polynomial with positive coecients determined by X and A. Now (2.32)
and our assumptions on a and imply that

6(r)r-q@l(to)e(t-r)6(l)t-q trto.

This and (4.13) imply (2.34), with

K3=2 IX(0)l+suplX()le+"+ 2(ne+"an
o

which is finite, because of (2.31).
To see that (2.37) implies (2.38), observe from (2.33) that if ton t N t, then

(4.14) f3() X(-) e(’-’v(r) d+ X(t-) e(’-’v(r) d.
to tl

For fixed t,

(4.15)

where

X(t-r) ea<t-)v(r) dr <-_ M( to, t) Y( t) e’’,

M(to, tl) max {Iv()l to =< t,}

and Y is a polynomial, while

(4.16) X(t-r) ea(t-r)v(7") dr <= g3d/l(tl)t-qqb(t), >=
tl

(Since this integral has the same form as f3(t) in (2.33), with to replaced by tl, (4.16)
is obtained as was (2.34).)

Our assumptions on b and cr imply that

Y( t) e’ o( t-q6( t)).

Therefore, (4.14), (4.15) and (4.16) imply that

lim (t-q6(t))-’lf3(t)[ <- K3,,(tl), tl >- to.
t-->

Since (2.32) and (2.37) imply that limt,_. (t)=0, we now see that (2.37) implies
(2.38).

For reference below, we observe here that

(4.17) lim tqf3(t)=O
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in any case. This is obvious from (2.34) if (t)---o(1). If lim,+ (t)> 0, then (2.26)
implies (2.37), which implies (2.38) and, therefore, (4.17).
To prove (2.36), consider the integral

J( t, T) sqf3(s) as s o ds X(s-r) e(S-)v(r) dr.
to

v(r) dr sqX(s-r) e(-) ds.

Reversing the order of integration yields

J(t, T)= v(r) dr sqX(s-r) ea(-) as+

Manipulating the limits of integration here shows that

where

J(t, T) H(t) H(T).

H(t)= F(t, r)v(r) dr (see (4.10)).
to

Therefore, from (4.11),

H(t)= Xr(O) trY(r) dr- X(t-r) eX(’-)v(r) dr.
0 0

(4.18)

The integrals on the right converge as t- c. Moreover, since the integrals in the second
sum are of the same form as f3(t) (see (2.33)), (4.17) implies that this sum approaches
zero as --> ; hence,

q IH(oo) lim H(T) E X(O) rv(r) dr.
T--> r---0

(4.19)

Since f4(t)= H(o)- H( t), we now see from (4.1), (4.18) and (4.19) that

fa(t) X(O) Vr(t)+ E t" Xr(t-r) eXt-)v(r) dr.
r=0 r=0

(4.20)

Recalling (2.32), (4.2), (4.3) and, again, that the integrals in the second sum here are
of the same form as f3(t), and therefore satisfy an inequality like (2.34), we see from
(4.20) that (2.36) holds for a suitable constant K4 which is ultimately determined by
X and A.

Finally, suppose that (2.37) holds. Then obviously V(t) o((t)), from (4.2) and
(4.3). Moreover,

Xr(t-r) ea(’-)v(r) dr= o(t-qdp(t)),
to

as can be seen by replacing X with Xr in (2.33) and applying the argument that led
to (2.38). Now (4.20) implies (2.39), which completes the proof of Lemma 1.
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AN EXTENSION OF A THEOREM OF PERRON*

JAROMiR IMAt

Abstract. We give sufficient conditions for a linear differential equation of order n to have a solution
whose logarithmic derivative is asymptotically in a small neighbourhood of a given constant. This asymptotic
behavior is specified by means of a general comparison function q. An appropriate formulation of the
growth properties of q is introduced. The differential equation is regarded as a perturbation of some constant
coefficient equation. Our smallness conditions permit conditional convergence of some corresponding
improper integrals.

Key words, ordinary linear differential equations, linear perturbations, asymptotic integration

AMS(MOS) subject classification. 34E99

1. Introduction and main theorem. We study the behavior for large of the solutions
of a scalar differential equation

(1) xn)+[a+p(t)]x<n-1)+ .+[an+p(t)]x=O (t_-> 0, n_-> 2),

where ak are constants and Pk are continuous on [0, c). We assume throughout that
ak, Pk and x are real- or complex-valued. The symbols ((O)) and ((o)) refer to behavior
as t->.

Perron [4] showed that if

(2) pk(t)--O(1) (1----< k_-< n),

then (1) has a solution Xo satisfying

(3) x(k)(t)-- Aok + O(1) (1 _--< k_-< n 1),
Xo(t)

provided that Ao is a simple root of

(4) A" + alA n- +... + a_lA + an 0

and Re Aj Re Ao, for any other root Aj of (4). Hartman and Wintner [3] have showed
that Perron’s conclusion remains valid if (2) is relaxed to

(5) sup (l+s- t)- [pk(r)l dr= o(1) (1_-< k_-< n)
s>=t

(see also [1, Thm: 17.4]).
In this paper, we obtain another extension of Perron’s Theorem. Namely, we give

sufficient conditions for (1) to have a solution Xo satisfying

(6) x(k)(t)-- h + o(p(t)) (1 --< k n 1),
Xo(t)

where the function q is positive, continuous and nonincreasing on T, ), for some
real T. Of course, due to the behavior of o, we impose a new restriction on the roots
of (4). In the case q 1, when (6) becomes (3), our result is stronger than that of
Hartman and Wintner mentioned above, because of the considerable weakening of (5).
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lovakia.
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Before we state the main theorem, we introduce the following notation. Assuming
the function q to be as above, we define

(7)

and

(8)

=sup {a" e"’q(t) is nonincreasing on [T, ) for some T-> T}

My inf {a" etq(t) is nondecreasing on T, o) for some T _-> T},

where Mo is meant to be c, if the set in (8) is empty. Obviously, it holds that

O<=m<=M<-.
THEOREM 1. Let Ao be a root of (4) such that

(9) Re (ho- Aj) Imp, M]

for any zero hj of the polynomial

(10) Q(A)=(A-Ao)-’(An+alAn-+ + an-lA +a,).

(Thus ho need not be simple if my > 0.) Suppose that

(11) sup (1 +s- t)-’ ]pl(r)lo(r dr=o(q(t)),
s>=t

(12) sup (l+s-t)- spk(r dr =o(1) (2-<k=<n)

and

(13) sup (1 + s- t)-s-t

Sf( r) dr o(q(t)),

where

n-k(14) f(t)= Ao pk(t) (0----< < o).
k=l

Then (1) has a solution Xo satisfying (6). This conclusion remains valid if (12) is relaxed
to

(15) sup (l+s-t)-st
(pk(r)- qk(r)) dr =o(1) (2-< k_-< n),

where qk are some continuous functions satisfying

(16) sup (1 + s- t) -I Iq(r)lq(r) dr= o(q(t))
st

(2_-< k<_- n).

Remark 1. A mild condition like (12) previously appeared in Hartman’s work
[2]. The result there is that if Ao and p are real-valued, Ao 0 and if p is continuous
on [0, ), then the condition

sup (l+s-t)- p( r) dr =o(1)

is necessary and sufficient for the equation x"-(A+p(t))x=O to have a solution Xo
satisfying (3) with n 2 (see also [1, Exer. 17.3]).
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Remark 2. The statement of Theorem can be simplified if my >0 or, more
generally, if q L1 and

(17) q(s) ds= O(p(t)).

Then (6) is equivalent to

(18) X(o>(t)=[CAko+O(q(t))] et (0_--< k<_- n-l),

where c#0 is a constant, while (11), (13) and (16) mean that the integrals

(19) Ip,(s)l(s) as, f(s) ds, Iq(s)}(s) ds (2k n)

exist and are o((t)). The proof of these asseions is given in the end of 2.

2. Preliminary lemmas. The following lemmas will be used to prove Theorem 1
in 3 and its corollaries in 4.

LEMMA 1. Suppose that h is in C[T, ) and is positive and nonincreasing on

[r,). If

(0) sup(+s-l- h(r) r o() (r<m
st

holds with Ko 1, then the integral h( t) e’ dt converges and satisfies

(21) h(s) e"ds g, e’tO(t) (Tt<),

where the constant K depends on y only, for any y < O. Conversely if the integral
h(t) e v’ dt converges and satisfies (21) with K 1, for some 7 O, then (20) holds

with a constant Ko which depends on y only.
Proof Denote

H(s) h(r) dr

and suppose that IH(s)l (1 + s t)( t) for any s t. If < 0, then H(s)e "s 0 (s )
and

IH(s){ e "s ds (t) (1 + s- t) e vs ds

(t) e" (1 + r)e" dr.

Consequently, we can let r in

h(s) e" ds (N(s) e")l- g(s) e" ds

and conclude that h(t) e’ dt converges and (21) holds if

gl 1 (1 + r) e" dr.

Conversely, denote

g(t)= h(s) e"ds and H(t)=sup Igl(s)l e-",
st
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and suppose that H2(t)<= (t) for some y-< O. Integration by parts yields

h(r) dr (-H(r) e-’)l-,,, H(r) e-rdr

for any s_-> t. Consequently, (20) holds if Ko is an upper bound of (1 + r)-(2+lylr)
for r_-> 0. This completes the proof of Lemma 1.

LEMMA 2. Lemma 1 remains valid if (20) and (21) are replaced by

sup[l+log(s/t)]-1 h(r) dr <--Ko(t) (T_-<t<oo)
s>=t

and

h(s)sVds <-_ KltVb( t) (T_--< <oo),

respectively.
Proof Substituting u log r yields

h(r) dr= h(eu) e du, and
d log

h(r) r"/dr= h(u) e(’+) du.
og

Thus Lemma 2 follows from Lemma 1, with (t) and h(t) replaced by dj(e t) and
eth( t), respectively.

LEMMA 3. Assume that ad are oegatie fctions i C[to, ), is

nonincreasing, B is a polynomial with nonnegatie coecients and 0 is a real constant.

Define

( (= e-’(s s (o.

If > 0 and e(t) is nonincreasing on to, ), then

(3 (s-(s(sls(0(( (

If < 0 and e’ t) is nondecreasing on o, ), then

(4 (-s(sl(s s [( ,(o+(0(](
o

where 1 0+ )/2.
Proo If >0 and O(s)NO(t) e(’- for any s t, then the integral in (23) does

not exceed

(( e’(’-’(s s= (0((.
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If y < 0 and O(s) <- q(t) e v(’-s), for any s in [to, t], then the integral in (24) does not
exceed

(t) r(to) e’(t-’)B(t s) ds + (tl) eV(t-’)B(t s) ds
tl

where t =(to+ t)/2. Thus (24) holds, because

eV’-)B(t-s)ds eV’-)B(t-s)ds=(t-t2),
t3

whenever t3 t2 t. This completes the proof of Lemma 3.
Before we state the last lemma of this section, we introduce a factor smallness

condition as in [6, p. 763].
DEFINITION 1. Let

which is nonincreasing in and (to, t)-0 as t- for any to Z If in addition
(to, to) - 0 as to- , then we sat that is of type (*).

LEMMA 4. Assume that A is a polynomial, , @2 and p are in C[ T, ), and 2
are positive, the integral p(t) dt converges (perhaps conditionally) and satisfies

(25) (t)=sup((s))-1 p(r) dr 0 ().

Assume also K is a funcaon in cl[to, m) satisfying Ig(e(t)l N KoCh(t), where Ko is a
constant, to and j O, 1, for some o Denote .

(i) Ife"(t) is nonincreasing on to, ), for some > O, then the integral I A
s)K (s)p(s) ds converges and satisfies

(26) A(-s)K(s)p(s) ds KoC()(t) ( to),

where C is a constant which depends only on A and
(ii) If e" t) is nondecreasing on o, ) for some 7 < 0, chert

where
Proo Our assumptions on K imply that

(28)

where B is a polynomial with nonnegative coecients which satisfies B(s)N
Ie(s)l+lA’(s)l for any se0. From (25),

(29) IP(t)l N (t)(t) where P(t) p(s) dsandteo.

(i) Integration by pas yields

(30) A(t-s)K(s)p(s) ds= A(O)K(t)P(t)+ (A(t-s)K(s))’P(s) ds.

Lemma 3, (28) and (29) imply that the integral on the right side of (30) converges
absolutely, and that (26) holds with C [A(0)[ + w(0), where w is as in (22).
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(ii) Integration by parts yields

(31) A(t-s)K(s)p(s) ds=-A(t-s)K(s)P(s)lt, + (A(t-s)K(s))’P(s) ds.
to to

If to<--s-<_ t, then our assumptions on K and y, (28) and (29) imply that

(32)
IA( to)K to)P( to)[ --< KoB( t- to)r( to)q,( to)

<= KoB( to)tr( to) e/t-*)d/( t)

and

(33) I(A(t-s)K(s))’P(s)l<--_KoB(t-s)o’(s)q,(s).

Now Lemma 3, (29) and (31)-(33) imply that (27) holds, with trl given by

tr,.(to, t)=o’(to)[W(t-t,)+ sup e+SB(s)]
s t--t

/ r(t)w(O) / r(t)]A(O)],
where tl (t + to)/2 and w is as in (22). Obviously, rl is of type (*) and depends only
on tr, A and y. This completes the proof of Lemma 4.

We finish this section by proving the assertions of Remark 2 in 1. First we show
that mo>0 implies (17). Indeed, if etc(t) is nonincreasing on [Ty, oo) for some y>0
(see (7)), then

qg(s) as<-_ q(t) e v’-s) as= ),-’q(t) (t _-> TT).

To prove (18), we need only to show that

(34) Xo(t)=[c+ o((t))l e’,
because (6) and (34) easily imply (18). Integrating (6) with k 1, we obtain

xo() xo(o) exp Ao(t- to)+ o(q(s)) ds
o

which proves (34), because of (17). Finally, we verify that (11), (13) and (16) imply
the assertion on the integrals (19). (The converse is true by Lemma 1 with ),=0,
without supposing (17).) It suffices to show that the integral I h(t) dt converges and
satisfies

(35)

provided that (17) holds and

h(s) as o(o(t)),

(36) sup (1 + s- t)- h(r) dr o(#(t)).
st

To see this, observe that Lemma and (36) imply that

(37) H() e’h(s) ds

if y is a negative constant. From (17) and (37), we can let r- ee in

h(s) ds ;-H(s) e-’l;-,,, H(s) e-’s ds

and conclude that (35) holds.
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3. Asymptotic integration. This section contains the proof of Theorem 1, stated
in 1. The method of asymptotic integration is similar to that of [6], and we do not
repeat some arguments given there.

We prove Theorem 1 assuming the function q to satisfy

(38) q(t) o(1).

(The case that lim,_. o(t) > 0 is discussed in the end of this section.) Furthermore, it
suffices to assume that Zo 0, otherwise x exp (-Aot) is introduced as a new dependent
variable in (1). However, due to this change, (12) may fail to hold, because (11) does
not imply (12) with k 1. Therefore, we give the proof with (12) replaced by the
weaker assumption (15).

Let Aj (1-<j-<L) be all distinct zeros of the polynomial Q(A)=
An-l+alA"-2+...+a._l (see (10) with Ao=a,=0), and let ReAI_-<ReA2_-<...<=
Re AL. From (9) with Ao 0, there exists an integer N(0-< N_-< L) such that

(39) Rehj+M,<0 (0<j-<_N), ReA+m,>0 (N<j<-L).

(40)

Now we introduce the new dependent variable u in (1) by x’= ux. Then

x(k)=(u(k-I)+gk[U])X (1-<k<_n),

where gk[U] are nonlinear expressions which have been described in detail in [6, p.
759]. Substituting (40) into (1) with a, =0, we obtain

n--1 n--1 n--I

(42) g[u]= pkU(-k-l+ akg-k[U]+ pkg-k[U] (ao=l).
k=l k=0 k=l

What follows is the standard variation of constants, applied to (41). Let U(t) be
the unique solution of Q(D)u=O that satisfies DU(O)=O(O<-i<=n-3) and
D-U(0)= 1. Then there exist solutions U1 and U of Q(D)u=O such that U=
U1 + U and

N L

(43) DiUI(t) A(t) ea/, D’U(t)= A,(t) eX/
j=l j=N+I

where A, are polynomials. If we define

(44) fh(t) U(t-s)h(s) ds- U2(t-s)h(s) ds

for any continuous h and some to>_- T, then routine computations show that

(45) Di..h() DiUl(t-s)h(s) ds- D’U2(t-s)h(s) ds (0-< i_-< n-2)
o

and Q(D)h h, provided that the improper integrals in (45) converge. Consequently,
(41) can be converted into an integral equation

(46) u -p. R[u].

The solution of (46) will be found as a fixed point (function) of the mapping

(47) -u -p,, R[u

where

(41) Q(D)u=-p,,-R[u] (D =tt)
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in the set (to) of all functions u in Cn-2[to, ) satisfying

(48) Dku(t) O(q(t)) (0 <- k<-_ n-2)

which is a Banach space with norm

(49) [[u[[=sup max (q(t))-lDku(t)].
t_t ok<-n-2

We will show that - is a contraction mapping of the closed sphere

 e(to) {u Ilull--< 1}

into itself if to is sufficiently large.
In the following, assume that >-to. From (49),

(50) [O u(t)l<=llu[l (t) (0<= k=< n-2),

for any u in (to). Moreover, there exists a universal constant C such that the estimates

(51) Ig[a](t)-g[](t)l<=clla-ll2(t) (1-<_k<_-n)

and

(52) ]g’k[](t)--g’k[](t)l<=CI]ff--llq2(t) (1-k-<n-1)

hold for any functions , in oW(to). The last can be proved in the same way as in [6,
p. 764], where the case q(t)= -q was considered.

We assume henceforth that tois so large that exp [-(Re Aj + y) t]q(t) is nondecreas-
ing on [to, c) if 1 _-<j<_- N, and that exp [-(Re Aj-y)t]d/(t) is nonincreasing on [to,
if N + 1 <-j-< L, for some positive 3’ (see (7), (8) and (39)).

LEMMA 5. The functions Pn and R[u] exist and are in cn-l[to, o0) for any u in
(to). Moreover, there exists a function tr of type (*) (see Definition 1 in 2) such that
the estimates

(53)

and

(54)

Iip,(t)l o-(to, t)q(t) (0_-< i<_- n-2),

]D’.fZR[ t](t) D’..R[ t]( t)l _-< ]lt to, t)(t)

hold for any a, in ( to).

that

(55)

(56)

(57)

and

(58)

(0--<_ i<= n-2)

Proof Lemma 1, (11), (13) with f=p, (see (14) with Ao=0), (15) and (16) imply

lp,(s)lq(s) e ds=o(q(t) eC’),

(pk(S)- qg(s)) e ds o(e’;’)

lqk(s)[q(s) e ds=o(q(t) ec’)

(2-<_ k=< n),

(2-< k_-< n),

p,(s) e as o(tp(t) e"),
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where c is a negative constant. (The integrals in (56) and (58) may converge condi-
tionally.) From (43) and (45),

(59)

D’h( t) ---jE ea/ e-’XffAji( s)h(s) as

Z ea/ e-X.,SAj,(t-s)h(s) ds (0-<_i-<_n-2).
j=N+I

To prove (53) and (54), we estimate each of the integrals in (59), for h =p, and for
h R[J]-R[t$], using Lemmas 3 and 4. To avoid unnecessary repetition, we note
before that the estimates of IK(J)(t)l and the integrability condition on p follow from
(50)-(52) and (55)-(58). For the monotonic property of @ see the sentence preceding
the statement of Lemma 5.

First observe that (53) follows from (59) with h =p, and from Lemma 4, with
p(t)=p,(t) e ct, 01(t)= eCtq(t), tP2(t) exp [-(Re Aj+ c)t], K(t)=exp [-(Aj+ c)t] and
Ko 1 + IAj + c[, for eachj 1, 2,. , L. The case n R[ t] R[t$] is more complicated.
According to (42) and our integrability conditions (55)-(58), we can write

n--1 n--1

R[a]- R[r] Y’, (Pk-- qk) u("-k-’)+ _, qkU
k =2 k =2

(n-k-l)

(60)
n-1

+p, u(n-2) q- akg,-k[a, ] +Plg,-l[, ]
k--0

n--1 n--1

+ (Pk--qk)gn-k[ l, t]+ qkgn_t,[l, t],
k=2 k=2

where u - and gk[t, t] gk[ff]- gk[t]. To estimate the integrals in (59), for each
member h of the right side of (60), we distinguish seven cases (i)-(vii). Lemma 4
applies in all of them except (iv), when Lemma 3 does. In (ii)-(v) and (vii), the
magnitude of the integrand h is estimated, before using Lemmas 3 and 4.

(i) h (Pk qk) u<"-k-’) p(t) (pk(t) qk(t)) ct c,e ,(t)=e q,z(t)=
exp [-(Re A + c)t]q(t),

K(t) =exp [-(Aj + C)I]U (n-k-l), Ko Ilu]l(1 +IAj + cl) 2 <= k <= n 1, 1 _-<j < L.

(ii) h=qkun-k-l), Ihl<-_llulllql, p(t)=[qk(t)[e’q(t), Ol(t)=e’q(t), O2(t)=
exp [-(Re Aj+c)t], g=llull,=, go-Ilull max (1, IRe Aj/ cl), 2<--k<=n 1, I<=j<=L.

(iii) h =plun-2), Ihi <- Ilulllpll, p(t)=lpl(t)l etp(t), 01, 02, K and Koas in (ii),
I<_j<_L.

(iv) h g,-k[a, t], [hi <-- cllull2, -- Cllull,

tp(t)=exp[-Rehjt]p(t), 0_-<k-_<n-1, I=<j-<L.

(v) h =plg,_E(t, t], Ihl-_< cllull21pl, p as in (iii), /1, 02, K and Ko as in (ii),
l_<-j-< L.

(vi) h=(Pk--qk)g,-k[a,],P, O1 and 4’2 as in (ii), K(t)=exp[-(hj+c)t]x
g._ra, 3, go-fllull(l+l;t+cl), 2-<-k-<-n-1, I<-j<-L.

(vii) h qkg,-k[ t, t], Ihl--< Cllull=lql, P, 01, ff12, K and Ko as in (ii), 2 <_- k _-< n 1,
I<=j<-_L.

Finally note that the existence of [t] follows from the preceding with =0,
because ?[ t]--0. This completes the proof of Lemma 5.
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Now it is easy to finish the proof of Theorem 1. From (47), (53) and (54) with
ff u and t 0, we find that

(61) ID’-[u](t)[<-2r(to, t)q(t) (0_-< i-< n-2)

for any u in (to). Moreover, if t, are in 0(to), then

(62) ID-[](t)-D’-[](t)l<-l[-llr(to, t)q(t) (0_-< i_-< n-2).

Since o-(to, t) is nonincreasing in t, (48), (49), (61) and (62) imply that II-[u311_<
2o’(to, to) and  (to, to)ll a-  11. Therefore, -is a contraction mapping
of oW(to) into itself if to is so large that o-(to, to) <- 1/2, which we now assume (recall
that tr(to, to) 0 as to- ). Consequently, - has a fixed point (function) Uo which
satisfies Uo -Uo. Setting u Uo in (61), we conclude that

(63) Dkuo(t) o(q(t)) (0 <- K <- n-2),

because o-(to, t)-0 as c. Moreover, (38) and (51) with u Uo and t =0 imply that

(64) gk[Uo](t) O(q(t)) (1 __--< k -< n).

Since Uo is a solution of (46), the function

Xo( exp [ I’o UO( S ds ]
satisfies (1) on [to, oo). From (40) with x Xo and u Uo, (63) and (64), we conclude
that Xo is as in (6) with Ao 0. This completes the proof of Theorem in the case when
(38) holds.

Our proof requires (38), because of part (iv) in the proof of Lemma 5, where
or(t) Cllullq(t)= o(1) is assumed. Moreover, (38) is necessary for (51) to imply (64).
From the statement of Theorem 1, it is clear that if (38) does not hold, then it may as
well be assumed that q 1. This case was considered in [6], proivded that the integrals
lp,(t) dt and p(t)dt (Z-<k -< n) converge and that (4) has n roots with distinct
real parts. Fortunately, it presents no difficulty to adapt the proof of [6] to that of
Theorem 1 with q 1, and we omit it here.

4. Corollaries of Theorem 1. First we give two immediate consequences of
Theorem 1.

CORO,LLARY 1. Theorem 1 remains valid if (11)-(13) are replaced by

(65) p(t) o(1) (1 <-- k <- n), f(t) o(q(t)).

Proof Obviously, (65) implies (11)-(13).
COROLLARY 2. Theorem 1 remains valid if (11)-(13) are replaced by the assumption

that the integrals p(t) dt (2 <= k <= n) and f(t) dt converge so that

[pl(S)lqg(s) as o(q(t)), f(s) as o(qg(t)).

Proof From Lemma 1 with y 0, the assumption in Corollary 2 implies (11)-(13).
Corollary 2 with qg(t)--e-P’t-q (p and q are nonnegative constants) and the

conclusion of Remark 2 in 1 cover a part of the author’s results [5-1 and [6]. Equation
(1) was considered there under assumptions including the convergence of the integrals
pk(t) eP’tq dr, which is more restrictive than

pk(S) ds o(e-O’t-q).
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Very recently, Trench [8] has given conditions like those of Corollary 2 which imply
the behavior (18) in the difficult case when Re (Ao-Aj)= rn, for some some roots Aj
of (4). (All these ,j are assumed to be simple.) However, Trench’s assumptions include
either that

q2(s) ds O(q(t)),

or some additional smallness restrictions on Pk.
The last consequence of Theorem concerns the equation

(66) x(")+p,(t)x("-’)+ .+p,(t)x=O (t=>0, n->2)

with continuous coefficients Pk, regarded as a perturbation of x(")= 0. Trench [7] has
considered a solution Xo of (66) satisfying

X(o’>(t)=[Q(t)td](k>+o(td-kfft(t)) (O_--<k_--< n- 1),

where q is positive and nonincreasing on T, co), d is an integer (ON d _<-n- 1) and
Q is a polynomial of degree _-< n d 1. We restrict our attention to the case Q 1. If
we introduce the notation

(67)

k-1

Qk(A) [-I ( -J), Qo 1,
j=O

g(t)= Q,,_k(d)pk(t)td-’+k,
k=l

then Trench’s result may be stated as follows.
THEOREM 2. Suppose 0 is continuous, positive and nonincreasing on T, oe), d is a

fixed integer (0 -< d <- n 1) and also, ifd O, suppose tvO( t) is nondecreasing_on T,
for some y < 1. Assume also that the integrals Ipk(t) dt (2 <= k -< n) and oo t,_d_l g(t) dt
converge and satisfy

(68) pk(S) ds O( l-k) (2 =< k _-< n),

and

(69)

Finally, suppose that

n-d-lgs (s) ds o(O(t)).

(70) ]pl(t)l dt < oo

and

(71) sk-2 g/(S) ds= o(O(t))

Then (66) has a solution Xo satisfying

X(ok)( t) Qk( d) + o(( t))]ta-k

(2-< k_-< n).

(0__< k__< n- 1).
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Our following result implies that even (71) need not hold. Note first that, by
Lemma 2, (68) is equivalent to

(7) sup (1 +log (s/t))-
while

(73) sup (1 +log (s/t)) -1
st

and

(74)

=o(1) (2-< k<= n),

o(ff(t)),

sups=>, (1 +log (s/t)) -1 It Ip,(r)l(r) dr= o((t))

are weaker than (69) and (70), respectively.
COROLLARY 3. Letfixed b and d be as in thefirst sentence ofTheorem 2. If (72)-(74)

hold, then (66) has a solution Xo satisfying

(75) X(t)(t)--[Qk(d)+o(d/(t))]t-k (1----< k--< n-l).
Xo(t)

Proof We introduce the new variables y, z by

(76) z log t, x(t) y(7-).

Then

( )(77) xk)(t) e-kQk(D)y(7-) D= d---’ 0<= k<- n

and therefore, (66) is transformed into

(78) Q,(D)y+ /k(7-)D"-ky=0,
k=l

where

1 k

Y,.= c"- )(79) k(7-)=(n_k)! .,_ (O)p(e e (1 < k < n).

We now verify that (78) satisfies the assumptions of Theorem 1 with replaced by 7-,

0(7-) @(e) and Ao d. Indeed, (4) now becomes Q,(A)= 0, and hence has n distinct
roots Aj=j-1, l<-j<-n. If d>0, then M<-y<l, because ,o(7-)eV*(=@(t)t) is
nondecreasing on [log max (1, T), c]. Thus (9) holds with Ao=d, for any Aj d.
Routine manipulations with (67) and (79) show that f in (14) now becomes f(7-)
g(e) exp [(n- d)7.]. From this and (79), substituting r= log u yields

fs feIt,(r)lq,(r) dr Ip,(u) (u) du,

and

If(r) dr= un-d-lg(u) du

f (,(r) ck,(r))dr 2 C 11j--lpj(u) du (2 --< k -< n),
(n-k)!=
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where c l’)(n-k)
,,_j (0). Consequently, (72)-(74) imply (11), (13), (15) and (16) with

Pk --ilk and qk ck/I(2 --< k --< n). Theorem implies that (78) has a nontrivial solution
Yo satisfying

yok)(r)=[dk+o(go(’))]yo(") (l_--<k--<n-1)

as -- c. Then (77) shows that the solution Xo(t)= y0(log t) of (66) satisfies (75). This
completes the proof of Corollary 3.
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FUNCTIONS IN TWO VARIABLES*
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Abstract. A difference equation corresponding to a certain partial differential equation leads to a "Pascal
type" triangle. The entries of a row of this triangle can be regarded as coefficients of a polynomial; the
sequence of these polynomials is studied, together with its generating function and related polynomials.
The entries of a more general class of number triangles are explicitly determined, as well as asymptotic
expressions for the columns of the triangles. Chebyshev and Gegenhauer polynomials, as well as hyper-
geometric functions are used in the proofs.
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spherical polynomials, hypergeometric functions, asymptotics, Darboux’s method
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1. Introduction. Let u u(x, t) be a function in two variables, and consider the
(hyperbolic) partial differential equation

O2U O2U OU

OX Ot2 Ot

If we change this into a difference equation, we get

2u(x, + 1) u(x 1, t) + u(x, t) + u(x + 1, t) u(x, 1).

This suggests the "Pascal type" triangle (after normalizing)

1

1

2 1 2

3 2 3 2 3 1

1 4 4 4 5 4 4 4 1

1 5 7 6 9 7 9 6 7 5

(1.1)

where each element in the nth row is the sum of the three closest elements in the
(n- 1)th row, minus twice the closest element in the (n- 2)th row.

Now we expand

G(z, t):= E fn(z) tn"
1--t(l+z+z2)+2z2t2

,=

it is clear that the fn(z) are polynomials of degree 2n, and their coefficients are the
rows of the triangle (1.1).

More generally, let u > 1/2 and A be real parameters. We expand

Ga’(z,t):=(1-(l+z+z2)t+Az2t2)-= Z fa,’(z) t".
rl:0
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If we compare this with the generating function

(1-2zt + t2) ’, C(2)t
n=0

for the ultraspherical (Gegenhauer) polynomials C,(z), we find

(1 2) f.’(z)=A"/-z"C( 1 +z+z2
-\ 1

Using the recurrence relation for the ultraspherical polynomials (see, e.g., 1, p. 782]),
we get f)’(z)= 1, f(’(z)= v(1 + z + z2), and

(1.3) f.’(z)= 1+ (l+z+z)j."l(Z)- 1+2’ Azf._2(z).

The polynomials f’(z) are self-inverse, i.e., f’"(z)= z2"f’’(1/z). If we denote

(1.4) f’(z) ’ C’z"+’ h’z2",C.. + C.,._lz + + C.:oZ + .. +...+

we get the triangle

(1.5)

where

A,v A,vc:c:c_,0 c_,, c,

A,v A,v A,v A,v

with C C,,-k. For A 2 and v 1, the triangle (1.5) has the form (1.1).
The main purpose of this paper is to study the coefficients C,,,k. We derive the

following explicit and asymptotic expressions.
THEOREM 1.

1 [(n -k)/2]c.:- r() E
s=0 s!(n-2s)! s=o \ j 2j+k]

Here [x] denotes, as usual, the greatest integer function.
THEOREM 2. For fixed real v > 1/2 and A, and integer k >-O, we have asymptotically

(a) /fA

(b) if A

2nF(v)v/-

"-a/

(3 + x/9- 4A)
"+"

2

F(z,)x/ (x/4A-1)’/:-cos (a+cr)n+va+ k+4
+ (x/4A 9)
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where

where

Cos-’ (k).

Next we fix u= 1 and expand Gt’l(z, t) according to powers of z. If we set
1-a-, we get

Gx"(z,t)=l_(a_l)z+{(A_l)a+(l_2A)+Aa-}z2=a E g(a)z"

We have g(a) 1, g (a) a 1, and

(1.7) gn+(a) (a 1){g(a)+ (Aa-’ + 1 A )g_(a)}.

In 2 we find explicit expressions for the zeros of the f’(z) and the g’(a) for
all values of A. In 3-5, Theorems and 2 are proved, and 6 contains some further
remarks and generalizations.

2. The zeros. The Chebyshev polynomials of the second kind Un (z) can be defined
by the recursion Uo(z)-- 1, Ul(z)= 2z, and

(2.1) U,,+(z) 2zU,,(z)- U,,_,(z).

By taking z--p(x)/2x/q(x) we get the following lemma.
LEMMA 1. Let p(x) and q(x) be arbitrary functions, and define the sequence V,(x)

recursively by Vo(x) 1, V(x) p(x), and

V,,+(x) p(x) V,,(x) q(x) Vn_l(X ).

Then, if q(x) O,

V,,(x) q(x) "/2 U,,(p(x)/2x/q(x)).

To find the zeros of g(a), we take p(a):=a-1 and
-(a-1)(Aa-+l-A). With (1.7) and Lemma 1 we find that

g()={(-l)(ac-+l-a)}/U ac--r+l-a
Hence g(a) has zeros when

q(a) :=

a 1
-4 COS

2 kzr
ha-l+l-h n+l’

i.e., the zeros are given by

1 kr
a 2(1 h cos2

2 n+l
+ 4(1-A2) COS4

n+l +1 +
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(k 1, 2,. ., n). It is easy to see that these zeros are real unless

l+A-2v/ (kTr) l+A+2x/
4(A-1)2 <sin2 n+l <

4(-1)2,

in which case they lie on the circle

y2+ x- (a=x+iy).
;t- \-11

To find the zeros off,’(z), we use the facts that C,(z)= U,(z), and that the zeros
of U,(z) are given by cos (kTr/(n+ 1)), k= 1,2,.’., n. Hence with (1.2) we find that
the 2n zeros of f,’(z) are

kr 1 ( kw k :)1/2Z =-- COS e a COS + COS
n+l 2 n+l n+l

for k 1, 2,. ., n. We note that these zeros are real except when

-3 kTr 1
<COS<2v/ n + 1 2,,/"

in which case they lie on the unit circle.

3. Proof of Theorem 1. Using the well-known explicit expression for the ultra-
spherical polynomials (see, e.g., [1, p. 775]) and (1.2), we get

(3.1) f2’(z)
1 t21 r(v+n-s) + z +

F(v) .=o/’ s n 2s

If r is a positive integer, the binomial theorem, applied twice, gives

(lnt_znt_z2)r L L (r)()z2j-’i
j=o i=o j

=2zm2
,,=o j=o m-j m-2j

and with (3.1) we obtain

1 F(v+n-S)z2*f2’(z) F(/Y) s=0 m=0 j=o m -j / m 2j

L n-k
[(n-k)/2]

)sz 2 (-a
k= =0

F(l,’nt-H--S)[(n-k-2s)/2] ( n--2s )s n 2s o n k -j 2s

.( n-k-j-2s]
n-k-2j-2s/"

The theorem now follows if we compare the last equation with (1.4) and note that the
product of the two binomial coefficients in the last line is equal to that in Theorem 1.

4. Lemmas. We can rewrite Theorem 1 in the form

(4.1) Cn’k 1-’(P)
a’" [(n-k)/2]s=OZ (--A.) (n-k-s) r(u+n-s)B"-k-2")sk!(n-k--!
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where

Bk") := t2](25)(m)/(k+j)s=o j 2j j /

LEMMA 2.

B(k") (-iv)m
m + 2k)

Proof We have

tm/2] (2j)!m!j!k!

s=o j (m-2j)!(2j)!(k+j)!

tw/2l (-m)2s t.,/21 (-m/2)((1- m)/2)s 22s

s=o (k+l)sj! s=o (k+l)s j!

m 1-m
k+l 4)=F

2’ 2

where (a) is the Pochhammer symbol (a) a(a + 1) (a +j-1) and (a)o 1 and
F(a, b; c; x) =2Fl(a, b; c; x) is the Gauss hypergeometric series (see, e.g., [1, p. 556]).
The ultraspherical polynomials can be expressed as

(ml-m 1 -2)C,(x) (2V)mxmF v+; 1 -x
m! 2’ 2

this gives the lemma, with v k +1/2, x i/x/.
If we combine (4.1) with Lemma 2, we get
LEMMA 3.

5. Proof of Theorem 2. First we determine the generating functions for the C n,k,

where k, A, and u are fixed. To simplify notation, we write C, := CI. We denote

r(v)k*
(5.1)

F(k+ v)

and

-1 -1
tl := -(1 -x/1 -4A), t2 := -(1 +x/1 4A),

1 1
t3 := -(3 +x/9- 4A), t4 := -(3 x/9- 4A);

note that tit2 1 t3t4.
LEMMA 4. For real v> 1/2 and A, and for k=O, 1,..., we have

Fk(t) := tk[(1 + ttl)(1 + tt2)]-k-l[(1 ttl)(1 tt2)(1 tt3)(1 tt4)] 1/2-

k-v+2 k-v+l
F

2 2
4t2/A )--,k+l;(t2-(t/x/-)+l)2 =,,=kE
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Proof We use Lemma 3, change the order of summation, and apply the binomial
theorem

Y (33)
"-k F(v)k’" C,t" {[(n-)12]() r(v+ n-s) ck+l/2n_k_2s (3)},=k (2k)! ,= .,=o s(n + k 2s)

+l/() F(+m+)(v )m=k :0 s[(m+ 3
t2

+l/Z() F(u+m) F(u+m+s)( )
=E C_

r(+) ()(1-(A/3)t2)k+ (2k)’. m=O C+/2

(k+v)( )(2k+l) 1-(/3)t2

where we have used (x), F(x + n)/F(x). After changing the variable to -it/A,
we get

(5.2) E d,t"= E ck+l/2
.=k (1 +)k+v =o (2k+ 1) 1 + J

Now we are going to use the following generating function for ultraspherical poly-
nomials (see, e.g., [3, p. 279]),

(5.3) =o2 (2a) kz 2 ’a+; (l_xz)2j.

it/A/(1 + t2), (5.2) becomesWithy=k+v,a=k+,x=i,andz=-
k

(k+v k+v+l )(5.4) dt k+ F k + l" y
= (-(/)+1) 2 2

where

4t2/A
Y t2-- t/x/-) + l 2"

Using Euler’s identity

F(a, b; c; y)=(1--y)c-a-bF(c--a, c-b; c; y)

(for [Yl < 1; see [3, p. 60]), we get

Now it is easy to verify that

1 -y [(1 + ttl)(1 + tt2)]-2(1 tt,)(1 tt2)(1 tt3)(1 tt4);

the lemma now follows from (5.4) and (5.5).
Proofof Theorem 2. To find asymptotics for d,, we apply Darboux’s method (see,

e.g., [2, p. 310]) on the generating function Fk(t). Possible singularities of Fk(t) are
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at tj, j 1,. -, 4, and at -tl, =-t2. To examine the behaviour of Fk(t) in the
neighbourhood of-tl and -t2, we apply the identity (see, e.g., [1, p. 559])

F(a, b; c; z)= dl(-z)-aF(a, 1 c+a;1- b+a; ")

where d and d are constants depending on a, b, c, to the right-hand side of (5.4). We
find

Fk(t)=dl t_F
k+ v -k+ v

+ d2 t__ t2 k + + 1 -k + + 1

which shows that the singularities at =-t and -t2 are removable.
Now we denote

F;)( t) := (1- tt;)-l/2Fk( t) (j= 1,... ,4)
and

F5)(t) := {(1 tt3)(1 tt4)}-l/2Fk(t).
Using the Gauss summation formula (see, e.g., [3, p. 49])

( - ) F(k+l)F(v-1/2)k v+2 k v+l
k+l;1

k v k+v+l
F

2 2 F/ +... \F/ \

)2

which holds for v > 1/2, we find

(5.6)

(5.7)

(5.8)

(5.9)

F(kl>(t) (--x/1 4A )l/2-v(g/’-)k+v --1 +x/1 -4A

F(k2)(1) (41 --4/ )l/2-v(-)k+v --1 --1 --4/

2x/- F,

F(3(t4) (x/9 4A 1/_ (x/-) k+ 3 +x/9-4A
2x/-- F,

F4)(3) (_x/9 4A 1/2_ (x/-) k+ 3-9-4A

the arguments of these (in general multi-valued) expressions will be determined later.
We note that
(a) if A <, then It41 < [tl for j 1, 2, 3;
(b) if A > , then It l- 1 (j 1,..., 4) and no two t are equal;
(c) if A =-, then t4: 1, Itll It21 1, tl # t, tl # 1, t2 # 1.

We prove Theorem 2 according to this distinction.
(a) Let A <-94. Then according to Darboux’s method the coefficients in the

MacLaurin expansion of

f(t) := F(k3)(t4)(1 tt3) 1/2-

are asymptotics to the d., as n-. The binomial theorem gives

(5.10) (1-tt3)l/--=F(v-1/2+n)(3+x/9-4A)n=oF(v 1/2)n 2x/- tn’
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and we obtain from (5.1), (5.8), and (5.10)

(5.11) C, A2-k-(x/9 4h)1/2- (3 + v/9-- 4X) "+2

where all the gamma function and factorial terms from (5.1), (5.8) and (5.10) are
collected in A. Using the duplication formula (see, e.g., [3, p. 24])

r(2z) 22z-1
(5.12)

r(z)r(z

we find

22k+,-1r(v-+n)
(5.13) A

r()n! 4-

Stirling’s formula now gives

F(v--+ n)/n!--- n -3/2 (as n o),

so finally we get with (5.11) and (5.13)

’ ( )C. F(v)v/- n’-3/2(9-41)l/4-v/2
3 +/9 41

2

which implies Theorem 2(a).
(b) Let A > . Asymptotics to the d (as n c) are given by the coefficients of

the expansion of

4

g(t):= E F(kJ)(t-fl)(1-- ttj) ’/2-.
j=l

We note that, in general, the values in (5.6)-(5.9) are not uniquely determined. However,
the powers (1-xz)-r and (l-y)1/2- in (5.3), resp. (5.5) are to be taken with their
principal values. With this in mind, we find that we have to take (5.6) and (5.7) with
arguments

)el := kr- va v )82:-- krr+ v + - v

respectively, where a := arg ((1 + iv/4h 1)/2x/-). Using the equivalent of (5.10) for t
and t2, and with (5.1), (5.6), and (5.7), we find that the combined contribution from
the first and second term of g(t) is

(5.14)
A2-k-"(V’4a-1)’/2-"(v/-)"+"{e’’(-l+iv/4a’2v i)" +ei2 (- 1 i/4A 1)}2/

r(v)(44a 1)’/2-(/)"+ cos (a+rr)n+ va+ k+4 rr

Similarly, we find that we have to take (5.8) and (5.9) with arguments

)
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respectively, where 3 := arg ((3 + ix/4A 9)/2V-). With (5.10) and its equivalent for t4,
and with (5.1), (5.8), and (5.9) we find the combined contribution from the third and
fourth term of g(t) to be

A2__(/4, _9)/_(-),+ e% 3+ i41-9 +e 3- i41 -9

(4-9)/-()+ cos

This and (5.14) lead to Theorem 2(b).
(c) Let A . Since t4-- 1, we have to find the coefficients of the expansion of

h(t) := F(kl)( tm)(1 ttl)/- -t- F(k)( tl)(1 tt)/-- + F(kS)(1) (1 t) 1-.
9The contribution from the first two terms of h(t) is the same as in (5.14), with A =z.

Furthermore,

(5.15) F5(1) 21/-F

for I =, and the binomial theorem gives

)1_ oF(2,-,_, 1 + n)
t"(5.16) (1

F(2,-1)n!

Hence the contribution to the asymptotics of C, from the third term of h(t), with
(5.16), (5.15), and (5.1)is

F(2-l+n) F(k+ ,)F(,-1/2)f3"-’/221_k_(5.17) + !\/ )r/ )
By applying the duplication formula (5.12) twice, we get

r(k+ )r(- 1/2) 1

and Stirling’s formula gives

F(2u 1 + n)/n!--- n2- (as n --) oo);

hence (5.17) is asymptotically equal to

(r())

This and (5.14) for - finally gives Theorem 2(c).

6. Further remarks. (1) Darboux’s method can actually be used to find a complete
asymptotic expansion for the C.;; this would be a stronger result than Theorem 2.
See, e.g., [5, Thm. 8.4].

(2) The sum ofthe elements ofthe nth row in the triangle (1.5) is easy to determine.
Since the C,I are the coefficients off,’(z), this sum is in factf,’(1). Now (1.2) implies

f’(1 (x/-)’C , (3/2v/).
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More can be said in the case v= 1, since C,(x) U,(x). From (2.1) we get with a
standard method (Binet’s formula)

and therefore

(6.1)

U.(x) 24X- 1
..{(x +,,Ixz- 1)’+’- (x -x/X2 1)"+’},

f"a"(1) /9- 4A 2x/ - ,]
As examples, we have

f,"(1) 3",

fnl,1 (1) --5 { (3 +2X/)
n+

(3 --2’V@)
n+

}
(the odd-index Fibonacci numbers 1, 3, 8, 21,...);

fn2.1(1) 2n+1-- 1

(see 1.1 ), and

fg/4"(1)=(n+ 1)

If A > then (6.1) can be rewritten as

(6.2) f2"l(1)=2(4A-9)-/2(v/-)"+ sin {(n + 1)0}

where 0 is such that exp(iO)=(3+i/4-9)/2x/-, or 0=Cos- (3/2v-). (6.2) gives
easy explicit formulas for =3(0= r/6), = (0= r/4), =9 (0= r/3).

(3) The generating function Ga’(z, t) of 1 can be generalized as follows. Let
p(z):=ao+az+.. "+arz and q(z)=bo+bz+...+bsz and expand

1
G(z, t) := Z Q,(z)(z)t".

1- tp(z)+ t2q(z) ,,=o

Then Qo(z)= 1, Q(z)=p(z), and

(6.3) q.+,(z) p(z)O,(z) q(z)O,_,(z),

and we see that Q,(z) is a polynomial of degree <-nr. If we denote

((n)_nrQ.(z) Co")+C?z+ +.o,
we have the recursion

k k

(6.4) C("+’)= E ajC)-j E bjC’)

=o =o

where aj := 0 forj < 0,j > r, and b := 0 forj < 0,j > s. We note the following special cases.
(a) p(z):= 1 + z, q(z):= 0 gives Q,(z) (1 z)", and the C") are the binomial

coefficients.
(b) p(z):= 1 + z + z2, q(z) Az2; this is the case dealt with in this paper, with u 1.
(c) To generalize (b), we set p(z) := 1 + z +. + z’, q(z) := Azm. After reindexing

zZnm-I (6.4)(so that Qn(z) (")+ C(nn)m_l z -- -Jr- C(on)z + + C(nn)m_l -]- C(nn)m Z2nm)
becomes

(6.5) C("+’) C)--m 2V + C(kn)-t- "lt- C(n)k+m --/C(kn-1);
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this is the analogue to (1.6). No attempt has been made to determine the C(n) explicitly
or asymptotically. However, it is easy to derive the sums of the elements in the rows
ofthe triangle generated by (6.5). In analogy to and as a generalization of (6.1) we obtain

Q,(1)
x/(Zrn + 1)2- 4h

{(2rn+l+x/(2rn+l)2-4h) "+’ (2rn+l-x/(2rn+l)Z-4h) "+’}2 2
For h =< (2m + 1 )2/4, Qn( is positive for all n, and for h > (2rn + 1)2/4 it is an alternating
sequence.

(4) K. B. Stolarsky [4] recently studied the recurrence po(X)= 1, pl(x)=x, and

p.(x) x"p._(x-)+p._z(X).

He showed that for n _-> 0

pzn+l(X)-’xf+l(X)

(in our notation), i.e., the p2,+(x) are self-inverse polynomials, or in other words, the
coefficients are "centrally symmetric." However, it is easy to see that the p2,(x) do
not have this property; in fact, it is shown in [4] that the coefficients of Pzn(X) are
"strongly noncentrally symmetric."

Acknowledgments. I wish to thank Kenneth B. Stolarsky for suggesting the problem
that led to this paper, and for useful discussions. I also thank the referee for suggesting
various improvements.
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A QUANTITATIVE DIRICHLET-JORDAN TYPE THEOREM FOR
ORTHOGONAL POLYNOMIAL EXPANSIONS*

H. N. MHASKAR-

Abstract. In 1985, Bojanic estimated the rate at which the partial sums of the orthogonal expansion of
a function of bounded variation converge to the function. We generalize and sharpen his estimates when
the function being expanded is an iterated integral of a function ofbounded variation. The class of orthogonal
polynomials considered include the Jacobi polynomials orthogonal on [- 1, with respect to x)" + x)t,
a, 13 >- -1/2. For the Jacobi series, our method gives an asymptotic expression for the difference between the
function and its partial sums at points of discontinuity of a high order derivative of the function. In particular,
discontinuities in an even order derivative are shown not to affect the rate of convergence.

Key words, orthogonal series, Jacobi polynomials, bounded variation
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The well-known Dirichlet-Jordan convergence criterion for Fourier series states
that the trigonometric Fourier series of a 27r-periodic function f having bounded
variation converges to 1/2[f(x +0)+f(x- 0)] for every x and this convergence is uniform
on every closed interval on which f is continuous [13, Thm. 2.8.1].

Many mathematicians have studied the generalizations and analogues of this
criterion for series other than Fourier series, especially orthogonal polynomial series
([9], [12], [5], [11], [6], [10]). The most general theorem known to us about orthogonal
polynomial series on [-1, 1] is due to Freud [5].

To describe Freud’s theorem, we develop some notation.
A function w: [-1, 1] [0, ) is called a weight function if

I(1) [tlw(t) dt<c, k=O, 1,2, .
-1

The class of all polynomials of degree not exceeding n will be denoted by IIn. When
w is a weight function, there is a unique system {p,} of polynomials such that

(2) p,(w, x):= p,(x) := %x" +" e 1-I,,

and

I(3) p,(X)pm(X)W(X) dx
--1

If f is integrable on [-1, 1], we put

(4a)

(4b)

(5)

%>0

Ck := Ck(W,f): f(t)pk(t)w(t) dt, k=0, 1,2, ,
--1

s,(w,f, x):= s,,,(f x):= E CkPk(X), m 1, 2," ".
k-0

Freud’s theorem now states the following.
THEOREM 1 [5, Thm. V.7.5]. Suppose w is a weight function satisfying

O<w(x)<-_M(1-x) -1/, xe(-1, 1).

* Received by the editors February 18, 1986; accepted for publication February 9, 1987.
Department of Mathematics and Computer Science, California State University, Los Angeles,

California 90032.
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Further, let f be a function of bounded variation on [- 1, 1 ]. Then s,, w, f, x) converges
to 1/2(f(x + O)+f(x-0)) for every x (-1, 1) where w is continuous; the convergence is

uniform in every a, b] c (-1, 1) on which f and w are continuous.
In particular, Freud’s theorem applies to all the Jacobi polynomial expansions

for w(x):= (1 -x)(1 + x) and a, fl >- -1/2. However, despite the applications of such
theorems in numerical analysis and differential equations [8], only a few results are
known about the rate at which the convergence takes place. In the case of classical
Fourier series, one such theorem, unimprovable in some sense, was proved by Bojanic
[1]. For orthogonal polynomial expansions, he proved the following.

THEOREM 2 ([2]). Let w be a weight function and suppose that for x (-1, 1) and
n=l,2,.-.

(6) 0 < w(x) <- M(1 x2)-A,
(7) Ip.(x)lM(1-xZ)-,
(8) w( t)p,( t) at

C

Iff is a function of bounded variation on [-1, 1 then

Is.(w,f, x)-(f(x+)+f(x-))l <-

(9)

where x is given by

(10)

C(x) v x---, x +
n k=l

+1/2[f(x+)-f(x-)] [s,(w, q,, x)[

gx(t) := 0,
f(t)-f(x+),

-l<--_t<x,
x,

x<t=<l,

and

t--x

(11) @(t):=sign(t-x): [t-xl’ tx,

0, t=x.

Moreover, C(x)>0 for x (-1, 1) and V([a, b], g) is the total variation ofg on [a, b].
Under the conditions of Theorem 1, {S,(@x, x)} tends to zero as n . In the

case of Jacobi expansions, it was noted in [2] that

M(x)
(12) I&(x,x)l<-.
We do not expect (12) to hold for a general weight function. It is possible to give an
analogue where 1In is replaced by a relatively complicated expression involving
quantities related to w and x alone and we hope to obtain "easier" estimates on this
expression in future.

While the techniques used in [2] are powerful enough to yield similar theorems
in a more general setting than orthogonal polynomials, it is extremely difficult to extend
them to study the case when the function has higher derivatives. Thus, for instance,
the results in [3] which apply only to the special case of Legendre polynomial
expansions are far more complicated than Theorem 2 and, in retrospect, require undue
restrictions on the function to get a "good" rate.
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In this paper, we study the case when the function has higher order derivatives
and obtain a rate of convergence theorem under general conditions similar to those
in Theorem 2. For the case of the Jacobi polynomial expansions, we get, in fact, an
asymptotic expression for sn (w, f, x) when the high order derivative off has a discon-
tinuity at x. More precisely, we prove the following theorem in the general case.

THEOREM 3. Suppose w is a weight function and

(13) Ip,(w,x)w(x)x/1-x21<=M, x [-1, 1].

Further suppose that r >-1 is an integer, f is a (r-1)-times continuously differentiable
function on [- 1, 1 and, for x [- 1, 1

(14) f(r-)(x) f(’-)(--1)+ dp(t) at

where dp is a function of bounded variation on [-1, 1 ].
Then, for x (- 1, 1) and n >- (1 x2) 1,

(15)

1
s,(w,f, x)-f(x)----:[6(x+) 6(x-)] s,(w, Fr(x," ), x)

r!

<- V x- x+ g,
(1 --X2)3/Zw(x) n r+l

k=l n n

where

(16)
0 if < X, --1 < < X,

F,(x, t) :=
(t-x) ift>x, x<t<=l,

and

(17)
(t) b(x-), < x,

gx(t): O, t=x,
q(t) (X+), > X.

Here and in the sequel, c, c, c2," ’’, will denote constants whose value may be
different in different occurrences of the symbol, even within a single formula. Constants
which will retain their values will be denoted by capital letters.

In the case of the Jacobi weights w(x):= w,t(x):= (1 -x)(1 + x), a,/3 -> -1/2 we
can explicitly compute s,(w,t,Fr(x, .),x) in terms of the Jacobi polynomials and
hence, obtain asymptotics for the same. This is summarized in the following

THEOREM 4. We have, for x (-1, 1),

(1- x2)/2 sin (rr/2) cz(a, ], x)
(r- 1)’ -<s.(w,, r(x, ), x)-

n. r n+

The proof of Theorem 3, similar to the ones in [1]-[3], is based on a repeated
integration by parts. However, we make a more effective use of the orthogonality of
p,’s. In particular, instead of having to estimate the integrals involving the "Christoffel-
Darboux kernel" as in [2], [3], we can apply the results of G. Freud on the one-sided
L-approximation [7] of the functions F defined in (16).

To prove Theorem 3, we start with the formula

l f1)----. u r-1f(t) =f(x)+ P(x, t)+
(r

(t- dp(u) du
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where P(x,. ) IIr and P(x, x)=0. This formula can be easily verified using Taylor’s
theorem with the integral form for the remainder and (14). A simple computation now
gives, for # x,

(18) f(t)=f(x)+P(x, t)+[6(x+)-6(x-)]r(x, t)+F(x, t)
r!

where

(19) F(x,t):=

NOW,

(20)
and hence,

(r- 1)!
(t--u)r-lgx(U) du=-. (t-u)rdgx(U).

s,(w,P(x,.),x)=P(x,x)=O

[(x+)- (x-)]
(21) s,(w, f x)-f(x)- s,(w, rr(x,’),x) =ls,(w,F(x,’),x)l.

r!

For simplicity of notation, we shall write in the sequel, g instead of gx and F(t)
instead of f(x, t). The following lemma summarizes certain technical estimates which
will be needed, especially, to estimate the integrated terms when we use the integration
by parts formula repeatedly.

LEMMA 5. Put

(22) G(t):=
(x- t) -1 ff )

r[
(t-u dg(u)=(x-t)-lF(t),

(t- u)p,(u)w(u) du.

Then for integer k, 0 <= k <= r,

(24) [a(k)( t)] <= c Ix t] r-k-I Idg(u)l

(25) t)l--< c. n---.
Proof Estimate (24) follows easily when we compute Gk)(t) using Leibnitz’s

rule. Observe that

Af)(t) 1
(t- u)r-kpn(U)W(tt) du.

Thus,

(26)

AT)(t) Fr_k(U t)p,(u)w(u) du
(r-k)!

[Fr_k(U t)--P(u)]p,(u)w(u) du
(r-k)t

for an arbitrary polynomial P H,-1. Hence, using (13),
du

(27) IAk)(t)l<--_c inf ]F_k(U, t)-P(u)l/1 u2.PIIn-I -1

Estimate (25) now follows from formulas (15) and (18) of [7, pp. 15-16]. I-I
Proof of Theorem 3. In a view of (21), it is enough to estimate Is,(w, F, x)l, when

n >- (1 x2) 1.

(23) A,,(t) :=
-1
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It is well known 11, Thm. 3.2.2] that

(2) s(w, F, x)= (x, )(w( de

where, with the notation of (2),

(29) Kn(x, t): Yn------2 P,(x)p._l(t)-pn(t)p,_l(X)
y x-

Let x_ :=x-(l+x)/n, g:=x+(1-x)/n. Then,

s,(w,F,x)=A+B+C(30)
where

(31a)

(31b)

(31c)

In view of (13),

A := K,(x, t)F(t)w(t) at,

B:- K,(x, t)F(t)w(t) dt,

C := g,,(x, t)F(t)w(t) dr.

(32)

So

(33)

IK.(x,t)[=
n-1

E pk(X)pk(t)
k=0

IB[c.n.[w(x)x/-1-x2]-1. (t-u) dg(u)l
x/l_t2.

Ix<= c[w(x)x/1 --X2]-1/1 -r+l V([_X, ], g)" x/1 2"

(35)

A(r+l)[p(x) -1 ,t)G(t) dt-p_l(X) A(,f+)(t)G(t) dt

Thus, using (13), and the following estimate

)in-l-- Xpn_l(U)pn(u)w(u) du <- 1
"}tn

(which can be seen easily using the Schwarz inequality), we get

(36) [A <- c[ w(x)x/1 x2]-I{IAI + [Al}

In view of (29), (22),
IBl<-c [w(x)(1-x)]-’ n-rV([x_,g,],g).

So,
(34)

C

w(x)x/1 x2 w(t)x/1 2"

Since n-> (1- x2)-, it is easy to see that

’ dt c

x/1 2- n%/i ’x2"
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where

(37a)

(37b)

A(r+l)A1 := 1,-1 (t)G(t) at,

We estimate A2, the estimate for A1 being similar. Integrating by parts several times,
we obtain

(38) Az (-1)A,-)(_x)G()(_x)+(-1)+’ A,(t) dG(r)(t).
j=0

Using Lemma 5 and then Leibnitz’s rule, we obtain

(39)

c c
idG()(t)lIml -< V([_x, x], g) + n--7-

c c -: v(t)
<---- V([x, x], g)+--W-;

v V- J_ (X, t)
c dV(t)

d + -4- x-

where

v(t) := v([ t, x], g).

Integrating by parts once more in the last integral, we obtain

(40)

c c f-: v(t)
Ia2{-<---; nV(x_)+;-- j_ dt

n (x- t)2

c I V(t)
nr+l -1 (X- t)2

dt.

Similarly,

(41) IAI-<
c ff V(t)

(n--l) r+’ (x--t)2

c f]: v(t)
dt<--- (x- t)

dt.

Since V(t) is decreasing, it follows from (40), (41), (36) that

(42) - V x-----,x ,g
k=l

Similarly,

(43) - V x,x+ ,g
k=l

Substituting from (43), (42), (34) into (30), we see that

(44)]s,(w,F,x)[<c.[w(x)(l_x2)3/2]_11 ([ l+x- V x----,x+ ,g
k=l

In view of (21), this completes the proof of Theorem 3.



490 H.N. MHASKAR

Proof of Thoerem 4. The proof relies heavily on the special properties of the
Jacobi polynomials. For the convenience of the reader, therefore, we use the standard
notation as in [11] or [4]. Thus, with w(x):=(1-x)’(l+x)t

P")(x) := {h’’t)}’/Zpn(W, x)(45)

where

2"++1 F(n+a+l)(n++l)
(46) hb"’)

2n+a+fl+l F(n + 1)F(n+ ct +/3 + 1)"
Using Stirling’s approximation, we see that

n
1+

Moreover, the Christoffel-Darboux kernel in (28), (29) is given by the equation 4.5.2
in [11]

p,)(t).,)-._, (x)- )n’-._, (x)
(48a) K.(x, t)= A..

t--X

where

(48b) A, :=

Thus,

(49)

where

2n+c+fl
r(n+ 1)F(n+ a + fl + 1)

r(n + )r(n +t)

Sn(W, Fr(x, ), x) An{PSq)(X)In(x)- P(n’C)(X)[n_I(X)}

(50) In(x) := Jx (t-x)r-lP"’t)(t)(1 t)(1 / t) dt.

Now, the Rodrigues’ formula [11, eq. (4.3.1)] implies (cf. [4, eq. 10.8(38)]) that

--n--1 1)(x)
(51) P’)(t)(1-t) (l+t)3 dt =(1-x)+l(l+x)+’

2n

Applying (51) repeatedly r times, we see that

(52) In(x)
(r-1)!(n-r)! x),+r t+rp+,+)(1- (l+x) (x).

2rn!

Evaluating In-l(x) in the same way and then substituting into (49), we get, after a
little bit of simplification,

(n-l-r)! x)+ +r( )+rsn(w, Fr(x,- ), x)= -;i-f-l-i An(1- (1 + x)" 1 + x (r- 1)!

(53) [t (.h,]l-n_ (X)- P’’t)(x)O(’+r’+)(x)}.n-.l
(n r- 1)!r! +( ro(,.t3)(x)p%+r.+An(l-x) l+x)t+ -n-1 (x).

2n!

Now, according to the Darboux formula, [11, Thm. 8.21.8], we have, with x := cos 0,

(1 x)/2(1 + x)/-P’’t)(x) n-/Z.tr-1/2(1 x:)-/42(’++1)/2
(54)

COS n-t--- 0--(-1-1/2) -t-(n-3/2) ifxe(-1 1).
2
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(Here, and in the sequel, the big 7 term may depend upon x.) In particular,

(ss) x)/(1 + x)/P#’(x) (n-/).

If we use (55) and (48b), a few simple computations reduce (53) to

s,(w,r(x, .),x)=

(56)

Further, using (54), we get

(57)

(r_ 1)!2---t-1

2rnr-1
v.]p(a+r, +r){ --n--ll(a’)(X)l)(ce+r’+r)(x)’n--r P"z)(,-,,-r-1 (x)}

"(1--X)’+(I+x)+r(I+)()) +(n).
.’/3+ 1)(t,fl (a+r/3+r)(1 x) +r(l+., -,,_, x)P._’ x)

(1 x)/2(1 + x)/2P5)(x)(1 X)(+r)/2(1 + x)(+r)/2P(#r’O+r)(x)(1 x2) r/2

(1 x2)/2n--(1 X2)-/22++2r

cos n-l+
2

O-

cos n-r+
2

O- +r+

(1 x)/n--(1 x)-/2+2

{cos (o+7)} +

sin sinO(1- +ff
71"/1 "-
sin 1 x2) ,-/2

rn -- +(7 I3

(r- 1)!2---1Sn(w, Fr(X,’),x)--
2mr_

(1--x2)r/2n -1 1(1 X2)-l/22a+/32r

(59)

Substituting from (57), (58) into (56), we get

Similarly,

l(a+r,+r)[v.(1 x)’+"(1 + x)t+P,’’t3)(x)-,,__,

(58) =(1-x2)r/2n-’n’-(1-x2)-/22’+t32
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In the general case, we do not yet have the analogue of Theorem 4, but using
condition (13) and the one-sided approximation rsesults of Freud in [7], it is not hard
to see that

C(x)
(60) Is,(w, rr(x, ), x)l <=.

rl

The ideas in the proof of Theorem 3 can be extended to obtain a similar rate of
convergence for expansions in polynomials orthogonal on the whole real axis with
respect to what is now known as the Freud weights. This, however, will be discussed
in separate papers.
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DETERMINANTS OF LAPLACIANS AND MULTIPLE GAMMA FUNCTIONS*

ILAN VARDI

Abstract. In this paper we generalize the classical formula F(1/2)=vc-ff. We do this by recalling the
Multiple Gamma Function first studied in the nineteenth century by Barnes and others. These functions at

1/2 will be expressed in terms of the functional determinant of Laplacians of the n-sphere (thus these invariants
of the n-sphere generalize 7r). Determinants of Laplacians have been a recent subject of research due
to their relevance to Superstring Theory. While the determinant of the Laplacian has been computed for a
fiat torus using the Kronecker Limit Formula, our result gives the case of the n-sphere with the standard
metric.

1. Introduction. In this paper we generalize the classical formula

(1) F(1/2) x/.

To do so we reinterpret (1) using the functional determinant of the Laplacian on a
compact manifold.

Let A be the Laplacian of the compact manifold M. Then A has a discrete sequence
of eigenvalues

O= Ao<A <A2 <"

which, by the so-called Weyl Law have an asymptotic formula for A. as n c. Using
this fact one can show that

converges absolutely in a half plane Re (s)> o-. Thus

F’(s) E
log

n=l /

One sees that formally e -F’() is the product of the eigenvalues of A. This product
does not converge, but it can be shown that F(s) can be continued analytically to
s 0 and we define

det A e-F’()

to be the Functional Determinant of A. It is easily shown that for M-S1, the unit
circle, with standard Laplacian A1- d2/dx

(2) det A 471"2.

Thus (1) can be rewritten as

(3) F(1/2) (det A1)1/42-1/2.

* Received by the editors September 22, 1986; accepted for publication (in revised form) February 9,
1987.

t Department of Mathematics, Stanford University, Stanford, California 94305.
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We generalize this formula to Multiple Gamma Functions. These are given by
(i) [’o(X)- x-1,
(ii) F,(1)- 1,
(iii) F,+l(X 4-1) F,,+l(X)/F,,(x),
(iv) r,(x)-1 is C on R,
(v) (-1)"(d"+l/dx"+1) log F, (x) _-> 0 for x>0.

As in Vign6ras [12] this defines F,(x) uniquely. For example

is the Bohr-Mollerup Theorem [1].
The Multiple Gamma Functions were first defined in a slightly different form by

Barnes [2]. Our definition is due to Vign6ras and seems more natural than that of Barnes.
F2(x) is the Double Gamma Function, which was originally studied in the latter

half of the nineteenth century, notably by Barnes [3]. It has since been studied by
Shintani in a similar form [10], while the function considered here was shown by
Vign6ras to occur naturally as the factor at infinity of the Selberg Zeta Function 12].
This has since been exploited by Sarnak [9].

Properties of the Double Gamma Function are:
(i) Weierstrass product:

r(x+ 1) (2r)-x/ exp (+y+l x -1

2 x2)(,1 (1+)exp (-x+))
(ii) Stirling formula"

log Fz(X + a + 1)
(x+a) 1 3X2

log 2r + log A-m++ax
2 12 4

___+A+ax logx+t
12 2

where A is a constant of Kinkelin [5]

log A lim log (1122" kk) 4--4- log k
k- 2

In 4 we will evaluate this as

log A exp (2- "(-1))

where st(s) is the Riemann ’-function.
(iii) F2(n+2)=(l!2!... n!) -1.
(iv) Multiplication formula:

[’2 X + K(2"n’)-k(k-1)X/2k(kZx2/2)-kX[’z(kX)
r----O s-----O

where

K Ak2-1 e(1-k2)/12(27r)(k-1)/2k5/12.

This formula, for the case k 2, will be proved in 2.
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(v) Generalized Hilbert Determinant:

1 1 1

l+l+b l+2+b l+n+b

1 1 1
2+l+b 2+2+b 2+n+b

1 1 1

n+l+b n+2+b n+n+b

F2(b + 2)F2(2n + b + 2)
F2(n + b + 2)2F2(n + 1)2"

This follows from a result of Cauchy (see [8, Chap. 7, #3]) and is also noted by
Gosper in [4].

(vi) F2(1/2) A3/27rl/4e-1/82-1/24.
This is a first generalization of F(1/2) x/; however, it lacks a geometric interpreta-

tion. We will find this interpretation by expressing F,(1/2) in terms of det A,, the
determinant of the standard Laplacian of the m-sphere

Our result is Theorem 1.1.
THEOREM 1.1. Let n be a positive integer, then there are computable rational numbers

an, bn, Cn, qn,1, qn,2, "’, qn,
2 --1

where qn, 2n+l an 0 s.t.,

n
e" 1-I (detA,) q"m(4) r(1/2) ao

m=l

In particular

F2(1/2) det A 23/8 det A /8 2-7/24e-3/16 1.245143249363274035180038431799318 ,
r3(1/2) =det A/16 det A321/64 det AT15/642-11/48e-31/128.

It is seen that (4) can be written as

log (Fl()a-b’ e-q \ 1 0

(5)
log (F2(!ab2 e-C2) q!, !.. .’’’..
log(Fn()a2b" e-C")] \qn, qn,2 (2"

Thus (5) can be inveed to yield Theorem 1.2.
THEOREM 1.2. For n be a positive integer there are computable rational numbers

2n+l..., A,Os.t.,A., B, C. Q,, Q.,2, Q., where Q.,.
2 1

0 /log det A

.0 log d.etA..
-1)/2n+ \logdetAn

det An Aft,, eC- fi F. (1/2)o..m.
m=l

In particular

det A2 F2(1/2)8/321/9 e 1/2= 3.19531148605918608395401893032062586902 .
This has interest in light of a new result of Osgood, Phillips and Sarnak [7] (also

Onofri [6]). They have shown that of all metrics on the 2-sphere of given constant
area 4r, the metric of constant curvature 1 has the unique maximum value of det A.
Theorem 1.2 computes this maximum value. As noted in [7], this result relates to recent
progress in Superstring Theory in that it studies how det A varies with the conformal
structure.
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The proof of Theorem 1.1 is in two parts. First, one expresses F,(1/2) in terms of
the Riemann ’-function at negative integers, that is, as follows.

THEOREM 1.3. There are rational numbers

an, fin, tYn,o, O’n,1, O’n,n-I with o’.,._ 2._(n 1)!

such that

n-1

F.(1/2) a- 1-I e
m=O

This will be proved in 2. Second, one expresses detA,, in terms of sr’(s) at
negative integers.

THEOREM 1.4. There are rational numbers

")In, Tn,O, Tn,1, Tn,n--1, with Tn,

n--1

det A. e- I-I e’n’m’(--m)
m=O

(n-l)!

Theorem 1.4 will be proved in 3.
It is clear that the first part of Theorem 1.1 follows from Theorem 1.3 and Theorem

1.4. In 4, the formulas of 2 and 3 will be specialized to the cases n 2, 3 and the
second part of Theorem 1.1 will be proved.

2. Multiple Gamma Functions. The aim ofthis section is to give a proof ofTheorem
1.2. The details of this, however, are quite technical. For clarity of exposition, we first
prove the formula

F(1/2) 2-’/z e-’()

using the same steps as in the theorem. The main proof will be a relatively straightfor-
ward generalization.

Remark. Since F(1/2)= we will obtain a new proof of the classical result

"(0) =-log

which does not rely on other integral representations of st(s) (e.g. [13, p. 271]).
LEMMA 2.1. Let (s,a)=,k=o(k+a 0<a<l, Re(s)>l be the Hurwitz

function; then

C’(0,a)e
F(a) R constant

R

where

0
’(s, a) Os(S a).

Proof First we note the integral formula [13]

iF( S) f (--Z) s-1 e -qz dz q-S,
27r .Ic

q>O
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where C is given by

Thus we have

, +oo, ,>0.

iF(l-s) [" e-"=(-z)
(s, a) 2-------- Jc 1- e

dz.

Therefore r(s, a) is analytically continued for all s 1, (a > 0). Now clearly:

(s,a+l)=(s,a)-a -=,
r’(s, a + 1) st(s, a) + a log a,

sr’(o, a + sr’(O, a) + log a.

Letting

we have

and

;’(O,a)G(a)=e

G(a+l)=aG(a)

d2 d2 d
log G(a)

da2 ds
(s, a)

s=O k=O

y
(k + a)2 > 0, a > 0.

da2

And by the analytic continuation of ’(s, a) one sees that G(a) is C on R+. So, by
the Bohr-Mollerup Theorem

G(a) F(a) R, R constant. I-i

Note that R e’() since st(s, 1)= st(s) and so

R G(1) e’(’).

Next we prove the Duplication Formula.
LEMMA 2.2.

Proof.

F(a)F(a +1/2) 2(’/2)-2a e-C’{)F(2a).

(s,a)+ s,a+
=o(2k+2a),

Thus, as in Lemma 2.1

As is well known

where

--o (2k + 1 + 2a)=

G(a)G(a +1/2) 2

(O,a)=-B,(a)

B,(a)=a-

is the first Bernoulli polynomial, and the result follows.

=2=(s, 2a).
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On substituting a 1/2 in Lemma 2.1, we obtain

r(1/2) 2-1/2 e-().

We now return to the proof of Theorem 1.2.
To study the Multiple Gamma Function we use the Multiple Hurwitz Zeta

Function [2]

.(s, a)= E (a+ kl +. .+ k.)
kl," ",k. k+n-1

k=0 n-1
(k+a)’, a>0, Re(s)>n.

The first observation is Proposition 2.1.
PROPOSVroN 2.1. ,(s, a) can be continued to a holomorphic funcaon for s

1,2,... ,n, a>0.
Proo By the integral formula above one has the integral representation

ft.(s, a)=
iF(l-s) e-aZ(z)s-1

2 c (1 e-)
dz.

The integral is valid for a > 0 and all s, so (s, a) has possible poles only at the
poles of F(1 s), i.e., 1, 2, . But by the series definition ft.(s, a) is holomorphic for
Re (s) > n.

Now define

where

’.(s, a)=-s.(s, a).

The basic properties of G. (a) are now given by the following proposition.
PRoPosvrorq 2.2. (a) G.+(a+ 1)=(G.+(a))/G.(a).
(b) G.(a can be continued to a meromorphicfunction on C with poles at the negative

integers and a simple pole at zero.
(c) Let R. lima-.o aF.(a). Then G.(1) R./R._, where Ro 1.
Proof (a) Follows from the identity

’.+l(S, a+ 1)= sr,,+(s, a)-.(s, a).

(b) Analytic continuation follows from the functional equation of (a). Further
one has

G.+l(a)= G.(a)G.+(a+l), so

(6) lim,,_.o aG.+,(a) (lim._o aG.(a)) G.+(1).
Since G(a)= F(a)/R by Lemma 2.1, the lemma follows by induction.

(c) This clearly follows from (6).
PROPOSiTiON 2.3.

(7) F.(a)=[ fi R(-1)’(""-’)]G.(a)n--m+l
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Proof Denote by g. (a) the right side of (7). One shows that g. (a) satisfies the
criteria of 1"

(a) g,,(1)= 1,
(b) g.+l(a + 1) g.+l(a)/g.(a),
(c) g.(a)- is C on R+,
(d) (-1)"+(d"+I/da "+’) log g.(a)->_0, a>0.
This is a straightforward verification as in Lemma 2.1.
We now express the R. in terms of the Riemann st-function. For this we write

x+n-1) (x+n-1)(x+n-2) (x+l)
n-1 (n-l)!

n--1

m=O

where S..,. are rational numbers related to Stirling Numbers [8].
Note. S.,.-1 1/(n- 1)!
PROPOSITION 2.4.

R.=exp E ’(-m) E (--1)j-m
j

S.j
m----0 j=m m

"(-n + 1)
=exp

(n+l)! )+ K,,,rsr’(- r)
r=0

where K.,o, , Kn,n-2 are rational numbers.
Proof

srr(s, a) E
k+r-1

k--0 r-1
(a+k)S

r--1 k

_- _-o(a+)"

-i (+a _)
j=o =o (k+a)

S, (-a ’(s- m, a).
=o =0

Now G.(1)= R./R._, Ro 1 and so

log R, log G,(1)= "r(0, 1).
r=l r=l

The result follows.
COROLLARY 2.1.

&(0, a)=- (-1)j-"
m=0 m+l j=m

where Bk a is the kth Bernoulli Polynomial (recall that Bk a Q[a ]).
Proof. It follows from the well-known formula [13]

B,,+l(a)
’(-m, a) --.

m+l

Note. This implies ’, (0, a) 6 Q[a ].
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We prove the Generalized Duplication Formula.
PROPOSITION 2.5.

t +" +
H ro +

(tl,t2,’" ",tn)

2 -1
sr,(_n+l)+ 2 f.,m(a)’(--n+l)Fn(2a)2"(’2a) exp

(n 1)! ,,=o

where q ., tn runs over all combinations tj 0 or 1, j 1,. ., n andf,.,, a Q[a ],
m=l,.-.,n-2.

Proof As in Lemma 2.2, we have

(tl+"’+t,,)r. s, a+ =2"’.(s, 2a)
(tl," "’,t.)

SO

Substituting

H G.(a+
(tl,’" ",t.)

tl + + tn) (0,20)=25" G.(2a).

G,(a)=F,(a) R,_,,+,
m=l

one has that these equal

R2"n fl H R(-1)m+’n-m+l
m=2 (tt,...,t,)

+ +
+ )m-1

=2c’(’2)R. fl R(.-J).,++,’( (2a)
m=2

and the result follows on substituting the values of R,, found in Proposition 2.4.
At this point we can finish off the proof of Theorem 1.3.
Proof of Theorem 1.3. Let a 1/2 in Proposition 2.5. This gives"

tl +" + tn (o,1)H F, + =2- exp -sr’(-n+l)
q,...,t,,) (n-l)!

Now

1 +" "+
H

(tl,’",t.)

r.(1)
(r)

(2)
() (F. F. + (1 +(--1)n+l))
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It follows easily from the recursion formula that Fn (rn) Q for rn a positive integer.
So the second line of (8) is a rational number q. As for the first line it can be reduced
as follows.

Let k be a positive odd integer; then

{k F,,((k-2)/2) Fn (1/2)
Fn \) Fn_,((k- 2)/2) Fn_l((k-2)/2)r,,_l((k-4)/2)...

So by induction there are integers

such that

The first line of (8) is thus

--r. +()+()+...+(./) r "
m=l

As can easily be shown

where dn,., Z.

1 + + +
2[n/2

So for each n one gets

Fn
m=l

exp -2n_l(n_l)’. -n+l) ,=oexp 2n_
"(-m)

Theorem 1.3 follows on substituting values for F,(1/2), m 1, 2,..., n- 1 found in the
above formula.

3. Determinants of Laplacians. We will now evaluate det An in terms of the
Riemann st- function.

It is well known [10] that An has eigenvalues

k(n+k-1) withmultiplicity(k+n)-(k+n-2)n

This gives

Now. write

Fn(s)--=l (k+n)-(k+n-2)’/ks(n+k-1)s’n n

n n d=O

Note. Tn,d 2Sn,a- Sn-l,d where Sn,a was defined in 2.
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We therefore have

so it is natural to define

n--1 kd

F.(s)= E T.d Y
d=0 k=lk’(n+k-1)"

(9)

kd

He(s)
k
L k=1 (k+n

PROPOSITION 3.1.

H’d(O) (k n)dlogk 1 (--/’)d+l 1

" )d(d ) /+ (-d)+(-n ’(-r) (-n) r.
k=l 2 d + l j=l J r=O r

Proof.
-kd (log k + log (k + n))

H(s) E
k=l kS(k+n)

Now

where

So letting

log k
(k+n) k=n+ k2s-d

1 + + 1-

1+ + 1- ., b,.(s
k=O

log k
A(s)

k=l ks-d(k+n)
be the first term of (9), we get

A(O)=- kd log k.
k=l

So we examine the second term. First note that for e > 0

Letting

one has as s- 0

k>n

log k
E << E k-+

kk=n+l k=n+l

du

n+l (or- 1 + e)(n+ 1)-1+"

B(s) E
m=d+2

log k
b,.(s)n" E k2s+m-dk=n+l

B(s) << a Ibm(s)ln
+2(2o’+m-d-l+e)(n+l)2’+m-d-l+

<< Z Ib.(s)l
n

re=d+2 (n+ 1)""
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So form>=d+l
(-s)(-s-1)""" (-s-re+l)

bm(s)
m!

+(_l)m,(-s+d)(-s+d-1)... (-s)... (-s+d- m+ 1)
m!

sP(s)

where

P(O) -(-1---) +(-1)a m -0
m d

Therefore we write

d+l log k
H’d(S) A(s)+ B(s)+ , bm(s)n k2s+m_d=0 k=0

d+l

+ E bm(s)nm’(2s+m-d).
m=O

Letting

d+l log k
C(s)= E bin(s) nm k2s+m-d,=0 k =0

we have

C(0)= logk(k-n)d+ kd log k
k=O k=O

and note that the second term cancels with A(0). Turning to

d+l

D(s) E bm(s)nm’(2s + m-d),
m=0

we distinguish 3 cases" m 0, 0 < m -< d and m d + 1.
Now

+ (_1)o
-s+d

0
so bo(0) 2

and

bm(0)=(-1)m(md), O<m<-d.

Thus

D(0) 2’(-d)+
m=l (-n)m(md) ’(m-d)+bd+l(s)nd+l’(2s+l)ls="

Recall that

+ao+a(s-1)
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SO

-1
+2als+...sr’(2s + 1) 4s--5

While

we have

bd+,(s) (--1)d+’S(S+ 1)’’" (s + d)
(d+)!

s(s-1)’’ "(s-d)+
(d+l)!

s +7(s as s0,
d+l j=

n d+l d 1
lim ba+na+’(Zs+l) 2(d+l)(-1)a Z
s0 j=l J

We can now prove Theorem 1.4, i.e., that there are rational numbers

n, Tn,O, "/’n,l Tn,n-1,
-4

with z.,._
(n 1)

s.t.,

n--1

det A. e ro H e",c’(-m.
m:0

Proof By the proposition

F(O)=a_oE T,,,d k=,(k n+l logk d=O
(l-n)d+l d 1

d+l j=lJ

+ sr’(-r) Tnr+ E Tnr(1-n
r=O d=r r

Now T.,d 2Sn,d Sn-l,d SO

n--1 --1

(2Sn,d--Sn_,d) (k-n+ 1) d log k
d-O k=l

n-2 n-1

log k [2Sn,d(k- n + 1)d Sn-l,d(k- n + 1)d]
k=l d=O

Furthermore

2
Tn’n-1--2Sn’n-1 (n-l)!’

SO

’(-r) T,,+ E Tnr(1-rl)d-r
r=0 d=r r

4 n-2

(n 1)
’’(1n)-. .,=oE ’,,.,,," (-m), 7-,,,, 6 Q.
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Letting

Ta -Qrn d=O d+l j=lJ

yields

det A e_F,.(o) exp (( 4 n-2

n-l) v’’(1-n)+. ,,=o2 -,,,r’(-m) e-.

4. The cases n 2, 3. In this section we specialize the results of 2 and 3 to the
cases n 2, 3. Since these follow by substitution we omit the proofs.

PROPOSITION 4.1.

R1 ec(), R2 ec()+(-’), R3 exp (st’(0) + r’(-1) + 1/2st’(-2)),

,(0, a)=1/2-a, r2(0 a)= (1-a)’(0, a)+ ’(-1, a),

’3(0 a)=z’(-2, a)+ -a ’(-1 a)+ ---+ 1 st(0, a)
2

and

1 a a
(0, a)=z-a, st(-1 a)= -2 2 12’

a a 2 a
sr(-2’a)=---+---’26

-1 -1 -1
’(0, 1)-

12’
if2(0, 1)- 12’

st3(0, 1)-
24

The duplication formulas for n 2, 3 are given by the following proposition.
PROPOSITION 4.2.

F(a)F(a +1/2)2F2(a + 1)= 2 2(’2a) exp (-3"(-1) + (2a 1)sr’(0))F(2a),

1-’3(a)F3(a + 1/2)3F3(a + 1)3F3(a +-)

2 c3(’a) exp (-7’(-2)+(6a-)’(-1)+(-2a2+3a 1)sr’(0))F3(2a).

And so one gets Proposition 4.3.
PROPOSITION 4.3.

F2(1/2)-- 2-7/24 exp (-sr’(-1) -1/2st’(0)),

F3(1/2) 2-/48 exp (-’(-2)-"(-1)-ff’(0)).

On the other hand, one has the following proposition.
PROPOSITION 4.4.

F(0) 4st’(0),

F(0) 4"(-1)-1/2,

F(0) 2"(-2) st’(- 1) + 3 "(0).

So one gets Proposition 4.5.
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PROPOSITION 4.5.

e’() (det A1) -1/4

ec(-1) (det A2) -1/4 e /8,
ec(-2) (det Aa)-/2(det A2)-/8(det A1)3/8 e /16.

The second part of Theorem 1.1 now follows from substituting Proposition 4.5 in
Proposition 4.3.

This completes the proof of the main results of the paper. We conclude by proving
the formula for Kinkelin’s constant given in 1.

PROPOSITION 4.6.

A e 1/12-U(-l).

Proof Recall the Hurwitz st-function

(s, a) E (n + a)-, s>l;

then

Thus

n-1

E kS= (-s)-(-s, n).
k=l

n-1

(10) E k log k= -st’(-1)+ sr’(-s, n).
k=l

We have the representation

(11) (s,a) =.a-S+-1
2as+sB2

s(s+l)(s+2) jBa(u-[u]) du, Re (s) > -2.
s-1 2a 6 (u+a)S+3

This is easily shown by expanding B3(tl-[u]) and collecting terms. This formula is
an extension of the well-known representation for the Riemann ’-function

’(s)-
s fs + du.

s-1 o u

Differentiating (11) gives

sr’(s’ a)=
a- lga2 (l-s)2+

a- a- lgal-s B2a-S-2 B2a-S-lga2+(Y()
and so

n logn n21ogn log n n21{l__’( 1 n)= +
2 2 12 4 12 \hi"

The result follows on substituting this in (10). [q

Acknowledgments. I would like to thank Peter Sarnak for suggesting this problem
to me and for his help on 3, and Bill Gosper for his help with MACSYMA.
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COMBUSTION IN A POROUS MEDIUM*

AVNER FRIEDMAN$ AND ATHANASSIOS E. TZAVARAS$

Abstract. A nonlinear time-dependent system of partial differential equations describing combustion
in a porous medium is studied. Existence of a solution is established and its asymptotic behavior, as ,
is obtained.

Key words, combustion, porous medium, reaction rate
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1. The physical problem. Porous medium combustion occurs in a number of
situations including the burning of coal [7], the burning of cigarettes [1], the use of
catalytic converters as exhaust filters [8] and the smouldering of polyurethane [6].

A model for combustion in a porous medium was developed by Lawson and
Norbury [3], [4] and, more recently, by Norbury and Stuart [5]. Norbury and Stuart
developed a three-dimensional model in a situation in which the chemical process is

solid + 02 -’ heat + CO2+ ash.

Their model represents conservation of mass and energy for both the gas and solid
species, while the fluid flow is governed by Darcy’s law and the ideal gas law.
Subsequently, in the case of one-space-dimensional combustion, they used a number
of asymptotic considerations, including, most notably, large activation energy
asymptotics (of Frank-Kamenetskii [2]) to arrive at a simplified model of the form

act aw au a[ au ag a
(1 1)

Ot
Ar, /z Ox u w, tr mot mOx (1 + du3) xx) + w u + r, ax /x

r,

where ,,/x, d, and a are positive constants, r is the reaction rate

(1.2) r- H(tr-z)H(u- uc)H(g)txl/2gf(w),
H is the Heaviside function,

f( w) w where typically ,---2.0

and r, uc are positive constants. Finally, the boundary conditions are

(1.3) u(+N, t)= ua, w(-N, t)= ua, g(-N, t)=g

where u, g are positive constants and N is a positive number or +o, and the initial
conditions are

(1.4) tr(x, 0) fro(X), u(x, O) Uo(X)
where tro(X) > 0, Uo(X) > 0.

In the above equations, up to scaling, u represents the temperature of the solid,
w represents the temperature of the gas, cr is the heat capacity of the solid, and g uce
where a is the mass of the oxygen per unit volume. An interesting feature of the model,
the mathematical ramifications ofwhich we explore here, is the presence of a mechanism
that switches off the reaction when either the temperature, or the heat capacity of the
solid, or the mass of oxygen per unit volume drops below a certain level.

Received by the editors March 9, 1987; accepted for publication May 20, 1987. This work was partially
supported by National Science Foundation grants DMS-8420896 and DMS-8501397.

$ Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455.
$ Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706.
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In this paper we shall establish the existence of a solution of (1.1)-(1.4) for all
> 0; we shall also prove that the reaction rate r vanishes identically if is sufficiently

large. The occurrence of r as a coefficient of Ou/Ot in the parabolic equation for u in
(1.1) turns out to be quite favorable for the proofs.

In 2-5 we consider the case N < and in 6 we consider the case N . In
2 we formulate the mathematical problem more generally, and derive a priori lower

bounds on u, w. In 3 we derive various integral and pointwise bounds on the solution,
assuming its existence. In 4 we establish the existence of a solution, using the a priori
estimates of 2 and 3, and in 5 we study the asymptotic behavior of the solution
as --> .

2. Mathematical formulation; initial estimates. Let N be any positive number and
let

I={-N<x<N}, -t--{(x,s),xE-,O<s%t}.

In studying (1.1)-(1.4) we assume for simplicity that A 1,/z 1, a 1 and r 1 (the
proofs remain the same for general A,/x, a, z). We also replace 1 + du by a general
function k(u) positive-valued for u >=0 and take f(w) to be a general positive-valued
function for w > 0. Thus the system has the form

(2.1)

(2.2)

(2.3)

(2.4)

where

(2.5)

with the initial conditions

(2.6)

(2.7)

and the boundary conditions

(2.8)

(2.9)

(2.10)

Here

Wx U-- W

cru, (k(u)ux)x + w- u + r,

r= r(x, t)= H(r- 1)H(u- uc)H(g)gf(w)

(x, o): o(X),

u(x,O)=uo(X)

w(-N,t)=ua,

u(+N,t)=ua,

g(-N,t)=g.

H() =0

We make the following assumptions:

g,>0, u>0,

(2.11) O’o(X) > 0, Uo(X) > 0

O’o is Holder continuous in {-N _-< x _-< N},

(2.12) k(u)E cl+a(), k(u)>=ko>O

(2.13) f(w) G C’l([),

if so<0, H()=I if so>0.

Uo(+N) u,

if -N <=x<- N,

Uo belongs to W2"(-N, N),

(for some a (0, 1)),

f(w)> 0.
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The function H(u- uc) is understood as a selection from the graph H(u- uc),
and H(cr-1)=0 if o’-1 _-<0, H(g)=0 if g_-<0. Since o’(x, t) is decreasing in t, also
H(tr(x, t) 1) is decreasing in t. Similarly H(g(x, t)) is decreasing in x, and H(g)g g+.

In this section and in the following one we assume that a solution exists for all
0< < T (for some T>0) and derive a priori estimates. These estimates will be used
in 4 to establish the existence of a solution. From (2.1), (2.6) we get

(2.14)
tr(x, t)-- 1 / go(X)- 1- r(x, s) ds

go(X) if o’(x)-< 1.

if ro(X)> 1

Let

to(X)=
sup t; H(u(x,s)-u)g+(x,s)f(w(x,s)) ds<-tro(X)-I

From the choice of H(o--1) mentioned above we have

if ro(x)> 1.

(2.16) H(cr- 1)H(u- u)g+f(w) X{t <= to(x)}H(u u)g+f(w)=- r.

Therefore

(2.17) IOr(x, s) ds H(u u)g+f(w) as <- ro(x <-_ C

where C is a positive constant independent of (x, t), and ^ s min {t, s}.
LEMMA 2.1. There holds

(2.18) w(x, t) >-_ ua e -21,

(2.19) u(x, t) >- ua e-21

Proof For some 6 small enough u _-> 0 in fl. From (2.2), (2.8) we then find that

(2.20) w(x, t) >= ua e-’+N).

Then also

(2.21) Lu tr(x, t)ut-(k(u)Ux)x + u w+ r >- uo e-2N

in f. The constant z u, e-2N satisfies

Lz z <= Lu inIl

and z-< u on the parabolic boundary of l). By comparison, it follows that

(2.22) u _-> z u e-2

in f. We can now continue to increase 6 step-by-step and to establish (2.20), (2.22)
in the corresponding domains l); this completes the proof of the lemma.
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3. A priori estimates. Set

W-- la

LEMMA 3.1. There holds

2
0"1712 dx +-- rt 2 + k(u)ux

4
(3.)

+- ((N,t) dt+ (if- t)2_-< C (0< t< T)
2

where C is a positive constant independent of
Proo Multiplying (2.3) by and integrating over ,, we get

(3.2) (a2), + k(u)()2= (#-)ff+ r.

The first term on the left-hand side is equal to

1 1
(ff)_- 62+ r6e (since t -r).

2 nx{t o 2

The last term on the right-hand side of (3.2) is bounded above by

1 1

by (2.17). We therefore obtain from (3.2)

ax+- r+ k(u)u (-)+ C(3.3)
2 {,} 4

where C is a constant independent of
Next multiply (2.2) by

(3.4)

and the left-hand side is equal to

2

When we add (3.4) to (3.3), the inequality (3.1) follows.
LMMa 3.2. ere holds

(3.5) w_-<C

(3.6) r-<C,

(3.7) u<=C

in r, where C is a constant independent of T.
Proof. From Lemma 3.1 and (2.14),

(3.8) a2(x, t) dx <- C.

Hence, solving for w from (2.2), (2.8) we easily obtain the estimate (3.5).
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From (2.4), (2.10) we conclude that

(3.9)

When we combine this with (3.5), the estimate (3.6) follows.
From (3.5), (3.6) we deduce that

Lu-2C

where L is the parabolic operator defined in (2.21). If z is a constant larger than 2C
and larger than u on the parabolic boundary of 2r then, since Lz > 2C, we get by
comparison that u < z in r. This yields the estimate (3.7).

LEMMA 3.3. There holds

(3.10) u, + u2(x, t) dx - C for 0 < < T

where C is a constant independent of
Proof Multiplying (2.3) by k(u)u, and integrating over ,, we get

1 k(u)uxdx (-+r)k(u)t+ k:(uo)u2
o. dx.(3.11) wk(u)u2+

Since k(u) is bounded (by Lemma 3.2), the first integrate on the right-hand side of
(3.11) can be estimated by

(3.12) fla (-+r)k(u)ut

When we use the estimates

<= - crk u u + C (l-/-ffr)2.

I If ’ /)2 C (by Lemma 3.1),

IIa r2<f fflsa r<=C (by (3.6), (2.17))

on the right-hand side of (3.12) and then substitute (3.12) into (3.11), the assertion
(3.10) follows.

From Lemma 3.3 and standard interpolation we get the following lemma.
LEMMA 3.4. There exists 0 < a < 1 and C > 0 independent of T such that

(3.13)

Set

(3.14) K(u)= k(v) dv.

Then

(3.15) k(u--K(u), K(u)xx + h

where h w u + r satisfies

[hlL(aT)<= C C independent of T.

Applying LP-theory we get the following lemma.
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LEMMA 3.5. For any p > 1 there exists a constant C depending on p, T such that

(3.16) lUIL.n JI-]Ut]LP(T)+ ]Uxx]LP(T) C.

4. Global existence. For any e > 0 set

1 if s->e,
(4.1) H(s) /e if0<<e,

0 if 0.

DEFINITION 4.1. We shall refer to the system (2.1)-(2.10) as problem (P); if we
replace (in (2.1)-(2.5)) H(-I), H(u-u), H(g) by H(-1), H(u-u), H(g),
then we refer to the new system as problem (P).

Remark 4.1. All the estimates derived in 2 and 3 for solutions of problem (P)
are valid, with the same proofs and the same constants, also for solutions of problem
(P.).

LEMMA 4.1. For any T>0, e >0 there exists at most one solution ofproblem (P)
in T with Ou/Ot, Ou/Ox in L(T).

Proo Suppose (, w, u, g) are solutions of problem (P) for i= 1, 2. Since
H() is Lipschitz continuous, the function h in (3.15) is actually Holder continuous
(for the case of problem (P)) and the solutions (i, w, u, gi) satisfy the differential
equations and the initial-boundary conditions in the classical sense.

Take the difference of the equations (2.1) for and , multiply by- and
integrate over t. We then easily obtain, after applying the Cauchy-Schwarz inequality,

(4.2) f (,-2)2cff [(Ul--U2)2+(W1--W2)2+(gl--g2)2].
x{t}

Similarly we get from the equations for w,

(4.3) w w) C u u).
t

Next, using (2.3), we obtain or -2,

I(Ul- U2)2 + k(Ul)(Ul,x U2,2 x{t}

whence, because of (2.12), Schwarz’s inequality and the boundedness of Ou/Ot and
Ou/Ox,

(4.4) lal,, (u-u)NCIa’
[(u,-u)+(w-w)+(g-g)+(,-)].

Finally, from (2.4),

(4.5) (g,-gz)2C [(u,-u2)+(w,-w)+(,-2)=].
t
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We now substitute (gl-g2)2 from (4.5) into (4.2), (4.4) and substitute (wl-w2)-from (4.3) into (4.2), (4.4). Then, combining (4.2) and (4.4), we obtain the inequality

I [(’l-’2)2(Ul-U2)2]CII [(’1 2)2- (Ul u2)2]
x{}

This immediately implies that ra r-= 0, u u=--= 0 and then also wa w2 0,
g-g2=-O.

We shall now prove one of the main results of this paper.
TI-IEOREM 4.2. There exists a global solution of (2.1)-(2.10) satisfying (3.16) for

an), l<p<oo, T>O.
Proof. We first consider problem (P) and establish the existence of a global

solution. Choose a small 6 > 0 and introduce the set

K {(o’, w, u, g) e C(fi), <- 1 + sup ro(x), w -< c1, u -< a + u
+ sup Uo(X), g --< c=}

where ]l" means the sup-norm in and C,, C2 are to be determined later on. Given
any (r, w, u, g) in K we define its image (, , iT, g)= W(r, w, u, g) by solving

#, -H(- 1)H(u- uc)H(g)gf(w),

=u-,
0a, =--(k(u)a) +- a + H(g- 1)H(u u)H(g)gf(w)
Ox

g -H(- 1)H(u- u)H(g)gf(w)

in subject to the initial and boundary conditions (2.6)-(2.10).
For appropriately large C and C2 (C2 depends on C1) we can easily estimate

1 + sup o(X), Cl, = c=.
While for C, C= as above and 6 sufficiently small,

Ilall 1+ u. +sup .o(X).

By parabolic estimates we also have, for some a e (0, 1)

here C is a general constant which may depend on 6. Since o(X) is H61der continuous,
we then also deduce that

with another a and C and then, finally, also

Hence W maps K into a compact subset. Since (#, w, u, g) is uniquely determined by
(g, w, u, g), we can easily verify that W is a continuous mapping. Appealing to the
Schauder fixed-point theorem we conclude that W has a fixed point. Thus problem
(P) has a solution in . We note that the size of 6 depends only on the upper bounds
on

(4.6) [Uo[c(a), [go]c()
for some fixed/3 e (0, 1).
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We now wish to extend the solution to 6 < < 26. We choose any initial time
6-r/ r/ arbitrarily small) and repeat the previous step. We obtain a new solution

for 6 rt < < (6 r/) + 61 for some 61 > 0, 61 independent of r/. Since the solution
constructed in f/ is a classical solution with Ou/Ot, Ou/Ox bounded (or even Holder
continuous) in \f/_, (since H() is Lipschitz continuous) we can apply the
uniqueness result of Lemma 4.1 in 1\1_, and thus deduce that the new solution is
an extension to f/_,+, of the solution constructed in the first step in f/. Thus we
obtain a solution of problem (P) in f/2 where 62 in any number <6 + 61.

We can proceed in this manner step-by-step, and it only remains to show that in
these steps the lengths of the t-intervals 6i do not shrink to zero. For this it suffices to
show that the quantities in (4.6) corresponding to any initial time z remain uniformly
bounded if -<- T, where T is any given positive number. But this clearly follows from
Remark 4.1.

Having constructed a global solution to problem (P), we denote it by
(cry, we, u, g). (Notice that we have not proved boundedness of Ou/Ot, Ou/Ox at

0 and thus we cannot apply Lemma 4.1 to deduce that this solution is unique.) By
Remark 4.1, the estimates of 2 and 3 are valid for this solution. Hence a subsequence
is convergent to a global solution of (2.1)-(2.10).

5. Asymptotic behavior.
THEOREM 5.1. As t- o

(5.1) u(x,t)u,,

(5.2) w(x, t) u,

uniformly with respect to x
Proof. From (3.1) and Poincar6’s inequality we deduce that

(5.3)

and from (3.10) we deduce that

(5.4) Iff(x, t) -/(x1, t)l <-- fix xll 1/2
for all x, x in 1, > 0.

Suppose (5.1) is not true. Then there exist a sequence (x, t,) in f with
and Co> 0, such that

la(x, t,,)l-> Co> 0 (a-u-u,).

By (5.4) it then follows that

(5.5) a2(x, t,) dx >- c > O.

Hence

Let c (tn, t. + 1). Then

la(x, t)-(x, t,)I lu.(x,
tn tn

(5.6) [a(/, t) (t(x, t,)l2 dx <= ut(x, t) dt =-- e, --> 0

if n oo, by (3.10).
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By the triangle inequality

fsa2(x,t,,)dx<--2fsa2(x,t)dx+2fl(x,t)-(x,t,,)[2dx.
Recalling (5.5), (5.6) we then get

a)-(x’t)>=- -2e">=-4 (t"<=t<=t"+l)’

if n is sufficiently large. Hence

aZ(x, t) dx dt >= -,
which is a contradiction to (5.3).

Having proved (5.1), the assertion (5.2) follows by solving

ff, + ff ff with ff(-N, t)= 0

and using (5.1).
COROLLARY 5.2. If Ua < Uc, then there exists a To> 0 such that r 0 if > To.
Indeed, by Theorem 5.1, u- ual< uc-u if is large enough, say t> To; this

implies that H(u- uc)= 0 and thus also r 0 if > To.
Corollary 5.2 means that the combustion has died out after a finite time To.
6. The Cauchy problem. In this section we extend the results of 4 and 5 to the

Cauchy problem, i.e., to the case N c. We assume that

(6.1) tro(X), Uo(X) are positive-valued Holder continuous functions in R 1,
(6.2) 0 < or, =< O’o(X) < 1 if x] > Ro for some Ro > 0,

(6.3) Uo(X) -* u, if Ixl- oo,

(6.4) [ ro(x)(uo(x u)9- dx < 00,

and

(6.5) _ID k(u)(u’x(x)) dx < 00.

TEOREM 6.1. Assume that (2.12), (2.13), and (6.1)-(6.5) hold. Then there exists
a solution (o-, w, u, g) of (2.1)-(2.7) in Ilx (0, 0o) satisfying

(6.6) w(x, t) - uo if x-> -oo, > 0,

(6.7) u(x, t) u if lxl , > O,
(6.8) g(x, t) ga ifx > -Ro, > O.

Proof We modify the definition of Uo(X) for Ixl> N-1 so that the new function
UO.N(X) satisfies

(6.9) Uo,u(N) u, Uo,u(x) u,>0,
it is Holder continuous, and

u) dx(6.10)
1<

o(X)( Uo,N(X) c,

(6.11)
xl<u

k2(u’u Uo,u(x) dx C

where C is a positive constant independent of N.
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Denote by (trN, wN, UN, gN) the solution (2.1)-(2.10) established in Theorem 4.2
for f fN {x; -N < x < N} and Uo U0,N. From (6.2) we have

(6.12) rN(x, t) 0 if Ixl > go
where rs is the reaction rate r corresponding to the parameter N. Next, by comparison
(since WN + rN _-->0), we obtain, for a > 1/(sup go(X)),

(6.13) Us(X, t)>-u, e-at.
Also, from (2.2) by integration,

WN(X, t) >-- Ua e-x-N + u. e-at e-x+y dy
N

so that

(6.14) WN(X, t)>--_ U. e -at.
Observe now that the proof of Lemma 3.1 is valid with C independent of N, since

ff fO t"N d dx <= C

where C1 is independent of N (by (6.12)), and since (6.10) holds.
Next,

IffN(X, t)[ e-X+rlff,,,(y, t)l dy < e-2x+y dy 2(y, t) dy
N N N

(6.15)
_--< a(y,t) C by(3.1)

N

with C independent of N. This yields (3.5) and thus also (3.6), with C independent
of N. The proof of (3.7) (with C independent of N) then follows as before..

Using (6.11), the proof of Lemma 3.3 follows as before with C independent of N.
Having established all the estimates of Lemmas 3.1-3.3 with C independent of

N, we also obtain the estimates of Lemmas 3.4 and 3.5; thus

uN + UN dx dt <- C

for any bounded domain D in R where C is a constant depending on D and T but
independent of N.

We can now take a subsequence of solutions (o-N, WN, UN, g) which converge
uniformly on compact sets to a solution (, w, u, g) of (2.1)-(2.7). The asseaion (6.8)
follows from (6.12) and (2.4), (2.10). From (6.15) we get

[if(x, t)[ [x (a(y, t))2 dyO if x-,
d-

and from

[2(X, t)+(x(X, t))2] dx < cx3 Vt>O

we deduce (as in the proof of (5.1)) that

t(x, t)-0 if Ixl-oo
Thus the proof of Theorem 6.1 is complete.

Vt>O.
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Remark 6.1. The solution constructed in Theorem 6.1 satisfies the integral esti-
mates of Lemmas 3.1 and 3.3 (with 2=1) and ux, u,, Uxx belong to LPoc(l x (0, o))
for any 1 < p <

Remark 6.2. We do not expect Theorem 5.1 to extend to the present case (of
=1) since, in general, a solution of

w, w f(x, ) f(x, ) dx d < oo

w(x, O)

does not converge to zero as t- oe, x bounded. Indeed, a simple example is given by

w(x,)=exp -4(t+l)
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GLOBAL EXISTENCE FOR A MODEL OF ELECTROPHORETIC
SEPARATION*
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Abstract. We examine the modeling equations for a particular electrophoretic separation technique
known as isotachophoresis. These equations form a system of advection-diffusion type and describe the
time evolution of a number of charged chemical species. The transport mechanism arises from an electric
field E where E is a superposition of the species concentrations; thus the equations are nonlinear. The
spatial domain is the real line and the concentrations satisfy Dirichlet boundary conditions at +. We show
that these equations have global strong solutions that are unique in an appropriate sense.

Key words, global existence, isotachophoresis, advection-diffusion equation
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1. Introduction. The theory of electrophoretic separation describes the movement
of charged particles in solution exposed to an electric field. Applications include the
development of techniques for separating protein and other biological materials [2].

The strength of the electric field depends on the levels of concentrations of the
species of charged particles present in the solution. Thus the modeling equations for
the concentration levels and the field are nonlinear. Noting that the chemical reactions
of the species occur on much shorter time scales than that of the diffusion or field-
induced transport mechanisms, it is usually assumed that these reactions are in equili-
brium; moreover, the experimental setup often admits the assumption that spatial
variation is essentially one-dimensional. Under these hypotheses, the equations of
electrophoresis, as developed in [6], are

(1.1a) tli)t ziiEui + di bli Ix, 1," ", m,

(1.1b) eE,=-e ZkUk.
k=l

Here, for u u(x, t), ux denotes Ou/Ox and u, denotes Ou/Ot. The unknowns in (1.1)
are the species concentrations ui ui(x, t) and the electric field E E(x, t). The other
parameters are known constants: 12i are the ionic mobilities and di are the diffusivities
corresponding to each species, while zi- + 1 or -1 depending, respectively, on whether
the ui represent concentrations of positive or negative ions. In (1.1b) e is the molar
charge and e is the permittivity of the solvent.

In this paper we will establish the existence and uniqueness of global strong
solutions of (1.1) with boundary conditions appropriate for a particular extensively
used separation technique known as isotachophoresis, or ITP. In the usual set-up for
ITP, the reaction column is long and is connected at both ends to large electrolyte
reservoirs that negate the influence of reactions occurring at the electrodes. This makes
the concentrations constant at the column ends, and effectively renders the system
infinitely long [3], [6]. Thus x varies over the entire real line in (1.1), and the
concentrations satisfy fixed Dirichlet boundary conditions:

(1.1c) ui(-) [i, gli(21-00) i.
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The boundary conditions for the electric field E can be deduced from (1.1c) and the
fact that the electric current I through the medium is constant.

Setting

1.2) f z,l’,Eu, + d, (u,)

we have, as noted in [3], that

(1.3) I=e Z z,(fi)(-) =e Z z(f)(+c).
i=1 i=1

Since u must also satisfy

(1.4) (Ui)x(-, t)= (Ui)x(+C, t)=0

(see e.g. [3]) we have, from (1.1c) and (1.4) that (1.3) reduces to

(1.5) I=e , l)ia,E(-o, t)=e E 12,[3E(+, t).
i=1 i=1

Since I is a constant,, we must have from (1.5) that E(+, t)= E+ where E/ and E_

are constants. We will see in 2 that E can be determined in a completely satisfactory
way by (1.1a)-(1.1c), (1.5), and the initial conditions

(1.6) u,(x, O) u.
Finally, as in [3], we assume that

(1.7) E zc E z/3i O.
i=1 i=1

Condition (1.7) is a natural condition to impose in the applications in light of the
separation mechanism and it will play an important role in what follows.

In 2 below, we make some preliminary observations which will allow us to recast
problem (1.1a)-(1.1c) together with the conditions (1.4)-(1.7) as a system of rn
equations of advection-diffusion type. Section 2 will conclude with the statement of
our main local existence theorem. In 3 we will prove this theorem, and in 4 we will
show that our solutions are global in time.

We note that the global existence result of this paper can be viewed as a companion
result to the development in [3], in which traveling wave solutions were found for
(1.1a)-(1.1c) with the conditions (1.4), (1.5), (1.7).

2. Some preliminary observations. We first define auxiliary functions W Wi(X as
follows:

X -1,
(2.1) Wi(X):ei(x), --1 <-x<= 1,

l/3i, x->-l,

where ei are smooth functions that join the horizontal portions of wi in a C manner,
such that ffi ei(X) ji and such that

(2.2) (Wi)xC

where C denotes C(). Note from (1.7) that we also have

(2.3) Z zw, C’.
i=1
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We can assume that the solutions ui of (1.1) have the form

(2.4) ui vi + wi.

where for each vi(., t) W2’1 w2’l(); the suitability of (2.4) proceeds from the
smooth asymptotic behavior of ui demonstrated in [3]. Note also that vi W2’ implies
that u and (u), are in Co, so that the right-hand side of (2.4) satisfies (1.1c) and (1.4).
Eventually we will plug the right-hand side of (2.4) into (1.1) to obtain a system of
equations in vi. We first determine the form of E using (1.4)-(1.7). Assuming (2.4) we
note that

(2.5) U(x, t)=--
k=l

where we have used (2.3). It is thus appropriate to set

(2.6) E :-(e/e) f U(y, t) dy+C(t)

and then solve for C(t) using the boundary conditions. From (1.5) it is easy to see that

(2.7) C(t)=

which is obtained simply by setting the two expressions on the right-hand side of (1.5)
equal to each other. We now want to show that C (t) is a constant which we will denote
by E_. Note from (1.1) that from superposition U satisfies

(2.8) Ut E zf
k=l

and thus

(2.9)

Hence

dt
U(y, t) dy z,fk(+)- 2 Zgfk(-) =0.

k=l k=l

(2.10) E(x, t)=-(e/e) J_ U(y, t) dy+ E_

where E_ is the right-hand side of (2.7) with U(y, t) replaced by

(2.11) U(y, 0)= Zk(Uk).
k=l

With E thus determined in terms of u and u, we are now ready to formulate
our problem in terms of the u; setting c zfi and plugging v + w into (1.1a) and
(1.1b) in place of ui, we obtain the following system of initial-value problems:

(2.12a) v d v )xx + cE v )x + cEx vi + cE )(w) + cEx w + d(wi)

where E is given by (2.10) with

0 0(2.12b) v,(x, O)= vi ui wi(x),

(2.13) U(y, t)= E Zk(Vk + Wk).
k=l
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Note that by (2.10) the system (2.12) is an integrodifferential equation. We will
see in the next section that (2.12) can be treated using methods involving semigroups
and variation-of-parameters formulas. Thus in the next section we will prove the
following.

THEOREM 2.1. The system (2.12) has a unique local strong solution v (Vl, , v,)
where each vi CI([0, T]; W2’1) for some T> O.

3. Proof of Theorem 2.1. We will let [l" II1, 11" m,1 and I1" I1 denote the norms on
L1, Wre’l, and Co, respectively, where m is a positive integer. Let M > 0 and T> 0,
with T to be determined. Let Ai be defined by Aif difxx and let W(t) denote the
analytic semigroup generated by A. Let

Q { u (Ul, u2," ", Urn)" U C([0, T]; W2,1

(3.1) and sup sup u(t)- W(t)u

W(-s)(w)xdS <-M
2,1

If for each u, v e Q we set

(3.2) p(u,v)=sup sup
Ot<--T

then (Q, p) is a complete metric space. For each set

(sv(= w(v + w(-s(WxxClS

(3.3)
+ Wi(t-s)[ciE(v(s))(vi(s)+ wi)]xds

where E(v(s)) is defined by (2.10) with U(y,s)= Zk(Vk+ Wk). If we now let Sv=
(Sly1, S2v2," ", Smv,), then we want to select T so that S is a contraction on E.

We first note that there exists a constant c such that

(3.4) II(w(t)f) I1 --< Ct-1/2 Ilfll
for all f L and > 0, and a constant K1 such that

(3.5) Ilfll_-< g Ilfll.l
for all f W1’1. Meanwhile, if v E then

IIc,U(u(s))ll<--Iu-I+suplc, lle/[ Y (lu(y,s)l+lw(y)l) dy
k=l

(3.6) <=lE-I/ mll wllsuplc, le/elsupllv(s)ll
k

<-IE_I+ rn II Wk II1 sup Ic, le/elM=- K=

and

(3.7)
-<suplc, le/el lie wlllmM= K3.
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If we set

(3.8) Gi(t) W(t)vi + Wi(t-s)(Wi)xxds

then from (3.3)-(3.8) we have

[(Sivi)( t)- Gi(t)]x Ill

<- c(t-s)-’ill[ciE(v(s))(v,(s)+w,)].ll, ds

(3.9)
+ c,[((s))]x II, v,(s)I1+ cm(v(s))I1 (w,)x II,

+ ,[(())]. II, , I1]
’/[(+,)M+ (,). II1+ (,)II]-

In a similar fashion w an stimat

[(s,,)(t) o,(t)] II,(3.10)

and

(3.11) [(Sii)i)( t) Gi( t)]xx II1.
We note that (3.10) will be bounded by the last line of (3.9) except that cT112 is replaced
by T. Meanwhile (3.11) is bounded by

(3.12) c(t, s)-’/21l[ciE(v(s))(v,(s)+ Wi)]x II, d

which we can estimate by computing:

[ciE(D(S))(Di(S)"- Wi)]xx

(3.13) 2ci[E v(s) )]x( )i( s) + wi) -I- iE (1)( $) )( )i( s) + Wi)xx

+ c,[(v(s))]xx(u,(s)+ w,).

We now can proceed as in (3.9) once we observe that

Ilci[E(v(s))]xxlll<-SUplcil lell 2 [ll(,)x(s)ll,+ll(w)ll,]
k=l

(3.14)
--<suplc, lelel[mM+EIl(w)xlll].

From these remarks and the development in (3.19) we see that T can be selected so
that S maps Q to Q.

To show that we can select T smaller, if necessary, so that for u, v Q

(3.15) p(Su, Sv) <- K( T)p(u, v)

with 0 < K(T)< 1 now requires more tedious calculations but no deeper than those
made above. The main points of the development come from replacing E(v(s)) by
E(u(s))-E(v(s)) and v(s) by v(s)-u(s) in (3.6), (3.7), and (3.14).
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These observations demonstrate that we have solutions vi(t) of the appropriate
integral equations. To see that each vi is a strong solution now proceeds in a standard
fashion. We already have that vi(t) is in the domain ofA for each t; we now differentiate
under the integral sign in the usual manner (see, e.g.,J5]) using the dominated conver-
gence theorem. This completes the proof of Theorem 2.1.

4. Global existence. Let [0, T) be the maximal interval of existence for the solu-
tions found in 3. We first show that the Ll-norm of the vi stays bounded on [0, T),
if T is finite. Consider, for 0- < T and for each i, the linear equation

(4.1a) zt dzxx +[cEz]x,
(4.1b) z(x,O)=zo,

where Zo is in W’1 and satisfies Zo(X)>-O for all x, while E E(v(t)) with v as in 3.
It is clear that (4.1) has a solution z(x, t) throughout [0, T) with z W2’ for each t;
in fact, the methods of 3 apply; also note that E C([0, T); C()). Therefore there
exists a fundamental solution U(t, ’) such that z(t) U(t, 0)Zo. It is clear, by applying
the Trotter product formula for fixed r, that U(t, r) is positivity preserving. Moreover,
since z(t) W2’1,

(4.2) d---] z(x, t) dx= [c,Ez]ds=O;

hence U(t, r) preserves the Ll-norm for nonnegative initial data. For arbitrary initial
+data Zo W2’, set Zo =max {Zo, 0} and Zo =max {-Zo, 0}, then

(4.3)
u(t, )zoll_-< u(t, )z; I1/ u(t, )z;- I1

+
Zo II, / zff II,= Zo II,;

thus U(t, r) is a contraction on L for each 0_-< r_-< < T.
By variation-of-parameters our solutions v evidently satisfy

Io’vi(t)= U(t, O)vi + U(t, s)(ciE)(wi)xds

(4.4) + U(t, s)(c,E)(wi) ds

+ U(t, s) d(w)xds;

hence for 0_-< t-< T

(4.5)
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where we have used (3.6) and (3.7). If we now sum up (4.5) for each i, we see that by
Gronwall’s inequality

(4.6) v,(t)II1 =< K6 exp (KTT)-- S
i=1

for all [0, t), where K6 and K7 are constant on [0, T).
We now use (4.6) to estimate IIv, ll.l on [0, T). From the integral equation

representation we have, for each 0 =< < T,

v,(t)I1,,,--< N+ (V)x(t)II1

v) -’/ ds

(4.7) + I1 (W)x II + x Ill l’i eo] ds

<= N + cT1/2 (w,)xx II, / [l(v,)x II, /gr(ll(W)x It, / w,

+Ks c(t-s)-’/2(l+gl)llvi(s)ll,,, ds

where

(4.8) Ks=IE_[+suplcl

so again by Gronwall’s inequality ,(t) II,,, stays bounded on [0, T). Note that we
have used (3.6), (3.7), and (4.6) to obtain (4.7). We can now use the uniform bound
on v,(t)II,,, to show that ,(t)I1=,, stays bounded on [0, T); the development is similar
to that used in (4.7), but now we also use (3.14).

Thus, if T< +oo, standard arguments now obtain a contradiction in the usual
fashion (see, e.g., [4], [5]). Hence we have demonstrated the following.

THEOREM 4.1. The solutions found in 3 are global solutions, i.e., vi
C([0, +oo); W2,1) CI([0, +); L) for each i.

5. Remarks. We have shown that (2.12) has global strong solutions in W’ for
each t. Using standard bootstrap techniques, however, we can show that our solutions
lie in W"’ for each > 0; in paicular each v(t) is C for positive t. Our techniques
of the last section to pass from bounds on the W’ norm to bounds on the W’ norm
using (3.14) can be applied inductively to obtain this expected parabolic regularity.

Finally, there is an additional a priori estimate that can be derived for the solutions
v. Rewriting (2.12a) as

(5.1) (v,),

we integrate both sides of (5.1) to see that

(5. v(, [c]_,

so there exists a constant B, depending only on , , and such that

(5.3) ff v,(y, t) dy B,t + ff v(y) dy.
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Since vi is not necessarily nonnegative, it is not clear what the usefulness of (5.3) is,
but perhaps it may prove to have some physical significance.

Acknowledgment. I would like to thank Professor Paul Fife of the University of
Arizona for suggesting this problem to me and for many useful discussions.
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REGULARITY AND STRONG CONVERGENCE OF A VARIATIONAL
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Abstract. Variational approximations of the second order scalar hyperbolic equations with non-

homogeneous Dirichlet boundary data are considered. Strong convergence of the approximate solutions to
the original ones is established.
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1. Introduction. Let 12 be an open bounded domain in R" with a smooth boundary
F. Consider the following second order scalar hyperbolic equation:

//(t, x) Au( t, x) +f( t, x), t, x (0, T] x l-I Q,
(1.1) u(0, x) ti(0, x) 0 in 12,

u(t, x)lr g(t, x) in (0, T) x F-= E.
Optimal regularity properties of the solution u, which improve upon previous literature,
e.g., [LM], are established in ILl], [LT1], [LLT]; in particular, the following estimate
holds:

The following question may be asked: how do we construct a numerical algorithm in
order to compute effectively u from the boundary data g? It is well known that the
"best" numerical approximations of various partial differential equation problems are
based on a certain variational formulation of the original equation. The problem in
our case is, however, that due to the Dirichlet nature of the nonhomogeneous boundary
condition problem (1.1) does not admit a natural variational formulation (in contrast,
a natural variational formulation is standard in the case of Neumann or Robin boundary
conditions). In this context, the idea of Lions ILl] is to "approximate" the solution
u(t) of (1.1) by a sequence of functions u(t) which are determined as solutions of
the following problems"

(1.2)

ii(t, x)= Au(t, x)+f(t, x)
u(O,x)=a(O,x)=O

e-- + flu flg

in Q,
in 12,

in X

where/3 is a self-adjoint second order elliptic operator defined on the variety F. For
example, one can take/3---At+ 1 where Ar is the Laplace’s Beltrami operator corre-
sponding to the Riemann metric on F induced by R ".
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The advantage of introducing (1.2) is, of course, that (1.2) admits a natural
variational formulation

1 1
4,). + (Vu, v,)+-(/u, ,) =-(g, ,b) + (f, ,b), 4, c(fi),

(1.3)
I, u(0) ti(0) 0.

In ILl] it was shown that u(t) approximates u(t) in the following sense: for any
g L2(E) and f LI[0, T; L2()]

(1.4) u - u in L[0, T; L(f)] weak star, when e 0.

In view of the above, we can think of (1.1) as a limit problem for (1.2). Therefore, in
order to find an effective numerical approximation of (1.1), the natural idea to pursue
is to look for numerical algorithms (Ritz-Galerkin, finite element, etc.) ofthe variational
equality (1.3). However, in order to establish the convergence or even more--the rates
of the convergencemof these approximations, a necessary prerequisite is to know more
about the regularity properties of the solutions to (1.2) as well as their convergence
to u(t). Thus, the main purpose of the present paper is to study regularity (more
precisely uniform ditterentiability) properties of the solutions u(t) along with the
convergence of u(t) to u(t). In particular, we will prove that the convergence in (1.4)
is, in fact, strong. We shall also establish a number of regularity results for u(t), which
are reminiscent of those valid for the limit solution u(t). These results, besides being
of interest in their own right, are of fundamental importance in the study of numerical
schemes approximating (1.2). In fact, they are used crucially in [LS], where finite
element techniques are developed to approximate u(t) and hence u(t).

The outline of the paper is as follows. In 2 we provide some background material
on the properties of the solution u(t) and we state our main results, Theorems 2.3 and
2.4. In 3 we discuss the regularity and convergence of the steady state solutions to
(1.2). These results are needed for 5 where the proof of our main result, Theorem
2.4, on the uniform ditterentiability of the solution u(t) is provided. Section 4, instead,
is devoted to the proof of Theorem 2.3 which states convergence of u(t) to u(t).

Notation.
(,) and stand for inner product and the norm in L2(l)).
(,) and stand for inner product and the norm in L2(F).
nr(-), Hr"(Q) (respectively, Hr(F), Hr’(Z)) denote the usual Sobolev space

defined as in [LM].
H-r,-s(Q)=.(H",S(Q)),"
H-(II) (Hr(fl))’; H-(F)= H(F)’.
Hg(II) (H)(fl))
(X--> Y) is the space of linear, bounded transformations from Banach space X

to another Banach space Y.
ft (d/dt)u; ii d/dt2.
2. Preliminaries and the statements of the main results. Let us begin by collecting

regularity results available for the original problem (1.1).
TIZORZM 2.1 ([LT1], [LT2], [LLT], [L2], [S1]). Let u be the solution to (1.1) with

g L2() andf O. Then

Ou
_C

C will stand for a generic constant.
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If in addition we assume that g6 HI’I(E), g(0) =0 and we take f LI[0T; L2(’)] then

(2.2) ]Ulc[OT;H (Iq)]-J-]I]C[OT;L2(I})]-3L
O

L2(W)

More generally with g H’(Z), s 1 where g satisfies the appropriate compatibility
conditions and with f= 0 we have

ou
Clgl.,"

Remark 2.1. Notice that the regularity of the solution on the boundary does not
follow from the interior regularity. In fact, the regularity of the normal derivative of
the solution on the boundary is higher than the Trace Theorem combined with interior
regularity would imply.

Next, let u stand for the solution to (1.2). The following results were proved in ILl].
THEOREM 2.2 [L1]. Let u (respectively, u) be the solution to (1.1) (respectively,

(1.2)) with g=0 andf LI[0T; L2(12)]. Then

(2.4)

(2.5)

(2.6)

lull C[OT;HI()] + +

(i) uou
(ii) i ti

(iii) u - 0

Oy

in L[0 T; H (12) weak star,

in L[0T; L2(12)] weak star,

in C[0T; HI(F)],

(iv) Ou Ou- in L2(,) weakly.

With g L(E) in (1.1) (respectively, (1.2)) andf6 Ll[OT; L2(f)] we have

(2.7)
(2.8) u u in L[0T; Lz(f)] weakstar,

where C stand for a generic constant independent of e > O.
The main goals of this paper are (i) to prove the uniform (with respect to e)

differentiability of the solutions u. with nonhomogeneous, smooth boundary data g,
and (ii) to improve the convergence results of (2.6) and (2.8).

Our results are as follows.
THEOREM 2.3 (Differentiability). (i) Let u (respectively, u) be the solution to (1.1)

(respectively, (1.2)) with g HI’I(); g(O)=0 andf=O. Then

(2.9)

(2.10)
)

(ii) If in addition we assume that g H’(), s 1 and g satisfies the appropriate
compatibility conditions then

(2.12)

(2.13)
.s--l,s--’ ()

(2,4) I-1o;.+’) cI1 .,-),
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THEOREM 2.4 (Convergence). (i) Let u (respectively, u) be the solution to (1.1)
(respectively, (1.2)) with f LI[0T; L2(12)] and g=0. Then

(2.15) (i)

(2.16) (i) in C[OT;H’(12)],
(ii) in C[OT;L2(f)],

(i) in L2(E),(2.17)

Ue- U

Ou Ou
(ii) in

Or/ Or/

(ii) Let u (respectively, u be the solution to (1.1) (respectively, (1.2)) with f O.
Then

(2.18)

(2.19)
lu ulto;. <- celgl.,.,,

u --> u in C[0T; L2(12)] for any g L2(E).

Remark 2.2. Notice that the regularity results of u, stated in Theorem 2.3 are
reminiscent of those in Theorem 2.1. In fact, (2.9), (2.10) reconstruct the regularity of
the original solution u(t) given by (2.1) and (2.2).

3. Convergence of the steady state solutions.
3.1. Statement of results. In order to prove our regularity and convergence results

for the problem (1.2), we first need to establish similar results for the corresponding
elliptic problem. More precisely, consider the following elliptic problems:

(3.1) Av=f in 12, vlr=0 inF

and

0re(3.2) Av =f in 12, e+/3v 0 in F.
Or/

If we define the operators A: L2(12)-* L2(12) and A L2(12) L2(-) by

av Av, v @(a) =- H2(f) fq H(f), and

Av Av v(A) {u6L2(l) AuL2(12) eO0+flu =0

then (3.1) and (3.2) are equivalent to

(3.1’) Av=f, and

(3.2’) Av f
Below we shall state a number of regularity and convergence results established for
the problems (3.1) and (3.2). The proofs of these results are relegated to 3.2.

LEMMA 3.1.

(3.3)

(3.4)

(3.5)
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Next, let us define the so-called Dirichlet map D: LE(F) L2(1) by

(3.6) ADg=O inf,, Dglr= g inF.

It is well known [LM] that

(3.7) D (H(F) - H+/(O)) for all real s > O.

Similarly we define a "variational approximation" of (3.6) by introducing the map
N L2(F) - L2(1) where

(3.8) ANg O in eg+flNg flg inF.
Oft

We shall prove the following lemma.
LEMMA 3.2.

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

Negl H3/2(ft -f" <= C[gIH’w,

Remark 3.1. Notice that the regularity properties (3.3)-(3.4), and (3.9)-(3.11),
reconstruct (uniformly in the parameter e > 0) the well-known regularity properties of
the elliptic Dirichlet problems.

Remark 3.2. The results of Lemma 3.2 can be easily generalized to obtain N
W(HS(F) HS+l/2(’)) for all real s > 0 with the norm uniform in e > 0.

3.2. Proofs of Lemma 3.1 and Lemma 3.2.
ProofofLemma 3.1. With A introduced as in 3.1 we associate the bilinear form

a (u, v) defined by

1
a(u, v)=--(Au, v)= (Vu, Vv)+-(flu, v)

for all u, v (Al/2)={u Hl(O), (1/4-)ulr H(r)}.
It follows by standard arguments that A A* and

(3.14)

(a)

(b) [ae(u,u)l>CIlU[2HI(_) .._
E
U

21
H (1_,) 1 cCO.

With the above notation, solving (3.2’) is equivalent to finding v such that

(3.15) a(v, oh) (f, oh) for all 4 @(A1/2).
Property (3.3) now follows immediately from (3.14) after setting b v in (3.15). As
for (3.4) we first notice that

together with

(3.16)
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imply via standard results from elliptic theory (see for example [B1])

Thus (3.17) and e(Ov/Ort)+v=O yield

(3.18) IV[H(r

Using (3.18), (3.16) and well-known energy estimates for the Dirichlet problem [LM],
we obtain

(3.19)

Formulae (3.18) and (3.19) yield (3.4).
As for (3.5), we notice first that by using regularity results from elliptic theory

applied to (3.1’) we obtain

Consequently,

(3.20)

Next we define

We have

H-I/2(F

H3/2(F H-/2(F)

Az O, zlr -e-10v eft-’ A-lf.aq or

Since z =-eD-lav/aq, (3.20) together with (3.7) gives

-10V

which completes the proof of the Lemma 3.1. E
Proof of Lemma 3.2. Let v Ng. We have

a(v, )= !(fig, 6), e (A’/e).

Setting ---v and using (3.14) yields

(3.21) iv12 11 2 c

E E

Hence in particular

(3.22) [V[H(V)<= C[gl,’(r) where Ave =0.

The standard estimates for the Dirichlet problem applied to (3.22) now yield (3.9). To
prove (3.10) we use transposition. Notice first that N(L2(F)H/2(I)) is
equivalent to

(3.23) N* (H-/2(1)- L2(F))
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(with the norm independent on e > 0). On the other hand, it can be easily verified that

(3.24) N*Au =-- u, u (a).

Indeed, for u @(A) we have

(N u, g) (Au, Ng) (Au, Ng) Ng u, Ng

Ou
Ng + ,g-Ng ,g

which proves (3.24).
In view of (3.24), (3.23) will be proved as soon as we show that for any v

Ou
(3.25) <- clvl,-,-,= where u A-lv.

On the other hand, from (3.3) we have

(3.26) [U[HI(F) Cx/-[V[ H-I() C-’[O{H-,/2().
Formula (3.26) combined with hu v e H-/2(O) and the standard Dirichlet estimates
yield

Ou

which in paicular implies (3.25); hence we have (3.23) and consequently

{NglH’/2(o) clg[.

To complete the proof of (3.10) we need to show that

0
(3.27) -- NgWe first prove that for any 0 < p < 1

(3.28) - Ng

<-CIgl.
H-I(F)

<=Clgl.
H-I-O(F)

To see this, we apply the Green identity to (Ng, Ab) with b C(O). This yields

0
Ng, 6 Ng,--ch +(Ng, A6), 6e C(O).

The surjectivity of the trace operator (see [LM]) implies that for any e H1+ (F)
we can select b e H3/:z+(-},) such that

Therefore

2_  b[r=0 and

(3.29) (O-Ng, ) Ng, Aqb) for any 4 e HI+P(F) where b e H3/2+P(-).
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Since Nee (L2(F)-> H1/2(II)) (by (3.23)) and Ab e H-1/2() for any g e L2(F),
(O/Ort)Neg defines a linear bounded functional on H’+(F). Formula (3.28) now follows
from (3.29). To prove (3.27) we write

(3.30) ANeg =0, NgIr g e/3 10Ne-ng.
Since by the virtue of (3.28)

fl_lONe ONe <=clONe-g -< C --g H-2(r, i-g H-l-o(I’,
Clgl,

the standard Dirichlet estimates applied to (3.30) yield

INegl,/2(a)+ Neg <- C [gl + e 3-’ONe
H-(F) -g

which proves (3.10).
In order to establish (3.11) we return to (3.30). From (3.9) we have

<-- Clgl ,’(r) <- C[gl H3/2(F)

Thus

o

Clgl,

fl-1
0

--Neg <-_C
0

H3/2(F)
Neg <-- Clgl

Since Neg[r g- e-l(o/O)Ng,

(3.31) INgl./r ClglH3/(r).

Formula (3.31) combined with ANg 0 and standard Dirichlet estimates give (3.11).
As for (3.12) we set

z(N-D)g.

Then

0 0
(3.32) Az O, ez+ 3z e33-oq - Dg.

Since

(3.33)
H(F) H-I(F)

and z eNe(-’(O/Orl)Dg), (3.12) immediately follows from (3.33) and (3.9). Finally,
to prove (3.13) we notice that

zlr Neg Dg]lr --I?,[ -1
oNe

Hence by (3.9)

(3.34) Iz] H2(r _--< Ce

Formula (3.34) combined with Az 0 and the standard results for the Dirichlet problems
yield (3.13), hence completing the proof of the Lemma 3.2. [3
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4. Differentiability of the solution to nonhomogeneous boundary problems--Proof
of Theorem 2.3. Let u be the solution to (1.2) withf-= 0, g /_/1,1(), such that g(0) --0.
We first multiply (1.2) by tie, integrate over Q and use the boundary conditions
ulr=g-e#-(Ou/On).

This leads to

(4.1)
I1( T)II / IlVu T)[[ + e )+ 2 \--, g dt

<=2p
L2(’Y.

1
L2(Y,) P+2pig[ 2 for >0.

Let h(x)c C1(1)) be such that hit n(x) where n is a normal vector on the boundary.
We multiply (1.2) by Vu h and integrate over Q. This gives

Writing Vulr=Ou/Ort + Vru where

we obtain

Ou,

IVul ClUlHla,),

L2()

On the other hand, from

we have

(4.2)

Consequently,

fll/2ue fll/2g_ efl-1/2OUe

au 2

-" I’l a

" L2(’.
L2(X)

(4.3)

<C[lal = = E
2 1/20ue2 ]Lo[OT;L2(f)] + ]Ue] 2

After combining the estimates in (4.1) and (4.3) and noticing that lul.,(.) cllvull,
we obtain

2

LtOT;L2()] + IUeILtOT;H’(O)] +
L[OT;L2(I’)]

(4.4) 2pc[llor;+
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where the constant C does not depend on either p or e > 0. Formula (2.9) now follows
after taking in (4.4) p small enough (such that 2pC < 1 and 2pCe < 1). As for (2.10),
we first notice that (4.4) also implies that

(4.5) fl-l/20u
L[OT;L2(F)]

Combining (2.9), (4.5), and (4.3) yields

(4.6)

Going back to (4.2) and making use of (4.6) provides us with the estimate

Formulae (4.6) and (4.7) yield the desired result stated in (2.10).
Finally we shall prove (2.11). Indeed, since [u-g]r e(Oue/O), (2.11) follows

from

lu

where in the last inequality again we have used (4.6).
Next we prove paa (ii) of the theorem for s 2. Set p where u satisfies (1.2)

with g H2’:(E). Then

(4.8) fi Ap, p(0)=/6(0) 0, e-’-+/3p =/3.

Formulae (2.9), (2.10) applied to (4.8) yield

(4.9)

Therefore we have a situation where

L2(X)

Aue =//e e C[0T; L2(f)], e+/3ue =/3g,

We write

(4.10) u AT’(iie)+ Neg.

By the virtue of (3.4) and (3.11) applied to (4.10) we obtain

g H2’2(X).

(4.11 u to;-.) =< GEl// to;-)a+ Igl .to;-")a].
On the other hand, we have

(4.12) Ig[rOr;H,/(r) Clgn2,2(E) (see [LM, Thm. 3.1, p. 19]).

Combining (4.9), (4.11), and (4.12) yields

(4.13) lul=to;W,., Clgl.=.2{,
which together with (4.9) completes the proof of (2.12) with s 2.

To show (2.13), in view of (4.9), it is enough to establish the following estimate:

(4.14)
L2tOT;HI(n)1
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To accomplish this, let us introduce the operator T--/j= ti(x)(O/Oxi) where the
coefficients ti(x) are smooth on and T is tangential to the boundary F (i.e.,
=1 ti(x)n(x)=0 x e F). Proving (4.14) is equivalent to showing that

0
(4.15) - Tu

Setting p Tu gives

(i)

(4.16) (ii)

(iii)

fi= Ap +[A, T]u,

p(0) =(0)=0,

eOp+P -’[[T’]u+e[T’]IOnu+Tg
where [A, B] stands for the commutator between operators A and B. Since T is a first
order differential operator, we have

(4.17) [[A, T]Ue[L,[OT;L2()]
where in the last inequality we have used (4.13).

Next we shall estimate all three terms on the right-hand side of (4.16)(iii).

(4.18)

where in the last inequality we have used (2.10)

u <C Z u + T,
H 1,1 () L2[0 T;H (F)] L2[0 T; H2(I")

(4.19)

(4.20)

Formula (4.16) can now be rewritten as

(4.21) //= Ap + F, p(0) =/0(0) 0, eOP+p G
Or/

where by (4.17)-(4.20) we have

IFI L,t0T;L2()] --< ClglH2"2(X), GI,’,’y. -<

Thus we are in a position to apply the estimates (2.10), (2.4),and (2.5) to (4.21). This
yields

Op

L2(X,)
+ Ipl to;.’. -< ClglH2,2(x)

which is precisely (4.15). Thus the proof of (2.13) is completed. As for (2.14), we
simply write

u-g e-10u
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Formula (2.14) now follows from (2.13). Thus we have proved (2.12)-(2.14) for s 2.
The proof of these statements for all integer values of s greater than two follows along
the same line as for s 2. The results for s >-1, s-real, can be easily obtained via
interpolation.

5. Proof of Theorem 2.4. Let u be the solution to (1.2) with g 0. From (2.4) in
particular we have

L2(X

Formula (2.15)(i) now follows after noticing that u[r=-eB-(Ou/Or/) and

As for (2.15)(ii), we set

z u u where u satisfies (1.1) with g 0.

Then

Oz OU
(5.) " az, z(0) (0) 0, 7+

Formula (2.7) applied to (5.1) yields

[Z[ctOT;L2()] CE
OU

L2()

where in the last inequality we have used (2.2).
To establish (2.16) we shall need the following lemma.
LEMMA 5.1. Let u be the solution to (1.2) with g =0. Thenforanyf LI[0T; L2(12)]

we have ft [r - 0 in L2(E).
Proof To prove the lemma, in view of (2.4), it is enough to show that for f in

some dense set ff LI[0T; L(f)] we have

(5.2) ti - 0 in L(E).
To this end let o%-= {f HI[0T; L(f)], f(0) 0}, dense set in LI[0T; L(f)].

If u satisfies (.1.2). with g---0 and the right-hand side of the equation is equal to
f, then p fi and f-=f satisfy

(5.3) /=ap+?, v(o)=p(o)=o, P+p=o.
or/

Energy estimate (2.5) applied to (5.3) yields

This proves that forf o%, ti 0 in C[0T; H(F)], hence in particular (5.2).
To continue with the proof of Theorem 2.4 let us define z= u-u where u

(respectively, u) satisfy (1.2) (respectively, (1.1)) with g 0. Then

0 Ou
(5.4) Y Az, z(0) z(0) 0, ez+z -e.

Or/ Or/

Multiplying (5.4) by and integrating over Q leads to
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Application of Lemma 5.1 to (5.5), combined with the usual density argument, leads
to the conclusion (2.16).

Statement (2.17) (i) is the same as that of Lemma 5.1. To prove (2.17)(ii) we argue
as in the step (ii) of the proof of Theorem 2.3. In fact, multiplying (5.4) by Az h,
integrating over Q and using the same arguments as step (ii) of Theorem 2.3 leads to

O_
2

._]_,Z,2 < C[,z.2 2 2
(5.6) + +

lot/ L2(X)

Formula (2.17)(ii) now follows from (2.16) and (2.15)(i) applied to (5.6) (since
zlF= u IF). To complete the proof ofthe theorem we need to establish (2.18) and (2.19).

Proof of (2.18). Let z=-u-u where u (respectively, u) satisfies (1.2) (respec-
tively, (1.1)) with f-0 and g6 HI’I(Z). Then

(5.7) Az, z(0) :(0) 0, 0z Ou Ou
+t z

Or/ Or]

Since by (2.2)

=<C
L2(X) L2(X)

OU

the application of formula (2.7) of Theorem 2.2 gives

]ZlctoT-.,L2n) < Ce -10u <CslglH’.l(v.)
L2(X

which is precisely the statement (2.18). Formula (2.19) can be deduced from (2.18)
and (2.7) followed by the standard density argument. The proof of Theorem 2.4 is
thus completed. 13
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THE SOLUTION OF THE RIEMANN PROBLEM FOR A
HYPERBOLIC SYSTEM OF CONSERVATION LAWS

MODELING POLYMER FLOODING*

THORMOD JOHANSENt AND RAGNAR WINTHER$

Abstract. The global Riemann problem for a nonstrictly hyperbolic system ofconservation laws modeling
polymer flooding is solved. In particular, the system contains a term that models adsorption effects.

Key words. Riemann problem, polymer flooding, adsorption
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1. Introduction. In this paper we solve the global Riemann problem for the
mathematical model

st +f(s, c), O,
(1.1)

[sc+ a(c)], + If(s, c)c]. =0,

where tR/, xeR, the state vector (s,c)Ix! andf:IxIR and a:I-R are
smooth functions. Here I denotes the unit interval ! [0, 1]. More precise assumptions
on the functions f and a will be given in 2.

Our results generalize the results of Isaacson [6], where the Riemann problem for
(1.1) is solved with the term a(c) neglected. In this simplified case the solution of
the Riemann problem can also be derived from the analysis given by Keyfitz and
Kranzer [7].

We note that when c is constant, (1.1) reduces to the single equation

(1.2) st+f(s)x=O,
which in the petroleum literature is known as the Buckley-Leverett equation.

The model (1.1) arises in connection with enhanced oil recovery, for example
when oil is displaced in a porous rock by water containing dissolved polymer. The
variable s is the saturation of the mixture of water and polymer, which we call the
aqueous phase. The variable c is the concentration of polymer in the aqueous phase.
Furthermore, f describes the fractional flow of the aqueous phase, which is assumed
to be immiscible with oil. The function a(c) models adsorption of the polymer on rock.

Some other processes governed by (1.1) are discussed by Pope in [9], where
detailed physical assumptions for the model are also discussed.

The derivation of (1.1) is based on material balance considerations. We assume
that the fluids and the rock are incompressible, and that volumes do not change when
polymer is dissolved in water. Assuming one-dimensional flow in a homogeneous
medium, the mass conservation of water, oil, and polymer, respectively, can be formu-
lated as follows:

(1.3a) S " V O,
0(1.3b) bs+ vx O,

(1.3c) [sc + a(c)], + [VCJx O,
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542 T. JOHANSEN AND R. WINTHER

where b is the rock porosity, so is the oil saturation and v and v denote the volumetric
flow rates of the aqueous phase and oil, respectively. Neglecting gravity, capillarity
and dispersion, we get v and v by Darcy’s law as follows:

Kk
(1.4a) v -hpx, h -,

Kk
(1.4b) v= -hpx h= 0

Here, p is the fluid pressure, K is the absolute permeability of the rock, k-k(s, c)
and k-- k(s) are the relative permeabilities of the aqueous phase and oil, respectively,
and/x,/z are the corresponding viscosities.

Since s+ s-= 1, summation of (1.3a) and (1.3b) gives

1.5) v T vo + v constant

where the value of total volumetric flow rate v T is determined from the boundary
conditions. By elimination ofthe pressure p using (1.4a), (1.4b), and (1.5), the equations
(1.3a) and (1.3b) can be rewritten in the form

(1.6a) ths, + v fx 0,

(1.6b) ck[sc + a( c)], + v[fc]x O,

which together with (1.5) constitutes the model. Here f=f(s, c) denotes the fractional
flow function given by

h
(1.7) f- A+A"

The dependence on s is inherited from the relative permeability functions k and
k while the dependence on c is primarily introduced through the viscosity/x =/x(c)
of the aqueous phase.

If L denotes the length of the medium, a simple coordinate transformation

X 3 Tt
x’---- and t’-

L L
results in (1.1), when the primes on x’, t’ are dropped.

The model (1.1) is an example of a system of hyperbolic conservation laws. The
main result of this paper is the construction of a unique global solution of the Riemann
problem for the system (1.1); i.e., we construct a weak solution of the pure initial value
problem for (1.1) with initial condition

(S L, CL) if x < 0,
(1.8) (s, c)(x, O)= (sR, cR if X>0,

where the left and right states (s L, cL) and (s R, cR) in I x I are arbitrary. In order to
distinguish the physically meaningful weak solutions we will also require that the
solution satisfies an "entropy condition." This condition will be derived by demanding
that the solution is evolutionary; i.e., any discontinuity of the solution is a limit of
smooth solutions of associated "viscosity systems." The solution of the Riemann
problem in general depends only on the ratio x/t and it will be constructed by
connecting constant states, smooth solutions (or rarefaction waves) and discontinuous
solutions (or shock waves).
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In addition to being analytical solutions of the system, solutions of the Riemann
problem can also be used as building blocks for the construction of numerical methods
for (1.1). Examples of this are the Random Choice Method [1], [2], [4], and Godunov’s
method [5]. Unfortunately, for many hyperbolic systems no global solution of the
Riemann problem has yet been found. A general theory for local existence and
uniqueness of solution is described in [4], [8], or [11] under the condition of strict
hyperbolicity of the system. However, this condition will not be satisfied in the analysis
of (1.1) given below.

In the case of the single Buckley-Leverett equation (1.2) (i.e., when c is constant)
the solution of the Riemann problem is well known (cf. [3], [8] and 4 below for a
precise formulation of the entropy condition in this case). Assume for example that
SI<sR and let g(s)=(d/ds)fL(s), where fL is the lower convex envelope off with
respect to the interval Is/, sR]. The unique solution of the Riemann problem is then
given by

s L if x/t<g(sl),
(1.9) s(x, t)= s if x/t-- g(s),

s R if x/t> g(sR),
where we adopt the convention that if g(s)= tr on a maximal interval (s 1, s2), with
s <s2, then this corresponds to a discontinuity at x=crt with s(trt-, t)= s and
s(rt+, t)= s2. Similarly, if s R <sI the unique solution of the Riemann problem is
again given by (1.9), where in this case g(s)=(d/ds)ft(s) is the derivative of the
upper concave envelope ft off with respect to [s R, s I]. The solution of the Riemann
problem for (1.2) given above will be a fundamental part of the solution of the Riemann
problem for the system (1.1) constructed in this paper.

The main difference between the present paper and [6] is that the adsorption term
a(c) has been included in the model here. The effect of this term is that the linearly
degenerate characteristic field appearing in the analysis in [6] (and [7]) is replaced by
a nondegenerate field. The contact discontinuities in the Riemann solution-given in
[6] will therefore be replaced by either proper rarefaction waves or proper shock waves.
As a consequence, both the state space solution and the x, t-space solution of the
Riemann problem are unique. This is in contrast to [6], where the solution is unique
in x, t-space, but not in state space. Also, in [6] the Lax entropy inequalities were used
as the entropy condition for the system. In this paper we derive entropy conditions
from traveling wave analysis and we conclude that, in general, the Lax inequalities
are not the correct entropy condition for the system. In particular, we derive an
admissible shock wave where both characteristics on both sides of the shock enter the
shock. Such shock waves are referred to as overcompressive shocks by Schaetter and
Shearer [10]. However, this wave cannot be joined to any other wave in a Riemann
solution.

The construction of the solution of the Riemann problem for the model (1.1)
given below shows that if the solution is considered pointwise, it is discontinuous with
respect to the left and right states for certain critical values of the left and right states.
However, the solution is continuous in L norm (cf. Example 8.2). This property is
similar to properties of Riemann solutions of the nonstrictly hyperbolic systems studied
in, e.g., [6], [7], and [10].

The precise assumptions on the system (1.1) are stated in 2. The simple rarefaction
waves are derived in 3, while 4 is devoted to shock waves and entropy conditions.
In 5 we formulate the general Riemann problem in terms of rarefaction waves and
shock waves and state the main result of the paper. The proof is given in 6 and 7.
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In 8 we present some numerical experiments. One ofthe purposes ofthese experiments
is to show that the behavior of the exact solution of the Riemann problem is not easily
detected from calculations done by standard finite difference schemes.

2. A precise formulation of the model. We recall that our model for the polymer
process is the following 2 2 system of conservation laws:

(2.1)
st +f(s, c)x O,

(sc+a(c))t+(cf(s, c))x 0,

where the unknown functions are s s(x, t) and c c(x, t). Throughout the paper we
will assume that the real-valued functionf f(s, c) is a smooth function for (s, c) I x/,
where ! [0, 1], with the following properties (cf. Fig. 2.1):

(i) f(0, c)=0, f(1, c)= 1;
(ii) fs(s, c)>O for O<s<l, 0=<e-< l;
(iii) fc(S, c)<0 for 0<s<l, 0=<c=<l;
(iv) For each c I,f(., ) has a unique point of inflection, s s (c) (0, 1), such

that fs(s, c)>O for O<s<s and fs(s, c)<O for s <s<l.
The function a=a(c), which models the adsorption effects of the process, is

assumed to be a smooth function of I such that (cf. Fig. 2.2):
(i) a(0) 0;
(ii) h(c)=(da/dc)(c)>O for0<c<l;
(iii) (dh/dc)(c)=(d-a/dc2)(c)<O for 0<c<l.

f(. ,c 1) f(’, c 2)

FIG. 2.1. c < c2.

a{c}

FIG. 2.2
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Let u denote the state vector u (s, c). The system (2.1) may be reformulated in
the form

u,+A(u)ux=O,

where A(u) A(s, c) is the upper triangular 2 x 2 matrix

c) fc(S, c) -1(2.2) A(s, c)=
0

f(s, c)
s+h(c)

The eigenvalues of A are A =fs and A =f/(s + h), with corresponding eigenvec-
tors e (1, 0), e (fc, A A ) if 0 < s < 1 and eC (0, 1) if s 0, 1.

We observe (cf. Figs. 2.3, 2.4) that for each c I there is at most one sT= ST(C) I
such that

(2.3) AC(s , c)= AS(s , c).

Throughout the paper we will assume that there exists a unique cT e I such that
(2.3) has a unique solution sT(c) for O<=c<=cT and that (2.3) has no solution for
c T < c =< 1 (cf. Figs. 2.5, 2.6). We let T denote the transition curve

T= {(s, c)10_-< c_-< c s

and and the regions

={(s,c)IIIA>A}, -{(s,c)IIlAc>A}.

f(-,c)

Ts (c)

FIG. 2.3. s 7(c) exists.

-h(c)

FIG. 2.4. No sT(c).
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FIG. 2.5. C
T 1.

FIG. 2.6. cr < 1.

We observe that if (s, c) T and 0 < s < 1, then A s= A and the two eigenvectors
e and e become linearly dependent. Hence, in this case the matrix A given by (2.2)
is not diagonalizable.

3. Rarefaction waves. The purpose of this section is to determine the simple
rarefaction waves of the system (1.1). Hence, for two given states uL=(sL, cL) and
u R (s R, cR) we derive possible continuous solutions of the pure initial value problem
for (1.1) with initial data

u L if x < 0,
(3.1) U(X, O)

u if x>O.

Let A be an eigenvalue of the matrix A given by (2.2) with corresponding
eigenvector e. The simple rarefaction waves are continuous solutions of (1.1) and (3.1)
of the form

U(X, t) l)(X/ t),

where v corresponds to an integral curve of the vector field e. More precisely,

u L ifx/t<A(uL),
(3.2) u(x, t)= v if x/t= X(V),

/,/R if x > A (uR),

where v is an integral curve of the vector field e connecting the states u and u R with
the additional property that the eigenvalue A is increasing from u L to uR. Since the
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matrix A has two eigenvalues, A and A c, there are two possible rarefaction curves
through any given state u L.

s-rarefaction waves. If h h and e e= (1, 0) the integral curves of e are the
curves where c is constant. Hence, a simple rarefaction wave of the form (3.2) exists
if c/= cR and if h =f(s, c) is increasing from s to s R. This, of course, corresponds
to a simple rarefaction wave of the Buckley-Leverett equation (1.2) with f(s) =f(s, c).
Such rarefaction waves will be referred to as s-rarefaction waves.

c-rarefaction waves. Next we consider the case when h h c. First assume that
0 < s < 1. In this case fc < 0, the eigenvector e can be taken to be (fc, h-h), and
the rarefaction curves are determined by the differential equation

de
(3.3) fs A-A ",

where c=c(s). Hence, dc/ds>O in region 5f, dc/ds<O in and dc/ds--O on the
transition curve T. Furthermore, by differentiating (3.3) with respect to s we also obtain

d2c
f-s=-fs

when (s, c(s))E T. Hence, d2c/ds2<O on T. As a consequence, any rarefaction curve
can at most intersect the transition curve T in one point (cf. Fig. 3.1).

FIG. 3.1. Rarefaction curve.

Next consider g(s)=A(s, c(s)), where c(s) satisfies (3.3). A straightforward
differentiation shows that

(f +f(dc/ ds))(s + h) -f(1 + dh/ dc)(dc/ ds))
ds (s+h)2

or

dg(s)= (dh/dc)(c(s))(dc/ds)(s)
(s + h(c(s)))

f(s, c(s)).

Since (dh/dc)(c)< 0 the eigenvalue A(s, c(s)) is an increasing function of s in and
decreasing in . Hence, a simple rarefaction wave of the form (3.2) exists if and only
if there is an integral curve of (3.3) connecting u/ and uR with the additional property
that c is increasing all the way from u/ and uR (cf. Fig. 3.2). In particular this implies
that such a simple c-rarefaction wave never exists when u L and u R are located on
opposite sides of the transition curve T.
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FIG. 3.2. Rarefaction waves for 0 < s < 1.

Finally, consider the case when s 0 or s 1. Then fc 0 and the eigenvector e
can be taken to be (0, 1). Hence, the rarefaction curves are given by s 0 or s 1. If
s 1 the eigenvalue A is given by

Ac(1, c):
+h(c)’

which is a strictly increasing function of c. Therefore, if cL< cR this corresponds to a
simple rarefaction wave. Particularly, if c 7- < 1 (cf. 2), such a c-rarefaction curve can
connect states that are located on opposite sides of the transition curve T. If s 0 the
eigenvalue A =0. Hence, these "rarefaction curves" correspond to contact discon-
tinuities with speed zero. In order to solve the general Riemann-problem for arbitrary
states in I x I we will allow such discontinuities for arbitrary cL and cR in L We
remark however that these solutions are in some sense nonphysical, since states with
s 0 and c > 0 have no physical interpretation. We will refer to these discontinuities
as c-rarefaction waves if c < cR and as c-shock waves if c> cR (cf. 4)..

4. Shock waves and entropy conditions. The purpose of this section is to determine
the shock waves of the system (1.1); i.e., for given states u= (s, cL) and uR (s R, c)
we derive possible discontinuous weak solutions of the system (1.1) of the form

if x/t<cr,
(4.1) u(x, t)= uR if x/t> tr.

Here cr denotes the shock speed. In order to distinguish the physically meaningful
weak solutions of (1.1) we will also require that u satisfies an "entropy condition."
This condition will be derived by requiring the shock waves to be evolutionary; i.e.,
any shock wave must be a limit of traveling wave solutions of associated "viscosity
systems."

Any weak solution of (1.1) of the form (4.1) has to satisfy the Rankine-Hugoniot
condition given by

f(s R, c -f(s, c) cr(s s),
(4.2)

cf(s, c cLf(s, c) O-(SRCR + a(cR sc a(CL)).

Let us first observe that if C R--- C
L then the two equations of (4.2) are identical.

Hence, in this case (4.2) reduces to

(4.3) f(s, c) f(s, c) cr(s s),
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which is the Rankine-Hugoniot condition for the Buckley-Leverett equation (1.2) with
f(s) =f(s, ct). From the theory for this equation (cf. [11] and 1) shock waves of the
form (4.1), with ct=cn and with s t and sR satisfying (4.3), are said to satisfy an
entropy condition if and only if

(4.4) [f(s)-f(st)-r(s-st)] sign (sR-st)>=O
for any s between s and s. These shock waves will be referred to as s-shock waves
for the system (1.1). (We remark that the entropy condition (4.4) can be derived, in
the same way as below, by requiring the shock wave to be evolutionary.)

The entropy condition (4.4) implies that

(u)> >(u),
and from the definition of A it follows that either

(u),(u)
or

(u),a(u).
Hence, since exactly one characteristic enters the shock on both sides, the s-shock
waves satisfy the celebrated Lax entropy condition (cf. [8] and [11]).

In the rest of this section we shall determine the shock waves with c c. These
shock waves will be referred to as c-shock waves.

By applying the first equation of (4.2), the second equation of (4.2) can be written
in the form

(4.5) (c-c)f(s, c)=(c-ct)s+(a(c)-a(c)).
By introducing the quantity

-a(c)
(4.6) h(c) c c

if c c,

h(c) if c c,

(4.5) can again be written as

f(s, c)
s + h(c)

By applying this final equality in the first equation of (4.2) we also obtain that

(s + h(ce))= (s+ h(ce)) +f(s, ce)-f(s, c)=f(s, ce).
Hence, when c ce the Rankine-Hugoniot condition (4.2) can be written in the form

f(s, c f(s c
(4.7)

s + h(c) s+ h(c) -"

If s= se 0 this condition is satisfied with 0. As we have already seen in 3 this
corresponds to a contact discontinuity with speed zero. In the rest of the discussion
we shall therefore assume that > 0.

We observe that the value h(c) is determined from values of c and ce and
that, if s, c and ce are given, there are at most two values of se that satisfy the
Rankine-Hugoniot condition (4.7) (cf. Fig. 4.1).

In order to distinguish the physically meaningful weak solutions of (1.1) we shall
require that a shock wave be evolutionary. Hence, for any e > 0 we consider the
peurbed system

s, +f(s, c) Sx,
(4.8)

(sc+ a(c)), +(cf(s, c)) (c+ a(c))x.
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/
-hL(cl

L}

s s

FIG. 4.1. cL> cR.

The entropy condition consists of requiring the shock wave to be a pointwise limit
of traveling wave solutions of (4.8). In the same way as was done in, e.g., [7] or [11,
Chap. 24], we obtain that two states u t= (sL, cL) and uR= (s R, cR), which satisfy the
Rankine-Hugoniot condition (4.7) with shock speed r, correspond to an evolutionary
shock wave if and only if the 2 x 2 system

(4.9)
d=f(s, c)-(rs-(f(s, ct)-(rs),

d
---:(sc+ a(c))= cf(s, c)-o(sc+ a(c))-(ctf(s, C)--O’(sLcL+ a(ct)))

has a solution (s(:), c(:)) with (s(-c), c(-o))= u t and (s(+c), c(+))= u R. By
applying (4.7) and by performing the differentiation in the second equation of (4.9)
we rewrite the system in the form

(4.10)
-f(s, c)-o’(s+ h(cR)),

dc
(s + h(c)) W-: o’(c- ct)(hL(c) hL(c)),

a
where h(c) is defined by (4.6).

We observe that the Rankine-Hugoniot condition (4.7) implies that u= (s, c)
and u R (s R, cR) are equilibrium points of (4.10). Since r > 0 the second equation of
(4.10) implies, in particular, that dc/d < 0 for any value of c strictly between c and
cR. Therefore c> cR. For the rest of this discussion we therefore assume that ct> cR.

Let us first assume that u R is a state such that

x(u")<.
such that the Rankine-Then there are at most two possible values of s t, s t_ and s/

Hugoniot condition (4.7) holds where

AS(S L,_ C L) --> r and A(s+, cL) < cr

(cf. Fig. 4.2).
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FIG. 4.2

Similarly, for any c [c R, c L) let s_(c) and s+(c) be the two values determined by

f(s_(c), c) f(s+(c), c)
s_(c)+hL(cR) s+(c)+ h(cI)

and

c)> a’(s+(c), c).

Then ds/d: < 0 for 0 _-< s < s_(c) and s+(c) < s <_- 1, while ds/d: > 0 for s_(c) < s < s+(c)
(cf. Fig. 4.3).

It is now easy to see that any trajectory that passes through a point (s_(c), c), for
some c e (cn, c) has the properties

(s(-oo), c(-oo))= (s_, c) and (s(+oo), c(+oo))= (s R, cn).

Furthermore, any trajectory through (s+(c), c), for some c e (c R, c), is such that

(s(-oo), c(-oo))= (+oo, c L) and (s(+oo), c(+oo))= (s n, cn).

cR

S_ S+

-<0 ds <0
ds

s_ (c. .s.(c,
s

FIG. 4.3

dc <0
d
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Hence, by continuity, there must be at least one trajectory that separates the two classes
and such a trajectory passes from (s+, cL) to u R. Therefore we have seen that there

L c) to uR when h S(uR) < tr.exist trajectories from both the points (s_, c) and (s/,
Next consider the case when uR satisfies

x(un)>

(i.e., sR-- S_(cR)). By an argument similar to the one above we obtain the existence
of a trajectory from (s_, c) to u R. However, if u= (s+, c/) (i.e., A S(u) < or) there
exists no trajectory from u to u g.

As a conclusion we obtain that two states u= (s, cL) and uR= (s R, cR), with
cI cR, correspond to a c-shock wave of speed cr if they satisfy the Rankine-Hugoniot
condition (4.7) and if they satisfy the entropy conditions

(4.11) cL>cR

and

(4.12) h(ue)<tr or hS(ut),h(ue)=>r.

Since the function h(c) is strictly decreasing, condition (4.7) implies that (4.11) is
equivalent to the eigenvalue/shock speed relation

Therefore, if

,x (u’), ,X(u ’) > o-> , (u’), , (u’),
we allow a shock wave where both characteristics on both sides of the shock enter the
shock. This shock, which corresponds to s= s_ and sR= S/(cR), is therefore a shock
wave which does not satisfy the Lax entropy condition. We recall, that in the terminology
of [10], this is an example of an overcompressive shock. In 7 below we will discover
that this shock cannot be joined by any other wave in a Riemann solution.

5. The Riemann problem. The purpose of the rest of this paper is to construct a
unique global solution of the Riemann problem for the system (1.1); i.e., for arbitrary
states u I, uR I X I we derive a solution of the pure initial value problem for (1.1)
with initial condition

f 0,
(5.1) u(x, O)=

uR if x>0,

which consists of a composition of a finite number of simple rarefaction waves and
shock waves as described above.

If a left state u can be connected to a right state u2 by a simple rarefaction wave
then the initial speed of the wave is A (u 1) and the final speed of the wave is A (u2),
where A is the eigenvalue corresponding to the wave. The initial speed and the final
speed of a simple shock wave is defined to be the shock speed

By a c-wave we mean a simple c-rarefaction wave or a c-shock wave, while an
s-wave is any composition of simple s-rarefaction waves and s-shock waves that
corresponds to a solution of the Buckley-Leverett equation (1.2) with f(s) f(s, c) for
some c L We recall that for any left state /,/1 (S 1, C) and right state u2= (s:, c), where
c I, there is a unique s-wave that connects the two states (cf. the discussion in 1).
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Following [6] we will adopt the notation that U "- U
2 means that the left state u

can be connected to the right state u- by a c-wave and we refer to this Riemann solution
as u u2. The notation u - u2 has the analogous meaning for s-waves.

Consider two waves u -% u2 and u2 u 3. Let v denote the final wave speed of
the a-wave and v the initial wave speed of the b-wave. The two waves are said to be
compatible if they can be composed to solve the Riemann problem with left state u
and right state u 3. Hence the two waves are compatible if and only if

(5.2)

where we require a strict inequality if both v and v are shock speeds. Any solution
of the Riemann problem will consist of a sequence of compatible s-waves and c-waves
that connects the given left state u c with the given right state u.

The main purpose of this paper is to give a constructive proof of the following
existence/uniqueness theorem.

THEOREM 5.1. For arbitrary states u L, UR E I x I there exists a uniquefinite sequence
ofcompatible s-waves and c-waves that generates a solution of the Riemann problem with

left state u and right state u R.
The rest of this paper is devoted to the proof of Theorem 5.1. The following lemma

will guarantee that the solution of the Riemann problem is monotone with respect to
c; i.e., the solution u (s, c)of the Riemann problem has the property that the function
c(x, t) is a monotone function of x for any >-0.

LEMMA 5.1. Assume that the three waves

L c
U
2 C2 R

U

are compatible. Then both the c-waves are rarefaction waves.
Proof. Since the three waves are all compatible we obtain from (5.2) that

(5.3)

where v and v} denote the initial and final speed of the s-wave, respectively, v) is
2the final speed of the cl-wave and vi is the initial speed of the c-wave.

Let u= (s, c) and u= (s2, c) for a suitable c E I and define

f(s 1, c)-f(s, c)
Ol

sl s2

From the structure of the s-waves (cf. 1) it follows that

/3s< <O /,)f.

Therefore, (5.3) implies that

(5.4) v <= a <= vi.

From 3 and 4 we recall that v) and v are of the form

v f(s’’ c) f(s2, c)
s+h

and v= s=+h---,
where h, h2 > 0.

By applying this in (5.4) the inequality can be rewritten in the form

(5.5) h2<f(s’, c)
----S -<h
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However, from (5.5) we immediately obtain the desired result. Assume for example
that the el-wave is a shock wave and that the c2-wave is a rarefaction wave. If s= 0
(i.e., the el-wave is a contact discontinuity), h2 h(c) > 0 while (5.5) implies that h _-< 0.
We can therefore assume that s> 0. In this case

a(c)-a(cL)
h= hL(C)= L and h= h(c),

which implies that h < h since c < eL and h is strictly decreasing. But this contradicts
(5.5). Similar arguments also show that the compositions where the el-wave is a
rarefaction wave and the c2-wave is a shock wave or where both c-waves are shock-
waves are incompatible. Hence, the only possibility is that both the c-waves are
rarefaction waves. In this case h h h(c).

Let uL= (s L, eL) and uR= (s R, cR) denote the left and right state, respectively, of
the Riemann problem. The lemma above immediately implies that if eL< cR, any
solution of the Riemann problem will be composed of s-waves and c-rarefaction waves
and, if cL> CR, any solution will be composed of s-waves and a single c-shock wave.
Furthermore, if eL= cR, any solution will consist of a single s-wave. Hence from the
theory of the Buckley-Leverett equation (1.2) (cf. 1) there is a unique solution of
the Riemann problem for the system (1.1) when eL= cR. It is therefore enough to prove
Theorem 5.1 when eL c R.

In 6 below we treat the case where cL< C
R while the case cL> C

g
is covered

in7.

6. The case cL< cR. Throughout this section we shall consider the Riemann
problem for (1.1) with cL< C R. In this case the purpose is to prove Theorem 5.1.

For any state u=(s, c) T define the critical value s/= sl(u) to be the
unique value of sK such that (s/, c)6 T with the property (cf. Fig. 6.1)

(6.1) Ae(sl, c)= AC(u).

Similarly, if u=(s, c) let s =st(u) be the unique sr such that either
(s/, c) and that (6.1) holds or, if no such s/ exists, s r =.

As we have already observed above, any solution of the Riemann problem is
composed of s-waves and c-rarefaction waves. We first determine the compatible pairs
of waves.

LEMMA 6.1. Assume that eL< C R.
(i) The two waves

are compatible if and only if uM
(ii) The two waves

uL M R
"" U

6 U T and

lL M R-- U "-- tl

are compatible if and only if uM (_J T and s:(ut)<=sL<- 1.

Proof Consider part (i) above. The two waves are compatible if and only if

C(u’) <= v,
where v is the initial speed of the s-wave. Since v _<-AS(u) we therefore derive that
u t_J T. Furthermore, from the structure of the s-waves it follows that v => A C(u)
if and only if O=< sR =< s (u4).
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-h(c) s
I(

s

FIG. 6.1

f(. ,c)

Part (ii) follows by similar arguments. VI
The above lemma implies that the three waves

(6.2) u L
el
)U U2 2

U
R

are compatible if and only if u and u2 with SK(U)= S
2 (and sK(u2) --sl).

Hence, any solution of the Riemann problem will be composed of at most two
c-rarefaction waves.

We are now in a position to construct the solution of the Riemann problem for
arbitrary states u L and U

R in I x L First we consider the case when u L U T.
LEMMA 6.2. Assume that ca < ca and u t U T. Then there exists a unique solution

of the Riemann problem consisting of at most four states separated by s-waves and
c-rarefaction waves.

Proof. If u R U T the solution has the form

U
Ls R

where u (s 1, c L) is determined by the c-rarefaction curve which connects u R to
the line c ct (cf. Fig. 6.2). (Here and below it might, of course, occur that the s-wave
is empty.)

This composition is compatible by part (ii) of Lemma 6.1.
Alternatively, consider the case when U

n ,. If sT(ca) does not exist (cf. 2),
then a compatible composition is given by

uL L cR uR"--> (1, c ---- (1, )---

Otherwise, the composition

uL._.uT R

where uT--(sT(cR), CR) and uL- U
T denotes the solution with left state u t and right

state u r, is compatible (cf. Fig. 6.3).
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/

C
u

s

FIG. 6.2

R
U

FIG. 6.3

Hence, the existence result of the lemma is established. Verification of the fact
that all solutions are unique is straightforward from Lemma 6.1. V1

When u/ the situation is a little more complicated.
LEMMA 6.3. Assume that cL< cR and uL . Then there exists a unique solution

of the Riemann problem consisting of at most five states separated by s-waves and
c-rarefaction waves.

Proof Let FR t_J T denote the c-rarefaction curve through u/ and let u*=
(s*, c*) T be the state where FR intersects T. (If no such u* exists, let u* =(s*, 1)
be the state where FR intersects the line c 1.) Furthermore, let F/ c Yt U T be the
associated critical curve defined by (cf. Fig. 6.4)

r: ={(s/, c) eU TIs: =sl(s, c) for (s, c) e FR}.

From (3.3), defining the c-rarefaction curves, and the definition of s/ (u) it follows
that, when s

(6.3)
asK

=/c+g,

where g g(c) A C(sI<, c)(dh/dc)(c)((sI s)/(s + h(c)), (s, c) e FR and the functions
A c, A and fc are all evaluated at (s/, c). Since dh/dc<O, it follows that g(c) <0 for
any c e [c/, c*). By comparing (6.3) with (3.3) we therefore obtain that any c-rarefaction
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T

u

FIG. 6.4. FR and FK.

curve in 9 can, at most, intersect the critical curve FK once, and that ds i / dc < ds/dc,
where s(c) is a c-rarefaction curve (cf. Fig. 6.5).

After this introductory discussion we now construct the solution of the Riemann
problem. Assume first that uR R, where R is the closed region in I I bounded
by the curves c cL, C C* and F:. In this case Lemma 6.1 implies that the composition

Ig
L R

""- lg "-’ U

where ul=(s 1, cR)Fn is compatible (cf. Fig. 6.6)

FIG. 6.5.

"r

s

c-rarefaction curve; FK

c

FiG. 6.6
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Next assume that uR E R2, where R2 consists of all states in U T that are not
in R1. Let u2E be the state where the c-rarefaction curve through uR intersects the
curve FK U { c c L}.

If C2= C L, Lemma 6.1 implies that the composition

IlL 2 R

is compatible. If c2> cL the composition

Il
L c //2 C2 R

where u1= (s, c2)e FR, corresponds exactly to a compatible composition of the form
(6.2). Hence we have constructed a solution for all uRe R2 (cf. Fig. 6.7).

Finally, consider the case where

u e e R3 {u (s, c) e l c > c*).

If sT(cR) exists the composition

IlL
__

u T s Il R,
where u T--(sT(cR), CR) and IlL U

T denotes the solution with left state u L and right
state u T is compatible (cf. Fig. 6.8)

Otherwise, if s T(cR) does not exist, a compatible composition is given by

RIIL--:* (1, cT)---> (1, cR)----:* II

T

u 2

FIG. 6.7

T

R T
U
C

u2

s

u

FIG. 6.8
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where cT is the unique value such that (1, cT) T (cf. 2) and uL-- (1, c r) is a
solution of a Riemann problem. Hence, the desired existence result is established.
Again uniqueness can be verified by applying Lemma 6.1. [3

Lemmas 6.2 and 6.3 complete the proof of Theorem 5.1 in the case when
C
L

CR.
7. The case eL> cR. In this section we will complete the proof of Theorem 5.1

by constructing a unique solution of the Riemann problem when c/> cR. Throughout
this section we shall therefore assume that the values of cL and cR arefixed with cL> cR.

For any state u (s, c) I x ! we define the "associated shock speed" or(u) by

f(s, c)
,(u) s+h(cR)"

Hence, the Rankine-Hugoniot condition (4.7) can be written in the form

(7.1) o’(u) o’(uR).
Similar to the definition given in 6, for any state u (s, c) I /, with A S(u) -<

or(u), the critical value s/c= s/c (u) is defined to be the unique value of s/c such that
AS(s/c, c)> o-(u) and such that (cf. Fig. 7.1)

(7.) (s’, c)= (u).
If A S(u)> or(u), then s/C(u) is either defined to be the unique value s n such that

AS(s/c, c)< or(u) and such that (7.2) holds or, if no such s/c exists, s/c =oo.

-h {c R

f(. ,c)

FIG. 7.1

As we have already observed in 5, any solution of the Riemann problem will
be composed of s-waves and one c-shock wave. We first characterize the compatible
pairs of waves in the present case.

LEMMA 7.1. Assume that c> CRo
(i) The two waves

U
Lc M R
-" U -- U

are compatible if and only if AS(uM)>--_tr(u M) and O<=sg < sn(u4).
(ii) The two waves

uL M R---> U ---> U

are compatible if and only if A (u) <= tr(u1 and s/c (u) < sR <= 1.
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Proof. Consider part (i) above. The two waves are compatible if and only if

(7.3) o’<= v,
where o- is the speed of the c-shock wave, v is the initial speed of the s-wave and
where strict inequality is required if the s-wave starts with a shock wave. But since
tr=tr(u) and vs_-<h(u4) it follows that h(u)->_tr(u4). Furthermore, from the
structure of the s-waves it follows that (7.3) holds if and only if 0 -< s R < s (u4). Part
(ii) follows by similar arguments.

As a consequence of the lemma above (and Lemma 5.1) we derive in particular
that the admissible overcompressive shock discussed in 4, where

;t (u), ;t (u) > ,> ;t (u), ;(u)
can never be joined by any other wave in a Riemann solution.

By applying the result of Lemma 7.1 we can now proceed to construct the
solution of the Riemann problem.

LEMMA 7.2. Assume that cL> CR. Then there exists a unique solution ofthe Riemann
problem consisting of at most four states separated by s-waves and c-shock waves.

Proof. Consider first the case when A(u/) -> tr(u). Let u (s 1, cR) be the unique
state such that (cf. Fig. 7.2)

,AS(u 1) > O’(U 1) O’(uL).

Hence, from the Rankine-Hugoniot condition (7.1) and from the entropy condi-
tions (4.10) and (4.11), the pair (u, u 1) corresponds to a c-shock wave with left state
u , right state u and shock speed o-= r(u). Furthermore, by part (i) of Lemma 7.1
the composition

//L R--- // ---- //

is compatible if O<-sg < sK(ul). Alternatively, if sR> S/(U 1) the composition

//L //2 R
"’ U

is compatible, where u2= (s2, cL) is the state such that

,AS(u 2) O’(U 2) O’(uR).

-h c
R

s s

f I., cR fl-.cL

R usl

FIG. 7.2
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Finally, if SR-- S
K (ul), the pair (u t, U R) corresponds to an admissible overcom-

pressive c-shock (cf. 4), where tr=O’(Ut)=tr(ug). Hence, we have constructed the
solution of the Riemann problem in all cases when A S(u L) _-> r(u t) (cf. Fig. 7.3).

Consider next the case when As(uL)< r(u) and let u* =(s*, c) be the unique
state such that

(u*) ,x (u*).

Furthermore, let u (s 1, cR) be determined by

x(u ’) > ,(u’)= (u*)
and let s= stC(u 1) (cf. Fig. 7.4).

If s e -> s a solution of the Riemann problem is given by the composition

/,/L /,/2 R
-"> ">U

where U2--(S2, CL) is the unique state such that tS(u2)O’(U2) and such that the pair
(u 2, u n) corresponds to a c-shock wave (cf. Fig. 7.5).

If s n < sK a solution is given by the composition

/,/L R
"-- t/*--- /,/ --t/

which is compatible by Lemma 7.1 (cf. Fig. 7.6).

CR

2
U U

1 =- -\. -,
R R

U U U

FIG. 7.3

f(..cR

///’
-ht(cR s s

c

sK

FIG. 7.4
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R + / ----&-- --e
uR uR

s sK

FIG. 7.5

L

R

L

R

FIG. 7.6

K
$

$

Hence the desired existence result is established, and uniqueness can easily be
verified by applying Lemma 7.1. [3

As a consequence of the three Lemmas 6.2, 6.3, and 7.2 the proof of Theorem 5.1
is now completed. We observe that the existence proof is constructive; i.e., we have
constructed an algorithm for the solution of the global Riemann problem for the system
(1.1).

$. Numerical experiments. Based on the constructive proof of Theorem 5.1 a
computer program is developed that solves the global Riemann problem for the model
(1.1). In order to solve nonlinear equations obtained from the Rankine-Hugoniot
condition (4.7) and the ordinary differential equations involved in the determination
of the rarefaction waves, standard numerical methods are used.

The purpose of the numerical experiments presented below is to illustrate some
typical behavior in the exact solution of the Riemann problem and to show that
sometimes this behavior is not easily detected by means of finite difference schemes.
In the examples presented below we have used the algebraic expressions

S
2

(8.1) f(s, c)= 2s +(0.5+ 100c)(1-s)2

and

(8.2) a(c)
0.2c

1 + 100c
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The function f is graphed in Fig. 8.1 for different values of c uniformly distributed
between 0.00 and 0.01.

Example 8.1. In this example we calculate the solution of the Riemann problem
with uL= (s L, c) (1.0, 0.01) and u R (s R, cR) (0.0, 0.0). This models a situation
where the porous medium is initially 100 percent saturated with oil. Then water
containing polymer is injected in order to displace the oil.

The structure of the solution of the Riemann problem in this case is illustrated
by Fig. 7.6. The exact solution is shown on Fig. 8.2.

We observe that a bank of polymer-free water separates the polymer from the
region with 100 percent oil. We remark that this bank forms as a consequence of the
adsorption term a (c) in the system (1.1).

One of the purposes of polymer injection is to increase the viscosity of the aqueous
phase in order to reduce viscous fingering. The bank of pure water observed above
might therefore decrease the desired efficiency of the displacement process.

Example 8.2. Throughout this example we consider the Riemann problem with
uL=(s, c/) (0.9, 0.007) and cR--0.003 fixed and where S

R is close to the critical
value s K. These cases are illustrated in Fig. 7.5 (sR>= SK) and Fig. 7.6 (sR< SK).
Examples of the s-component of the solution is shown in Fig. 8.3 and Fig. 8.4 below.
Since the values s* and s are independent of s R for sR< S :, this shows that, if the
solution of the Riemann problem is considered pointwise, it is discontinuous with
respect to s R close to s n. However, since the width of the constant solution s is

=0.01

FIG. 8.1

FIG. 8.2. s; c X 100.
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S

s R =0.80

FIG. 8.3. sR < K.
s R =0.82

" x/t

. x/t

FIG. 8.4. s R 0.84 > sK.

vanishing as sR tends to sK from below, the solution is continuous with respect to S
R

in L norm.
Example 8.3. Consider next the Riemann problem with u/= (s t, c L) (0.45, 0.0)

and IIR--(S R, cR)--(0.20, 0.01). This corresponds to the case illustrated in Fig. 6.8
where the maximum number of intermediate states is present in the Riemann solution.
The exact solution is shown in Fig. 8.5.

In order to test the efficiency of a standard difference method we have calculated
the solution of this Riemann problem with the standard order upwind scheme using
a uniform grid. We have used At/Ax 12/25 which satisfies the CFL stability condition.

x/t

FIG. 8.5. s; c X 100.
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An approximation of the solution at 1 is calculated with At =0.04 and the
approximate saturation is compared with the exact saturation in Fig. 8.6.

As we observe the numerical method seems to neglect certain effects reflected in
the exact solution. In order to investigate these phenomena further, similar numerical
solutions, with decreasing time steps, have been calculated. In Fig. 8.7 we have plotted
the different numerical paths in (s, c)-space together with the exact path. We have
used At =0.04, 0.016, 0.008, 0.004, 0.0016.

The results seem indeed to indicate that the solutions obtained by the upwind
scheme converge to the exact solution. However, it might be difficult to give an accurate
physical interpretation of the process from the numerical results.

A comparison between the numerical solution of s with At 0.0016 and the exact
solution (cf. Fig. 8.4) is shown in Fig. 8.8.

FIG. 8.6.

=x/t

exact solution of s" numerical solution of s. At 0.04.

T

At =0.0016

tl

FIG. 8.7. numerical paths" exact path; 7
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FIG. 8.8. exact solution of s; numerical solution of s. At =0.0016.
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DISCONTINUOUS SOLUTIONS OF THE LINEARIZED, STEADY STATE,
COMPRESSIBLE, VISCOUS, NAVIER-STOKES EQUATIONS*

R. BRUCE KELLOGG?

Abstract. The compressible steady state viscous Navier-Stokes equations in two space dimensions are
considered. The equations are linearized around a given ambient flow field. It is shown that the linearized
equations are not, in general, elliptic. Jump conditions across a possible curve of discontinuities of a solution
of the linearized system are derived. In a particular case, a discontinuous solution of the linearized system
is constructed.

Key words, compressible flow, Navier-Stokes equations, discontinuous solutions
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1. Introduction. A complete mathematical understanding of the equations of fluid
dynamics has not yet been achieved. Some insight concerning these equations may be
obtained from the linearized equations. In this paper we consider the system of
equations obtained by linearizing the two-dimensional, compressible steady state
viscous Navier-Stokes equations around a smooth, nonzero ambient flow field. This
linearized system is not, in general, elliptic in the sense of Agmon, Douglis, and
Nirenberg (ADN). (In the case of incompressible flow, the linearized equations are
ADN elliptic.) It is therefore possible that the linearized equation have solutions with
interior discontinuities. The main goal ofthe paper is to exhibit a discontinuous solution
of these equations in the particular case when the ambient flow field is a constant
nonzero flow. The discontinuous solution is constructed with the help of the Fourier
transform. In addition, we derive jump conditions that a weak solution of the equations
must satisfy if the weak solution has a curve F of discontinuities. The jump conditions
permit a jump in the normal stress across F which is compensated by a jump in the
pressure across F. Also, the jump conditions require that the temperature and its first
derivatives be continuous across F. Finally, we consider the uniqueness of the discon-
tinuous solution. The existence of discontinuous solutions may raise the issue of
whether some further physical principle is required to specify the solution, analogous
to the entropy condition in the nonlinear inviscid case. We investigate this in the
particular case when the ambient flow field is constant. We show that an appropriate
set of boundary conditions determines the solution uniquely. The boundary conditions,
which are also used in [3], require the specification of velocity and temperature on
the boundary of the region, and the specification of pressure on that part of the
boundary for which the ambient flow enters the region.

The interior discontinuity in the solution that we construct arises from a jump in
the specified pressure on the boundary ofthe region. Thejump in the boundary pressure
propagates to a jump in the pressure across the streamline of the ambient flow field
that emanates from the boundary discontinuity. The strength of the discontinuity
increases with smaller viscosity, but decays as one moves along the streamline away
from the boundary. The rate of decay of the strength of the discontinuity is given by
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the dimensionless quantity xpo/la, Uo(ap/gP), where x is the distance along the ambient
streamline,/x is the coefficient of viscosity, p0 and Uo are the (constant) density and
velocity of the ambient flow, and the derivative of density with respect to pressure is
evaluated at constant temperature. In the incompressible case, Op/,gP 0, and the rate
of decay of the strength of the discontinuity is infinite.

Our work is related to a recent paper of Geymonat and Leyland [3], in which the
time-dependent linearized compressible Navier-Stokes equations are discussed. The
paper [3] provides an appropriate set of boundary conditions for the problem, gives
the existence of a solution in a functional analytic setting, and has suggested some of
the arguments used here. Our results may also be contrasted with those in a forthcoming
paper of Hott and Liu [4]. Reference [4] treats the full nonlinear time-dependent
equations in one space variable. It is shown that if there is a discontinuity in the initial
conditions, the discontinuity persists for all time, but the strength of the discontinuity
decays exponentially with time. In the result of [4], the boundary conditions are
continuous. Thus, these results are not inconsistent with our finding that, in the linear
case, a discontinuity in the boundary conditions produces a discontinuity in the solution
of the steady state problem.

In 2 we derive the linearized equations, discuss the lack of ellipticity of the
system, and derive the jump conditions across a putative curve of discontinuity. In 3
we consider the case of uniform ambient flow. Using an energy argument, we derive
an existence and uniqueness theorem for an appropriate boundary value problem
associated with the linearized equations. Finally, we give the construction of a dis-
continuous solution. In 4 we give some conclusions.

2. The linearized equations. We first write the two-dimensional compressible
Navier-Stokes equations. We take the primary unknowns to be the velocity vector
(U(x, y), V(x, y)), the pressure P(x, y) and the temperature lg(x, y), and we let

p (P, 19) density,

e (P, 19) internal energy,

Q 1/2( U:z + V), e pe + pQ,

o- au+ ,x u + Vy),

0"12 0"21 ]d, Uy V ),

o-_ 2 Vy + , u + v).
The viscosity coefficients h,/z, and the thermal conductivity, K, are assumed to be
constant, and the Latin subscripts denote partial derivatives. With this notation, the
compressible flow equations may be written, in divergence form, as

-O’,l,-(rl,y+(pU),+(pUV)y+ P, O,

--O’12,x 0"22,y 3v pUV)x 3f- pV2)y + ny --0,

(pU)x+(pV)y=O,
-,,Ao u(,,) v(,) (u(,_) (v(),
/( Ue + UP)x + Ve + VP)y O.

In the usual manner, after substituting the continuity equation into the momentum
equations, and the momentum equations into the energy equation, we obtain
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(2.1a) -Oll,x-O’z,y+pUUx+pVUy+Px--O

(2.1b) -o’12,x-O’_z,y+pUVx+pWy+Py--O
(2.1c) (pU),,+(pV)y=O,
(2.1d) -KAO-UxO’ll-(VxAvUy)o’12- Vyo’22Avfl(UExAV Vey)+PUx+PVy=O.

We take the system (2.1) as our starting point. Suppose U(x, y), V(x, y), P(x, y),
O(x, y) are a solution to (2.1). We shall study the linearized system, linearizing around
the "ambient" flow field U, V, P, O. Denote the linearized variables by u, v, p, 0, let
q =[u, v, p, 0] r be the vector of unknowns, and set/91 =Op(P, (R))lOP, p2=Op(P,
with similar notation for e and e. The linearized equations are

(2.2a) Lq=--(2p,+h)U,,x-tZUyy-(tz +h)V,,y+pUu,,+pVuy+p,,+A=O,
(2.2b) Lq=--tzv,,,,-(2tz+h)Vyy-(tz+h)U,y+pUv,,+pVvy+py+B=O,
(2.2c) L3q =- pux + pVy + pl( Up,, + Vpy) + p2( UOx + VOy) + C O,

(2.2d) L4q=--AO-o,,u,,-oh(v,,+Uy)-O’=Vy
-Ux[Zu,+h(Ux+Vy)]-(Uy+ Vx)(Uy+Vx)
Vy[2lzvy + h (ux + vy)]

+pel(Upx+ Vpy)+pe2(UO+ VOy)+P(ux+Vy)+D=O.
In these equations, A, B, C, and D contain only undifferentiated terms in the linearized
variables. Each term in A, B, C, or D contains derivatives of the ambient variables.
Thus, in the particular case that the ambient field has uniform flow, these lowest order
terms vanish. This fact will be used in the following section.

We first consider the ellipticity of the system (2.2).
LEMMA 1. The system defined by the operators Lj in (2.2) is not, in general, elliptic

in the sense ofADN.
Proof. We use the Volevich criterion, as described in 1 ]. For this, we replace the

derivatives in (2.2) by symbolic multipliers, : and /and their powers, and we consider
the determinant

G
-(/x + a )sO:r/+/31 -/z2 (2/x t-/ )’0 -t-/12

p+ r on + p, t+ vn + ,o r’

The a, fl, y, 6 are polynomials in s and r/, which may be determined from (2.2), but
whose exact form is not important for the proof. The maximum degree in each of these

is a linear polynomial in and r/, apolynomials is given by the superscript; thus, a

is independent of and r/, etc. When the determinant G is written out as a sum of
terms, each term is a polynomial in s and r/. The degree of each term is _-<7, since
each term in row 3 has degree =<1. If pl # 0, the product of the diagonal entries has
degree 7. Hence the leading terms in G cannot be nonzero for not-zero (,-r/), so the
Volevich criterion is not satisfied and the system is not elliptic.

We remark that if the expansion of G is examined further, the terms of order 7
are found to be

-plK/Z(2/z + h)(:2+ r/2)3(Us+ Vr/).

Thus, the streamline of the ambient flow field seems to play the role of a characteristic
direction for this system. On the other hand, if pl 0, we must examine terms of order
6 to determine the ellipticity of the system.
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Since the system (2.2) is not elliptic, it is of interest to ask whether a solution of
this system can be discontinuous. For this, we must define the notion of a weak solution
of (2.2). Let 1 c R2 be an open set. We say that q [u, v, p, 0] is a weak solution of
(2.2) in if u, v, p, and 0 are integrable, and if for any b C(O), we have

I Ig {U[--(2lA, -"/ )xx- [.lb)yy-(pU))x- pW)y] ([. -[-/ )Vkxy-Pfx

(2.3a) + Ab} dx dy O,

f la {v[-tXxx-(2/z + h )(yy-(pUJ)x-(pVdp)y]-(tJ, + h )UdPxy-pdpy

(2.3b) + B4} dx dy O,

f lf
(2.3c) +c4,} dx dy O,

+ 21a.( U,,qb)x + h( Uxcb),, + lz(( Uy + Vx)qb)y + A( Vy4)x-(Pcb)x]

(2.3d) + v[(,4) + (=4) + x G4) + g(( G + v)4)
q- 2/./ Vy 4) y "{- 1 Vy 4) y

-p[( pel Udp )x + pe, Vdp )y] + D} dx dy O.

Suppose we are given a smooth curve F =(x(s), y(s)) in which divides f into 2
pieces, l)l and fl2. Suppose that the parameter s is arc length, so that _n(s)= [)(s),
-(s)] r is the unit normal vector along F. Suppose _n(s) points into the region
so _n(s) is an outward pointing normal from the region ll. Let q=[u; v, p, 0] be a
weak solution of (2.2) such that the functions u, v, p, 0 are smooth in each of the
regions l, 2 but u, v, p, 0 and their derivatives may have jumps across F. Let
Ul, /’/2, /’/xl, lgx2, etc. denote the one-sided limits of u, u,,, etc., on F, and let 6u u2-
3u,= u,,2-u,l denote the jumps in these quantities. Also, let u,= u,,+.fUy, u,,=
pu,-Uy, denote the normal and tangential derivatives of u on F, with a similar
meaning for v,, v,, etc. With these assumptions and notation, we can state the jump
conditions for our solution on F. The proof is a standard integration by parts argument,
as is found, for example, in [2, V.l.3].

THEOREM 1. Let the domain f be separated into subdomains 1, -2, by a smooth
curve F. Let q [u, v, p, O] be a weak solution of (2.1). Suppose q is smooth in each
subdomain li, with smooth one-sided limits on F. Suppose q is discontinuous on F. Then
F is a steamline of the ambient flow field, and q satisfies on F the jump conditions

(2.4a) au 8v au, v, 0,

(2.4b)

(2.4c)

(2.4d)

ao ao ao 0,

[ + (, + a)p=]au. (, + a)av. pap,

Proof Pick b to have support in l)l. Then since u, v and p are smooth in 121,
(2.3a) may be integrated by parts twice to obtain ckLlqdxdy=O. Since this holds
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for all such b, Llq--O in . A similar argument applies to -2, and to the other
equations of (2.2). Next, pick b to have support including a portion of F. Writing the
integral in (2.3a) as the sum of integrals over f and f2, and integrating each of these
by parts, we obtain

(2.5a)
r
{-(2/x + A )3[ dx3u d6u,,] + I.:[ (y(U l)(Uy]

+ ( + , )[:4,v +p4vr] p4u( Up v:) p4p} as o.

We use the relations

(2.6) b b, + pb,, by :9b,-,
in (2.5a). Since , may be chosen independent of and , on F, and since (2.5a)
must hold for all test functions , we may set the coefficient of , equal to zero. This
gives, after some algebra,

(2.7a) [(2 + )+]6u ( + )6v O.

Writing the integral in (2.3b) as a sum of integrals over and , and integrating
each of these by pas, we obtain

(2.5b)
+ ( +)[u+u] pv(u v) +p} as o.

Using (2.6) in (2.5b) we derive, in a manner similar to the derivation of (2.7a),

(2.7b) -(+ A)6u +[p+ (2 + A)]6v O.

The system (2.7a), (2.7b) forms a system of two homogeneous linear equations in the
two unknowns 6u, 6v. The determinant of this system is (2 + A) 0. Hence 3u 6v
0 on F. From this it follows that 6u, 6vt 0, so (2.4a) has been verified. Using (2.4a)
in (2.5a), we obtain

6{(2 + x)pu i6Uy +( + x)pv p6p} as o.
I"

Since this holds for all test functions , the quantity in braces must vanish. Using
(2.4a) again, we find that 6u p6u,, 6Uy =-6u,, 6Vy =-6v,, and we conclude that
(2.4c) holds. In a similar manner, (2.4d) is derived from (2.5b). We next consider the
jump conditions coming from the energy equation. Writing the integral in (2.3d) as a
sum of integrals over and , integrating each of these by pas, and using the fact
that 6u 3v 0, we obtain

Since may be chosen independently of , we obtain 0 0 and

(.a 0 o1[u wisp o.

Finally, we consider the jump condition coming from the continuity equation. Writing
the integral in (2.3c) as a sum of integrals over and , integrating each of these
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by parts, and using the fact that 6u 6v 60 0, we obtain

uy- W]ap o,ds

so we get

(2.9) p,[ Up V:Cc]6p O.

If U) V # 0, then 6p 0. So, from (2.8), 60, 0, and from (2.4c), (2.4d), 6u, 6v, O.
In this case, there is no jump. If U/9- V- 0 so that F lies on a streamline of the
ambient flow, from (2.8) we get 60,=0. Since 60,=0, we have 60,= 60y =0. This
establishes (2.4b) and completes the proof of the theorem.

3. Discontinuous solutions. We have seen that a generalized solution of (2.2) must
satisfy (2.4) across a curve (x(s), y(s)) of discontinuity. The jump conditions (2.4) are
analogous to the Rankine-Hugoniot condition for the discontinuous solution of a
nonlinear conservation law. It may be asked if (2.4) suffices to specify the solution
across the jump, or if there are further "entropy conditions" that must be satisfied. To
answer this, we shall consider (2.2) in a special case, when the ambient field is constant.
We define an appropriate boundary value problem for the system, and we show that
there exists a unique generalized solution of the boundary value problem. As a

consequence, a solution that is smooth in the subregions f and f, and satisfies (2.4),
is uniquely determined by its boundary conditions. So, there is no further "entropy
condition" that must be satisfied. Finally, we establish the existence of solutions with
a jump discontinuity on a given streamline F of the ambient field. Thus, discontinuous
solutions really do occur.

We consider the particular case of (2.1) for which the ambient flow field satisfies
U(x, y)=-Uo O, V(x, y)=-0, P(x, y)=-Po, O(x, y)=-)o. We let p Po, P, PlO, p2--

P2o, e elO e2 --820, when evaluated at P Po, 19=19o. In this case, the lower order
terms in (2.2) vanish, and (2.2) becomes

(3.1a) Lq -(2/x + )u tXUyy -(tz + , )Vy + Po Uou, +p O,

(3.1b) Lzq -(tz + )U,y tzv, (2/x + , )Vyy + Po Uov,, + py O,

(3.1c) L3q pou, + povy + Plo Uop + Po UzoOx =0,

(3.1d) L4q Poux + Povy + poeo Uop, zO + poezo UoO, O.

For this problem, the possible curves of discontinuity are the lines y constant.
If y y* is a line of discontinuity of the solution, the jump conditions (2.4) give

6lgy (X, y$) 0, (2/X + h )6Vy(X, y*) "-6p(x, y*).

Equation (2.4a) gives 6ux(x,y*)=O. Hence the second jump condition gives
&r22 6[hux +(2/x + h)Vy] =-6p, so the total normal stress is continuous across F.

It is important to clarify a potential misunderstanding concerning the system (3.1).
The ambient field is a state of uniform motion, and thus may be obtained from the
state of zero flow by a simple change of dependent variable. Nevertheless, the linearized
system (3.1) is not related in a simple way to the corresponding system that is obtained
by linearizing about a state of zero flow. An intuitive explanation of this arises from
the fact that the linearized equations are satisfied by a small perturbation in the flow
field. The effect of a nonconstant perturbation on a state of uniform motion is not
related in a simple way to the effect of a nonconstant perturbation on the state of zero
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motion. Some differences in the two linearized systems may also be seen from the
results of the preceding section. As is suggested by the proof of Lemma 1, the system
(2.2) is, in fact, elliptic at stagnant points of the ambient flow. Also, the curve F of
possible discontinuities provided by Theorem 1 is meaningful only at nonstagnant
points of the ambient field.

We shall consider the system (3.1) in the rectangle 1 defined by 0<x < 1, -1 < y <
1, with boundary 0f. In [3] it is shown that, for a time-dependent problem, it is
appropriate to specify u, v and 0 on 01, and to specify p on the "incoming" portion
of the boundary, that is, on the line x 0, 1 < y < 1. Thus, our boundary value problem
consists of (3.1) with the boundary conditions

u, v, 0 specified on
(3.)

p(0, y) specified, -1 <y < 1.

We shall show that the problem (3.1), (3.2) has a unique solution. Since the numerical
values of po, Uo, Po, plo, p2o, elo, and e2o do not affect this analysis, we shall, for ease
of notation, take all these values to be 1. It is convenient, for the analysis, to cast the
problem into a different form. Subtracting (3.1d) from (3.1c), we obtain

(3.1e) -tAO =0.

We solve this equation with the boundary conditions given by (3.2) to obtain O(x, y).
We next select functions fi(x, y), 0(x, y) which take on the same boundary values as
u, v, and we define /(x, y) by ,=-,-Oy-Ox, /(0, y)=p(0, y). Considering as
unknowns the functions u- , v- 3 and p-/, and renaming these unknowns u, v, p,
we are led to the problem

(3.4a) -(2/x + h U I.l,Uyy (].1, .4v i )1) y .. u .-[- P f
(3.4b) --(t.l., "JI- 1. )llxy t.i, Vxx (2p, + )Vyy + vx + py g,

(3.4c) u, + Vy + Px 0

with boundary conditions

u, v 0 on
(3.5)

p(0, y)-- 0, -l<y<l.

To analyze the problem (3.4), (3.5), we shall introduce some Hilbert spaces, define an
appropriate bilinear form, and use the Lax-Milgram lemmamtechniques that are
familiar in the analysis of linear problems. We shall use the Hilbert space L2 L2(f),
of square integrable functions, the space H= H(O) of functions z(x, y) which vanish
on 01 and for which Ilzll, 5 {IVzl: / z2} dx dy <, and the dual space H-1-- H-().
H- is defined as the set of distributions b such that for some constant c and for
z c(), I(x)l--< cllzll. The smallest such constant c is the norm I111-. Equipped
with this norm, and with a corresponding inner product, H- is a Hilbert space and
may be regarded as the space of linear functionals on H. These spaces satisfy the
inclusions C(f)c Ho c L2 H-, and C(f) is dense in each of these spaces in the
appropriate norm. We shall also need the spaces _H L x L2 and _V H xH of pairs
of functions on f.

Let sc (u, v) _V be a pair of functions. Then u,, Vy L. We define Ssc -u, vy,
so S" _V L is a bounded map. With : given, define p(x, y) by

p(x, y)= (S)(s, y) as.
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Then p L2, so py H-. We define T =py, so T" _V- H- is a bounded map. We
then replace (3.4), (3.5) with the problem" given (f, g) _H, find := (u, v) _V so that

(3.6a) -(2/ + h )uxx Uyy (tx + Z )Vxy + ux +S f,

(3.6b) -(/x + h )Uy Iv** (2/x + h )Vyy + v + T g.

The following theorem establishes the unique solvability of (3.6).
THEOREM 2. Suppose/x > 0, 3/z + 2A > 0. Then there is a constant c > 0 such that,

given (f, g) H_, there exists a unique = (u, v) V_ such that solves (3.6). Also,

I111 _-<- c II(f, g)l[ _.
Proof. Let : (u, v) _V, r/= (w, z) _V, and define the bilinear form

a(:, r/) fl
+ ([Jl, i- )UxZy -4r- WU + ZV t_ wS -" zT} dx dy.

It is easily seen that a(:, r/) is well defined, and that a is a bounded bilinear form on
_V _V. Furthermore, : _V solves (3.6) if and only if

[fw+gz]dxdy, rl6_V.

Next we set r/= :. The leading set of terms in a(:, :) comprise a quadratic form in
u, Uy, Vx, Vy. A computation shows that this quadratic form is positive definite provided
that (3/.t + 2A) > 0. Since u and v vanish on 0f, UUx dx dy VVy dx dy 0. Set
S: px, T: =py. If u and v lie in C(f), then p is a smooth function, so

If uS, dxdy=ff updxdy=-IIupdxdy.
Similarly,

Hence

p(1, y)2 dy >__ O,
2

where the last equality holds because p vanishes on x 0. Hence, using the density of
C in _V, for any : V,

If[uS’+vT]dxdy>=O’.
Using these facts, we find that

a(, e)>-c f f [.Vul2+lVvl2] dxdy,

so there is a constant a > 0 such that

(3.7) I1:11-<_ a(:, :), : _y.
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From the Lax-Milgram lemma (see, e.g., [6, 111.7]) given (f, g) _H, there is a unique
_V such that, for any r/ _V,

a(, rt)= II [fw+gz]dxdy.

The asserted inequality is a direct consequence of (3.7), and the proof is complete.
We now construct a generalized solution to the equations (3.1) which is not smooth

on the line y 0. For simplicity, we shall carry out the construction in the case
To carry out the construction, we shall consider the equations in the half plane x > 0
instead of in f, and we shall seek a solution with 0-= 0. We formally take the Fourier
transform of the system (3.1a), (3.1b), (3.1c) with respect to y. Setting

(t(x, t)= I u(x, y) exp (-iyt) dy,

and similarly for ,/, we are led to the system

(3.8a) -/Xtxx +/xt2t + Po Uotx +fix 0,

(3.8b) -/xtxx +/xt2+ poUox + itfi=O,

(3.8c) affx + ita + fix O,

where we have set a po/plo Uo.
To solve this system, we define

ioV(x, t)= (s, t) ds.

Upon integrating (3.8c), we obtain

(3.9) /(x, t)=-aa(x, t)-itaQ(x, t)+ ,(t),

where we have set (t)=/(0, t)+a(O, t). Using (3.9) to eliminate / from (3.8a),
(3.8b), we obtain

(3.10a) --txux + b6, + txt2(t itaQx O,

(3.10b) -tz Qxxx + (a + b) Qx + tzt Qx + at2- iat(t -itS,(t),

where we have set b po Uo-a.
To solve (3.10), we consider the homogeneous linear system

(3.1 la) [-/xr2 + br + itz]a iatrfl O,

(3.11b) iata + tzr h- a + b r2 + Izt2 r + at2]i O.

The determinant of the system (3.11a), (3.11b) is a polynomial q(r, t) which is of
degree 5 in r. The roots r(t) of this polynomial are important in our analysis. As
four of the roots tend to +c, whereas the fifth root tends to -l/k, where

k tzUoPlo/Po

The quantity k, which has the dimensions of length, plays an important role in the
propagation of the discontinuities. As we will see, the dimensionless quantity x/k gives
the rate of decay of the strength of the discontinuity along the streamline of the ambient
flow. The following lemma gives the basic facts concerning the system (3.11) and the
quantity k.
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LEMMA 2. There is a constant d > 0, and piecewise continuous, complex-valued
functions a(t), (t), r(t), defined for all real t, such that for each real t, (t) 0 and
(3.11a), (3.11b) is satisfied. As Itl- +, lim r(t)=-l/k and for [tl_-> 1,

(3.12a) la(t)[ =< d t, 1 <- d]fl( t)l, [r(t)+ k-l <- d t.

For Itl-<- 1,

(3.12b) Ic(t)l--< d, 1 _-< dl(t)l, Ir(t)l--< d.

Proof. The determinant of the system (3.11a), (3.11b) is the quintic polynomial

q(r, t) 2r5- tz(a + 2b)rn-(21x2t- ab- b)r + 2btxter
+ t2( a + ab + tx ) r + atzt4

(/xr (a + b) r -/xt2) (/xr br txt-r ate).
We have q(r,O)=txrS-tx(a+2b)r4+(ab+b2)r3. Hence q(r, 0)=0 has roots r=0,
with multiplicity at least three, and two other roots, r (a + b)/lx and r b/lx. Since
a+b=poUoO, the root r=poUo/tX of q(r, 0) is nonzero. Set e lit. Then for e near
0,

e4q(r, t) tz2r+ atx + O(e),

so for Itl large, q(r, t)=0 has a real root r that is close to -a/tz =-1/k, and satisfies,
for some a > 0,

Ir+ 1/kl<=d/]t], Itl >- 1.

Also, setting X er,

e q(r,t) Iz2X(X-1)2(X+I) elz(X2-1)((a+2b)x2+a)+e2(a+b)x(bx2+a),
so for Itl large, q(r, t) has four roots, A, such that A t, t, -t, -t.

We now pick a piecewise continuous family of roots r(t) of q(r, t) so that
r(t) 1/k as tl + and r(t) - po Uo/tX as 0. Having chosen r(t), we define
[c(t), fl(t)] to be a piecewise continuous solution of (3.1) with [a(t)l+lfl(t)[= 1.
Then la(t)l <- 1, I/(t)l -< for all t. Multiplying the first equation of (3.11) by e 2 and
taking the limit as tl- /, we obtain lim a(t)= 0. A perturbation argument shows
that [a(t)[ _-< c/It for [r[ > 1. Since lim [fl(t)l 1, this proves (3.12a). Finally, we show
that fl(t) 0 for all t. Suppose, to the contrary, that fl(t*)=0 for some real t*. Then
[ce(t*)[= 1, so from (3.11b), t*-0. From (3.11a), either r(0)=0 or r(0)= b/lz. This
contradicts our choice of r(t) for near 0, and the proof is complete.

Using the functions a(t),/3(t), r(t), we define functions if(x, t), (x, t),/(x, t) by

(3.13a) (x, t)
i, t)a( t) ert
ate(t)

(3.13b) (x, t)
i,(t)r(t) er(

at

(3.13c) /(x, t) (t)er<t)x ia(t),(t) er
tfl( t)

It may be verified by inspection that if, ,/ satisfy (3.8). Define the function if(t)
by 1-, where

-1

t+i’
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and where 2(t) is a smooth function of compact support, chosen so that gl(0) _(0).
Then (t)= O(t) for near 0, so since fl(t) is bounded away from 0, the formulas
(3.13) have meaning for all real t. We note some properties of g(t).

LEMMA 3. Thefunction , L(R1) and satisfies I(t)l--< clt[- for It >-- 1. The inverse
Fourier transform g(y) L(R) and g is continuous in (-c, O) and (0, c) and satisfies
g(+0)-g(-0) 1.

Proof. The inverse Fourier transform of 1 is

e y, y>0,
gl(Y)

0, y<0,

and the inverse Fourier transform of ff is a C function that is rapidly decreasing at. The lemma follows from these facts.
THEOREM 3. The functions , and are, forfixed x, in Hi(R1), H(R1), L(R1),

respectively. The inverse Fourier transforms, u, v, p, are well defined, and u, v HI(s),
pc L2(S), on each strip S {(x, y)" 0<x <x*}. Thefunctions u, v, p are a weak solution

of (3.1). The function p (x, y) is, for fixed x, continuous in y for y O, and has a jump
discontinuity at y O.

Proof. Using (3.12b) and the construction of , we see that Iffl,ll and I/1 are
bounded for [t[=< 1. For -> 1, I,(t)l<=c/It[ and [r(t)l<-_c, so from (3.12a) and Lemma
2, we have for all t,

la(x, t)l<=c/(l /ltl)3, [x(X, t)l<-c/(l /ltl)3,

I(x, t)l<=c/(l /lt[), I(x, t)l<=c/(l /lt[),
I/(x, t)l<--c/(1 / Itl).

Hence for each x,

(3.14) I_ [(1 + tl)(l7(x, t)l 2 / t;(x, t)l 2) / I (x, t)l = / I (x, t)l / I/(x, t)l] .dt <-_ c

where the constant c is independent of x if x is bounded. It follows that the inverse
transforms are well defined and u, v Hi(s), p L(S), as asserted. To show that u, v, p
are weak solutions of (3.1), let b C(S), and let (x, t) denote the transform of
Then

f ls [tZub + ZUyCby + Ux +Pcb) dx dy 27r f fs[+t+ +] dx

--0,

where the first equality follows from Parseval’s formula and the second equality follows
from (3.8a). Hence (3.1a) is satisfied in a generalized sense. The other two-equations
are verified in the same way. It remains to establish the continuity properties of p.
From (3.14), for fixed x, u(x,.) Hi(R1). Hence u(x, y) is continuous in y for fixed
x. Setting f(x, t)=,(t)exp (r(t)x), we find from (3.13) that =f-a, so it suffices
to study the continuity properties of the inverse Fourier transform f(x, y) of f(x, t).
Define

A(X, t)-- l(t) exp (-x/k),

f2(x, t)= l(t)[exp (r(t)x)-exp (-x/k)],

f3(x, t)= ff2(t) exp (r(tlx).
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For Itl >= 1 we use (3.12) to obtain

If(x, t)l-<-Iff(t)l" le r(t) e-/l
<- clt]-[r( t)x + x/ kl
<_ cxt-2.

Hence, for x in a bounded interval and - cx3,

l2(x, t) =< c(1 /ltl) -=.
Since 2(t) has compact support, f3(x, t) satisfies an even better inequality. Hence, for
fixed x the inverse transforms, f2(x, y) and f3(x, y) belong to H (R). Hence, for fixed
x, f2 and f3 are continuous in y. Since the inverse transform f(x, y)= g(y) exp (-x/k),
we find that f(x, y) is continuous for y 0, and f(x, y) has a jump discontinuity as
y +0. Hence p has the same properties and the proof is complete.

From the construction of the solution, we see that

(3.15) p(x, y)= gl(Y) e-X/k 4r p(x, k),

where pl(x, y) is a continuous function. The function gl(Y) has a jump discontinuity
at y =0, with a jump of magnitude one. The formula (3.15) shows that the jump is
propagated into the region of the flow along the streamline of the ambient flow field
that emanates from the point of the discontinuity on the boundary. The factor
exp (-x/k) in (3.15) shows that the magnitude of the jump decays as we move to the
interior, and the rate of the decay is measured by the dimensionless quantity x k. As
we move a distance k along the streamline, the magnitude of the jump decreases by
a factor of e.

It would be of interest to know if the nonlinear system of equations representing
steady state viscous barotropic flow has weak solutions with discontinuous pressures.
It would also be of interest to know if these discontinuities have been observed
experimentally.

4. Conclusions. We have found that the linearized steady state compressible
Navier-Stokes equations in two dimensions admit discontinuous solutions. A curve F
of discontinuities must lie on a streamline ofthe ambient flow field. Thejump conditions
for the discontinuity require that the total normal stress to the curve F be continuous
across F, but permit the individual terms that make up this normal stress to be
discontinuous. In particular, the pressure may be discontinuous across F, but this
discontinuity in pressure is balanced by a discontinuity in the normal viscous stress
try2 across F. The temperature and its first derivatives are continuous across F.

In the case when the ambient flow is uniform flow with constant pressure and
temperature, a specific discontinuous solution to the linearized system is constructed.
The curve of discontinuities in this example emanates from a jump in the pressure on
the boundary. The strength of the discontinuity decays as we move into the interior;
the jump in pressure is given by the formula

6p (60)o exp (-xpo/txUo(Op/OP)).

Here (3P)o is the jump in pressure at the boundary x =0, and the derivative Op/OP is
taken at constant temperature. If the fluid is incompressible, Op/OP =0, and there is
no pressure discontinuity in the interior. In the case of an ideal polytropic gas, the
dimensionless quantity x/k=xp/lUo(Opo/OP) may be interpreted in terms of the
Reynolds number and the Mach number. Setting p P/RO, we have Op/OP 1/R(R)
,c-2, where c is the sound speed and y is the adiabatic exponent.
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Hence in this case,

X/ k
xpc2 -1 -2xUoPo -1M-2), M ), Re,
,Uo z

where we have set M= Uo/c=the Mach number of the ambient flow and Re=
xUoPo/tZ =the Reynolds number. If we consider air at room temperature and atmos-
pheric pressure, the values c 1100 ft/sec, po 0.075 lb,/ft3,/x 1.22 x 10-5 lb,,/ft sec
may be found in Whitaker [5]. Hence, retaining Uo/c M, the Mach number, we find
that

k=
x poc x

4.8 106,

where the distance x is measured in feet. For example, if the ambient flow is at the
speed of sound, M 1, the jump in pressure is reduced by a factor of exp (-4.8 106)
at a distance of one foot from the boundary of the region. This may explain why these
discontinuities do not seem to have been discussed in the literature. The pressure jump
would decay more slowly with large viscosity.

Acknowledgments. We thank Professors A. Faller, H. Glaz, and T.-P. Liu and Dr.
T.-F. Zien for some interesting conversations on this paper.
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ON UNIQUENESS OF AXISYMMETRIC DEFORMATIONS
OF ELASTIC PLATES AND SHELLS*

HUBERTUS J. WEINITSCHKE

Abstract. Finite axisymmetric deformations of thin shells of revolution are considered for problems
where the radial membrane stress is nonnegative. It is rigorously proved that the solutions of the relevant
boundary value problems for both closed and open (doubly connected) shallow shells subjected to arbitrary
normal surface load and various edge conditions are unique. This result is shown to hold also for a restricted
class of boundary value problems for nonshallow shells.

Key words, geometrically nonlinear deformation of elastic plates and shells, uniqueness of tensile
solution in shells, axisymmetric deformation in shells of revolution
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1. Introduction. We consider axisymmetric finite deformations ofthin elastic shells
of revolution. The most frequently encountered geometries in the applications are: a
closed shell with no other boundary than the two outer surfaces, a shell closed at the
apex, also called a regular dome having a circular boundary with some kind of edge
support, or a (doubly connected) ring shell with an additional boundary which may
be described as a central opening around the apex. When loads are applied to the
surface and to the edges, we generally expect, on intuitive grounds and experience,
uniqueness of solutions when the stresses throughout the shell are predominantly
tensile, for instance if a closed shell is subjected to internal pressure. But shells may
of course buckle under suitable loads, usually caused by compressive stresses, and in
this case uniqueness can be expected only for sufficiently small loads.

The purpose of this paper is to prove some general uniqueness theorems by
elementary methods of classical analysis. These theorems will confirm the intuitive
conclusions indicated above. Basically, we assume that the meridional stress resultant
Ns is positive throughout the shell, except at the edges (where Ns---0 is permitted),
but no assumptions are made on the sign of the circumferential stress resultant No
and on the stresses due to the bending moments Ms and M0. It turns out that Ns -> 0
alone implies uniqueness of axisymmetric solutions for a large class of shell problems.
More precisely, this type of uniqueness holds for arbitrary shallow shells of revolution,
open or closed at the apex, within the framework of small finite deflection theory.
Here, Ns is essentially given by the radial stress resultant Nr. In the case of nonshallow
shells, we prove uniqueness for a restricted class of boundary value problems in the
sense that the boundary conditions for the relevant dependent variables are assumed
to be linear. We suspect that uniqueness of axisymmetric solutions with Ns >--0 holds
true also in the general finite deflection theory for shells of revolution [11], that is,
under any given surface load and a general class of physically meaningful edge
conditions (linear or nonlinear) there cannot be more than one solution with Ns
nonnegative. On the other hand, it is well known that Ns => 0 does not imply global
uniqueness, as shells of revolution may buckle asymmetrically when No is compressive.
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The problem of the existence of solutions for shallow spherical shells, closed at
the apex, subjected to normal pressure and various edge conditions, has been resolved
by Wagner 15], using methods of the calculus of variations. A different proof for the
special case of a circular plate was later given by Dickey [2]. The results obtained in
[15] imply a uniqueness proof for circular plate boundary value problems as shown
by Reiss 10]. Here we give an elementary uniqueness proof for arbitrary shallow shells
without using Wagner’s result. In the special case of circular plates, our results specialize
to those in 10]. Furthermore, we obtain new uniqueness results for ring shells, including
annular plates as a special case. Apparently, the von Kirmin equations for annular
plates have not been analyzed in previous work with regard to the mathematical
questions of existence and uniqueness of solutions. For annular flat membrane prob-
lems, these questions have recently been treated by the author and Grabmiiller [19],
[5] (see also recent work by Grabmiiller and Novak [3], [4]).

2. Basic equations, shallow shells. Our starting point is the basic equations of
shallow shell theory in the form given by E. Reissner 11], 12]. Restricting ourselves
to axisymmetric stresses and displacements in shells of revolution, the equations can
be written in terms of dimensionless variables as follows [17]"

(2.1) Lf=-Z(x)g+fg+2yR(x,e), Lg=Z(x)f-1/2f2, e<x<l

where

d2 3 d
L=

dx2 +-xdx’ R x, -fi p a.
f relates to an angular deflection, g to the radial stress O’r, Z(X) to the geometry of
the undeformed middle surface, and x r/a, e ri!a, where a is the base radius of
the outer edge and ri is the radius of the central opening, called the inner edge. The
polarly symmetric pressure p(r) is scaled to fi=P/Po, where po=maxlp(r)l. Hence,
y is a measure of the intensity of the applied load, 3’ Po, and y is positive for external
pressure. In the special case of a spherical shell we have Z(x) =/x 2, where/x= 2moHo/t,
Ho being the height of the apex above the base plane through r a, the shell thickness
and m 12(1- u2), u Poisson’s ratio.

At the outer edge r a we prescribe

(2.2) g(1)=S or g’(1)+(1-v)g(1)=H

where S is a given dimensionless radial traction and H is a dimensionless radial
displacement. For a clamped or a moment-supported outer edge we have, in addition
to (2.2),

(2.3) f(1)=O or f’(1)+(l+u)f(1)=M,

respectively, where M is a prescribed dimensionless radial edge moment.
If the shell is closed at the apex r 0, we formally set e 0 in (2.1) and assume

the usual regularity conditions

(2.4) f’(O) =0, g’(O) =0.

Equations (2.1)-(2.4) then constitute the boundary value problem (BVP) for a closed
(dome) shell, denoted as Problem I. Selecting one boundary condition from (2.2) and
(2.3) we obtain the four different BVP’s (C, S), (M, S), (C, H), and (M, H), with
obvious notation and C referring to the clamped edge condition f(1)= 0, although it
may be replaced by f(1)= C if the angle of rotation is prescribed.
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When the shell has a circular opening at the apex, we replace (2.4) by similar
boundary conditions at the inner edge r ri, expressed in terms of f and g by

(2.5) f(e) c or ef’(e)+(1 + ,)f(e)= rn

and

(2.6) g(e)= s or eg’(e)+(1- u)g(e)= h.

The physical significance is analogous to that of conditions (2.2) and (2.3). In particular,
the case of a "free edge" g(e)= ef’(e)+(l+ u)f(e)=O is contained in (2.5), (2.6).
Equations (2.1)-(2.3), (2.5), and (2.6) for e >0 define the boundary value problem for
shells with a central hole, which will henceforth be denoted as Problem II. The special
case of a uniform pressure is given by R(x, e)= 1-(e/x)2. Selecting one boundary
condition from each of the sets (2.2), (2.3), (2.5), and (2.6) we obtain a total of 16 BVP’s
denoted by 4-tuples such as (c, s; M, H), in obvious generalization of the notation for
Problem I.

3. Uniqueness of tensile solutions of Problem I. Let (fl, g) and (f2, g2) be two
solutions of Problem I or II, then we have from (2.1), setting V=fl-f2, w=

Lv -Zw +flg --f292 -Zw + gl v +fw,
Lw Zv (f,-f) -(f, +f2- 2Z)v,

with homogeneous boundary conditions corresponding to (2.2)-(2.6) for v and w. Now
we integrate vLv + wLw after multiplying by x

vLv + wLw)x dx v(x v’)’ + w(x w’)’] dx

-Zvw+gv-fzvw-=vw(f+f2-2Z) x

Integrating by pas and simplifying the second line of (3.1), we obtain

(3.2) x3( Dr2 + wt2) & + Be + B1 x3 D2(gl + g2) dx.

In Problem I, e 0 and Bo 0 by (2.4), while B v(1)v’(1) + w(1)w’(1), which is
therefore given by

(3.3) B, -a(1 + u)v2(1)-(1 u)w2(1) 0,

where a and take on the values 0 or 1, depending on which combination of boundary
conditions from (2.2) and (2.3) is selected. Hence, the left-hand side of (3.2) is always
nonpositive, while the right-hand side is nonnegative, provided g(x) O, 1, 2.

DEFINITION 1. A solution (f g) of Problem I or II is called tensile, if g(x)0,
which is equivalent to 0.

Note that no conditions (other than smoothness) are imposed on the remaining
stress components or bending moments for a solution to be tensile in our terminology.

THEOREM 3.1. Tensile solutions (f(x), g(x)) of Problem I are unique.
Proof Since (3.2) implies v’= w’0, we have v(x)= Vo const, and w(x)= Wo

const. For a== 1, that is BVP (M, H), (3.3) shows that B <0 unless v(1)= Vo=
w(1) Wo 0; hence v w 0. In BVP (M, S), 0, a 1, we conclude Vo 0 from
(3.3), implying v0, and since g(1)= g2(1)= S, we also have Wo=0; hence w0. A
similar argument shows v w 0 in BVP (C, H), where a 0, 1. Finally, v(1)
w(1) 0 in BVP (C S), which completes the prooE
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In the case of a circular plate Z 0; hence the second equation of (2.1) implies

(3.4) X g’(x) - t3f2(t) dt <-_ O.

If g(1)=S_->0, this yields g(x)>-S, as g is monotone nonincreasing. If g’(1)+
(1 v)g(1) H, with H => 0 (to exclude buckling), g’(1) -< 0 from (3.4) implies g(1) >- 0,
whence g(x) >- g(1). Thus the solutions (f, g) are tensile and we conclude the following.

THEOREM 3.2. The solutions of the circular plate BVP’s (C, S), (M, S), (C, H),
and M, H) are unique, provided S >- 0 or H >- O.

The same result can be expected to hold for sufficiently small Z(x). On the other
hand, axisymmetric buckling of circular plates is known to occur in the range S < 0
or H < 0. A slightly less general version of Theorem 3.2 was proved in a different way
by Reiss [10], on the basis of results of Wagner [15].

4. Uniqueness ot tensile solutions of Problem II. It is seen that the method of
proving Theorem 3.1 carries over to Problem II only if B =-e3(/)/)’d ww’) is zero,
that is, if the boundary conditions aref(e) and g(e) s >- O. If all other cases we have

B e2[a(1 + ,)v2(e)+/3(1- ,)w2(e)] _-> 0,

with a 1 or/3 1 or a =/3 1. Hence, we cannot conclude that the left-hand side
of (3.2) is nonpositive.

In order to get the proper sign for B, a transformation due to Schwerin [13] was
used in earlier work on annular membranes [5]. This transformation can be adapted
to our Problem II in several ways. For instance, let

(4.1) z-
1-e2’ f(x) (z), g(x) (z).

The interval [e, 1] is mapped onto [0, 1], and any regular tensile solution (f, g) is
transformed into such a solution (f, ) and vice versa. The differential equations for
Problem II in terms of z, f and are

kf -Z+ ZyR + x-2f,
(4.2) 0 < z < 1

kZx2 +4k Zx-Zf -1/2x-4f2,

where a dot denotes differentiation with respect to z and x2= e+z(1-e). The
boundary conditions at x e become

(4.3) f(0) ce or j(0)- k_f(O)= ,
(4.4) (0) s or (0)+ k_(0)= h%-
and the boundary conditions at x 1 are

(4.5) f(1) C or (1) e k_f(1)= ,
(4.6) (1)=S or (1)+e2k_(1)=ffI.

The constants in (4.2)-(4.6) are defined by

(4.7) k-l_e2’ k+/--
2e 2 (1+,), (r, h-, f/l, ISI)= k21(m, h, M, H).
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Now let (f, gi) 1, 2 be two tensile solutions of (4.2)-(4.6), set v
Q(z) := [e2+ z(1 e2)]2 and carry out essentially the same steps which in 3 led to the
identity (3.2). Making use of the relation x4’+(4x2/k)=(Q)", the result is

(4.8)

where

(4.9)

1 2)2 fo(Qff2+ t2) dz+Bo+B=-(1-e Q-’/2v2(gl+g2 dz

BO:=--v(O)O(O)--E4w(O)I/(O), B,:=v(1)f(1)+w(1)9(1).

It is seen from (4.3) and (4.6) that the signs are such that we can conclude Bo+ B =<0
upon substituting t(0) into (4.9) and taking w(0)= v(1)= w(1)= 0 or substituting t(0)
and b(1) into (4.9) and taking w(0)= v(1)=0. Hence, uniqueness for the BVP’s
(m, s; C, S) and (m, s; C, H) follows as in the proof of Theorem 3.1.

A similar conclusion holds in the dual case where (4.1) is replaced by

X2- e2 1
(4.10) z- l_e2 f(x)=f(z), g(x)=5(z).

The boundary conditions now transform into

(4.11) f(0) c or f(0) + k+f(O) rhe -,
(4.12) (0) se or (0)- k+(0) h-,

(4.13) f(1) C or f(1)+e2k+f(1)= 191,
(4.14) (1) S or (1)-e2k+(1)= .
The identity corresponding to (4.8) is easily computed. We obtain

fot 1 e2)2fo’(4.15) (Q32+ ff2) dz+Bo+Bl=-(1 v2(1+2) dz,

where Bo := -ev(O)f(O)-w(O)(O) and B is defined as in (4.9). Now the signs in
(4.12) and (4.13) allow us to conclude Bo+BI<-O for the BYP’s (c, h; C,S) and
(c, h; M, S), which implies uniqueness. Since the cases (, s;.,.) have already been
resolved at the beginning of this section, we may summarize the results in the following.

THEOREM 4.1. Tensile solutions (f(x), g(x)) of Problem II are unique for the
following BVP’s:

(c, s; C, S), (c, s; M, S), (c, s; C, H), (c, s; M, H),
(4.16)

(m,s; C,S), (m,s; C,H), (c,h; C,S), (c,h; M,S).

Obviously, one more case may be settled with the help of the transformation

x2-
e2’ -f 1

(4.17) z- f(x)= (z), g(x) =5(z).
In that case the boundary conditions are given by (4.3), (4.12), (4.5), and (4.14). Hence,
Bo=<0 but B1-->0, in the identity corresponding to (4.15), except in the single case
(m, h; C, S), where B-<_ 0. The above method has been discussed here as it may be
useful in a variety of other BVP’s. However, its scope is limited by the fact that
transformations such as (4.1) and (4.10) change the sign in boundary conditions
involving first derivatives at both ends of the interval, for example in (4.3) and (4.5),
or in (4.12) and (4.14). In Problem II, this means that BVP’s of type (., h;., H) or
(m, .; M,. cannot be handled by the above technique.
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We next present a more flexible approach, in order to resolve the remaining eight
cases not covered by (4.16) in Theorem 4.1. Again this method may be useful for a
variety of other BVP’s. Although its scope is limited in a different way, the method
turns out to be general enough to yield uniqueness in all 16 BVP’s for Problem II,
including the ones settled by Theorem 4.1. However, this is due to the particular
structure ofboth differential equations and boundary conditions ofthe present problem.

The variables x, f, g are transformed in accordance with (4.17). Let (f, gi), i= 1,
2 be two tensile solutions of Problem II and consider the weighted differences

v(z)
f(z) f)(z), w(z)=

(z) gz(z)
p(z) q(z)

p’ q > O.

Subtracting the transformed differential equations we first get

k2( vp)’" -x-Zwq + x-4(flgl f292),
k2(wq)"= x-2Zvp --1/2X-4(f--f).

Multiplying the first equation by pv, the second by qw, adding the resulting equations
and integrating, we obtain, after simplifying the right-hand term in the same way as
in3,

Io p2V2

k [vp(vp)" + wq(wq)"] dz
2Q(z)

(1 + 2) dz

where k and Q(z) have been defined before. The choice

p Az + B, q Dz + E, A, B, D, E positive constants

implies p(vp)"= (p2t)’, and integration by parts yields

(4.18) (P2t2+ q dz +/+/1
2Q

where

/o -pvt3 q2WWlz=o, B, pv( + q2w)i, lz=,
The boundary conditions for f and g are given by (4.3), (4.5), (4.12), and (4.14). Note
that t, ff are now given by

Evaluating the term p2vi at z 1, we find

1 0=-(,-)._ (,-)
q -7

Setting A K1B, we can choose K1 > 0 such that

K E
2

(4.19a)
1 + K1 2

which makes p2(1)V(1)t(1) --< 0. Similarly, with D K2E we can choose K2 > 0 such that

K 1 E
2

>(l+v)(4.19b)
1 + K 2

pvt3 p2v2 P+ (1 v) p2v- A 1- e 2

I--(1 v)
p 2 A+B 2
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in order to have q2(1) w(1) if(l) =< 0. By the same device, we can achieve that _p2/)t3
and/or -q2w at z=0 are negative, that is,/o_-< 0. From (4.3) we find, at z=0,

p2v3 =p2v2(k_,,-) =p2v2[1- 2 (1 u) --]
and a similar expression for qZwl,. Clearly the choice

A 1-e2 D 1-e
(4.20a, b) 0<--=KI< (1- u), 0<--=K< (1 + ,)

B 2e 2 E 2e 2

will make Bo=<0. Hence p(z)>0 and q(z)>0 can be found such that Bo+BI<=O in
the seven BVP’ described by

(4.21a, b) (c, s;.,. ), (.,.; C, S)

and in the two BVP’s

(4.22a, b) (c, h; M, S), (m, s; C, H).

In the cases (4.21a), K1 or K2 or both must satisfy (4.19), in the cases (4.21b), they
must satisfy (4.20). The BVP’s (4.22) require that K1 and K2 must satisfy (4.19a) and
(4.20b), or (4.19b) and (4.20a), respectively. Incidentally, the BVP’s (4.21) and (4.22)
are precisely those covered by Theorem 4.1 and the remark following it.

It remains to show that p and q can be chosen such that the cases where both h
and H and/or m and M are involved, that is,

(4.23) (., h;.,H) and/or (m,.; M,.),

can be resolved. In order to make both -pz(0)v(0)t(0) and pz(1)v(1)6(1) nonpositive,
K1 must satisfy the two inequalities

K1 1-e2 1-e2

->(1-,)=e2k_ and KI< (1-,)=k_(4.24a, b)
1 + K1 2 2e2

Taking equality in (4.24a), we get K1 e2k-,,/(1 e2k_), which indeed satisfies (4.24b),
because the function

2 2e 2e
qS_() 1-e2k_,, 1 t_/.t_.(l_/2)E 2

satisfies 0 < b_(e) < 1 for all e, , with 0 < e < 1, , > 1. Finally, in order to make both
-q2(0)w(0)ff(0) and q2(1)w(1)ff(1) nonpositive, K2 is chosen such that it satisfies
inequalities obtained from (4.24) by replacing K and k_ by K2 and k+, respectively.
This can be done since 0< b+(e)< 1, with b+(e)= e2/(1-e2k+,,). With these values
of K and K2, uniqueness for the seven BYP’s (4.23), which include (m, h; M, H), is
proved. In summary, we have obtained the analogue of Theorem 3.1, that is, the
following.

THEOREM 4.2. Tensile solutions (f(x), g(x)) of Problem II are unique.
We remark that it is important that at least one of two inequalities (4.24) is not

an equality, because we must show from v’= w’ 0 that in all combinations ofboundary
conditions we actually have v w-=0, as was done in the proof of Theorem 3.1.
Obviously, the same type of arguments carry over to Problem II.

5. An application to annular plates. In this section we prove that the solutions of
all annular plate BVP’s are tensile provided the edge stresses s and S are nonnegative
and that any prescribed radial displacements h and H satisfy certain inequalities so
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as to exclude buckling. But we shall not insist on the rather strong conditions h _-< 0,
H >-0. Applying Theorem 4.2, we then get an extension of Theorem 3.2 to annular
plate problems.

We transform the second equation of (2.1), with Z =0, according to (4.10), and
restate the resulting boundary conditions for (z)

(5.1) k2(z)=_f(z)2 {(0)=se2 or (0)-k+(0)= h-,
(1) S or (1)- e2k+(1) .

In the cases (s, .; S,.) it follows that (z) satisfies the equation

z :lfo’(5.2) g(z) Az + B+, G(z, )f()2 d,

where

A=S-se2, G(z,)={(1-)z, O<=z<--,
B=se2 (1- z), =<z_-<l.

G is simply Green’s function for - and the selected boundary conditions. Clearly,
for s, S nonnegative we have (z)_-> 0.

The remaining three cases are handled in the same way. Again (z) satisfies (5.2);
the quantities A, B and G are summarized in Table 1, where k k+, ko e2k/(1 e2k)
and G for sc _-< z _-< 1 is obtained from G(z, )= G(, z). Obviously, we have G >= 0. The
conditions A+B>=O and B_->0 then imply (z)=<0. Evaluation of these conditions
yields

(5.3)

(s,.;S,.) S_>-0, s_->0,

(s,.; H,.) H(1-e2)+2se2>=O, s>=O,

(h,.; S,.) S>=O, h(1-e)<-2S,

2
(l+v) 1+

2e2 (l+v) H>-h,

where (4.7) has been used. We note that the inequalities in (5.3) are identical with
those in [5], where they delineate the range of values of s, S, h and H, for which
existence and uniqueness of the corresponding annular membrane BVP’s was proved.
The above results may be summarized in the following.

THEOREM 5.1. The solutions of all annular plate BVP’s are unique, provided that
s, S, h and H satisfy the inequalities given in (5.3), for the four types ofProblem II, with
no restrictions on the values of c, C, rn and M, to be inserted into the slots of the symbols
(s, "; S, ), etc.

TABLE

Case A B G(z, ), O<=z<=
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The conditions contained in (5.3) are satisfied if H -> 0 and h =< 0. However, H < 0
and h > 0 are not excluded. For example, H <0 is admitted in BVP’s of the type
(s, .; H,. and h > 0 is admitted in BVP’s of type (h, .; S,. ). It would be interesting
to see how close the bounds in (5.3) are to the critical values where ceases to be
nonnegative.

6. Tensile solutions of BVP’s for nonshallow shells of revolution. A system of
equations governing the axisymmetric deformation of thin elastic shells of revolution
undergoing small strains but arbitrarily large rotations was first derived by E. Reissner
11 ], and later simplified in 12]. This system reduces to a coupled pair of second-order

differential equations for the meridional angle of deformation/3 and stress function
q (defined below), which generalizes (2.1) to nonshallow shells. Existence of solutions
of Reissner’s equations for a limited class of shell problems, including ring shells with
boundary conditions/3 q 0 at the inner edge, but excluding dome type shells, has
been proved via the Leray-Schauder fixed point theorem by Srubshchik 14]. It is well
known that these methods cannot be used for answering questions about the uniqueness
of solutions.

As Koiter remarked, the nonlinear equations for shells of revolution "have always
been (slightly) disfigured by the occurrence of (small) terms with Poisson’s ratio v as
a factor" [7]. It has been observed by several authors, including Reissner and Koiter,
that these terms never affect the solution significantly within the basic accuracy of
first-approximation shell theory. Furthermore, it was shown in [7] and [9] that the
terms in question do not appear at all, if the basic equations are derived from the
well-founded general intrinsic equations of nonlinear shell theory. In view of these
insights and the remarks in [12], we may simplify the basic equations (III) and (IV)
in [11] by dropping the small terms multiplied by u and some terms Reissner himself
recognized as negligibly small in [11], in particular the terms containing the vertical
stress resultant P on the right of equation (IV). The resulting equations (6.1) are given
below. In many studies of axisymmetric buckling of hemispherical and complete
spherical shells, the simplified equations (6.1) have been used, for example in [8].
Similar equations were used in [1] and [6]. Hence, we may take (6.1) as a realistic
model for nonshallow shells of revolution.

Let the shell mid-surface be given in cylindrical coordinates by r r(s), z z(s),
and let primes denote differentiation with respect to the meridional parameter s,
O<=so<-S<=Sl (for dome shells So=0). We introduce the angle b by r’=a cos b and
z’= a sin where

a(s) [r’(s)2 + z’(s)2] 1/2.

The basic equations in 11 ], with the simplifications described above, can be written as

(6.1)

r/a
/3’- /3 --[q sin b rP cos 4)

-/3 (q cos b + rP sin b ],

+ A(s)rP, + A2(s)(rP,)’

+ A3(s)r:Zpr + A4(s)(r2pr)
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where

rNr, rP rpad,

Nr, P radial (=horizontal) and vertical stress resultants,
(6.2) p, p radial (=horizontal) and vertical surface load intensities,

C Et (constant) stretching stiffness,
D Et3/12(1- v-) (constant) bending stiffness.

The functions A(s) are given in terms of r, z, r’ and z’ [11], but as they disappear
when forming -,, their explicit form is irrelevant for deriving uniqueness results.
We have retained only quadratic nonlinear terms involving/3 and @, that is, we consider
small finite displacements, as in the preceding sections. The fully nonlinear system for
arbitrary finite displacements (see equations (I), (II) in [11]) involve terms like
sin (/3 + b) and cos ( + ) instead of and fl on the right of (6.1). In the shallow
shell approximation, (s) is treated as a small quantity, resulting in the approximations
r aos, where ao is a constant, r’/r 1/s, r/a s, and a cos (s)a constant, the
geometry being given by a sin (s). Setting fl alSf a2sg, with suitable constants
ai, observing lfl sin << 1, and neglecting the small terms Ai(s), (6.1) transforms into
(2.1), for x ss.

We now consider two solutions (1, ffl) and (2, if2) of (6.1) and appropriate
boundary conditions in terms of fl and , which will be discussed later. Setting
v fl , w ff 2, multiplying (6.1) by r a and subtracting, we find

(6.3) D( )’ ()v’ D
2

v-w sin +rPv sin +(-2) cos ,
kr/

(6.4) (r )’ (r’) 2

--w’ = w+avsin- a(fl-fl)cos.
Ck rl

Multiplying (6.3) by v and (6.4) by w and integrating as before, we get

’, r
D(v’)+ (’

,o

ds +
a
vv + ww

o
(6.5)

Dv+--w ds+ vrz’P+vr’(+) ds.
k r/ C

The term (@ + @)v2/2 is obtained exactly as in 3 due to the same structure of the
nonlinearity in (2.1) and (6.1). The integral on the left and the first integral on the
right-hand side of the identity (6.5) are nonnegative since r/ 0. Note that in the
remaining integral we may have r’<0 and/or z’<0, depending on the given shell
geometry. For unrestricted rotations, the stress resultants Ns, N, and P are related
by []

N= Nr cos ( +)+P sin ( +).

In the approximation represented by (6.1), is small in the sense that terms of higher
than second degree are ignored. Hence we have, in small rotation theory,

rN r(N cos + P sin ) +r(-N sin + P cos O)
(6.6)

r’@ + rz’P + [-z’ + rr’P].
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Insofar as cubic terms have been neglected in (6.1), there should be no quartic terms
in the integrals of (6.5). Hence it is consistent within small finite displacement theory
to approximate the second integral on the right-hand side by

(6.7) vZar (N + N2) ds,

neglecting quartic terms such as vZflq, arising from the bracketed term in (6.6). A
reasonable concept of tensile solution is stated in the following.

DEFINITION 2. A solution (fl(s), d/(s)) of (6.1) is called tensile if the meridional
stress resultant N is nonnegative.

The relation (6.6) shows that for shallow shells this concept of a tensile solution
is the same as the one introduced in Definition 1, 3. As the integral (6.7) is nonnegative
for tensile solutions, the proof of the uniqueness of solutions (fl, ), N 0, is complete
for all boundary conditions that make the term (...)[A on the left-hand side of (6.5)
nonpositive.

Suppose first that fl and satisfy the same type of linear boundary conditions
as f and g, respectively. Setting x s/s and e So/S, they are given in the form
(2.2)-(2.6) with g replaced by fl, . The BVP’s for shells closed at the apex are again
denoted as Problem I. In this case we have the symmetry condition (0)=0, and
(0) 0 due to r(0)= 0, N(0) finite. As in 3, we conclude that the boundary term
in (6.5) reduces to

DV(Sl)V’(Sl)WW(Sl)W s1) 0.

Clearly the method of weighted differences given in 4 can also be applied to the
present problem in order to transform the boundary terms in (6.5) such that they
become nonpositive for all 16 cases of BVP’s for open shells, denoted as Problem II.
We pause to summarize these conclusions and state the main result of this section.

THEOREM 6.1. Tensile solutions ((s), (s)) in the sense of Definition 2 of both
Problem I and Problem II for nonshallow shells are unique if the boundary conditions

for fl and at both edges of the shell are of the form
(6.8) alfl’+ a2fl Cl, a3’+ a4 c2

where the constants a satisfy a+ a> 0 and a+ a> O.
The restrictions notwithstanding, this theorem covers some physically significant

BVP’s. When fl and N are prescribed at the boundary, (6.8) is satisfied with a a 0,
which corresponds to the case denoted by (c, s; C, S) in 4. Fuhermore, it will be
seen from relations (6.9)-(6.11) that boundary conditions where the meridional bending
moment M and/or the radial displacement u are prescribed at one or at both edges
are linear if 0. Hence, these cases are fully covered by Theorem 6.1.

Next we consider conditions where M and/or u is prescribed and u 0. The
meridional bending moment consistent with (6.1) is given by [11]

(6.9) M=D + Bcos4+ sin

which leads to a boundary term

(.o) vv’= --v r’+ z’(+)
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Although our model implies that Zt(l "[- 2) is in general small compared to r’, so long
as r’>0 and cos b>(1/2)sin b, the sign of the term within the brackets of (6.10)
cannot be determined a priori. Hence, Theorem 6.1 is rigorously applicable to BVP’s
with prescribed edge moment only if z’= 0 and r’=> 0 at that edge.

We run into a similar difficulty if the displacement is prescribed at the edge. For
instance, the radial displacement is given by

r 1
(6.11) u =-(No uN), N =--’+
This leads to boundary terms (fllq-flEq)z’ and rPvw in (6.5), whose signs cannot
be determined except in the special case z’= P 0 at the edge. The boundary condition

N S is also nonlinear and cannot be treated by the present method. Hence, apart
from the special cases just mentioned, it remains an open problem to extend Theorem
6.1 to a general class of BVP’s, with nonlinear boundary conditions not excluded.

7. Concluding remarks. We have considered axisymmetric deformations under
the assumption that the meridional membrane stress is tensile. In the cases we have
studied here, we have shown that there cannot be two different tensile solutions. The
physical interpretation is that there cannot be symmetric snap buckling, characterized
by the occurrence of a limit point, say 3’ Y, along a load deflection .path, unless the
radial membrane stress is compressive in the unbuckled or buckled state at y y, at
least in some part of the shell. It is interesting to note that it has been a general
experience in shell design that the bending stresses are unimportant for stability
considerations, even when they-are not confined to narrow edge layers, as in the case
of shallow shells. This observation is confirmed by the results of this paper.

In problems involving finite deformations, tensile membrane stresses cannot, in
general, be predicted a priori under a given load. An exception is the circular and the
annular plate, where uniqueness of axisymmetric solutions can be proved for arbitrary
load without assuming that the solution is tensile (Theorems 3.2 and 5.1). This result
can be expected to hold also for very shallow shells, but we have not attempted to
prove it. However, a priori uniqueness of solutions can be proved for small loads,
provided the shell is sufficiently shallow. This was done by different methods in [18]
for arbitrary shallow shells; the results can be adapted to axisymmetric deformations
of shells of revolution.

Finally, we remark that it should be possible to include large rotations in the
analysis. In particular, we expect uniqueness of axisymmetric solutions for problems
of circular and annular plates under arbitrary vertical load. The finite rotation equations
for plates [12] are stated here, to indicate that this extension is apparently not
straightforward

rZfl"+ rfl’ sin /3 cos/3 (q sin/3- P cos/3),

r2q"+ r’- q (cos/3 1)

with r s and primes denoting differentiation with respect to r. In addition to the
different structure of the nonlinearity, we have nonlinear boundary conditions in most
cases of physical interest, except when u 0. The above equations can be reduced to
a single second order equation in the limit case of circular and annular membranes
(D 0). Grabmfiller and Pirner [21] have recently succeeded in proving the uniqueness
of positive solutions for these problems under all physically relevant (linear and
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nonlinear) boundary conditions with v in the range -1 < v =< 1/2. For circular membranes
with linear boundary conditions, this result was obtained in [20].

Acknowledgments. The authors wishes to thank L. A. Mysak for his warm hospital-
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A MATHEMATICAL MODEL OF CONTRACTING MUSCLE WITH
VISCOELASTIC ELEMENTS*

V. COMINCIOLI? AND A. TORELLI?

Abstract. A three-element model of contracting muscle is studied. This model incorporates a contractile
element based on a two-state cross-bridge mechanism and two viscoelastic elements placed in series and in
parallel to the contractile element. The existence, uniqueness, and asymptotic behavior of the mathematical
solution is proved and the numerical approach is discussed.

Key words, cross-bridge mechanism, muscle contraction, nonlinear nonlocal partial differential
equations
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1. Introduction. According to the classic view of Hill 15] the muscle’s mechanical
properties can be separated into three elements: an active force generating contractile
element (CE) representing the processes in response to a stimulation and two passive
elastic elements: a series elastic element (SE) in series with the (CE), which represents
the structures on which (CE) exerts its force during contraction (tendons in skeletal
muscles and inactive or less active regions in cardiac muscle) and a parallel elastic
component (PE), which determines the mechanical behavior of muscle at rest (saro
colemma of muscle cells and extracellular structures).

On this rheological framework many mathematical models have been introduced
that differentiate for the different description of (CE) element. We quote some recent
papers in our research group from which more convenient literature can also be found
[5], [7], [6], [10], [11], [12], [4].

In these models the (PE) and (SE) elements are described as elastic springs
following usually an exponential law. There is however a wealth of evidence that such
elements exhibit a viscoelastic behavior (see, e.g., [14] and related literature, [2], [18],
[3], [19]).

This requires an extension of the traditional Hill model by replacing the series
and parallel elastic elements with viscoelastic elements. Along this direction we find
the model proposed by Glantz 14] in which the (CE) element is described macroscopi-
cally on the basis of a force-velocity curve.

Our aim in this paper is to introduce in the Glantz’s model a more structural
description of the (CE) element by making use of the sliding filament theory.

According to this theory the generation of muscular force results from interactions
between the myosin and actin filaments. Under the influence ofthe intracellular calcium
concentration [Ca2+], which in turn depends on the time course of the action potential,
we have the formation of links (cross-bridges) which act like springs.

From the original model proposed by A. F. Huxley in 1957 [16] a number of
models have been proposed to account for new experimental findings (for an overview,
also see [7], [21], [20], [24], [25]).

However, since in the present paper we want mainly to explore the mathematical
implications of the replying elastic elements with nonlinear viscoelastic elements, we
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shall consider, for simplicity, the Huxley original model. For the same reason we shall
study only the isometric contraction, corresponding to the experimental situation in
which the muscle’s length is kept constant ,and the force generated is observed. In this
case the force of (PE) is constant and we have only to consider the contribution of
the force of (SE). In [8], however, we report some numerical results corresponding
to more general situations: isotonic (the force is assigned and muscle length is computed)
and isometric-isotonic.

The present paper represents a first contribution in the validation process of the
proposed model; indeed we prove that it is mathematically consistent, that is there
exists a unique solution for admissible physical data, which agrees qualitatively with
observed phenomena. We are now identifying the model parameters using experimental
data collected in the muscle physiology laboratory at the Institute of Human Physiology,
Pavia, Italy. The comparison with the results obtained by means of models containing
only elastic passive elements ([5], [7], [6], [20], [23]) will be useful to estimate in
quantitative ways the contribution of the viscosity in passive elements.

2. The model. The muscle, supposed homogeneous, is represented (Fig. l(b)) by
a three-element model consisting of a contractile element (CE) and two passive
viscoelastic elements (SE), (PE), like those represented in Fig. l(a) (Kelvin model,
slightly different from that used in 14]).

Each of these elements is described by the following equation:

dE
r r/e’(dashpot), e’ --;,

(2.1)
o-p a(exp (b(e eo))- 1),

cr, o’, Crp + a’, o’,

o’ a(exp (b(e,- eo)) 1),

(a) (b)

FIG. 1. (a) Arrangement ofpure elastic and viscous elements. (b) Classical three-element model consisting

of a contractile element and two viscoelastic passive elements.
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where tr force, e length, eo, eo rest length. For simplicity we have supposed that
the constants a, b are the same for both forces trp, r.

From (2.1), eliminating the "internal" variables try, ev, es, try, we have the following
constitutive equation for a viscous element:

(2.2) r’ e’(2ab + br) _b(_ rp)(a + r- rp).

We note that for r/=0 and for r/+ we have again two (different) only elastic
situations.

We consider now the contractile element (CE). As already said it is described,
for simplicity, on the basis of Huxley’s theory [16] (see also for more details [5]). This
element is identified with the half-sarcomere, which is the repeating unit of muscle
structure and consists of an array of the thick (myosin) and the thin (actin) filaments.
The links (cross-bridges) between these filaments are characterized by the distance x
between the equilibrium position of the myosin head and reactive site (Fig. 2).

FIG. 2. Schematic organization of a sarcomere: A, actin; M, myosin; Z-line.

Let n(x, t) denote the relative cross-bridge density at time (fraction ofthe attached
cross-bridges per unit of cross-bridge length in one half-sarcomere).

Supposing the cross-bridges to behave as linear elastic bonds with stiffness k and
n(x, t)= 0 for x great enough, the force developed at time by the half-sarcomere is
given by

(2.3) FCE(t)=kf+n(,t),d._
The dynamics of the cross-bridges population n(x, t) results from the balance of the
formation and breakage, that is,

(2.4)
dn(x,t)

dt
=f(x)y(t)(1 n(x, t)) g(x)n(x, t)

where 3’(t) is the activation function, f(x), g(x) are the attachment rate functions and
d/dt denotes the material derivative, i.e., the derivative with respect to a frame moving
with the cross-bridges distribution.

Then we have

d o o dx
dt ot Vox’ dt

v is the half-sarcomere velocity shortening, that is,

dLCE
(2.5) v

dt
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Since the sarcomere shortening follows the formation of cross-bridges, we have that
v is a function of n. We want now to specify this dependence. From the rheological
model we have at any time verified these conditions:

LCE t) + LSE t) L( t),

(2.6) FCE(t) FSE(t),

P(t) FCE(t)+ FPE(t)

where LCE, LSE, L represent the lengths of each element and FCE, FPE, P the forces.
In the following we shall consider the isometric situation: L(t)= const and P(t)

is the output model. We have

dLCE dLSE
(2.7)

dt dt

From (2.1), noting that r FSE, e LSE, we have Problem 2.1.
PROBLEM 2.1. n(x, t) is the solution for > 0 and x R of the following equation:

(2.8)
On On
--+ v--=f(x) y( t)(1 n)- g(x)n
Ot Ox

where v( t)=-e’( t) with e(t) solution of the differential equation

(2.9) tr’ e’(Zab + btr) ---b o O’p )( a + o Op

where

(2.10) tr(t)=kfn(,t)d._
Assuming at t- 0 a resting situation, we have the initial conditions

n(x, 0) =0, e(0)= Co.

We shall prove in the following that Problem 2.1 has a unique solution under
general assumptions on data y(t), f(x), g(x) and we shall study the behavior of the
solution for r/ 0 and r/ +.

To simplify the notation, but without loss of generality, we set the constants a, b, k
equal to one for the following. Then we indicate by u(x, t) the unknown function
n(x, t) and by z(t) the function: -(e(t)- Co), that is the variation of the LCE length.

3. Mathematical formulation of the problem. We assume that

(3.1) f, g CI(R), "}, f cl([0,---00[),

(3.2) f(x),g(x)>-O, xR,

(3.3) y(t) >_- 0, [0, +oo[,

(3.4) The support of f is a compact set of R.

Let also T be a fixed nonnegative number. According to 2, we introduce the following.
PROBLEM 3.1. Given q [0, +oo], we look for a couple {u, z} verifying

(3.5) u Cl(l x [0, T]), z Cl([0, T]),

(3.6) u(x, O) O, x R; z(0) 0,
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(3.7)

(3.8)

moreover, if we put

(3.9)

for all [0, T], the support of u(., t) is a compact set of R,

ut+z’ux yf(1-u)-gu;

o’(t) Ia xu(x, t) dx,

(3.10)

(3.11)

the following relations must also be fulfilled:
(i) If ]0, +oo[, then

r+2-exp (-z) > 0,

[o’+ 1-exp (-z)][o-+2-exp (-z)]
z’ 2o’+2

=-r/ +
r-t-

(ii) If r/= 0, then

(3.12)

(iii) If rl +c, then

(3.13)

tr+ 1-exp (-z) 0.

r+2-2 exp (-z) 0.

Remark 3.1. To simplify the notation we have omitted the dependence on
To study Problem 3.1 the idea is to introduce an equivalent problem (see next

Problem 4.2) in terms of an integral equation for the function z; then this equation is
studied by a fixed point argument.

4. Preliminary considerations. (a) If {u, z} is a solution of Problem 3.1, we put

(4.1) p(t)=[tr(t)+2-exp (--Z)] -1,

and we have the following:

(i) If =0, then

(4.2) p(t) =- 1.

(ii) If r/= +oo, then

(4.3) p(t) =exp (z(t)).

(4.4)

(4.5)

(4.6)

(4.7)

(iii) If 7 ]0, +oo[, then

p(0) 1,

p(t) > 0, 6 [0, T],

+1p =pz’ (l-p).

(b) We now introduce the following nonlinear operator:

S: [0, +oo] x C([0, T])--> C([0, T])

for r e C([0, T]) defined as follows:

(4.8) S[O, r] 1,

(4.9) S[+oo, r] exp (r),
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and, if r/ ]0, +c[,

(4.10) S[7, r](t) exp(r(t)1 ) 1 f0 ( s-t)---t +- exp r(t)-r(s)+ ds.

It is easy to prove.
PROPOSa-ON 4.1. For every rl [0, +] and r C([0, T]) we have that

(4.11) S[rl, r](t)>O ’q’t[0, T].

PRoPosrroy 4.2. For every rt ]0, +[ and r C([0, T]), r(0)=0, the function
p Sift, r] is the unique solution ofproblem (4.4) and (4.6), with z replaced by r.

(c) We can now give a new formulation of Problem 3.1.
PROaLEM 4.1. Given r [0, +c], we look for a couple {u, z} verifying (3.5)-(3.8)

and

(4.12) S[r, z] 2-exp (-z)+ xu(x, t) dx

Problems 3.1 and 4.1 are equivalent as stated by the following proposition (the
proof of which is immediate).

PRoPOSrro 4.3. Let r [0, +oo]. We have that {u, z} is a solution ofProblem 3.1
if and only if it is a solution of Problem 4.1.

(d) Now let

(4.13) H(x, t)= y(t)f(x)+ g(x).

Following [5], we introduce the following operator (where r C([0, T])):

(Ur)(x, t)= y(s)f(r(s)-r(t)+x)

(4.14)
exp H(r(r)-r(t)+x, ’) d" ds.

Given r e C([0, r]), we put

(4.15) [r](t) max {It(s)- r(0)l, s e [0, t]}.

If v e C01 x [0, r]), we put

(4.16) suppt(v) {x e R: v(x, t) e 0},

that is, suppt(v) is the support of v, with respect to x, at the time t.
Thanks to (3.4), we can find N_, N/ R such that

(4.17) supp(f)=[-N_,N/], N_, N/> 0.

The following result can be proved by the method of [5].
PROPOSITION 4.4. (i) Let r C([0, T]). Then we have

(4.18) 0 <= Ur)(x, t) =< 1, (x, t) 6 R [0, T],

(4.19) suppt Ur) [-N_-2[r](t), N+ +2[r](t)].

(ii) If r C1([0, T]), then v Ur is the unique solution of the problem

(4.20) v, + r’v yf Hv, v(x, O) O.
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(e) If r C([0, T]), we define

(4.21) (Ar)( t) Ii x[ yf H( Ur)] dx.

The operator A has a meaning by (3.4) and by Proposition 4.4. Also let

F: [0, +] C([0, T])- C([0, T]),(4.22)

defined by

-Ar
(4.23) F[0, r]

exp (-r)+ JR Ur)(x, t) dx’

-Ar
(4.24) F[+c, r]

2 exp (-r) +R Ur(x, t) dx

and for every rt ]0, +o[

ar + (1/ q )((1- S[ rl, r])/ S[ q, r])2)
(4.25) F[rt, r]

(S[r/, r])-’ + exp (-r) + JR Ur)(x, t) dx"

The operator F has a meaning by Propositions 4.1 and 4.4. For every r/ [0, +] and
r 6 C([0, T]), we define

(4.26) Wit/, r](t) Fir/, r](s) ds.

We can now state the following problem.
PROBLZM 4.2. Given [0, +], we look for a function z verifying

(4.27) z C1([0, T]),

(4.28) z Wit/, z].

Problems 4.1 and 4.2 are equivalent as stated by Proposition 4.5.
PROPOSITION 4.5. Let q [0, +]. Then
(i) If {u, z} is a solution of Problem 4.1, then z is a solution of Problem 4.2.
(ii) If z is a solution of Problem 4.2, then the couple {Uz, z} is a solution of

Problem 4.1.

Proof (i) Let {u, z} be a solution of Problem 4.1. By (3.8) and by Proposition
4.4, it follows that u Uz. Multiplying (3.8) by x and integrating on R, we have

(4.29) r’- z’ fR Uz)(x, t) dx Az,

where r is defined in (3.9) and Az is defined in (4.21). Now put

(4.30)

By (4.12), we obtain

(4.31)

hence (by Proposition 4.2),

(4.32)

p [r+2-exp (-z)]-’.

p=S[n,z];

1
p’=pz’+-(-p), n ]0, +[.
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Recalling (4.29) and (4.30), we have

(4.33) z’ exp (-z)+ (Uz)(x, t) dx p
Using (4.8) and (4.9), we immediately obtain (r/=0, +c), respectively,

(4.34) z’= F[0, z], z’= F[+, z].

Let now r/ ]0, +c[. It follows from (4.25), (4.32), and (4.33) that

(4.35) z’= F[ r/, z], r/e ]0, +[.

Relations (4.34) and (4.35) imply (4.28).
(ii) Let z be a solution of Problem 4.2. Setting u Uz, we must prove that {u, z}

verifies (3.5)-(3.8) and (4.12). The relations (4.14) and (4.26) imply (3.5) and (3.6).
The relations (3.7) and (3.8) are a consequence of Proposition 4.4. It remains to prove
(4.12). Assume r/ ]0, +[. Let

(4.36) p= S[rt, z].

By Proposition 4.2 and (4.28), we have

(4.37) z’ exp(-z)+ u(x, t) dx =-Az
p2.

By (3.8) (already proved), after multiplication by x and integration on R, we have

(4.38) xu(x, t) dx -z’ u(x, t) dx Az.

Adding (4.37) and (4.38), recalling the initial data given by (3.6) and using Proposition
4.2, it follows that

(4.39) -exp (-z)+ IR XU(X, t) dx=l-2,
P

that is (4.12), in the special case r/ ]0, +c[. If r/ {0, +c} the proof is similar.

5. Existence and uniqueness of the solution. (a) Now set r C([0, T]),

max { r(s), s 6 [0, ]},

(5.3)

_r(t) min {r(s), s [0, t]},

E+ { 6 [0, T]" r(t) ?(t)},

(5.4) E7 { 6 [0, T]: r(t) _r(t)}.

LEMMA 5.1. If 7 ]0, +c[ and r C([0, T]), it follows that

exp(-(t))[1-exp(U-)]+exp(-S-) <S[rl’r](t)=
exp r(t)

(.)
--<_ exp (-_r(t)) [ 1 exp (-) ] + exp (-t).
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Proof. Recalling (4.10), we have

Sir/, r]( t) -_< exp r(t)- 1 +--exp (-_r(t)) exp-- ds

exp ( r( t) -) [ l + exp (-r- t))(exp t-1) ]
The opposite inequality can be proved in a similar way.
COROLLARY 5.1. Let ,1 [0, +oe] and re C([0, T]), with r(O)=0. Then we have

(5.6) if E+r, then S[ rl, r](t) > 1,

(5.7) if E-l, then S[ rl, r](t) _-< 1.

Proof. The cases rt 0 and r/= +oo are obvious. Let now r/ ]0, +oo[and E+

We have that r(t)= f(t). Hence (by Lemma 5.1),

S[, r](t)>- l-exp (-) +exp ((t)-).
Recalling that r(0)= 1, it follows that (t)=> 0. We have so obtained (5.6). The proof
of (5.7) is similar.

(b) Now put

(5.8) r(t)= v(s) ds.

We can now prove the following lemma.
LEMMA 5.2. Let rl [0, +oo] and z is a solution of Problem 4.2. Then we have

(t [0, T])

(5.9) z(t) _--> -log 1 + N+F(t) f(x) dx

where N/ is defined in (4.17).
Proof. Let ? E. Put

(5.10) I(?)=f+x(Uz)(x,?)dx._
Recalling (3.2), (3.3), (4.13), and (4.14), it follows that

I(?)<-_ x y(s)f(z(s)-z(?)+x) dsdx.

Changing the order of the integration and setting y= z(s)-z(?)+x, we have

I()<-_ y(s) (y-a(s))f(y) dy ds,

where a(s)= z(s)-z(?). Since ?E?, it follows that a(s)>-O (s[O, t-I). Hence,

io ioI(?) _<- y(s) yf(y) dy as <- N+r() f(x) dx.
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Recalling now the equivalence between Problems 4.1 and 4.2 (see Proposition 4.5), it
follows that

(S[rl, z](?))-l+exp(-z(?))-2<- N+F(?) f(y) dy.

Since ? E, by Corollary 5.1, we have that Sir/, z](?)<= 1. Hence,

exp (-z(?))_-< 1 + N+F() f(y) dy.

This proves Lemma 5.2 in the case e E 2. If e [0, T], then there exists ? e E2, such that

0_-< _-<t, ()-<_ z().

It follows that F( ) >_- F( ?), and

z(t) >_- z(-) >_- -log 1 + g+r(t) f(y) dy

as we needed to show.
(c) Now let

(5.11) K N, K > N+r(T) f(x) dx4
1 -exp (-N_)’

where N/ and N_ are defined in (4.17). Then we have Lemma 5.3.
LZMMh 5.3. Let rl [0, +]. If z is a solution of Problem 4.2, then

(5.12) z(t)<-KN_.

Proof. By contradiction, we can put (k 0, 1,..., K)

tk min { [0, T]: z(t) kN_}.(5.13)

Then we have

(5.14)

(5.15)

Now put

(5.16)

If k_-> 1, it follows that

(5.17)

where

0 =to<t1<" "<tK,

Z( lk) kN_, tk E+

Ik J1 +J2,

I00 J* tk
J1 x 3/(s)f(z(s) kN_ + x) ds dx,

o

J2 x /(s)f(z(s)- kN_ + x) ds dx.
tk-

We have that

(5.) , =0.

Indeed if s[O, t_], it follows that z(s)(k-1)N_; hence, if xO,
z(s)-kN_+-N_.
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Recalling (4.17), we obtain (5.18). Setting y= z(s)-kN_+ x, we have

J_ y(s) [y fl(s)]f(y) dy ds,
tk_ --N

where fl(s)- z(s)-kN_. Since s[tk-1, tk], it follows that fl(s)<-_O. Then we have

J2 >= y(s) yf(y) dy ds;
tk_ N_

hence

(5.19) J:>-_-N_[r(t)-r(t_,)] Ioo f(x) dx.

By (5.16)-(5.19), it follows that

(5.20) I+x( Uz)(x, tk) dx >=-N_[F(tk)-F(tk_l)] ff(y)
Using the equivalence between Problems 4.1 and 4.2 and recalling Corollary 5.1 (since
tk E+z ), we obtain that

1 -<exp (-kN_)+ N_[(F(tk)-F(tk_l))] I U f(y) dy.

Adding with respect to k (k 1,..., K), we have

K =< exp (-N_) 1-exp (-KN_)
1-exp (-N_)

+ N_r(70 Io f(y dy,

hence

1 exp (-N_)
+ N_r(r) Io f(y dy,

which contradicts the (5.11).
(d) Notice that the estimates of Lemmas 5.2 and 5.3 are independent of 7

[0, +]. Recalling also Lemma 5.1 we obtain immediately the following.
LEMMA 5.4. If Z is a solution of Problem 4.2, then there exists a constant Cl > 0

(independent of q [0, +c]), such that

(5.21) Iz(t)l < c, [o, y],

(5.22) exp(-2cl)<=S[rhZ](t)<--exp(2cl), t[0, T].

(e) It is easy to prove Lemma 5.5.
LEMMA 5.5. There exists a constant c2 > 0 such that for r C([0, T]), with

(5.23) Ir(t)[<=Cl, t[0, r],

we have that

(5.24) I(Ar)(t)l c_, [0, T],

where Ar is defined in (4.21) and Cl is the constant appearing in Lemma 5.4.

Proof. It is a consequence of (3.1)-(3.4) and of Proposition 4.4.
(f) Looking at the formulation of Problem 4.2 and recalling Proposition 4.4 and

Lemma 5.1, it is easy to find c3(r/)> 0 such that
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for all r C([0, T]) verifying

(5.26) Ir(t)l -< Cl, [0, T].

For more details, see [5]. Always following [5] (see also [7]), we can.now apply the
theorem of Browder [1] or (equivalently) the degree theory to obtain the following
existence and uniqueness result.

THEOREM 5.1. Let q [0, +o]. Then there exists one and only one solution of
Problem 4.2.

Remark 5.1. Thanks to (5.25) we can find a bound for z’ depending on r/ [0, +c].
Having in mind to prove a theorem on the asymptotic behavior of the solution for
r/$ 0 and for r/- +o, we need a stronger estimate. We shall do this in the next section.

6. Asymptotic behavior. (a) From now on we specify the dependence on r/, writing
z, for a solution of Problem 4.2 with r/ [0, /c]. Also put

(6.1) u, Uz,,
(6.2) p, S[, z,].
With the new notation, Problem 4.2 can be written in the following way:

Azo(6.3) z= exp (-Zo)+a Uo(X, t) dx’

Azoo
(6.4) z

2 exp (-z)+a uoo(x, t) dx’

Az, + 1//((1 -p,)/p)
(6.5) z r/ ]0, +[p+exp (-z,)+ u,(x, t) dx’

with the initial condition

(6.6) z,(0)--0,
Since p, is defined by (6.2), it follows that

(6.7) p;=p,z; + 1
(1-p,) p(0)= 1

(6.8) Po 1, p exp (z).

Later the following relation will be useful:

(6.9) z’ Azn+P-2P’n
exp (-z,)+a u,(x, t) dx’

obtained by (6.5) and (6.7).
Now let

n [0, +].

n e ]0, +[,

n ]0, +o[

(6.10) /zn exp (-zn).
Relation (6.5) can be written as

Azn + (1//)((1 -Pn)/P)
(6.11) /xn =/xn ;’+ +$ u.(, t) ax’

Recalling (4.10) and (6.2), we have

(6.12) pn(t)

n ]0,

/(t)
exp +--

/ (t) exp



MATHEMATICAL MODEL OF CONTRACTING MUSCLE 605

Integrating by parts, it follows that

(6.13)
(s) s-

p,( t)- 1 txn exp ds,
Ix, rl

n e ]o, +[.

Recalling (6.11), we have

(6.14)
--1 J’O ].L (S) exp ((S t)/rl) dsAz, + 1/ r )p-2tx ,

pl +l +t un(x, t) dx

(b) We begin the study of the asymptotic behavior of the solution with the
following lemma.

LEMMA 6.1. We have that

1
(6.15) lim--= 1 weakly in L-(]0, T[),

no pn

(6.16) lim p, exp (-z,)= 1 uniformly in [0, T].

Proof. If r/ ]0, +[, we have that

1
+--(1 -p,).(6.17) p =pnz,

Hence

(6.18) lgpn(t)-zn(t)=l lo; ( 1 )q pn( -1 ds.

Recalling Lemma 5.4, it follows that (/$ 0)

pn(s)
1 ds-O, t[O, T].

Hence

1
(6.20) ---> 1 in ’(]0, T[).

P,

Let now Tn be a sequence such that /n0. By Lemma 5.4, the sequence 1/p,.
is bounded in L2(]0, T[). Then there exists a subsequence 1/p,. which converges to
l L2(]0, T[) (weakly). But, thanks to (6.20), we obtain that l= 1. Hence

1
lim 1 weakly in L2(]0, T[),
,o pn

that is,

lim (s)- 1 th(s) ds 0 Vth L2(]0, T[).
n$o

This proves (6.15). Let us now prove (6.16). Recalling Lemmas 5.1 and 5.4, it follows
that

p(t) exp (-zn(t))- l <---- [1-exp (-)][exp cl-1];

hence

(6.21) pn(t) exp (-zn(t))- 1 _<_t [exp C 1].
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In a similar way, we have

(6.22) pn(t) exp (-zn(t))- 1 _>---t [exp (-Cl)- 1].

This proves (6.16).
for r/ not too small.Now we prove an estimate on z,,

LEMMA 6.2. For every c3 > O, there exists Ca > 0 (independent of q ), such that

(6.23) Iz(t)l_--<C4 Vt[0, T] Vr/]c3,+o].

Proof It is an easy consequence of Proposition 4.4 and Lemmas 5.4 and 5.5.
(c) It will be more difficult to prove the estimate on z for r/small. We begin by

proving Lemma 6.3.
LEMMA 6.3. There exists a constant c5> 0 (independent of q [0, +]) such that

’(t)<c5 Vt[0, T].(6.24) z,
Proof. The relation (6.24) is obvious for r/=0, +. Now we assume that rt

]0, +[. Thanks to (6.10) and Lemma 5.4, it is sufficient to prove that

’(t) > C6 Vt[0, T](6.25) /x,

where c6 is independent of r/. Let us fix now r/ ]0, +c[ and put (? may depend on r/)
(6.26) ?[0, T]’/x([)<_-/x(t), t[0, T].

()<0.We can obviously assume that/z,
We now distinguish two cases.
Case 1. We assume that p,(?)<-1. In this case, using (6.11), we have

(Az,)([)(6.27) /x([) -> ’()p;’()+g,()+I u,(x, ) dx"
Thanks to Proposition 4.4 and to Lemmas 5.4 and 5.5, this means that there exists c
(independent of /) such that

(6.28) if p,()-_< 1, then/x’(?)_-> c.
Case 2. We assume that p,(?)> 1. Recalling Proposition 4.4 and the relation

(6.14), it follows that there exists a constant C (independent of r/) such that

1 otXn(s) exp((s-t)/l) ds
(6.29) /z n() => C +--

/ p,(?) +p2(?)tz,()
Recalling (6.26) and the assumption p,([)> 1, we obtain

1
(6.30) /x([) > C + (?)

1+/x,(?)
x ,

Using Lemma 5.4, it follows that if p(?)> 1,

exp (-c)
(6.31) /z(?)=> C

1 +exp (-c)"
Recalling (6.28), we obtain (6.25), as needed.

(d) We can now prove Lemma 6.4.
LMMa 6.4. There exist two constants c6, c7 > 0 (independent of rl ]0, +co[) such

that

(t) > --C6, e [0, T],(6.32) p,

(6.33)
1 -pn(t) _> -7, e ]0, T[.
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Proof. Recalling the relation (6.9) and using the estimates already proved, we
readily obtain the relation (6.32). The proof of (6.33) is similar, but starting from the
relation (6.5).

LEMMA 6.5. We have that

(6.34) Pn - 1 uniformly in [0, T].

Proof. Let

pn(t)-l+c6t, t[0, T],
(6.35) qn(t) exp 2Cl-Pn(T)

T
(t- T)+Pn(T)-I+c6T t[T, 2T]

where Cl and c6 are the constants appearing in (5.21) and (6.32). Thanks to Lemmas
5.4 and 6.4, {qn} is an equicontinuous family of nondecreasing functions defined in
[0, 2T], which verify

(6.36) qn(O) =0, qn(2T) =exp 2c 1 + c6T.
Looking at the graph of qn with respect to a new couple of coordinate axes rotated
by 7r/4 (in the positive sense), we obtain a new family of functions {An} that verify
(p independent of r/)
(6.37) An [0, p]- R

(6.38) {An} are uniformly bounded,

(6.39) An are equi-Lipschitz (with Lipschitz constant _<-1).

By the Ascoli Theorem, for every sequence An. (r/, $ 0) there exists a subsequence A "tin

such that

(6.40) An.- X uniformly in [0, p],

where is a bounded and Lipschitz function (with Lipschitz constant =< 1). Going
back to the original axes, the function becomes a bounded (not necessarily con-
tinuous) nondecreasing function h. Moreover we have that

(6.41)
for each [0, 2T] where A is continuous. Since A is a monotone function, it follows
that

(6.42) qn.k A a.e. in [0, 2 T].

Recalling the definition (6.35) of q.ri, we obtain

(6.43) p.ri. A -4- 1--c6t a.e. in [0, T].
By Lemma 5.4, we have that A(t)+ 1-c6t > 0 (almost everywhere in [0, T]). Hence,

1 1
(6.44) Pn.--( t- A t) + 1 c6t

Comparing with (6.15), it follows that

a.e. in [0, T].

(6.45) Pn - 1 a.e. in [0, T].
Since the limit function is continuous we obtain easily that the convergence is uniform
in [0, T].

(e) Lemma 6.4 allows us to prove the following estimate:
LEMMA 6.6. There exist two constants c8, c9 > 0 (independent of q such that

’(t)>-c8, t[0, T], r/[0, c9].(6.46) zn
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Proof If r/=0 the proof is obvious. As in the proof of Lemma 6.3, we can
equivalently prove that

(t)< c t6[0, T],(6.47) /x,

where/x, =exp (-z,). Given r/ ]0, +oo[, let ? [0, T], verifying

’(?)> ’(t), t[0, T].(6.48) /x, =/x,

The value ? may depend on r/. Obviously we can assume that /z(?)=> 0. Recalling
(6.14), we have

1
(6.49) /z(?) =< C + 2 /z’ (?).

p,(?) +pn(?)/z,() "
Hence, by Lemma 5.4,

1
(6.50) /z(?) -< C + 2 /x’(?).

p,(-) +p,() (-el)exp

That is

(6.51) /z(-)Bn <= C,

where

(6.52) B, 1-
p.(?) +p2.() exp (-c,)"

By Lemma 6.5

(6.53)
exp (-Cl)

lim B,
,+o 1 / exp (-cl)

Hence there exists C9> 0, such that

1 exp (-ca)
(6.54) B,->--2 l+exp (-Cl)’ ’1 ]0, C9[

that is,

(6.55) /z.() <2C
1 +exp (-cl)
exp (-c,)

(f) The following result can now be obtained.
LEMMA 6.7. There exists a constant c > 0 (independent of 7 ]0, +o[) such that

(for all [0, T])

(6.56) ]z,(t)l c,

(6.57)

(6.58) lll-p,(t)l<=c.

Proof The relation (6.56) is a consequence of Lemmas 6.2, 6.3, and 6.6. The
relations (6.57) and (6.58) are implied by (6.56) and the relations (6.9) and (6.5).
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(g) At last we are now able to prove a result on the asymptotic behavior of the
solution for r/- +o and for rt $ 0.

THEOREM 6.1. We have that

(6.59) lim z, Zo uniformly on [0, T],
n$o

(6.60) lim z, zoo uniformly on [0, T],

where Zo (respectively, zn, zoo), is the solution of Problem 4.2 for q =0 (respectively,
v ]0, +o[, v +).

Proof We begin proving (6.59). Let r/, be a sequence such that r/, $ 0. By Lemmas
6.5 and 6.7, there exist a subsequence r/, and _z 6 C([0, T]) such that

(6.61) lim p,.k 1 uniformly in [0, T],

(6.62) k+oolim Zn. =_Z uniformly in [0, T],

(6.63) lim p. 0 weakly in L2(]0, T[)
k-+oo

(6.64) lim z’ =z’ weakly in L2(]0, T[)
k + "rink

Now let (r/ [0, +c])

(6.65)
1

Ort (l) 2pn(t)[exp (--zn(t))+R (Uzn)(X, t) dx

By (6.61) and (6.62) we can prove easily that

(6.66) lim
k-.+oo exp (-_z)+ JR U_z dx

hence,

(6.67) lim p’
k.-* +oo

.qn O qnk

uniformly in [0, T];

=0

in @’(]0, T[) (for instance).
Passing to the limit (as k- +o) in the relation (6.9), it follows that

(6.68) z’=
A_z

exp (-_z)+ JR (U_z)(x, t) dx’

which implies that _z C1([0, T]). This means that _z Zo, where Zo is the unique solution
of Problem 4.2 with 7 0. Since the limit function _z is independent of the sequence
r/,, the relation (6.59) follows. We conclude by proving (6.60). Let 7, be a sequence
such that r/,+c. By Lemmas 6.1 and 6.7, there exists a subsequence r/, and

C([0, T]) such that

(6.69) lim z uniformly in [0, T]
k +oo "rink

(6.70) lim pn.k =exp () uniformly in [0, T],

(6.71) lim z’ =’ weakly in L2(]0, T[)
k + "rink
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Recalling Lemma 5.4 and passing to the limit in the relation (6.5), we have

A
(6.72) ’= -2 exp (-)+a U)(x, t) dx"

As in the case r/$0, we can now obtain (6.60).

7. Numerical alproxilnatiaa. The equivalent formulation of Problem 2.1 in Prob-
lem 4.2 suggests a first way to approximate the solution. It comes down to numerically
solve an integrodiiterential equation along a characteristic line. This is a rather classical
task.

Another approach, which we have used to obtain numerical simulations in [8],
consists in solving Problem 2.1 directly in an implicit way at each time level. The
underlying idea is like the one introduced in [17] and next adapted in [5], [7], [9],
13] for solving models with elastic passive elements. After a discretization of the time
with step At, we suppose to know the approximated values (x, t) for x R and we

want to compute (x, + At). This is achieved in two successive steps.
Step 1. Neglecting the interfilament notion, we solve the equation

dn(x, t)
(7.1) -f(x)y(t)(1-n(x, t))-g(x)n(x, t) from to t+At.

dt

We denote ,(x, / At) the solution, which is, therefore, the result in (t, + At) only
of the chemical processes of association and dissociation of bridges.

We denote by FCE,(t + At) the corresponding contractile element force, that is,

(7.2) FCE,(t+At)=k [* ,(, t+At)ds.
Now, in order to restore the equilibrium of the contractile and series forces we must
suitably translate ,(x, + dt) (interfilament motion).

Step 2. We set

(x, + At) .(x + , + At), x R.

The shift number is computed from (2.9) in the following way. We denote, for the
sake of brevity, by t(t+ At) the contractile force related to the translated function
fi.(x + , + At), that is,

(7.3) #(t+At) (.o a.(+ 8, t+At)ed.

Note that as a. vanishes for Ixl- +o we have

ff( + At) cro( + At) 6KCE,(7.4)

where

KCE,= ,(, t+At) ds, Cro= FCE,(t+At).

We discretize now (2.9) by means of an implicit scheme by setting

dcr(t+At) ((t+At)-(t))
dt At

de(t+At) (e(t+At)-e(t))
dt At
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Note that e(t + At) e(t) + 6. The shift parameter ; is then the solution of the following
nonlinear equation:

( + At) 6"( t) t
At At

(2ab + b6-( + At))

b
(7.5) -(#(t + At) a(exp (b(e(t) + 6 eo)) 1))

(a+#(t+At)-a(exp(b(e(t)+6-eo))-l)).

There exist two solutions of (7.5) one of which is spurious because of the term
(a + tr-Crp); this one could be eliminated by computing the last term in instead of
+ At (semi-implicit method). The good solution is that which in the limit case 7 0

gives" r(t + At) trp(t + At), the equilibrium between contractile and series forces. This
value can be in practice easily computed by means of Newton method.

Adapting the analysis developed in [9] and [13] for the elastic passive elements
models, it is possible to prove that for At 0 we have the convergence of (x, t) to
n(x, t) in particular the uniform convergence of FCE(t) to FCE in [0, T], T> 0 fixed.
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BOUNDARY INTEGRAL OPERATORS ON LIPSCHITZ DOMAINS:
ELEMENTARY RESULTS*
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Abstract. The simple and double layer potentials for second order linear strongly elliptic differential
operators on Lipschitz domains are studied and it is shown that in a certain range of Sobolev spaces, results
on continuity and regularity can be obtained without using either Calder6n’s theorem on the L2-continuity
of the Cauchy integral on Lipschitz curves [J. L. Journ6, "Calder6n-Zygmuno operators, pseudo-differential
operators and the Cauchy integral of Calder6n," in Lecture Notes in Math. 994, Springer-Verlag, Berlin,
1983] or Dahlberg’s estimates ofharmonic measures ["On the Poisson integral for Lipschitz and C domains,"
Studia Math., 66 (1979), pp. 7-24]. The operator of the simple layer potential and of the normal derivative
of the double layer potential are shown to be strongly elliptic in the sense that they satisfy Grding inequalities
in the respective energy norms. As an application, error estimates for Galerkin approximation schemes for
integral equations of the first kind are derived.

Key words. Lipschitz domains, layer potentials, trace lemma, jump relations, Green’s formula, Galerkin
approximation, Grding’s inequality
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1. Introduction. Boundary value problems on Lipschitz domains and the method
of layer potentials for their solution have attracted some attention in recent years both
in the theoretical and the applied mathematical literature.

On one hand, the final proof by Coifman, McIntosh, and Meyer [5] of Calder6n’s
Theorem on the L2-continuity of the Cauchy integral on Lipschitz curves and
Dahlberg’s estimates [10] of the Poisson kernel paved the way for investigations of
the Dirichlet and Neumann problems for the Laplace equation by means of boundary
integral equations [12], [21], [27]. This method was also applied to some boundary
value problems for the equations of linear elasticity theory [20].

On the other hand, in the applied sciences, the so-called boundary element methods
are frequently used for domains with corners and edges without mathematical analysis
being available. As long as there exists no elementary proof of Calder6n’s theorem
and its consequences, it seems justified to study the range of possible results obtainable
without this deep and, for the nonspecialist, not easily accessible result.

We use throughout the weak (distributional) definition of boundary values and
show that the operators of the simple layer, the double layer, the normal derivative of
the simple layer, and the normal derivative ofthe double layer define bounded operators
in those Sobolev spaces on the boundary that correspond to the "energy norm," i.e.,
to the variational formulation of the boundary value problem. The simple layer and
the normal derivative of the double layer define strongly elliptic operators. This implies
stability of corresponding Galerkin approximation schemes.

In order to show continuity of the operators in a certain range of Sobolev spaces,
we prove a generalization of Gagliardo’s Trace Lemma (Lemma 3.6) and use regularity
results for the Dirichlet and Neumann problems by Neas [23]. Neas obtained these
results by elementary means, applying an identity of Rellich that had been used for
similar purposes by Payne and Weinberger [24] and recently by Jerison and Kenig
[16],[17] and Verchota [21],[27]. The same tools yield regularity results for the
solutions of the integral equations and also invertibility under some hypotheses on the

* Received by the editors December 16, 1985; accepted for publication (in revised form) June 18, 1987.

" Mathematisches Institut, Technische Hochschule Darmstadt, D-6100 Darmstadt, Federal Republic
of Germany.
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differential operator and its fundamental solution satisfied for instance in the case of
the Laplace operator unless the domain is a subset of R2 with analytic capacity equal
to one.

This work is part of the author’s habilitation thesis [7]. Further results concerning
strong ellipticity of boundary integral operators for higher order differential equations
on smooth domains have been published [9]. That paper also contains an extensive
list of references on the Calder6n-Seeley-H/Srmander method of boundary integral
equations for elliptic boundary value problems and on the history of strong ellipticity
for boundary integral operators. Let us mention here only two references from each
of these two fields" The books by Chazarain and Piriou [4] and by Dieudonn6 [11]
describe the method of the Calder6n projector of elliptic equations of any order on
smooth domains. The lecture notes by Nedelec [22] and the paper by Hsiao and
Wendland [15] contain, for the example of the Laplace operator on smooth domains,
the idea of transforming the strong ellipticity of the differential operator via Green’s
formula into the strong ellipticity of certain operators on the boundary (see the proof
of Theorem 2 below).

2. Main results. In this section we state the main results of this paper. Proofs are
given in 4.

Let f c R" be a bounded Lipschitz domain. This means that its boundary F is
locally the graph of a Lipschitz function. For properties of Lipschitz domains we refer
to Neas [23] and Grisvard [14]. Because of the invariance of the Sobolev spaces
HS= WS’2 under Lipschitz coordinate transformations for Isl <--1, we can define the
spaces H(F)([s[ <_-1) in the usual way using local coordinate representations of the
Lipschitz manifold F. The same reason implies Gagliardo’s Trace Lemma:

TO" U yoU := UlF" HlSoc(R n) --> Hs-1/2(F) is continuous

(2.1) and has a continuous right inverse

yff" H-/2(F) -> HlSoc(") for all s (1/2, 1 ].

Here traces are understood in the distributional sense, i.e., the mapping yo is well
defined for smooth (say continuous) functions, and for arbitrary u HlSoc(Rn) it is
defined by approximating u by smooth functions.

Let

(2.2) P= O,a, O + b, O, + c
j,k=l j=l

be a differential operator with C(R"; C)-coefficients ajk, bj and c. Here 0 =O/Ox.
We emphasize that all results will also be valid in the case of systems, i.e., for

matrix valued coefficients ak, b and c. It is only for notational convenience that we
stick to the scalar case.

We assume that P is strongly elliptic which implies that for the bilinear form

(2.3) a(u, v) := In ( a,OuO,--+ b,O,u+cu)dxj,k=l j---1

there holds a Grding inequality on all of Hi(O)
(2.4) Re u)> Ilull , cllull = for all u e Hl(f)L2(

with some > 0. (In the case of systems we have to require (2.4) explicitly. It holds,
for example for the equations of linear elasticity theory by viue of Korn’s inequality
[23, p. 194].)
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Furthermore we assume that P has a fundamental solution G that is a two-sided
inverse of P on the space of compactly supported distributions on ". Then G has a
weakly singular kernel that we also denote by G, and the function (x, y)--)G(x, y) is
C outside the diagonal of " x R".

For a locally integrable function v on F we then can define the simple layer potential

(2.5) Kov(x) := j G(x, y)v(y) ds(y) (x "\F)

where ds is the surface measure on F, and the double layer potential

(2.6) K,v(x) := j O(y)G(x, y)v(y) ds(y).

Here 0 is the conormal derivative

(2.7) 0 := njajk Ok,
j,k=l

where n are the components ofthe almost everywhere defined outward pointing normal
vector.

The boundary integral operators are defined by taking the boundary data of Ko
and K1 (in the distributional sense; see (2.1) and Lemma 3.2 below)

Av := yoKov, Bv :-- /1 (Kovln),
(2.8)

cv := o(g,vl), Ov :=

Here ’Yl U :"- oUlr and 35, u := OU[r j%l nbulr.
Under these assumptions, we have the following continuity result.
THEOREM 1. For all cr (-1/2, 1/2) the following operators are continuous"

L/l+o’/Dn(i) Ko H-’/+(r)- ,,,oc ,,, );
(ii) K, :H’/Z+(F)
(iii) A H-’/z+(F) H’/:+(F);
(iv) B H-’/:+(F) H-’/-+(F);
(v) C:H’/:+’r(r) H’/2+(F);
(vi) D H1/2+’(F) H-1/:+(F).
Remark. As shown by Verchota [27] and Jerison and Kenig [16],[17], the

Calder6n and Dahlberg theorems give the above results for the endpoint tr 1/2. An
argument using duality and interpolation then allows to cover the whole range tr

[-, 1/2], which is optimal in the sense that, for Lipschitz boundaries, Sobolev spaces
H(F) with I1 > 1 cannot be defined in a unique invariant way.

The operators A and D are strongly elliptic.
THEOREM 2. There exist compact operators

TA H-’/2(F) --) H’/2(F), To:H’/2(F) --) H-’/2(r)
and constants Am, At) > 0 such that

(2.9) Re((A+ TA)V, for all v H-’/2(F),
(2.10) Re((D+ TD)V, e>-> xollvll ,., (, for all ve H1/2(F).

Here the brackets (., denote the natural duality between a Sobolev space H (F)
and its dual H-(F).

The following regularity result holds.
THEOREM 3. Let tr [0, 1/2] and let g, H-’/2(F) and v H’/2(F) satisfy

Ag, H1/2+(F) or Bg, e H-’/2+(F)
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and

Cv H1/2+(F) or Dv H-1/2+(F).
Then b H-1/2+(F) and v HI/2+(F), and there hoM the a priori estimates

Now let (Sh)h>O be a family of subspaces of H-1/2(F) with the propeay that the
ohogonal projection operators onto Sh tend strongly to the identity in H-/:(F) for
h0.

For the equation

(2.15) Av g with g H1/:(F)
we consider the Galerkin scheme

(2.16) Find Vh Sh such that (mVh, W)= (g, W) for all w Sh.

From Theorem 2 then follows stability and convergence in H-/:(F). Note that Theorem
2 implies that the operators A and D are Fredholm operators of index zero.

THEOREM 4. If the operator A: H-1/2(F) H1/2(F) is injective then for any g
H/:(F) there is a ho>0 such that for all 0<h <ho the Galerkin scheme (2.16) has a
unique solution Vh Sh. For h 0, Vh converges to the unique solution v H-1/:(F) of
(2.15) quasioptimally, i.e., there exists a constant C such that for all 0< h < ho
(2.17) f

Of course, a corresponding result holds for the operator D.
From Theorem 3 we can deduce asymptotic error estimates using (2.17). We

assume for instance that Sh are regular finite element spaces, in the simplest case, e.g.,
consisting of functions piecewise constant on F that are constant on the faces of a
triangulation of F quasiuniform with respect to h where h is the meshsize. Then there
holds the following theorem.

THEOREM 5. Let A be injective as above and g H(F). en there is a constant
C such that for all 0 < h < ho

3. The tools. In this section we collect some results, some new but most of them
known, and adapt them to the present situation.

We need some fuher notation.
Homp(n) is the space of distributions in H with compact suppoa. It is thus in

a natural way the dual space of H(").

L

P’ :=- OjajkOk- Ojbj + c is the formal transpose of e
j,g= j=l

We may assume ajk akj without restriction.
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By pO we denote any operator with the same principal part as P and positive on
H (). We may take, e.g.,

OjajkOk/A withA>0.
j,k=l

Thus there holds with some h > 0

(3.1) Re(Pu, for all u C2(1).
It follows with the trace lemma (2.1) that for pO the Dirichlet problem is uniquely
solvable in the weak sense.

LEMMA 3.1. The Dirichletproblem

pOu O in f, you v

hasfor v H1/E(F) a unique solution u := Tv HI(I). The solution operator T" H1/2(F) -Hp(l)) is continuous.
From the partial integration formula

fia(Ojuv+uOjv) dx--Iruvnjds for u, vGH()

follow [23] the first Green formula

(3.2) fa OPu dx Oi,n(u, v)- Iv OuO ds for v Hl(fl), u H2(I)

and the second Green formula

(3.3) f(uP’v-vPu) clx= fr(vou-uov) cts for u, vH()

where we defined

Ou :--- Ou njbju.
j=l

Now let u be a function defined on R" such that

u := u [ C(fi) and u:= u [ Comp( ),

where 1 := "\1 is the exterior domain. Let f:= Pu I"\r and let

[u]:= yoU2-yoU denote the jump of u across F.

Then there holds the representation formula (for x R"\F)

(3.4) u(x)= Gf(x)+ fr (Oy)G(x, y)[u(y)]-G(x, y)[Ooy)U(y)]) ds(y).

We shall need equations (3.2)-(3.4) for more general functions. To this purpose,
we first define the conormal derivative in the weak sense by using the first Green
formula (3.2). Recall y- from (2.1).

LEMMA 3.2. Let u Hp(I). Then the mapping

o -(yu, o):= n(u, yo)-f Pu. yq dx
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is a continuous linear functional TlU on H1/2(F)that coincides for u H2(l)with the
functional defined by Ovu Ire L2(F)c H-1/2(F).
(3.5) The mapping 3,1"H(1)--> H-1/2(F) is continuous.

The following lemma was shown by Grisvard 14] for the case P -A. The proof
works verbatim for the present case.

LEMMA 3.3. C(fi) is dense in the Hilbert space Hlv(f).
Thus we can extend (3.2)-(3.4) by continuity.
LEMMA 3.4. (i) The first Green formula in the form

(3.6) f Pudx=a(u, V)--(’ylU ">
holds for all u HIp(I), v 6 Hl(l’).

(ii) The second Green formula in the form

(3.7) fn (uP’v-vPu) ax=(’u, 3,oV)-(ylv, ToU)

holds for all u, v H(f). Here we define, corresponding to the definition of

y"u:= T u
,

njbjyoU.
j=l

(iii) The representation formula in the form
(3.8) u(x) Gf(x)+(ylG(X," ), [yoU])-([lU], G(x,. )) (x

holds for all u L(Rn)with u], n(f), u],c6 ncomp(- ), andf= Pul\re Lz(N ).
The proof is immediate if we keep in mind that H,, H,(f) and that yl remains

the same, whether defined from P or from P’. For (3.8) we need only (3.7) and the
representation formula (3.4) for a smooth domain, let us say a small ball enclosing
the point x.

The following result will be needed in the proof of the jump relations (Lemma 4.1).
LEMMA 3.5. The trace map

(’Y0, ’Yl): ( I’-’ (’Y0(0, 1(0)

maps Cmp(l") onto a dense subspace of H1/2(F) H-/(F).
Proof. Assume that for some (X, ) H1/(F) H-/(F) there holds

(3.9) (X, ylO)= (#, yo0) for all o Ccmp(n).
We have to show that X # 0.

Let TX Hv(I) be the solution of the Dirichlet problem (see Lemma 3.1)

PTx=O inf,, yoTX=x.

For arbitrary f L2(f) let Sf Hlv(f) be the unique weak solution of the Dirichlet
problem

pOsf f in f, yoSf O.

The second Green formula (3.7) for the operator pO= pO, gives

<’)tlSf />- <llSf ToTX>-<TI TX, yoSf>
(3.10)

f.(Sf PTx- PSf Tx) dx= fafTx dx.
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Now (3.9) holds for all e H,(12) due to Lemma 3.3, in particular for Sf; hence

(,sf, x) (e, oSf) o.
This gives from (3.10)

Txdx=O for all fe L2(l)).

Thus TX 0 whence X To TX 0. From (3.9) now follows

(, yoq)=O for all q HI()
which implies b 0 because of the surjectivity of

To: H’(l)) - H’/=(r).
The continuity of the simple layer potential operator, Theorem 1 (i) and (iii), will

follow from an extension of Gagliardo’s Trace Lemma, which seems to be new.
LEMMA 3.6. For s (1/2, ) the trace map

To: u- yoU ulr: Hoc(Rn) - Hs-/2(F) is continuous.

This result for s =, from which the whole range s (1/2,] would follow by
interpolation, is claimed by Jerison and Kenig [18]. However, there seems to be no
proof available. The proof of Lemma 3.6 is given at the end of 4.

The last tool we need is Neas’ result on the boundary regularity for the Dirichlet
and Neumann problems.

LEMMA 3.7. For o" [-1/2, 1/2], the mapping 3’1 T" H1/2+(F) H-1/2+(F) is con-
tinuous, and T1Tv H-1/2+(F) implies v H1/2+(F).

Remarks. (i) Here the result for r < 0 means, as above, the existence of a con-
tinuous extension of the map defined for tr 0.

(ii) Neas [23] showed that solutions of the Dirichlet problem with Dirichlet data
in H(F) have their Neumann data (i.e., conormal derivatives )in L(F) and conversely.
This is proved by applying an identity of Rellich, generalized to arbitrary second order
equations by Payne and Weinberger. Thus it uses only partial integration and is
completely elementary. The same argument has been used by Jerison and Kenig
[16],[17] and Verchota [27],[21]. Having thus proved the result for r=1/2, Neas
deduces the result for tr=-1/2 from a duality argument. The whole range tr [-1/2, 1/2]
then clearly follows by interpolation.

4. The proofs.
Proofof Theorem 1 (i) and (iii). By definition (2.5) we can write the simple layer

potential as

(4.1) Ko G 3’,

where y is the adjoint of the trace map To. By Lemma 3.6 we find that To: H-s+I/2(F) -Hc-omp(R") is continuous for s (1/2, ). The operator G is a pseudodifferential operator
of order -2 on E", mapping Hc-omp(E") Ho+2(E") continuously for any s . Thus
Theorem 1 (i) follows. The continuity of the operator A ToK0 then follows by a second
application of Lemma 3.6. Iq

Remark. If instead of Lemma 3.6, we use only the classical result (2.1), we find
for theorem l(i) only a range tre [0, 1/2), and for (iii) only cr =0 remains.

Next we use the representation formula (3.8) in order to write the double layer
potential in terms of the simple layer potential. Writing (3.8) for a solution of the
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Dirichlet problem u Tv Hp(O) for v Hi/2(F), we obtain Tv=-Klv+ Ko,lTv;
hence

(4.2) KI= (-1 + KoI)T.

This immediately implies that

(4.3) K1: H1/2(’) Hi(l]) is continuous.

Thus, using (2.1) and Lemma 3.2, we obtain all statements of Theorem 1 for tr 0
(i.e., in the "energy norm").

This will suffice to prove Theorem 2. The remaining cases of Theorem 1 will be
shown together with Theorem 3.

Now we prove jump relations for the layer potentials. We use the notation
introduced above

LEMMA 4.1.

[yjU]:= Yj(UlW)--Y(U[,) for j=0, 1.

[yoKo]=0, [’ylKo/]-- for H-1/2(F),

[yoKlv] v, [3lKlv] 0 for v H1/(F).

Proof. Let 4, H-1/2(F) and u= Koff Hoc(’). The equality o(U],) o(U],)
follows from the definition of Yo. From (4.1) we obtain Pu ff, if we apply P in the
distributional sense to u. For any test function Cmp() we thus obtain

(4.4)

On the other hand, the second Green formula (3.7) gives

auP’
dx=((ul,), 0)--(1, 0U)

The corresponding formula for is

uP’ dx=-((u]a), o)+(1, oU).

Adding both, we obtain with yoU] o [] 0

(4.5) un’ dx -([u], ro).

Comparison of (4.4) and (4.5) gives [ylU]=-ff, and from [yoU]=0 follows [yu]=
[u] -6.

In order to show the jump relations for the double layer potential, we choose
v H/2(F) and Cmp() and define u= KlV. Then again the second Green
formula gives

(4.6)
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On the other hand, the definition of K1 gives u Klv G(yv), where the compactly
supported distribution on ", yv is defined by

(yv, X) v OX ds (v, yaX) for all X e Ccomp( ).

Thus Pu y v, implying

(4.7)

Comparison of (4.6) and (4.7) gives

(4.8) (v-[yoU], yq)=(-[u], yo0) for all o Ccmp(").
Finally we apply Lemma 3.5 which allows us to infer from (4.8)"

v ,ou] O , u]. rn

Proof of Theorem 2. Choose v H-1/2(F) and define u =-Kov. Then according
to Lemma 4.1, we have the jump relations

(4.9) [yoU] =0; hence yo(U la)= -Av= yo(U la), and [’}/lU] V.

Next we choose X Coomp(N with t’ 1 on a neighborhood of 12 and define u.-
u [a, u := xu I.

Next we add the first Green formula (3.6) for u v Ul and its counterpart for
O for u v u2 and obtain using (4.9)

(4.10) (I)Ft(Ul, U,) + qa(U2, U2)-- c-Pu2 dx-- -([’)/lU], "-)-"(V, Av).

Here ac is defined in accordance with (2.3).
Equation (4.10) now allows us to transfer the Grding inequality for the operator

P, which we assumed to hold, to the Grding inequality on the boundary for the
operator A.

The term Iac -2Pu2 dx gives rise to a compact bilinear form in v e H-/(F) because
Pu has compact support in fI and the mapping v-u is continuous from H-1/2(F)
to C(lIc). From the continuity of the trace mapping 1 (Lemma 3.2) we obtain an
estimate

H-1/2(F)

(4.11)

Here on the right-hand side, PUl vanishes and L2(ac) is a compact term.
Finally, the principal part of the right-hand side of (4.11) can be estimated from

above up to compact terms by the left-hand side of (4.10) due to Grding’s inequality
(2.4) which we assumed to hold. Thus (2.9) is proved.

In order to prove the strong ellipticity of the operator D, i.e., estimate (2.10), we
proceed analogously.

For v H-1/(F) we define u K19. Then we find the jump relations

(4.12) [yoU] v and [’y’u] 0; hence lUl ’U2----Dr,

where U and u2 are defined from u as above. Then again the first Green formula gives

(4.13)
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This time the trace lemma (2.1) implies

(4.14) vii ,’,2- oU=- Toulll H’/2(r) -< c(ll u, ll,’. / u=ll’.),
and again, (2.10) follows from (4.13) and (4.14) together with Grding’s inequality
(2.4). r]

The derivation of convergence and stability for Galerkin approximation schemes
from strong ellipticity is standard by now 13], [26], as are the approximation properties
of the finite element function spaces [1], [2]; thus proofs of Theorems 4 and 5 need
not be given here.

Next we show regularity in the domain for the Dirichlet problem
LEMMA 4.2. For tr (-1/2, 1/2) the mapping T" H1/+(I) - H,+(f) is continuous.

Proof We choose a domain B containing in its interior, e.g., a large enough
ball. Let 2: B\f and T2"v--u= T2v be the solution operator of the Dirichlet
problem

Pu=O in f, yoU=V, u]o=0.
Now choose v Hi(F) and define

u= Tv inO, u= T2v inf2.

Then the representation formula (3.8) applies and gives with f= 0 and [you] 0

(4.15) u =-Ko[lU]+ f cgu(y)G(., y) ds(y) in fL.JO.
dB

Now we know from the boundary regularity result for the Dirichlet problem (Lemma
3.7) that there are estimates

even for [-1/2,1/2]. Hence the continuity of the simple layer potential operator,
Theorem l(i) gives with (4.15) the desired estimate

Remark. The endpoint result tr 1/2 was shown by Jerison and Kenig [16] using
Dahlberg’s estimates for the Poisson kernel [10].

LEMMA 4.3. For s (1/2, ) the trace map T" H(f)- H’-3/2(F) is continuous.

Proof. For u H,(f) and arbitrary # H1/(F), v := T, we can apply the second
Green formula (3.7) for the operator pO to obtain

This can be written as

(4.16)

(Tu, #) (ToU, 3,T#)-I, PuTdx.

T T T)’3/o- T’P.
The first member on the right-hand side is continuous from HS(f/) to Hs-3/2(F) due
to Lemmas 3.6 and 3.7. The second member is continuous from H(O) to Ht(F) for
all s and t<0 due to Lemma 4.2. [3

As a corollary, Theorem 1(iv) follows from Theorem 1(i).
Proof of Theorem l(ii), (v), and (vi). It suffices to show (ii). If we apply (4.2),

this follows from Lemmas 4.2, 4.3, and Theorem 1(i). The proof of Theorem 1 is
complete. [3
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Proof of Theorem 3. Let qsH-1/2(F) and AqsH1/2+<’(F). We show
H-1/2/<(F). The a priori estimate (2.11) then follows from the closed graph theorem.

Define u Koqs. Then we have Aqs yoU and i/s =-[ylu] by Lemma 4.1. Thus u
solves in fl and fl the Dirichlet problem with Dirichlet data Aq H1/2/<’(F). According
to Lemma 3.7, the Neumann data, and hence qs, are in H-1/2/<(F).

Now if B@6H-1/2+’(F), then yl(Ulsa)=B@EH-1/2+([’), so that also AO=
yo(U Isa) H1/2+(r) holds.

The remaining statements follow in a similar way using the double layer potential
and again Lemmas 3.7 and 4.1.

ProofofLemma 3.6. The statement is local, so we may assume that the boundary
F is of the form

F {(x’, Xn) e RnlX Rn-l, Xn I(X’)}

with a function qs:N"-l ft that is uniformly Lipschitz, i.e., [[grad qXIIL("-I)< 00.

For functions fe Ccomp(") define

f(x’, x,):= f(x’, x, + O(x’)).

We then have to show an estimate for 1 < s <

(4.17) ILL(’. 0)11-.,.--.) cIIfll.- for all f CcCmp(Rn).
The problem is that in general for s > 1, f H’(fl") and therefore the usual trace
lemma cannot be applied to f,. We show first that the mapping f--f+ leaves a certain
anisotropic Sobolev space X invariant, and then that in X there holds the trace
estimate

(4.18) IIf(’, 0)llo-’/(a"-l =< Cllfllx for all fe Ccmp(n).
For the definition ofX we identify a functionfe Ccmp(n) with the C(lt"-l)-valued
function on ft,

x, -’f(’, x,).

Thus HS(l") H(It; L2(R"-I)) I’q L2(I; H(fI"-I)). We define

X := H(; L:("-’)) ns-l(; Hl(n-1)).
If f is the Fourier transform of we define the norm in X by

Ilfll : :: f._,((1 + le.i) +(1 + I .1) (1 + le,i) lli(e

Thus

(4.19) Ilfll,, -_< c Ilfll
If we denote by f(x’, :,) the Fourier transform off with respect to the last variable,

we have

Now we have

Hence

(4.20)

()(x’, ,,)= e’’(x’)e"f(x’, ,,).
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For k-1,..., n-1 we have

(O")(x’, ,)= e’*(x’)e.(’)(x ’, ,)+ i,(Okq)(X’)

This implies that

II(0(. ,1 , l((. lL."- ."-’) + grad

Hence

for all e .
Formulae (4.20) and (4.21) together imply the estimate

(4.22) IlL [Ix Ilfllx for all s e .
Next we show (4.18). We use the fact that with

m(’, .):= ( + I.l)" +(1 + I.1)-- (1

we have

-1 d:.=C(l+l:’l)+< for

Hence using the Cauchy-Schwarz inequality we have

Ilf+(’, o)ll-’/<"-’> (1 +[,[)2s-1 L(’, n) dn d

(1 + ]’l) 2-1 m(’, .)-1
n-1

This together with the estimates (4.22) and (4.19) gives the desired estimate (4.17).

5. Conel4ing remarks. (i) Along the same lines as presented here it is also
possible to easily deduce inveibility results for integral equations involving the
operators A, B, C, and D. Note that, for instance, by Theorem 2 the operators A and
D are Fredholm operators of index 0 in the energy norm spaces. Thus if we assume
injectivity, which in turn can be inferred from positivity of the bilinear form a, we
obtain bijectivity. For the operator A this holds for the case of the Laplace equation
and the standard fundamental solution in dimension n 3 and for n 2 if the analytic
capacity of F is different from one. By Theorem 3 and duality arguments, bijectivity
holds for the whole range of Sobolev spaces given in Theorem l(ii). In this way we
get results about the solvability of the boundary value problems by means of the
boundary integral equations. Theorems 4 and 5 then are really statements about the
numerical solution of boundary value problems by means of the so-called boundary
element method [28]. In practice, this method is frequently used to solve (also mixed)
boundary value problems ofthree-dimensional linear elasticity on domains with corners
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and edges [25], [3]. For these problems, the present paper yields convergence proofs
and asymptotic error estimates for Galerkin methods.

(ii) If the domain is more regular than merely Lipschitz, e.g., a smooth image of
a polyhedron, then higher regularity results should be possible and they should improve
with higher dimension. For the Dirichlet problem this is well known, but for the
boundary integral equations higher regularity has been studied, to the best of the
author’s knowledge, only in the case of plane domains (see [6], [8], and the literature
quoted therein).
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ON THE SHARPNESS OF WEYL’S ESTIMATES FOR EIGENVALUES
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Abstract. The estimate A, o(1/n) obtained by H. Weyl (1912) for the nth largest in modulus eigenvalue

An of any symmetric Fredholm operator on L2[0, 1] with kernel in CI[0, 1]4 is shown to be best possible
in the sense that for any increasing sequence an there exist such operators whose nth eigenvalue is not

o(1/nan). The construction of the counterexample makes use of Rudin-Shapiro polynomials. The corre-
sponding result for positive definite operators is proved with a simpler counterexample. The methods
generalise to the case L2[0, 1]m(m->3) without further difficulty.

Key words, eigenvalue, operator, kernel, asymptotics
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1. Introduction. If K (x, t) K t, x) L2[ a, b]2 then

(Tf)(x) K (x, t)f( t) dt

defines a compact symmetric operator T on the Hilbert space L2[ a, b]. Such an operator
T has a real null sequence (a,)n__>l of eigenvalues which we can assume has been
enumerated so that

H. Weyl showed in [4] that if K(x, t) Cl[a, b]2, i.e., K(x, t) has continuous partial
derivatives, then An 0(1/n3/2). We showed in [1] that if K(x, t) PDCI[a, b]2, i.e.,
K(x, t) is positive definite and Cl[a, b]2, then An o(1/n2).

Similar results are true for operators of the form

(Tf)(x, y)= K(x, y, t, u)f(t, u) dt du

where K(x, y, t, u) K(t, u, x, y) L2[a, b]4 and f(t, u) L2[a, b]2. The estimates are
An=o(1/n) for K(x,y,t,u)C[a,b]4 and An=O(1/n3/) for K(x,y,t,u)
PDCI[a, b]4. The proofs are similar to those for kernels in two variables.

In [2] we considered the sharpness of the estimates for two variable kernels. Here
we consider four variable kernels.

2. Double Fourier series. Any k(t, u) L2[0, 1]2 has a double Fourier series

Cmn e2ri(mt+nu)

where

Cmn k(t, u) e-2i<mt+nu) dt du

* Received by the editors February 25, 1986; accepted for publication (in revised form) May 12, 1987.

" Department of Mathematics, The University of Manchester, Manchester, United Kingdom M13 9PL.
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for all integers m, n. The series is unconditionally convergent to k(t, u) in mean square,
so in particular

N N

k(t,u)- lim c,,ne
m=--N n=-N

(in mean square).
LEMMA 1. If k( t, u) L2[0, 112 has double Fourier series

k( t, u)= _, c,, ei<t+’’)

then K(x, y, t, u) k(x- t, y- u) has eigenvalues c,,n and eigenfunctions e:zri(mt+nU)(m,
integers).

Proof For any integers p, q

foIo’K(x,y,t,u) e’P’+)dtdu
lim Cmn e2im(x-t) e2in(y-u) e2i(pt+qu) dt du
N m=-N n=-N

Cpq e2i(px+qy).

Obsee that K(x, y, t, u) is symmetric if k(t, u)= k(-t,-u), equivalently if
is real for all m, n.

3. The Rudin-Shapiro signs. These are e, l(n 0) with the propey that

N

E e. e=’"’ O(N/)
n=0

uniformly in t. They occur as the coefficients of successive polynomials P(z) defined
inductively with Q(z) by saying

Po(z)= Qo(z)= l,

P,+I(z) P,(z)+ z2" Q,(z),

Q,+(z) P,(z)- z" Q,(z)

(See [3] for details.)
LEMMA 2. If a,,,, is the m, nth entry of the matrix

1 1/2 1/3 1/n
1/2 1/2 1/3" 1In
1/3 1/3 1/a 1In

1In 1In 1In 1In

then the double Fourier series

(n->_ 1).

m=l n=l

is uniformly convergent in t, u for all a > 1.
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Proof. Let

N N

AN(t, u)- E E Em’narnn e2ri(mt+nu)
m=l n=l

for each N-> 1. Then if we write

N
2zrintsN( t) Y e. e

n=l

we have

AN(t,u)-A(t,u)=
N

n=M+l

s,,( t)s,(u) Sn_I( t)Sn_I(U
n

(M+l)ot
+ E s.(t)s.(u)+

Not,=M+a n (n+l)ot

The first and third terms are O(1/ Mot-1), O(1/Not-a), respectively, and the middle
term is the difference between the (N-1)th and Mth partial sums of a series whose
nth term is O(1/not), all uniformly in t, u.

COROLLARY. The function

k( t, u)= E E e,.e,a,,, e2=i(n’+"",
m=l n=l

where a,,,, is as in Lemma 2, is continuous if a > 1.
LEMMA 3. The derivative

uniformly in t.

Proof We have

N

S’N(t) . 27rine, e2=’’’ O(N3/2)
rl=l

N

s(t) Y 2"rrin(s,(t)-s,_l(t))

0(N3/2).

Cooeav. efunction

k(t, u)= eenamn e2i(mt+nu),
m=l n=l

where a. is as in Lemma 2, is C if a > 2.
Proof If

N N

Bu t, u)= 2uimee.a, e
=1
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is the Nth partial sum of the series obtained by formally differentiating the double
Fourier series of k(x, t) partially with respect to t, then we have

BN(t,u)-BM(t,u)=
N

=M+I

s’,( t)s,(u) s’,,-1 (t)s,-l(U)
n

-->0

as M, N--> oo uniformly in t, u by the same argument as that used in the proof of
Lemma 2. It follows that

O
t, u)= Y’. 2"a’imeme,am, e

m=l n=l

is continuous, and similarly so is the other partial derivative
LEMMA 4. For any given a > 1 there exist C kernels K x, y, t, u) whose eigenvalues

are not o(1/ not ).
Proofi If a > 2 and

k(t, u)= E E e,e,ar e2"i("t+"u),
m=l n=l

where a,, is as in Lemma 2, then K (x, y, t, u) k(x- t, y- u) is C and has eigenvalues
e,,e,a,(m, n _-> 1). Arranging these eigenvalues in descending order of modulus and
denoting them by

>--""

we have Ix =l 1/n and so A is not o(1/not/).

4. Positive definite kernels.
LEMMA 5. If b, is the m, nth entry of the matrix

1

1/2ot
1/3ot

l/not

then the double Fourier series

1/2ot 1/3ot 1/not
1/3ot

2 ., bin. e2ri(mt+nu)
m=l n=l

is uniformly absolutely convergent in t, u for all a > 2.
Proof. The sum of the entries bm on the nth cross-diagonal of the matrix is

n not 1/n ot-1 and o 1/not-1 < oo if c > 2.
COROLLARY. The function

k(t, u)= . Z b,., e2’i(’+’),
m=l n=l

where bmn is as in Lemma 5, is continuous if t > 2.
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LEMMA 6. The function

k( t, u)= , b,.. e’ri(mt+nu),
m=l n=l

where b.. is as in Lemma 5, is C if a > 3.
Proof Formally we have

Ot
(t, u)= 2imb e2i(mt+nu)

m=l n=l

and the sum of the entries on the nth cross-diagonal is now

1+2+-..+n
2i O( 1/ n-2)

n

and 1/n -<ifa>3.
LEMMA 7. For any given a > 3/2 there exist PDC kernels K (x, y, t, u) whose

eigenvalues are not o(1/n).
Proo If a > 3 and

k(t, u): E E b e:’’+"),
m=l n=l

where bmn is as in Lemma 5, then K(x,y, t, u)= k(x-t,y-u) is PDC and has
eigenvalues b,(m, n 1). Arranging in descending order and denoting by

AIAa A
we have A<,+1)/2 1/n and so A, is not o(1/n/2).

5. Sharper results.
LEMMA 8. For any given real sequence (a)l which increases and diverges to

infinity there exist C kernels K(x, y, t, u) whose eigenvalues are not o(1/na).
Proof (see [2]). Choose nk(kl) such that a,>ka and let fin=

1/na,(nk_ <nnk). If we replace every entry in the nth L-shaped section of the
matrix (a) of Lemma 2 by, then the corresponding kernel K(x, y, t,u) constructed
as in Lemma 4 has the required propeies.

LEMMA 9. For any given increasing divergent real sequence (a,) there exist
PDC kernels K(x, y, t, u) whose eigenvalues are not o(1/n3/a,).

Proo Choose nk(kl) as in the proof of Lemma 8, but now let ,=
1/na,(nk_ < n nk) and replace every entry in the nth cross-diagonal of the matrix
(b,) of Lemma 5 by
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Abstract. We study the approximate solution of linear problems in separable Hilbert spaces equipped
with a Gaussian measure. We find information and algorithms with the best possible rate of convergence.
Although adaptive information and nonlinear algorithms are permitted, we prove that nonadaptive informa-
tion and linear algorithms are optimal. An algorithm is optimal if it converges with a rate of convergence
that is no worse than the rate of any other algorithm except on sets of measure zero. We prove that algorithms
and information that minimize the average errors lead to the best possible rate of convergence. This exhibits
a close relation between the asymptotic and average case models.

Key words, asymptotic model, linear problems, Gaussian measures
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1. Introduction. Many papers deal with optimal algorithms for problems that are
approximately solved. In these papers an optimal algorithm is usually defined as one
having minimal error. In a worse case model the error of an algorithm is defined by
its worst performance whereas in an average case model the error of an algorithm is
defined by its average performance (see [7]-[11]).

To make clear what we mean by worst and average case models we consider a
simple integration example.

Example 1.1. Suppose we want to approximate Sf [.1of(t) dt where f" [0, 1]- R
is a function belonging to a given class F, where F is a subset of a Hilbert space F1.
We assume that we sample f at n given points tl, rE, ..., tn. Thus we know that
Nn(f)=[f(t),f(t:), ,f(tn)]. Based on N,(f) and the fact that f F, we approxi-
mate S(f) by an algorithm pn. By an algorithm we mean a mapping from N(F) into
R. Thus, (N,(f))=i= a.(ti) is an example of an algorithm. In the worst case
model, the error of p is defined as:

eW(o., Nn) sup {ISf o.(N,,(f))[: fe F}.

In the average case model, the error of 0, is usually defined as:

eavg(n, Nn)= X/f ]Sf-n(N,(f))121z(df)

where/x is a given probability measure on F.
In this paper we study optimal algorithms in the asymptotic model. To explain

what we mean by optimality in the asymptotic model, we shall use the integration
example.

We first stress the main difference between the asymptotic and worst (or average)
case models. In the worst (or average) case model fixed information N is applied for
all functions f from F. This may be contrasted with the asymptotic model, where a
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sequence of information Nn, with n tending to infinity, is applied for each f. That is,
knowing Nn(f) for all n, we want to find a sequence of approximations o,(N(f)) to
Sf with good convergence properties. Here o, is an algorithm that uses Nn. Let q3 {o,}
be a sequence of such algorithms. For brevity, 3 is also called an algorithm.

Asymptotically convergent algorithms are widely used in practice. Examples
include quadrature formulas for the integration problem, and algorithms for the solution
of ordinary or partial differential equations with meshsize tending to zero. This
approach, commonly used in numerical analysis, motivates our study. Our interest is
to find an asymptotically optimal algorithm.

What is the optimal algorithm in the asymptotic model? We motivate our definition
by the following discussion. Let q3={on} and q3*={o*} be two algorithms for
approximating Sf. Let A(5, q3*) denote the set of functions f for which the algorithm
q3 converges to Sf with a better rate of convergence than the algorithm q3*. That is,
f A(q3, q3*) if and only if

lim ISf o, N(f))l/Isf * (f) )l 0.

One might want to define 3" as optimal if 5" never "loses" to 5. That is, 3" is
optimal if A(3, q3*)= , for all 5. We show that such an algorithm q3* does not exist.
Another attempt would be to define q3* as optimal by requiring that A(q3, q3*) be finite
or perhaps countable for all q3. Unfortunately this also does not work. (This is proven
in the Appendix.) Thus, optimality of q3* must be defined differently.

One approach that does work is due to Trojan [8]. He defines q3* to be optimal
if the set A(q3, 3") has empty interior for any q3. We define optimality differently than
Trojan. We assume that the space of elements f is equipped with a probability measure
/x. Optimality of 3" is then defined by zero measure of the set A(5, qS*) for any
algorithm q3. Thus, 3" is optimal if it "loses" to any algorithm ff only on a set of
measure zero.

The integration example discussed above is a particular case of problems studied
in this paper. The general formulation is as follows. For two separable Hilbert spaces
F and F2, we consider a linear continuous operator S, S’FI- F2. We wish to
approximate Sf for any elementf from F1. We assume that the elementf is not known.
Instead one can compute n linear continuous functionals N(f). The choice of the
ith functional may depend on the values of (i-1) previously computed functionals.
Then the sequence N {N, } is called adaptive information. For given adaptive informa-
tion N we wish to find a sequence q5 {on} such that o(N(f)) goes to Sf with the
best possible rate of convergence. The sequence 5 is called an algorithm. We are
looking for an optimal algorithm q3*= {o*}. As we already mentioned, optimality of
5" means that an arbitrary algorithm q5 approximates Sf with a better rate of conver-
gence than the algorithm q3* only on a set of measure zero. More precisely, we assume
that the space F is equipped with a Gaussian measure/x. Then qS* is (asymptotically)
optimal if and only if

(1.1) /z({f F1" lim IIsf-(N(f))II/IIsf-*(N(f))II-- 0}) 0

for any algorithm q3 {o}. Here we adopt the convention 0/0= 1.
Obviously, an optimal algorithm is not uniquely defined by (1.1). However, the

difference between optimal algorithms is insignificant. Indeed, let hn o1,,- o2,n be
the difference between two optimal algorithms q3={q..} and /2--{q92,n}. Then
IIh,,(N,,(f))ll <--IISf-ol.,,(N.(f))ll + I[Sf-qz,.(N,,(f))l[ goes to zero at least as fast as
the errors of optimal algorithms.
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The first problem studied in this paper is to find an optimal algorithm in the sense
of (1.1). We solve this problem by showing a relation between optimality in the average
case and asymptotic models. More precisely, let p* be an optimal algorithm in the
average case model. The form of q,* is known (see [10], [11]). In fact, q,*(N,(f))
So-, (Nn (f)) where o-, (N, (f)) is a/x-spline element. If information Nn is nonadaptive,
then p* is a linear mapping.

Let qS*= {q*}. That is, the algorithm qS* consists of algorithms q* that minimize
the average case errors for each n. The algorithm q3* is called a/x-spline algorithm
since it is based on /x-spline elements. We prove that qS* is optimal. This is very
desirable from a practical point of view. The /x-spline algorithm that has the best
possible rate of convergence also has the minimal average case error at each step.

The second problem studied in this paper is to characterize the rate of convergence
of the/z-spline algorithm. Once more, we solve this problem by showing a relation to
the average case model. This relation is exhibited in terms of local average radii which
play a key role in the average case analysis. We show that the sequence of local average
radii fully characterizes the rate of convergence of the/x-spline algorithm.

The third problem is to find information N* {N,*} for which the rate of conver-
gence of local radii is best possible, or equivalently, for which the rate of convergence
of the optimal algorithm is best possible. It turns out that N,* is given by just that
nonadaptive information that is optimal in the average case model.

Thus, although we permit adaptive information and nonlinear algorithms, the
optimal information is nonadaptive and the optimal algorithm is linear.

Our results exhibit a close relation between the average case model and the
asymptotic model for linear problems defined in Hilbert spaces with a Gaussian
measure. Trojan [8] shows a similar relation between the worst case and the asymptotic
models for linear problems defined on a Banach space that is not equipped with a
measure. As we already mentioned, in his paper asymptotic optimality is defined by
the condition that the sets A(q3, q3*) have empty interior. These relations are desirable
from a practical point of view. Algorithms and information that minimize the worst
or average case error also yield the best rate of convergence.

Our results hold for linear problems defined in Hilbert spaces with a Gaussian
measure. We shall indicate which of them hold for more general measures, which are
called elliptically contoured (see 1 ]). Recent research seems to indicate that the results
of the paper also hold if F1 is a Banach space.

The contents of this paper are summarized as follows. In 2 we formulate the
three problems studied in this paper. In the successive sections we present solutions
to these problems. In 3 we prove optimality of the /x-spline algorithm. In 4 we
show that the local average radii fully characterize the rate of convergence of the
/z-spline algorithm. In 5 we exhibit optimal information. Finally, the Appendix
contains a proof that shows that the set A(q3, q3*) is uncountable.

2. Formulation of the prolflem. In this section we define the basic concepts and
formulate the three problems that will be studied in this paper.

Let F1 and F2 be separable Hilbert spaces over the real field. Let/x be a Gaussian
measure defined on Borel sets of F,/x(F) 1. We assume that the mean element of
/x is zero and the self-adjoint covariance operator S, of/z is positive definite (see
[3], [6]).

Consider a continuous linear operator S such that

(2.1) S F1 - F2.
Our problem is to approximate Sf for all f from F1. We assume that the element f is
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not known but we can compute arbitrarily many functionals of f. That is, we define
an information operator N of the form

(2.2) N(f) [(f gl), (f gz(Y)),’’’, (f, g,(Yl,’’’, Y,-1)),"" "]

where y (f, g), Yi (f, gi(Y," ", Yi-)) for i= 2, 3,. .. Here (.,.) denotes the inner
product in G and gi" Ri- F1 is a measurable mapping, i.e., gTl(B) is a Borel set of
Ri- whenever B is a Borel set of G. Without loss of generality (see [10], [11]) we
assume that

(2.3) (Sgi(y,, yi-,), gj(Yl, Yj-1))= i,j

for i, j= 1, 2,-.., and all y, y2,’".

The essence of (2.2) is that the choice of gi(y,..., yi-) may depend on the i- 1
previously computed inner products. Such an information operator N is therefore
called adaptive. To stress the adaptive character of N we shall sometimes write N N.
On the other hand, if each gi(Yl,’’’, Yi-1) does not depend on y,..., Yi-, i.e.,
gi(y, ",y-) g* for some g* from G, then is called nonadaptive and sometimes
denoted by N Nnn. Thus the information operator N consists of a sequence of
inner products chosen adaptively or nonadaptively. In either case, let

(2.4) N,,(f) [(f, g), (f, g2(y)), (f, g,(y, y,-))] /f= F1,

denote the first n inner products in N. Knowing N,(f) for all n, we approximate Sf
by an algorithm qS. By the algorithm q5 {q,} that uses N {N,} we mean a sequence
of mappings

(2.5) q,," N,(F,)c R"- F2.
We assume that q is measurable, i.e., q;(B) is a Borel set of R whenever B is a
Borel set of F2.

We approximate Sf by q(N(f)). We want to find N and q5 such that q(N(f)
tends to Sf as fast as possible. More precisely, we shall study the following three
problems:

(i) For a given information operator N {N} find an optimal algorithm q3*
using N {N}. That is, an algorithm q3* such that

(2.6) /z fe F" li,rn IlSf-*.(g(f))ll
for any algorithm q5 {q,} using N. Throughout this paper we adopt the convention
0/0= 1.

(ii) Let q* satisfy (2.6). Characterize the rate of convergence of o* in terms of
the Gaussian measure ix, the operator S and the information operator N.

(iii) Find an optimal information operator /*, i.e., * of the form (2.2) for
which the rate of convergence of an optimal algorithm qS* using * is best possible.
This means, we want to determine the best elements
g*, g2*(Yl), ", g*(Y," ", Yn-)," ", in (2.2). Are the best elements g*i(Yl ,’" ", Yi-1)
independent of y,. ., Yi-1 ? (Equivalently, is the optimal information nonadaptive?)

3. Optimal algorithm. In this section we deal with problem (i) of 2. We describe
the /x-spline algorithm q3 ={q,} using given information N={N,} (see [10], [11])
and show its optimality.

Let N be given by (2.2) and (2.3). For given n and y= N,(f) define

(3.1) cr,,=o’,(y)= (f gi(y))S,gi(y)= yiSgi(Y)
i=l i=l
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where gi(Y)= gi(Yl,""", Y-I). The element o’n is the unique solution of the problem

Nn(o’n)=Nn(f),
(3.2)

inf{lls;,1/2gll" g S/2(F), Nn(g) N(f)}.

An element rn that is the solution of (3.2) is often called a sl/2-spline. To stress the
dependence on the measure/x, we shall call rn a tx-spline. The algorithm g3= {p},
where

(3.3) qg(Nnf) Scrn(Nnf)= (f, g(y))SS,g(y),
i=1

is called a tx-spline algorithm.
It is known (see [10], [11]) that the/x-spline algorithm (# is a unique algorithm

that minimizes the average error IF, ST- (N(f)) II(df) over all measurable map-
pings qn" R - F2. We are ready to prove the optimality of q5 in the sense of (2.6).

THEOREM 3.1. The ix-spline algorithm is optimal That is, for any algorithm
{qn } that uses N {Nn } we have

({ ]’Sf -qn(Nn(f))[[ =O}) =0.(3.4) /x f F" li,rn IlSf-qL(Nn(f))ll
Proof. Given such an algorithm qS, let A {f F- limn ST- ,(N(f))ll/II ST

L (f))ll 0}. Take a number q (0, 1) and define

An {f F" IIST-(N(f))II <qllSf-L(N(f))[l}.
Then A c U_- f-I__i An. Note that A and An are measurable and

(3.5) x(A)-<_li x An _-<lim x(An).

We estimate x(An). Define the probability measure

1() (gl)= x({fe F" N(f)e B})

where B is a Borel set of Rn. (Although it is not needed here, we remark that .i, is a
Gaussian measure with mean element zero and the identity covariance operator; see
[9, Thm. 3.1(i)].)

From Theorem 8.1 of [5, p. 147] we know that there exists a unique (modulo a
set of x-measure zero) family of probability measures x(. lY) defined on Borel sets
of F such that

tx2(N-(y)ly) 1 ’q’y e R a.e.,

(3.6) (BI’) is/z-measurable,

/x B Ii. tx B y tx df

for any Borel set B of F. Thus we have

(3.7) /x(An) fR" I2(AnIy)tXl(dy)"

It is shown in Theorem 3.1(ii) of [9], that/z2(" ly) is a Gaussian measure with mean
element o’n(y) and the correlation operator

Sy I n,y S, I r*,,y ),
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where On,y: F "-’) F is a linear operator such that

O’my(h (h, gi(y))S,g,(y) Vh F1.
i=1

For y Nn (f), let gn (Y) Pn (Y) P, (Y). Then
NI(y) f-) An NI(y) 0 Bn(y) + crn(y)

where Bn(y) {h FI: ]]Sh-g,(y)ll <qllSh[I}. Due to (3.6) and the fact that o-n(y) is
the mean element of Ix2(" lY) we have

(3.8) Ix2(Anly) IX2(N-I(Y)f’lAnly)= ,y(Bn(y))

where Uy is a Gaussian measure with mean element zero and covariance operator Sy.
Observe that S*gn (Y) 0 implies that Bn (y) . Assume therefore that S*gn (Y)

0. Let el g,(y)/llg,(y)ll. Every element z F2 can be decomposed as z (z, el)e + z
where (z, el) =0. Then for h Bn(y) we have

(Sh -gn(y), e,)+ II(Sh)=ll = < q2(Sh, e)+ q=ll(Sh)21l =.
This yields

(1 q2)(h, S*el)2- 2( h, S*e)[[g(y)[[ / IIg(y)ll = < 0,

and consequently

(3.9) [Ig.(Y)l_[ < (h, S’el) < [[g.(Y)[I.
l+q 1-q

Since Uy is a Gaussian measure, (3.9) yields

,(B,(y)) <-_ Uy({h: (h, S*el)/[Ig,(Y)ll ((1 + q)-, (1- q)-l)})

O

f
if SyS* e, O,

1 bn
t2/2

/--
e- dt if SyS* el O,

where an IIg,(Y)ll/(( + q)x/(SyS*e, S’el)) and bn -Ilg(y)ll/((a q) x
x/(SyS*e, S*e)). If SyS*e O, we estimate e-‘2/ by its value at an. Then we get

1 -a/2( aft_ q -a/2uy(Bn(y)) <---;--- e bn an) an e
42zr 1-q

Since x e-X2/z=< 1/x/ we finally get

(3.10) ,y(Bn(y)) <-- cq/(1 q)

where c=x/2/(re). From (3.7), (3.8) and (3.10) we have Ix(An)<-cq/(1-q). Then
(3.5) yields

(3.11) Ix(A) <- cq/ (1 q).

Since q can be arbitrarily small, Ix(A)=0 as claimed, tq

Remark 3.1. Theorem 3.1 remains true for more general measures Ix. Namely,
assume that Ix is elliptically contoured with mean element zero and covariance operator
S, (see Crawford [1]). That is, Ix is of the form

(3.12) Ix(B) Ix B a(dt) VB-Borel set of F1,
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where a is a measure defined on Borel sets of (0, +oo) such that

(3.13) a(dt) ta(dt) 1.

Here/z denotes the Gaussian measure with mean element zero and covariance operator
S,. Note that v(B)=/x(1/x/ B) is a Gaussian measure with mean element zero and
covariance operator tS,. Since (3.11) holds for any Gaussian measure with mean zero,
then

c
1-q

and consequently (3.12) and (3.13) yield

1-q

This implies that (A)= 0 as claimed.
Remark 3.2. The proof of Theorem 3.1 supplies a slightly stronger result than

(3.4). Namely, for q e (0, 1) let

B {J’e Fl"n IlSf-(N,(f))[[llSf-"(N’(f))[[<q}"
Then repeating the proof ofTheorem 3.1 for the set B instead ofthe set A, we can obtain

4-- ]2 q
(3.14) (B) N min

[2
[

e 1-q

Thus for small q, the measure of B is also small. We do not know whether the estimate
(3.14) is sharp. Due to Remark 3.1, (3.14) also holds for an elliptically contoured
measure.

4. Rte f eergeee. In this section we deal with problem (ii) of 2. We
characterize the rate of convergence of the -spline algorithm {} that uses given
information N {N}. Observe that

(4.1) I .,Sf-(N,(f)),12(df) I, fF [’Sf-(Y)ll2(dflY)’(dY)
El

where and (’ly) are defined as in 3. As in [9], we define the local (average)
radius rad (N,, y) of information N, by

(4.2) rad (N, y)= inf IIf-gll(dfl)
geF F

IlSfll2vy(df)

where vy is a Gaussian measure with mean element zero and covariance operator Sy,

(4.3) Syh S,h (h, S,g)Sug, Vh F.
i=1

Here gi gi (Y), 1, 2, , n.
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We shall prove that the sequence of local radii rad (N,, N,(f)) characterizes the
rate of convergence of the -spline algorithm. Before proving this, we obtain a more
explicit form of rad (N,, y). Let

(4.4) Th rli(y /2..S, gi(Y), 1, 2, , n.

Then (2.3) yields (rh, 7)= 8,. Define the operator

(4.5) K S1/2S*..’/2.., "FI F1.
Note that K K*=> 0. Furthermore K has finite trace. Indeed, let {f} be the orthonor-
mal basis of F such that S,f Ajf. Then

(4.6) trace (g)- E E A IIS1I 2

j=l j=l

=< IISII 2 trace (S.)< +c.
Observe also that

trace (K) f sfll 2tx (df).

Indeed, IIs/ll 2-- Ei,j:l (ff)(f)(Sfi, S) and

IlSfl[2tx(df) 2 (Sfi,fi)(Sfi, Sf)
F i,j=

S SSIx , Sk2fj)E ,j(S*S ) E * 1/2 1/

j= j=

as claimed.
LEMMA 4.1.

(4.7)

2
j=l

rad N., y) x/trace (SSS*)
=x/trace (K)-Y,"=, (Krt,(y), rt,(y)).

Proof Let fly vyS- be a measure defined on Borel sets of F2. Note that fly is a
Gaussian measure defined on Borel sets of F2 with mean element zero and covariance

operator S, SSyS*. Change variables in (4.2) by setting g Sf. Then

rad2 (N,,, y)= f I]Sfll2v,(df)- f Ilgll2y(dg)
F1 F2

trace (&y) trace (SSyS*),
which proves the first equality in (4.7).

To prove the second equality in (4.7), take any orthonormal basis {hj} of F2. Then
(4.3) yields

trace (SSyS*) Y SSyS*h, h
j=l

E (SSS*h, h)- . (SSgi, hj)2
j=l i=lj=l

=trace (SS,S*)- Ilssl./n,
i=1

trace (SS,S*)- (Krl,rl).
i=1
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Thus, it is enough to show that trace(K)=trace(SS,S*). To do this observe that
S* h, j= (S* hi, f)f where S.f Ajf. Then

trace (SS.S*)= E (SS.S*hi, hi)
i=1

=2 2
j=l i=1

2   lls1l
j=l

trace (K)
due to (4.6). This completes the proof. D

We need an estimate of a Gaussian measure u of the ball Br {g F2: Ilgll--< r).
We assume that the Gaussian measure u defined on Borel sets of F2 has mean element
zero and its covariance operator S is nonzero.

THEOgEM 4.1 (Kwapiefi [4]).

l(Br) <= O(2r/x/trace (S)),(4.8)
where

Proof Assume first that S> 0. Let {sri} be the orthonormal basis of F2 such that
S’i Ai’i, where Ai>0 and trace (S)=i__ Ai. Define the random variables sCi(g)=
(g, sq)/v/-i, i= 1, 2,.... Then {i} is a sequence of independent random variables each
of them with Gaussian distribution with mean zero and variance one. Note that

i1

Let A denote the Lebesgue measure on [0, 1]. Let r) be the Radamacher system on
[0, 1], i.e., r [0, 1] R, and r) is a sequence of independent random variables each
of them with distribution A({t" r(t)= +1})= A({t: r(t)=-1})=. For g U and c>O
we have

(4.9) A t" 2 (g)r(t) c e R
i=1

where

(4.10) R(x)= inf A((t:
’7=1 cil

Due to Fubini’s theorem, we get from (4.9)

(4.11)

, iri (t)
i=1

. x/-i i(g)ri( t)
i=1 . x/--i i(g)ri( t)

i=1
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where u(R)A denotes the usual product measure. On the other hand, let i(g t)=
i(g)ri(t) for gF2 and t[O, 1]. Then {sri} is a sequence of independent random
variables each with Gaussian distribution with mean zero and variance one. Therefore
Ei-----1 ’i has Gaussian distribution with mean zero and variance tr= i=1 /i---
trace (S). Hence the left-hand side of (4.11) is equal to

1 I +c f c/4-- ()e-V(2’) d’r e-:/: dr (p
"0

Thus we get

(4.12)

Let c 2r. To estimate R(2) we use Chebyshev’s inequality, which states that

A t" , ciri(t) > 2 <-- - 2 ciri(t) dt.
i=1 i=1

Since ri are independent with mean zero, then

2 ciri (t) at C
i=1 i=1

Hence R(2)=> 1-1/4=1/4 and (4.12) yields (4.8) in the nonsingular case.
Assume now that S is singular and let X ker S. Decompose F as the direct

sum X@X where X is the ohonormal complement of X. Then for every g from
F, we have g gl + g, gl X and g2 X. We get

(n) ({h X: Ilhll r})

where is the Gaussian measure on X with mean element zero and covariance
operator S]x > 0. Applying (4.8) to , we get the desired estimate on u(Br). Hence
the proof is complete.

We are ready to characterize the rate of convergence of the -spline algorithm.
THEOREM 4.2.

(4.13) ({feF’limllSf-;(N(f))ll=O})=O.rad (N, N(f))

Proo Let A={feF: lim IISf-;(N(f))ll/rad(N, N(f))= 0}. Take a num-
ber q e (0, 1) and define

A {f F: IlSf-(N(f))ll < q rad (N, N(f))}.

Then A c U A and (A) Nlim (A). We estimate (A). From (3.7) we have

/z(A.) fR"/x({f: Ilsf -oL(y)[[ < q rad (N,, y)}ly)tXl(dy)
(4.14)

o y((f: IIsfll < q rad (N,, y)})l(dy),

where ,y is the Gaussian measure with mean zero and covariance operator Sy given
by (4.3). As in the proof of Lemma 4.1, let fly uyS-1 be the Gaussian measure with
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mean element zero and covariance operator Stay SSyS*. Let r =q rad (Nn, y) and
nr- (g F: Ilgll-<- r). Then

Sy (Br) ’y({f FI" Sfll < r}).

Due to Lemma 4.1 we have r= q/trace (Sy). From (4.14) we get

(4.15) /x(An) fa" Y({g Fz" Ilgil < q4trace (S,)})(dy).

From Theorem 4.1 we have the following estimate"

and consequently

/x (A) -< q(2q).

Since q can be arbitrarily small and q(2q) tends to zero with q, we conclude/x(A) 0,
as claimed.

Remark 4.1. It is also true that (4.13) of Theorem 4.2 holds for any algorithm
q5 {qn } using N {Nn }. That is,

/x({fFl. lim[ISf-q"(N"(f))l’=O})=O.rad (Nn, Nn(f))

Indeed, repeating the proof of Theorem 4.2 we get for B
{fz F: lim, I]Sf-o,(N,(f))ll/rad (N,, N,(f)) 0}

/x(B) =< li fR"/3y({g F2" IIg-al](q/trace (Sr)})/xl(dy),

where a a(y)=qn(y)-q,(y). It is known (see for instance [9]) that a Gaussian
measure of the ball Br(a) of radius r and center a is maximal for a =0. Thus

/3y({g F2: IIg- all < q/trace (Szy)}) -<_/3y({g F2: [Igll < q/trace (Str)})
<- q(2q),

due to Theorem 4.1. Therefore /x(B)=<q(2q), and since q can be arbitrarily small,
(B) 0, as claimed.

Remark 4.2. Theorem 4.2 remains true for more general measures tz. Namely,
assume as in Remark 3.1 that/z is elliptically contoured. Then for

{ /trace (SS.(y)
A= fFl"lim

S*

we have

/x(A) =0.

To prove this let An be defined as in the proof of Theorem 4.2. Then

I(A) <= tx(An) tx An a(dt).
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For every fixed t, Ixo(1/x/.) is a Gaussian measure with mean element zero and
covariance operator tS,. Repeating the proof of Theorem 4.2, we therefore obtain that

4 Io I 4Iotx(a.) <-- (2q/x/r)ixl(dy)a(dt) =- (2g/t)cr(dt).

From the definition of $ we have

io q,(Zq/x/7)a(dt) 2 2q/x/-

e-2/-d.a(dt)
dO

e-:/a dra(dt)+ e-/a dra(dt)
dO 0

e dr a(dt)+ e-V2 dra(dt)
o

((0, q])+ e a(q).
d0

Since 0= ()= limqo* ((0, ql), we see that ((0, ql) and I e-’Vd, tend
to zero with q. Hence limqoa(q)=O. Since (A)N(A)Na(q) and q can be
arbitrarily small, (A)= 0, as claimed.

Theorem 4.2 states that modulo a set of measure zero the -spline algorithm does
not converge faster than the sequence of local radii. We now show that the -spline
algorithm does not converge more slowly than the sequence of local radii.

THEOREM 4.3.

({ rad(N, N(f)) =0})=0.(4.16) , fe F," lip

Proof Let A=e Fl: lim, rad (N,, N.(f))/IISf-L(Nf)II =0. Take a number
q (0, 1) and define

q

Then A c U i fq .=i A. and Ix (A) -< lim. Ix (A.). As in the proof of Theorem 4.2, we
conclude that

(4.17) Ix(A.) 1 fly g F2: Ilgll <-x/trace (Stay) Ix,(dy).
q

For any probability measure u with covariance operator S and for any ball
Br (g F2: Ilgll < r}, we have

trace (S) fF Ilgllu(dg) >-- f_
rE(1- ,(Br)).

Thus

Ilgll=,,(dg) >= r2v’(F Br)

,(Br) > 1
trace (S)

In particular,

fly g F: Iigll <-x/trace (S/3y) --> 1 q2.
q
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From (4.17) we get/z(An) _<- q2, and consequently/x(A) _-< q2. Since q can be arbitrarily
small,/x(A) 0, as claimed.

Remark 4.3. The proof of Theorem 4.3 supplies a slightly stronger result than
(4.12). Namely for q (0, 1) let

{ rad(N,,N,(f))
< }B= f F," li,m iiSf_p,iN,(f))ll= q

Then repeating the proof of Theorem 4.3, we get

(4.18) tz(B)<=q.
Thus for small q,/z(B) is close to zero. We do not know whether the estimate (4.18)
is sharp.

$. Optimal information. In this section we deal with problem (iii) of 2. We find
optimal information N*= {N,*} of the form (2.2) for which the rate of convergence
of the te-spline algorithm q= {q,} using N* is best possible. Due to the result of
4 this is equivalent to finding information/Q* for which the sequence of local radii

rad (N*,, N*,(f)) goes to zero as fast as possible.
As in 4, let

(5.1) K ,’/2S*SS/" F, F,

We know that K K*-> 0 and K has finite trace. Let m denote the total number of
positive eigenvalues of K. Observe that m can be infinite. Let {r/*}, < m+ 1, be the
orthonormal eigenelements of K,

(5.2) Kr/* , * r/*, ,*-> *->’. ">0.

For < m + 1 define g* S/ q*. Then (S,g/*, g) (rt/*, ) 6,. For n < m + 1
define

(5.3) N*(f) [(f, g*), (f, g*),..., (f, g,*)].

Note that N,* is nonadaptive. Its local radius rad(N,*, y) given by (4.7) and (4.4) is
independent of y and equal to

(5.4) rad N* rad N*, 3’ I *.

If m is finite then rad(N) =0 and Sf= q(N(f)), for all f F. This means that
we approximate Sf exactly for any f using m inner products. Therefore without loss
of generality we assume from now on that m +oe. Define the information

(5.5) * {N,*}

where N* is given by (5.3). We stress that N* is nonadaptive and the/z-spline algorithm
q= {p,} that uses * has the form

q,(N,*(f))= (f r/*)S/*.

Hence q5 is linear.
Theorem 4.3 states that the te-spline algorithm q* converges at least as fast as the

sequence of the radii {rad (N,*)}, i.e.,

({ rad (N,*) =0}) =0./x f FI" li,rn {iSf_o(N,(f))[[
We are ready to prove the optimality of N*.
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THEOREM 5.1. The nonadaptive information operator N* is optimal in the class of
adaptive information operators of the form (2.2), i.e., for any adaptive information
operator N {Nn} and any algorithm {qn} using N we have

(5.6) tx({f6Fl’limllSf-q"(N"(f))ll=O})=0".rad (N,*)

Proof. Let A= {f F" lim, IJSf -o,(N,(f))ll/rad (N*,)=O} and B=
{f FI" lim, IlSf-qn(N,,(f))ll/rad (N, Nn(f))= 0}. It is known (see [10], [11]) that

rad(N*)=<rad (N, N(f)) Vf F1.
Therefore A c B and/z (A) -</z (B). Due to Remark 4.1, (B) 0. Thus (A) 0 as
claimed. ]

Theorem 5.1 states that adaption does not help for approximation of linear
operators in the asymptotic setting of this paper. This agrees with the similar result in
a worst case, an average case (see [7], [2], [11]), respectively, and with the results of
[81.

The best possible rate of convergence is obtained by the/x-spline algorithm using
the information )Q*. This rate of convergence is given by rad (N*) x/=,+ A *. Thus
it depends on how fast the truncated series of the trace of K goes to zero. For instance,
if A * for some r > 1, then

1 1
rad (N,*)

r-1 (n+l)(r-l)

If h * q for q (0, 1), then
n+l

rad (N,*)
1 q"

Appendix. Here we prove the result mentioned in the Introduction. In fact, we
will show a slightly stronger result. Namely, we relax the assumptions on the spaces
F1 and F2 and the solution operator S. In this Appendix we assume that F1 is an
infinite-dimensional Banach space, F2 is a normed linear space and that S is a
one-to-one operator (not necessarily linear).

Let q5 {n} be an algorithm using information N {N}. Here we assume that

N.(f) [L,(f), L2(f; Yl),""", L.(f; Yl,’" ", Y.-,)]
where yl Ll(f), Yi Li(f’, Yl, Y2," ",Yi-1) and Li(’; Yl," ", Yi-1) is a continuous
linear functional. We also assume that L O. Define

A() {f F1" q,(N,(f)) Sf Vn >= k(f)}
as the set of elements for which the algorithm q3 solves the problem exactly for
sufficiently large n.

LEMMA A.1. The set A() has empty interior for every algorithm .
Proof Assume on the contrary that A(qS) contains a ball B(f,r)=

{feEl: [[f-flll<-r} for r>0. We construct a sequence {f} from the ball B(fl,r).
Suppose inductively that f is defined. Since fB(f, r)A(), then there exists

k k(f) such that o, (N, (f)) Sf for n _>- k. Take h e F1 such that L(h)
L2(h, Yl) Lk(h; Yl, Y-I)=0 and IIh ll r/3. Here Yi
Li(fj; Yl," ", Yi-). Observe that such an element h exists since dim F1 +oe. Define

f+ =f + h. Thenf+l =f +J=l hi and IIf+l-fl[[ < r Yj=l 3- < r/2. Thusf+ B(f r)
and N(f+l)= N(f). Hence %(N(f+l))= %(N(f))= Sf Sf+l since f+ Cf
and S is one to one. Thus k+ k(f+l)_-> k + 1.
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Definef limjf =fl + Ej=I hj. The elementf exists since {f} is a Cauchy sequence
and F1 is a Banach space. Note thatf B(fl, r) and

II/-11- h, >-IIhll- E IIh, II- r/3 > O.
=j =j+l

Thus f f, for all j. The continuity of functionals that form N yields

(f f+ h ,( W.

Thus we have

#,(N,j(f)) qk(Nk(f))= Sf # Sf.
Since k goes to infinity with j, this proves thatf A(q3). This is a contradiction which
completes the proof. [3

Remark A.1. In fact, the proof of Lemma A.1 supplies a slightly stronger result.
Namely, the proof yields that for every fe A(q3) and for every r > 0, there exists an
element h such that Ilhl[ <- r, f+ h A(q3) and additionally L,(h)=0.

Based on Lemma A.1 and Remark A.1 we prove the result mentioned in the
Introduction. Let q= {q,} and q*= {o,*} be two algorithms using information
{N,}. Let a.(f)= IlSf-q,(N,(f))[I and b,(f)= IISf-q*,(N,(f))ll. Then

a(qs, qS*)= {fe FI" lim a.(f)/b.(f)=O}.

We need to consider the case a, (f) 0, for all n => no, for some no. Then, if b, (f) 0,
for all n _-> nl, for some nl, the two algorithms q3 and qS* solve the problem exactly
and none of them are superior. It is therefore reasonable to set in this case
lim, a,(f)/b,(f)= 1. On the other hand, if {b,(f)} contains a nonzero subsequence,
then the algorithm q3 is superior to the algorithm q3* and it is reasonable to set in this
case lira, a,(f)/b,(f)=0. Having this convention in mind we are ready to prove the
following theorem.

THV.ORWM A.1. For every algorithm * there exists an algorithm such that the set
A(p, *) is uncountable.

Proof Choose an element f F such that L(f)= 1. For y R, define

yf if yf A(*),
gY=

yfl+h if yflA(*).

Here h is chosen such that L(h)=0 and Yfl + h : A(Cp*). Such an element h exists
due to Remark A.1.

We now define the algorithm q5 {q,} as

q,, (N,, (f))

Note that q,(N,(gy))= Sgy, for all n=> 1 and y eR. Since gyC:A(*), there exists a
subsequence {hi} such that

This means that gy e A(q3, q3*), for all g e R. Note that gy varies with y which means
that A(, q3*) contains at least as many elements as R. This completes the proof. [-1
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ENTRAINMENT OF A LIMIT-CYCLE OSCILLATOR
WITH SHEAR BY LARGE AMPLITUDE FORCING*

MICHAEL ST. VINCENTf

Abstract. The entrainment of a circularly symmetric limit-cycle oscillator due to large amplitude periodic
forcing is investigated. The unforced oscillator contains parameters controlling the local strength of attraction
of the limit cycle and the amount of radial variation of angular velocity, or shear, near the limit cycle. It is
shown that entrainment (1 phase locking) will occur for sufficiently large amplitude forcing whenever the
local strength of attraction to the limit cycle is great enough. Furthermore, if the amount of shear is allowed
to increase with the strength of attraction to the limit cycle, then increasing the ratio of shear to strength
of attraction can have the effect of increasing the sensitivity of the oscillator to forcing.

Key words, entrainment, limit cycle, oscillator, phase locking

AMS(MOS) subject classifications. 34C15, 34C25

1. Introduction. This paper is concerned with the periodically forced nonlinear
oscillator

(1.1) () (
defined in a neighborhood of the unit circle, on which it is assumed to have a stable
limit cycle. Here "."=d/at, X=X(r,), ,o=,o(r,), (r=x/x2+y:), A(1, e)=0,
to(l,/3)= 1, and p(s) is an odd 2r-periodic continuous function satisfying p(s+ 7r)=
-p(s). All quantities are real, with e, /3, tr and b0 positive, and u:+v= 1 (u, v
constants).

The unforced oscillator (bo 0) is a circularly symmetric limit-cycle oscillator of
"A- to" form. Oscillators of this form (though not always with a limit cycle on the
unit circle) have been used to model a variety of nonlinear phenomena, including
those of chemical kinetics and biology, and periodically forced Hopf bifurcations (e.g.,
[1]-[3]). When written in polar coordinates (x r cos 0, y r sin 0), it is given by

e:rX(r,e), 0 to(r, fl).

From this we see that A determines the rate of approach of nearby solutions to the
limit cycle, to determines their angular velocity, and the limit-cycle solutions have
constant angular speed 1.

The parameters e and fl are intended to control properties of the oscillator near
the limit cycle. More specifically, the dependence on these parameters is meant to be
such that the local strength of attraction of the limit cycle becomes infinite as e- O,
while the local rate of radial variation in angular velocity, or shear, becomes infinite
as /3- 0. To this end, it is assumed that Ar(l, /)"->--CX3 as e--> 0 and ]tot(l, fl)]- c as

/3- 0. (Additional assumptions are contained in 2.)
The main results obtained in this paper concern large amplitude forcing, in contrast

with many papers on nonlinear oscillations that consider only small amplitude forcing.
In particular, it will be shown that if the forcing amplitude bo is sufficiently large, then
(1.1) will be entrained, or 1 1 phase locked, whenever the strength of attraction to the
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limit cycle is great enough (i.e., e is small enough), depending on bo. In saying that
(1.1) is entrained, it is meant that it has a stable periodic solution, of the same period
as the forcing, that undergoes one oscillation in each period. It will also be shown
that 1:1 phase locking does not occur for small amplitude forcing, except in the
resonant case tr 1.

A related result for large amplitude forcing of the van der Pol oscillator was
obtained by Lloyd [4], and explained heuristically by Levi [5, p. 25]. In that case, both
the shear and the strength of attraction to the limit cycle became infinite as a single
parameter became small. This will also be considered in (1.1) by allowing/3 to depend
on e. However, an additional conclusion will be reached here, due to the fact that we
can specify the relative magnitudes of the shear and strength of attraction to the limit
cycle. In particular, it will be shown that the presence of large shear can reduce the
amplitude of forcing required for entrainment. This will be done by showing that if
is made to depend on e in such a way that (,Or(l, fl)//r(1, e) C as e - 0, then the size
of box/1 + c2, not just bo, determines if entrainment will occur for small e. Consequently,
entrainment could be made to occur for any given forcing amplitude by making
large enough. In addition, it will be seen how a nonzero value of c affects the location
of the periodic solutions in the entrained state.

It is interesting to note that shear, which is shown by this paper to affect entrain-
ment, is also important for the existence of "shock structure" solutions ofreaction-
diffusion equations 13].

The remainder of this paper is organized as follows: In 2, (1.1) is simplified by
a rotation of coordinates and a change of parameters. It is then shown that there is a
family of nested attracting annuli A, each of which is of width O(e) and contains
the unit circle in its interior. All subsequent analysis of (1.1) concerns the behavior of
solutions in A for e small. In 3, a further change of variable is made in order to
deal with the presence of large shear, and estimates are given for approximating the
solutions in A. In particular, it will be shown that the angular component of solutions
in A can be approximated by solutions of an equation of the form ff-- 1- bp(trt) sin
which is analyzed in 4. This phase approximation will be seen to be valid for large
amplitude forcing, in addition to the more usual small amplitude case. The results of
the previous sections are then used in 5 to derive the results concerning entrainment.
It is shown there that the period map will have exactly two fixed points in A, one a
sink and the other a saddle, when entrainment occurs. The paper then concludes with
a brief discussion of the effects of large shear.

2. Existence of attracting annuli A. We begin by stating some additional assump-
tions and simplifying (1.1). Let I c (0, ) be an open interval containing 1, and let
eu, flu and k be positive constants. Then we assume that A(r, e) is defined and
continuous on I x (0, eu), to(r,/3) is defined and continuous on I x (0, flu) and that
they are twice continuously differentiable with respect to r. Furthermore, we-assume
that A, to and p satisfy the following:

(A1)

(a2)

(tol)

(,o2)

Ar(1, e) is strictly monotonic, and At(l, e) - -- as e 0;

IXr[ =< klAr(1, e)l;
tot(l,/3) is strictly monotonic, and [to(1,/3)[-> o as/3 -> 0;

Iol =< klor(1, )l;
(pl)

(p2)

p(s) > 0 for s e (0, rr);

max [p(s) 1.
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An example of functions satisfying these assumptions is provided by h (1- r)/e,
to 1 +(r- 1)//3 and p-sin (s).

As is clear from the above, (1.1) is defined for all (x, y, t) for which (x, y) is in
r2, re I}. In addition, some simplifications can bethe annulus A {(x, y) [X2 -[- y2

made" since h and to are unchanged by a rotation of coordinates, rotation through an
angle b for which cos b u and sin b v allows us to assume that u 1 and v -0.
Furthermore, if we let g=--1/hr(1, e) and/3 l/tot(l, /3), then assumptions (hl) and
(tol) allow us to invert these to get continuous functions e(g) and fl(fl). As a result,
reparametrizing h and to by and/3 shows that we may also assume that At(l, e) --1/e
and tot(l,/3) 1//3. Now, however, it is only assumed that/3 is of constant sign, with
[fl] < fl4, since no assumption was made concerning the sign of tot(l, /3). Thus, from
now on we only consider (1.1) in the case

(2.1) =hx-toy+bop(o’t), j=tox+hy,

with conditions (h 1 2) and (to 1 2) replaced by

(AI’) At(l, e) -l/e,

(to 1’) tot(l, fl) 1/fl,

These conditions will now be used to conclude that there is a family of attracting
annuli At c A of width O(e), each of which contains the unit circle. To begin, use
(A 1’) and (to 1’) to write

A(r, e)=--1 (r-1)+A,(r, e),

where

1
to(r,/3)= 1 +--y (r-1)+ tol(r, fl)

i (r-S)trr(S E) ds and tol (r-s)torr(S, fl) ds.

Together with conditions (h2’) and (to2’), this immediately yields the following lemma.
LEMMA 2.1. The following hold on the domains of h and to:

(i) [h(r, e)[ <- klr- ll=/ e;
(ii) lAir(r, )l<-klr-ll/;
(iii) klr- ll=/l l
(iv) [o,(r, )l<- klr- ll/lBI.
Now let It [1- 2ebo, 1 + 2ebo] and define the annulus At by

For any given bo, we clearly have It c/, and so also At A, whenever e is small
enough. To see that At is attracting for small e, write (2.1) in polar coordinates
(x r cos r/, y r sin r/) to get

(2.2)
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Since Ip(rt)l-< 1 from assumption (p2), this shows that the vector field will be pointing
in on the boundary of A if rh <-bo for r 1 + 2ebo and rh > bo for r 1- 2ebo. We
can now prove the following.

THEOREM 2.2. The annulus A c A will be attracting ife < (1 + k-x/k2+ 1)/(4bok).
Proof Let e be as above, and recall that h (-1/e)(r- 1)+ 3‘1. From (i) of Lemma

2.1, itfollowsthatl3‘ll/bo<=4kboe < 1 + k-x/k2+ 1 < 1 for r= 1 +/-2ebo. Consequently, on
(1) r 1 + 2ebo, we have r3‘ -bo(2 3,1/bo)(1 + 2ebo), so r3‘ < -bo since [3‘ 1[/bo <

1 and 2ebo > 0. This shows that the vector field points in on the outer boundary of A.
(2) r= 1-2ebo, we have r3‘ bo(2+ A1/bo)(1-2ebo). But2+ 3‘l/bo>-2-13‘ll/bo,so

the bounds for 13‘ 11/bo and e show that 2+3‘l/bo>l-k+x/k2+1 and 1-2ebo>
(k- 1 +x/k2+ 1)/(2k). Thus, r3‘ > bo[x/k2 + 1-(k- 1)] [x/kZ+ 1 +(k- 1)]/(2k)= bo, so
the vector field also points in on the inner boundary of A.

From now on, we only consider values of e that are small enough to ensure that
A is contained in A and is attracting.

3. The estimates in A. In this section, basic estimates are proved for the solutions
of (2.2) in A. In particular, it will be shown that the angular component can be
approximated by the solution of an equation of the form q 1- bp(trt)sin ,, which
will be analyzed in the next section. As will be seen in 5, shear has a significant effect
on entrainment when it is of the same order of magnitude as the strength of attraction
of the limit cycle. In order to allow for this, it will from now on be assumed that/3
depends on e in such a way that e//3--> c as e-> 0, where c can be any real number.

We begin by rewriting (2.2) as

1
i’=--(r-1)r+ r3‘l + bop(ot) cos

(3.1)
1

j 1+ (r- 1)+ tOl-(bo/r)p(crt) sin

The terms r3‘1 and to1 are O(e) in A. Indeed, since Ir-ll-<2boe in A, an immediate
consequence of Lemma 2.1 is the following.

LEMMA 3.1. The following hold in A:
(i) 13‘l(r, e)l<--nbke;
(ii) 13‘ lr(r, e)l <-- 2bok;
(iii) Iwl(r,
(iv) IO)l r(r,/3)1 <= 2bokl yl,

where y(e e/ fl c as e --> O.
When c 0, the term (r- 1)//3--> 0 as e-> 0. In that case, the equation for r/ can

be approximated by = 1-bop(eft) sin 1. However, when c#0, (r-1)// is only
bounded, so such an approximation would not be justified. In order to handle this
case as well, let y(e) be as in Lemma 3.1, let b(e)=box/l+T, d(e)=tan- y and
make the change of variable 0 =r/+ y In r-d to get

1
(3.2a) ; (r- 1)r+ r3‘ + bop(rt) cos (0-T In r+ d),

(3.2b) O= l +tOl + T3‘l-()p(trt) sin O-T ln r)

eliminating the (r 1)//3 term.
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Now let @(t; @o) denote the general solution of

(3.3) 1 b,p(trt) sin p, if(0; o)= o,

where bl lim_,o b(e)= box/1 / c, and let r(t; to, 0o)and O(t; ro, 0o)denote the general
solution of (3.2), with r(0; ro, 0o)=to and 0(0; ro, 0o)= 0o.

Standard theorems ensure that these solutions exist for all t_-> 0 when ro I, and
have continuous first partial derivatives with respect to their arguments [6]. Let , R,
(R)i (i 1, 2) be given by

Oqo
(t; @o),

R r(t; ro, 0o),
t9 ro

R2 r( t; ro, 0o),

), C90ro O(t; ro, 0o), 192 -o O(t; ro, 0o).

Observe that the periodicity of (3.2) in 0 and (3.3) in , implies that r, 19i, and Ri are
27r-periodic in 0o, and is 27r-periodic in @o, with O(t; ro, 0o+2r)= O(t; ro, 0o) +27r
and 6(t; 6o+27r)= ,(t; qo)+2r.

In the following lemma and theorem, which are the main results of this section, T
is a positive number and ST. denotes the set [0, T]

LEMMA 3.2. There are positive constants el(bo, T), kl(bo, T), and k2(bo, T) such
that

(i) ]Rl(t; ro, 0o)[ < e-t/2 + e,

(ii) 191(t; ro, 0o)1 < ekl,

(iii) IR2(t; ro, 0o)[ < 2ebok_, and

(iv) 1192(t; ro, 0o)1 < k2

for all t, ro, 0o) ST. whenever e < el.
THEOREM 3.3. For every 5 > 0 there is an e2(bo, T)> 0 such that

(i) [0(t; ro, 0o) ,(t; 0o)1 < ;, and

(ii) [192(t; ro, 0o) q’(t; 0o)[ <

for all t, ro, 0o) ST, whenever e

In addition to the explicit dependence on bo and T, these estimates also depend
on c, k and the functions A, to and/3(e) generally. On the other hand, it will be seen
that they are independent of cr since Ip(,t)l--< 1.

Since the variational equations for (3.2) and (3.3) will be used in the proof of
Lemma 3.2 and Theorem 3.3, we begin by observing that the functions R,
satisfy

(3.4) =-(blp(trt) cos b),

(3.5a) /, B, Ri + B219i,

(3.5b) )i--- n3Ri + B40i,
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with Rl(0) 192(0) (0) 1 and R2(0) O1(0) 0, where the coefficients of (3.5) are
given by

BI=--(2r-1)+AI+rAI+ p(o’t) sin(O-Tlnr+d),

B2 bop (trt) sin 0 y In r + d ),

B3=tolrd-Olr4; p(trt)[sin(O-Tlnr)+Tcos(O-ylnr)],

B4=-()p(trt) cos O-y ln r).

Estimates for these coefficients follow easily from Lemma 3.1, together with the fact
that r 1, y c and b - bl as e 0, yielding the following lemma.

LEMMA 3.4. There is an M(bo, c, k)> 0 such that

1
(i) Bl<---- -e-e’
(ii) IBl<=bo,
(iii) IB31-< M,
(iv) IB41<-2bl,

for r I whenever e is small enough.
In addition to Lemma 3.4, the following two lemmas will be needed. Lemma 3.5

plays the same role as the Gronwall lemma, but seems more convenient here. The
proofs are omitted, since Lemma 3.5 is a special case of a lemma of Kelley [7] and
the proof of Lemma 3.6 is elementary.

LEMMA 3.5. Let T, a, b be positive constants, and let v be defined and continuous
on [0, T], smooth on (0, T), with v(O)=0 and Ifl < alv]+ b for t (0, T). Then Ivl <
(b/a)(ea’- 1) for (0, r].

LEMMA 3.6. Let T> 0 be given, and letf g, h, i, u, v be real valued and continuous
on [0, r], u, v smooth on (0, r), with t) =f(t) + g( t)v, fi h( t) + i( t)u and u(O) >= Iv(0)l.
If h( t) > If( t)l and i( t) >= g( t) for (0, r), then Iv( t)i < u( t) for

We can now prove Lemma 3.2 and Theorem 3.3. In doing so, the fact that r(t; to, 0o)
is in I for all => 0 if ro I will be used without explicit mention.

Proof of Lemma 3.2. Let M be as in Lemma 3.4, and let

( bo) e2b’T e2b,Tkl=M 2+ k2 2

(i) and (ii). Consider only e < 1/(2bokl), and assume one of these is false. Then
since they hold for 0, there is a r e (0, T] such that they hold on [0, r) but at least
one of them fails at ’. Then from (3.5a) and Lemma 3.4 we see that

l---fl(t)nt-gl(t)R1, RI(0)=I,

where If,(t)l<1/2 and gl(t)<--1/2e on (0, ’). Lemma 3.6 shows that ]R,l<u,(t) on
(0, r], where

1
il 2 2e Ul’ ul(O)=l.
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But ul (1 e)e-t/2 4- e, so IRI] < e-t/2e 4- e on [0, r], showing that (i) cannot have
failed. Together with (3.5b) and Lemma 3.4, this shows that

1 =f2(t) + g2(t)O1, 01(0 0,

where If=(t)l < M(e-’/=/ ) and g2(t)<-2bl on (0, r). Now Lemma 3.6 yields Io 1 <
u2(t) on (0, r], where

fi2=M(e-’/2+e)+2blU2, u2(0) 0.

But

so we get

eM + +U2 l+4ebl 21 l+4ebl

11911<eM l+4ebl
+ <eM 2+ =ekl

on [0, r], having used bl => bo>O. But then (ii) cannot have failed at r either, a
contradiction. This establishes (i) and (ii).

(iii) and (iv). Now consider only e < 1/(Mk2), and assume one of these is false.
The proof in this case proceeds exactly as above, except now we have Ifl(t)l < bok2,

[f(t)[ < 2ebok2M, ul(O) O, u2(O) 1,

yielding

Ul 2ebok2(1 e-t/2), bo
U2 e2b’’ + ek2M-7 e2b’t- 1),

so then [R2I < 2ebok2 and

[1921 < (1 + eke_M) e2b,’ < 2e2b, T k2 on [0, r].

Proof of Theorem 3.3. (i) From (3.2b) and (3.3), it follows that

10(t; to, 0o)-)(t; Oo)]=[b,p(rt)(sin 0-sin 0)+A[,
where A=tol+3‘Zl+p(o’t)[blsinO-(b/r)sin(O-3,1nr)]. Since [p(trt)l_-<l, this
shows that

Now (i) and (ii) of Lemma 3.1, together with the fact that 3’ c, b bl and r- 1 as
e-0, shows that IAI can be made less than any 61> 0 by taking e small enough
(depending on bo and the functions A, to and/3 (e)). Consequently, Lemma 3.5 allows
us to conclude that

10(t; ro, 0o)-(t; Oo)l<-,(eblr--1)
for (t, to, 0o)e Sr,.

(ii) From (3.4) and (3.5b) we get

12-l =< I(bl cos q,) -(b/r)02 cos (0 3’ In r)l / IB3R=I,
where q,= ,(t; 0o) and we have used Ip(t)l-< 1. Adding and subtracting 192 cos 4’ in
the first term on the right, and using Lemmas 3.2 and 3.4, we find that

112 l < blIO2 1 + k2(lbl cos 4’ (b/r) cos 0 3’ In r)l + 2eboM)
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on ST.. Then (i) above, together with the fact that r 1, b b, and y c as e 0,
shows that

on ST, for any t > 0 whenever e is small enough. Since (-)(0)=0, Lemma 3.5
yields

1 1 biT[02--*[(eb’t--1)(e --1) on ST,

4. The phase approximation. The solution of (3.3) is analyzed in this section,
with the intention of discovering when there are values of u for which (t; u) is
periodic (rood 2). The main result that will be obtained asses that whenever bl is
large enough (depending on p and ) there will be exactly two values of u in [-, )
for which ff(t+2/; u)=ff(t; u)+2, with one corresponding to a sink and the
other to a source, and all other values in [-, ) corresponding to solutions that
approach the sink (mod 2). Together with the results of 3, this will be used in the
next section to obtain results concerning entrainment in (2.1).

4.1. Analysis of (t; u). We begin by writing (3.3) as

(4.1) = 1-bp(t)sin 6,

where for this section only we write b for b. Thus, b here represents a constant, and
not the function b(e) that it denotes in the rest of the paper. As is easily seen, any
periodic solution of (4.1) must have an integer multiple of 2/ as its fundamental
period. A useful tool in discussing such solutions is the rotation number p, given here
by

1 6(t; u)
p lim.

As is well known, p exists independently of u, depends continuously on parameters,
and is such that (4.1) will have a periodic solution of fundamental period 2N/ for
which (t+2N/) (t) +2M if and only if p is rational, with p MN in lowest
terms [8]. An easy result is that p > 0 for (4.1), ruling out solutions that are periodic
in the ordinary sense. To see this, let f(t)=((t)-(-t))/2, where ff is any solution
of (4.1), and observe that f= 1 whenever f=0. Thus, 0 is the only zero of f and
f> 0 for > 0. Since (iv) of Lemma 4.1 (below) shows that can be replaced by f in
the expression for p, this shows that p 0. But p 0 cannot occur, since if was
periodic f would have infinitely many zeros.

We now prove two lemmas that will provide the basic results needed to analyze
the Poincar6 map u:(2/; u) (mod 2). From the symmetry propeies of p(t)
and sin , we get

LEMMA 4.1. efollowing hoM for all real values of and u:

(i) (t; u) +2 (t; u + 2);

(ii) 0 t+;u = t; ;u

(iii) t+--;u -= t;O ;u -(iv) -(-t; u) (t; -u).
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Proof. In each case, the function on the left is a solution of (4.1), so the result
follows from uniqueness.

One consequence of this lemma is that we need only consider [0, 7r/r]. The
next lemma provides estimates for q(t; 0) and q(t; 7r) on this interval. In order to
state it, we first define positive numbers m(al, a) and b(r, 8) for [al, a2] c (0, 7r) and
0< 6 -< min(Tr/2, /2o-) by

m(al,a2) min p(s),
s[al, a2]

b(r, 8)=max (1/[m(o6, 7r- r6) sin 6], (2r-46)/[6m(cr6/2, r6) sin (8/2)]).

Then we have the following lemma.
LEMMA 4.2. If 0 < 6 _--< min (Tr, 7r/r), then

(i)

(ii)

(t; O)<6 for t[O, 8];

If, in addition, 6 =<min (7r/2, 7r/2o) and b > b(cr, 6), then

(iii) q(t; 0)< 6 fort [0,-rr_o. 6 ], with

(iv) (t; -Tr) > -8 for [8, 28), with

qt(t;-7r) > 0 fort[26,-].
Proof (i)Since <1 for (t, q) (0, 6] x (0, 6] it follows immediately that

q(t; 0)<8 for t[0, 8] since q(0; 0)--0.
(ii) Similarly, q)> 1 for (t, q) (0, 6] x (-Tr,-r+6], so q(6;-Tr)>-Tr+6 since

q(0; -Tr) -Tr. But b => 1 at q -Tr + 6 for [0, 7r/o’] so q(t; -Tr) cannot return to
-Tr + 6 until after 7r/r.

(iii) We have q(t; 0) < 6 for [0, 8] by (i). But b >/7 implies that q) < 0 at
q=6 for t[6, Tr/r-6], since then (9=l-bp(crt) sin6 is less than 1-
p(crt)/m(rS, zr-rS)<-O. Thus q(t;0)<8 for t[O, Tr/cr-8]. To prove the rest,
observe that b _-< 1 for (t, q) [zr/r- 8, zr/o’] x [8, r] and that zr- 8 _-> 8 since 8 _-< 7r/2.
Together with q(Tr/r 8; 0) < 8, this shows that q(t; 0) < 28 for

(iv) Since = 1 at q=0 for all t, and since qJ> 1 for (t, q) (0, 28] x [-8, 0), all
that is needed is to show that q(t;-zr) reaches -8 before 8. From (ii) we get
q(6/2; -Tr) > -r+ 8/2. Thus it is sufficient to show that (6/2)qJ > 7r-38/2 for b >
and (t, q) [8/2, 8] [-Tr+ 8/2, -8]. But for such t, and b we have -bp(crt) sin >
(27r-48)/8 yielding

6b> 1+ =zr
2 6 2

4.2. The Poincar map and its square root. In order to discuss periodic solutions
of (4.1), we now introduce the Poincar6 map h(u)= q(27r/o’; u)-27r and the related
function g(u)= q(Tr/o’; u)- 7r. Both of these functions are increasing diffeomorphisms
of . Furthermore, since the n-fold composition hn(u) equals q(2nr/r; u)-2nTr by
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(ii) of Lemma 4.1, q,(t; u) will be a (2nzr/cr)-periodic solution of (4.1) if and only if
h"(u) u (mod 27r). In particular, fixed points of h correspond to (27r/tr)-periodic
solutions with p 1. From Lemma 4.1 we get the following.

LEMMA 4.3. g and h have the following properties:

(i) g(u+2cr)= g(u)+2zr, h(u+2zr)= h(u)+27r;

(ii) h=gog;

(iii) g-l(u) -g(-u).

Proof (i) follows immediately from (i) of Lemma 4.1. Similarly, (ii) follows from
(iii) of Lemma 4.1 with 7r/r. To prove (iii), we have

g(-g(-u)) ;-0 -u + r -’rr,

which equals

by (iv) of Lemma 4.1. Now (iii) of Lemma 4.1 shows that g(-g(-u))=-(0;-u)
u.

As a result of (ii) above, h can be analyzed in terms of its "square root" g. This
simplifies the analysis, since p(trt) is of constant sign on [0, 7r/r] and because it allows
easy use of Lemma 4.2. The next result provides a sufficient condition for p- 1.

LEMMA 4.4. Let 0 < 6 _<- min (zr/2, 7r/2tr). If b > b(o’, 6), then g([-Tr, 0]) c
(-zr,-zr+26) and g-’([0, r])c (7r-26, 7r). If tr= 1, then g([-Tr, 0])c (-r, 0) and
g-l([0, zr]) (0, zr) for all b > O.

Proof The result for g-1 follows from the one for g by (iii) of Lemma 4.3. To
prove the result for g, it is sufficient to prove that

(A) p(’,0)<zr and q(’,-Tr)>0 for 0r= 1, and

(B) q(’,0)<26 and q(’,-Tr)>0 for b>

But (A) follows from (i) and (ii) of Lemma 4.2 with 6 7r and t= 7r/o’, while (B)
follows from (iii) and (iv) of Lemma 4.2 with zr/o’.

Since (-Tr, -7r + 26)= (-7r, 0) for 6 as above, g clearly has fixed points when the
conclusions of the lemma hold. Furthermore, fixed points of g are also fixed points
of h since h--g g, so Lemma 4.4 provides sufficient conditions for (4.1) to have
rotation number 1. In particular, observe that p 1 for all b > 0 when o-= 1. This
cannot happen for any other value of cr since p- 1! cr as b- 0, ruling out p 1 for b
small when cr 1.

We now consider the questions of the number of fixed points in [-r, 7r) and their
stability. These questions can be answered by examining g’, with a fixed point u of g
being stable if g’(u)< 1 and unstable if g’(u) > 1. To begin, since g’(u)=(er/cr; u)
we can solve (3.4) to get

(4.2) g’(u) =exp -b p(crt) cos q(t; u) dt
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Since p(s)_has maximum value 1 on (0, r), there are numbers 0< a < a2 < -r/- for which
p(s) >= l/x/2 on [al, a2]. Now let the positive numbers 6 and /2 be given by

a2 a

4 4’20’’ 0" 0"

We can now prove the following.
THEOREM 4.5. Let u and 6 be as above. Then
(i) Ifb > b(0", 6), then g is a contraction mapping on [-Tr, 0], with g’ < exp (-bu/0")

there.
(ii) Ifo’= 1, then there is an interval J c (-Tr, O) (depending on p) such that for all

sufficiently small b, g is a contraction mapping on J, with g’< exp (-bu2) there,
and all points of [-Tr, 0] not in J enter it under iteration of g. Here u2 is a
positive constant determined by p.

Furthermore, the corresponding assertions hold for g- on [0, 7r] and -J {x -x J}.
Proof. Since g-(u)=-g(-u) (Lemma 4.3), the assertions for g- follow from

those for g. The proofs for g are as follows.
(i) For b > b(o-, 6), we have g([-Tr, 0])c (-Tr, 0) by Lemma 4.4. To get the rest,

we only need to show that the integral in (4.2) will be greater than u! o- for u [-Tr, 0].
But for such u, it follows from (iii) and (iv) of Lemma 4.2 that q(t; u) (-6, 26) for
t[6, Tr/0.], with q(t; u) (-6, 6) for t[6, Tr/0.-6]. Furthermore, we have
(-6, 26) (-7r/4, 7r/2), (-6, 6)c (-7r/4, 7r/4), and p(0.t)>=l/x/- for t

[a/0., a2/0.] [6, r/0.-6]. Thus, the negative contribution to the integral must be
greater than -6, with p(0.t)cos q(t; u)> for t[a/0., a2/0"], so

w/
a2 al

p 0"t cos
a o 20" 20" 0. 0""

(ii) Now let 0"= 1. Expanding g(u) and cos q(t; u) in powers of b and making
use of (4.1) and (4.2), we get expansions that can be written in the form

(*) g(u) u bA sin (u + :)+ O(b2),
(**) g’(u) exp (-bA cos (u + ) + O(b2))
as b0, uniformly in (t, u) for t[0, r]. Here A=(a2+fl2)/2 and =arccot(fl/a),
where

a p(t) sin tdt and /3 p(t) cos dt.

Since s (0, 7r), there is a closed interval J c (--Tr, 0), containing -sc in its interior,
on which cos (u + sc) > . Clearly sin (u + :) is bounded away from 0 on [--, 0]-J,
where it is positive to the right of J, and negative to the left. Together with (.), this
shows that g(J) J and that points in [-Tr, 0] J enter J under iteration of g, whenever
b is small enough.

To show that g is a contraction on J, we need only establish the estimate for g’.
To this end, let /22--A/2. Since cos (u+)> on J, it follows from (**) that g’(u)<
exp(-b/22) there whenever b is small enough. [3

When the conclusions of Theorem 4.5 hold, g (and so also h) has exactly two
fixed points in [-Tr, 7r): a sink Uo (-Tr, 0) and a source -Uo (0, 7r). Furthermore, if
u is any other point of [-r, r), then u approaches Uo under iteration of g if u <-Uo
and approaches Uo + 27r if u > Uo. The behavior of the corresponding map " S S
is sketched in Fig. 1.
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-u

FIG. 1. Behavior of when b is large and also for small b when tr 1.

Remark 1. In addition to their existence, we can obtain information about the
location of the fixed points when b is large. In particular, g([-Tr, 0])c (-Tr,-Tr+ 26)
for b > b(cr, 6) by Lemma 4.4, which shows that Uo -Tr as b- o.

Remark 2. It should be pointed out that it was not obviously to be expected that
(4.1) would have rotation number for large b. To see this, consider the equation

(4.3) q= 1-bp(trt)(1 +sin q),

which appears similar to (4.1). If we let r trt- 7r and introduce v(r) by

tan
v 2r

then (4.3) is transformed into

(4.4) v+(a+p(-))v=O a-
4o.2 /3=

which is Hill’s equation. Using an argument given by Ermentrout [9] for the case
p(r) sin (r), and presented more fully by Ermentrout and Kopell [10] in the general
case, it can be shown that (4.3) has rotation number k when (a,/3) is in the kth
instability zone of (4.4) (k 1, 2, 3,... ).

When p(r) sin (r), (4.4) is Mathieu’s equation, for which the well-known stability
diagram shows clearly that as b increases it passes in succession through an infinite
sequence of intervals (bk, k), with bk < b’k < bk+l and bk->cX3 as k-->, on which (4.3)
has rotation number k, which is in striking contrast to the behavior of (4.1). This can
also be shown to occur when p(-) is the square wave with p 1 on [0, 7r) and p =-1
on 7r, 27r), in which case explicit conditions for the boundaries of the instability zones
can be obtained [10], [11]. Finally, work done by Weinstein and Keller [12] suggests
that the relevant aspects of the instability zones in these two cases occur also for a
large class of functions p.

5. Entrainment of (2.1). The results of the previous sections will now be used to
obtain information concerning the behavior of the solutions of (2.1) in A when e is
small. In particular, the fact that the 0-component of the solutions of (3.2) can be
approximated by solutions of (4.1) will allow us to conclude that (2.1) will be 1:1
phase-locked for small e whenever the conclusions of Theorem 4.5 hold. The main
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result, which is contained in Theorem 5.4, asserts that if bl and r satisfy the hypotheses
of Theorem 4.5, then for all sufficiently small e the period map of (2.1) will have
exactly two fixed points in A, a sink and saddle corresponding to the sink Uo and
source -Uo of g, and that every point of A that is not on the stable manifold of the
saddle will be in the basin of attraction of the sink. This will follow naturally from
the fact that (r(r/r; ro, 0o), 0(r/tr; ro, 0o)) can be Cl-approximated in I xR by
(1, g(0o)), as shown by Lemma 3.2 and Theorem 3.3. That (2.1) will then be 1"1
phase-locked is a consequence of the fact that (4.1) has rotation number 1 whenever
g has fixed points.

To begin, let x(t; Xo, Yo) and y(t; Xo, Yo) denote the general solution of (2.1) with
x(0; Xo, Yo)= Xo and y(0; Xo, Yo)= Yo, and let Xt denote the t-advance map

Y0 y(t; Xo, Yo)]

Xt is defined on At for all _-> 0 since A is compact and attracting and standard
theorems ensure that Xt maps A diffeomorphically onto its image. Furthermore, as
shown in the next lemma, X, has periodicity and symmetry properties similar to those
of (t; u).

LEMMA 5.1. The following hold for all >- 0:

(i) Xt+2./o.-Xt X2/;

(ii) -Xt+/o.=Xt o(-X/o.).

Proof. In each case, when the function on the left is evaluated at an arbitrary
initial point a solution of (2.1) is obtained. The result then follows from
uniqueness.

From (i) it follows that Xe/ X/ (n a positive integer), while (ii) shows
that X/ (-X/)o (-X/). Thus, all information concerning periodic solutions
must be contained in -X/ and we can once again restrict our analysis to a half period.

Corresponding to the maps X are the maps q given by

(ro) (r(t;ro, Oo))t Oo O( t; ro, 0o)

where (r, 0) is the general solution of (3.2). Let F F be the map connecting the
coordinates (r, 0) and (x, y),

Then X, and , are connected by

(5.1)

Observe that

which shows that

r cos (0-3/In r+d))r sin 0 /In r + d)

X, F=FoC,.

(R1 R2)Dt=
O1 02’

(5.3)
d

Debtdt
B(t)DdPt, Dqo I
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where

B=(B1B3 B4
is the coefficient matrix of (3.5) and I is the 2 x 2 identity matrix. We can now prove
the next lemma, which shows that t contracts areas in I x N for > 0 if e is small
enough.

LEMMA 5.2. If e is small enough, then

tO) e(2bi -1/2e)t0<detDt
0o

for all ro, 0o) I x and all > O.
Proof. From (5.3) it follows that

det Dq, exp tr B(s) ds

But tr B(s)= B(s)+ B4(S), SO Lemma 3.4 shows that tr B(s)-<2bl 1/2e for roe L
whenever e is small enough.

Now consider the map

G."

From (5.1) it follows that

(5.4)

Clearly

(or:)
(-X./o.) F F G.

will be a fixed point of-X=/, if () is a fixed point of G. Moreover, if () is a
hyperbolic fixed point of G for which ro 0, then (oo) will be a fixed point of the same
type (sink, saddle or source) for -X=/. To see this, observe that det DF(roo)= ro and
that differentiation of (5.4) yields

Xo ro ro ro

when (;g) is a fixed point of G. Thus, D(-X=/)(Oo) and DG(oro) are similar, and so
must have the same eigenvalues, when (;Oo) is a fixed point with ro 0.

The results of the previous section can easily be used to obtain information about
G. This is because Lemma 3.2 and Theorem 3.3 show that G and DG can be made
as close as desired to

(lg) and (0 gO,)
for (ro, 0o) I x by making e small enough (depending on bl, etc.). In particular,
part of the proof of Theorem 5.4 will involve showing that G will be a contraction
near (ulo) for e small. In this regard, observe that a smooth map from a compact convex
set to itself will be a contraction if at each point the eigenvalues of its linear part are
real, distinct and less than one in absolute value, and the corresponding eigenvectors
are mutually orthogonal. The next lemma shows that the orthogonality condition can
be relaxed.
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LEMMA 5.3. Let D be a compact convex subset of an open set U c R (n >-2), and
letf" U -> be a C function that maps D into itself whose linear part Dr(x) has distinct
real eigenvalues Al(x), ", An(x) in D. Let AM -max IAi(x)l(x D, i- 1,. ., n), and
let V (x)," ., vn (x) be unit eigenvectors corresponding to A (x),. ., An (x). Then f will
be a contraction mapping on D ifAM < 1 and

1 1-h[i" Yk[ < (i k)
n-1 l+A4

for all x D.
Proof. Since Ivi(x). Vk(X) is continuous and D is compact, there is a A (AM, 1)

such that

1 A2-A
n-1 A2+ A4

on D. We now show that I[Df(x)w[[ =< A Ilwll on D for all w n, where I1" Ildenotes the
Euclidean norm. To this end, let x D and w be arbitrary, and let A Df(x),
B=diag(A(x),’’’,An(x)), M=col(v(x),’’’,vn(x)) and N=MrM-I, where I
is the n n identity matrix. M is invertible since A,..., An are distinct, so we can
also let u M-w. We want to show that Allwll=- IIAwll = => 0. But

A llwll IIAwll-uT(AI B2)u+uT(AN- BNB)u.

Clearly uT(AI B)u_--> (A- AM)uTu, and AN BNB is a symmetric matrix whose
diagonal elements are 0 and whose other elements are bounded in absolute value by
(A-A4)/(n- 1) as follows from (,). As a result we see that

A2-A2M T=llwll =- IIAwll =_-> u+ Ca+,
n--1

where u+ is the vector whose components are the absolute value of the corresponding
components of u, and the matrix C has its diagonal elements equal to n-1 and its
remaining elements equal to -1. Thus, it is sufficient to show that C is a nonnegative
matrix. But this follows immediately from the fact that C--(1/n)C rC.

Now let x and y be any two points in D. Since D is convex, the segment joining
x and y lies in D and we have

Ilf(Y) f(x)[[ Df(x + t(y x))(y x) dt

<= IlDf(x + t(y x))(y x)lldt

<-- AI[Y x dt A [lY x II.

Thus, f is a contraction on D with contraction constant A.
Let be as in Theorem 4.5. We can now prove the following.
THEOREM 5.4. If bl > b(tr, ), or if tr 1 and bl is small enough, then X2/ will

have exactly two fixed points in A, one a sink and the other a saddle, whenever e is small
enough (depending on bl and tr). Furthermore, all points ofA not on the stable manifold
of the saddle are in the basin of attraction of the sink.

The following proof uses the notions of horizontal curve and horizontal strip.
Briefly, a smooth horizontal curve in this context is a curve whose tangent vectors have
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a 0-component that is larger than its r-component. A horizontal strip is a strip whose
upper and lower boundaries are nonintersecting horizontal curves. The width of a
horizontal strip is the maximum vertical distance between corresponding points on the
upper and lower boundaries. For details, see [14].

Proof. If b, > b(o’, 8), or if tr= 1 and bl is small enough, then it follows from
Theorem 4.5 that there are closed intervals J1 c (-rr, 0) and J2 c (0, rr), with u0 Int (J1)
and -Uo Int(J2) (where the sink Uo is the unique fixed point of g in (-rr, 0) and the
source -Uo is the unique fixed point of g in (0, rr)), such that g’ is bounded below 1
on J1 and bounded above 1 on J2. Let D I x J and D2--I x J2. Since X2=/,
(-X,/,) (-X=/,), it follows from (5.4) that it is sufficient to prove that the following
hold whenever e is small enough.

(A) Points of I x [-rr, rr) not in D1U D2 enter D(mod 2rr in 0) under iteration
of G.

(B) G is a contraction mapping on D.
(C) G has a unique saddle point in D, and any point of D not on its stable

manifold leaves D under iteration of G.

Proof of (A), (B), and (C).
(A) and (B). Theorems 4.5 and 3.3 show that there must be a d > 0 such that

those points () of I x [-rr, rr) not in D U D2 for which 0 e [-rr,-Uo) must move at
least a distance d toward D under G, while those with 0 e (-Uo, rr) must move at
least distance d toward the copy {()1()-(2)e D,} of D,. This proves (A), and shows
that G(DI)c D. It could now be shown directly that G is a contraction on D1, but
instead we observe that G must satisfy the hypotheses of Lemma 5.3 in D1 for small
e, since g’ is bounded below 1 on J1 while Lemma 3.2 and Theorem 3.3 show that
DG() can be made as close as desired to

uniformly for (r, O)/ x R by taking e small enough.
(C). The fact that g’ is bounded above 1 on J, together with the approximation of

DG given above, shows that whenever e is small enough G will map smooth horizontal
curves in D2 to smooth horizontal curves and DG will have eigenvalues A, la that
satisfy 0<]hl[< 1 <la=l at each point of D2. Clearly any fixed point of G in D2 will
then be a saddle.

Now let So D2 and define

Sk=D2fqG(&,_,) (k= 1,2,3,...).

Since G maps smooth horizontal curves in D2 to smooth horizontal curves, and since
points on the ends of D2 move at least a distance d away from D2 under G, it follows
that the & form a nested family of horizontal strips, each of which connects the ends
of D2. Furthermore, area of Sk+ is less than 1/2 area of Sk whenever e is small enough,
since det (DG) < 1/2 for small e by Lemma 5.2. As a result, the width of Sk -+ 0 as k -+

due to the fact that the upper and lower boundaries of Sk are horizontal curves of
length not less than the length of J2. Thus

&o=C) &
k=0

is a horizontal curve [14, p. 70] connecting the ends of D (see Fig. 2).
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FIG. 2

0

Now let W be the unstable manifold of a fixed point in D2. Since D2["]
G(D2 f3 Wu) D f’) W", it follows that D2 f’) W" c So. Thus, there can be at most one
fixed point in D2 since otherwise the segment of So connecting any two fixed points
would have to lie on the unstable manifold of each. On the other hand, there must be
at least one fixed point in O2, since O2[’l G(S)--So shows that G-I(S)c So. We
must now conclude that So W" VI D2 That any points ofD not on the stable manifold
of the saddle must leave D under iteration of G is a consequence of the fact that
such a point must otherwise approach W. [3

The behavior of X=/ in A when the conclusion of the theorem holds is sketched
in Fig. 3. It should be observed that the sink and saddle mentioned in the theorem
must approach

(cos(uo+do)) and (cos(-uo+do))sin (Uo + do) \ sin (- Uo+ do)

as e 0, where do tan-1 c. This follows from the form of F, together with the fact
that the intervals J1 and J used in the proof can be chosen as small as desired provided
that Uo Int (J1) and -Uo Int (J).

FIG. 3. Behavior ofX2/ in A for small e when b is large and also for small b when cr 1. The width

ofA has been exaggerated for purposes of illustration.
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Furthermore, since the proofinvolved approximating the 0-component ofsolutions
of (2.1) by solutions of (4.1) with rotation number 1, it follows that the periodic
solutions corresponding to the fixed points of X2/, go once around A in each period,
which shows that (2.1) is then 1"1 phase locked. Thus, (2.1) is 1"1 phase locked for
small e when b > b(r, 6), and for b small enough when tr 1. That this cannot occur
for bl small when tr 1 follows easily from the fact that (4.1) cannot then have rotation
number 1. However, this does not rule out the possibility that other types of phase
locking (e.g., 2"1) might occur.

Remark. As previously noted, the shear, or radial variation in angular velocity
near the limit cycle, is a property of the unforced oscillator. In our analysis of (2.1)
it was assumed that/3, which determines the amount of shear present in the unforced
oscillator, depended on e in such a way that e//3 c as e 0. As follows from Lemma
3.1, when c 0 the angular velocity to of solutions ofthe unforced oscillator is essentially
constant in A for e small, since A is of width O(e). On the other hand, when c 0,
to will have an O(1) variation across A as e - 0. Thus, we say there is a large shear
when c 0.

The presence of large shear was accommodated in the analysis of (2.1) by making
the change of variable

0 r/+ y In r-tan-1 y

in the polar coordinate form (3.1) of (2.1). Since r 1 in A and y c as e-0, it
follows that

0 - 7 tan-1 c

in A as e 0. Thus, we see that one effect of large shear is to appear to rotate
coordinates in A. In particular, the angular position of the fixed points mentioned in
Theorem 5.4 will differ from that which would result from the same value of bl when
c 0 by an amount close to tan- c.

The fact that b bo,fl + c2 occurs in Theorem 5.4 instead of bo demonstrates that
the presence of large shear can also increase the sensitivity of the oscillator to forcing.
Specifically, we see that the amount of forcing required to bring about entrainment is
reduced when Icl is increased. Furthermore, Theorem 3.3 shows that the 0-component
of the solutions of (3.2) can be approximated in the presence of large shear by a
solution of (4.1) that would result from a larger forcing amplitude when ]el is smaller.
Since r 1 + O(e) in A, the 0-component determines the gross behavior of solutions
there. Thus, not only does an increase in shear increase the sensitivity of the oscillator
to forcing, but the solutions in A appear to behave much as if the forcing had been
increased instead of the shear.
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SECOND ORDER NONLINEAR FORCED OSCILLATIONS*

JAMES S. W. WONG"

Abstract. We study the oscillatory behaviour of solutions of second order nonlinear differential equation
x"+ a(t)f(x) g(t) on the half line [0, ). Conditions on a(t), f(x) and g(t) are given so that all solutions
are oscillatory. These results represent further improvements on those given by Kartsatos, Kusano and
Onose and Foster.
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1. Introduction. We are concerned here with second order nonlinear differential
equation on the half line [0, )

(1) x"+ a(t)f(x) g(t), [0, c),

where a(t), g(t) are real-valued piecewise continuous functions on [0, ) and f(x) is
a continuous and nondecreasing function of x (-, o). We shall assume that func-
tions a(t), g(t) and f(x) are sufficiently smooth so that equation (1) always has
solutions that are continuable throughout [0, ). Such a solution is said to be oscillatory
if it has arbitrarily large zeros, i.e., for any T> 0 there exists a => T such that x(t) 0.
Otherwise, the solution is said to be nonoscillatory, i.e., it is eventually positive or
negative. Equation (1) is said to be oscillatory if all continuable solutions are oscillatory.
Our interest is to find conditions on a(t), f(x) and g(t) so that (1) is oscillatory.

In an earlier paper [29], we posed the problem of whether (1) remains oscillatory
subject to a periodic forcing term g(t), i.e., g(t + P) g(t) for all and some positive
constant P, provided that its unforced equation

(2) u"+a(t)f(u)=O, t[0, c),

is oscillatory, where f(x) satisfies, in addition,

(3) xf(x)>O, xO.

Subsequently, Kartsatos [12] and Teufel [28] proved results showing that certain
well-known oscillation criteria for the unforced equation (2) remain valid for (1) when
g(t) is periodic.

Kartsatos’ technique introduced in [11], [12] is to assume the existence of a
function h(t) such that h"(t)= g(t) and to reduce (1) to a second order homogeneous
equation like (2). His technique has since been extended to higher order functional
differential equations by Kartsatos and Manougian [14], Kartsatos and Onose [15],
Kartsatos and Toro [16], Kusano and Onose [19], Onose [21], Staikos and Sficas [26],
[27], and Foster [7], [8]. On the other hand, there are also a number ofpapers concerned
with the more special linear equation, and the oscillatory nature of its solutions (see,
e.g., Keener [17], Skidmore and Leighton [24], Skidmore and Bowers [25], Rankin
[22], and Howard [9]). Other related results on forced oscillation for (1) may be found
in Komkov [18] and Rankin [23].
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t China Dyeing Works, Ltd., 819 Swire House, Hong Kong, and Department of Mathematics, University

of Hong Kong, Hong Kong.
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The basic assumptions in Kartsatos’ results 11], 12] are that h(t) is either small
for large values of or it is periodic in t. It is useful to note that Atkinson [2] showed
that if g(t) is the second derivative of a periodic function, then a periodic second
primitive h(t) exists such that h"(t)= g(t). Howard’s results for the linear equation
apply however to the more general oscillatory functions such as g(t) o sin t, 6 being
any real number.

More specifically, we consider the following specific Emden-Fowler equation:

(4) x"+ t[x[ sgn x sin t, y > O,

on [0, c) where 6 is any real number. Using Kartsatos’ theorems [11], [12], we can
conclude that (4) is oscillatory if a >_- -1 and 3 _-< 0. Howard’s theorem [9], when applied
to a special case of (4), i.e.,

x"+x=tsint, 3real,

does yield oscillation for all values of 3. The results given below represent a further
improvement in this direction and will show among other things that (4) is oscillatory
for all values of 3 provided that a + 2’3 >-1. In the special cases when 3/> 1 and
0 < y < 1, sharper conditions are also available. Applications of our results to specific
examples may be found in 4.

2. Throughout this paper, we assume that f(x) is continuous and nondecreasing
in x satisfying condition (3), and that a(t) is nonnegative but not eventually zero on
[0, oo). Furthermore, we assume the following hypothesis on the forcing term:

(HI) There exists an h(t) C2[0, ) such that h"(t)= g(t) and that h(t) is
oscillatory, i.e., it has unbounded zeros.

Let x(t)= y(t)+ h(t), then (1) can be rewritten as a homogeneous equation

y"+a(t)f(y+h)=O.

To prove (1) is oscillatory, it is sufficient to assume the existence of an eventually
positive solution x(t) and deduce a contradiction by applying the various hypothesis
to (5). Suppose that x(t)> 0 on to, o). Since a(t)_-> 0, from (5) we note that y"(t)_-< 0
on [to, c). In our first step, we show that y’(t) _-> 0 on tl, o) for some tl ->_ to. If not,
say y’(t2) < 0 for some t2--> to. Since y"(t) _-< 0, y’(t) <- y’(t2) ( 0 for all _-> t2; hence
y(t) -- as , but this together with h(t) being oscillatory contradicts the assump-
tion that x(t)> 0. In fact, given that y"(t)_-< 0, y’(t)-> 0, we must have y’(t) eventually
positive, i.e., y’(t) > 0 for _-> o Suppose that y’(t3) 0 for some o By y" <-- O,
y’_--> 0, this means that y’(t) 0 for all _-> t3, and y"(t) 0. Returning to (5), this would
imply a(t)=-0 on [t3, oo), contradicting the assumption stated at the beginning of this
section.

Next, we show that y(t) is eventually positive. Since x(t) > 0 and h(t) is oscillatory,
so y(t) x(t)+ h(t) certainly cannnot be eventually negative, nor can it be identically
zero. On the other hand, if y’(t) -> 0 on tl, az), then y(t) certainly cannot be oscillatory.
Hence, we must have that y(t)>0, [t4, ), for t4_-> t. Thus, for simplicity, we
conclude that y(t)>0, y’(t)>0 and y"(t)<-O eventually hold on [0, c). We shall
repeatedly avail to this conclusion in proving the various results in this paper.

THEOREM 1. Assume that (HI) holds and that h( t) satisfies, in addition,

(H2) lim inf -lh(t) - and lim sup -h(t) +cx3.

Then (1) is oscillatory.
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Proof Under the given hypothesis, we have that y(t)> 0, y’(t)> 0 and y"(t)_-<0,
[to, ) for some to->0. This implies that there exists a constant M > 0 such that

0 < y(t) <-_ Mt for large t, or

(6) lim sup t-ly( t) <- M.

On the other hand, we have that y(t) + h(t) x(t) > 0 for large t, or y(t) > -h(t).
Dividing and taking lim sup on both sides of y>-h, we immediately obtain a
contradiction by invoking (H2) to the inequality (6). Here we note that

(7) lim sup -lh(t) -lim inf -1 h(t) +.

The other part of hypothesis (H2) is required when we assume the nonoscillatory
solution x(t) to be eventually negative and use a similar equation to (7) in that case.

THEOREM 2. Assume that (H1) holds and, in addition, that h( t) satisfies

io(H3) a(t)f(h+(t)) dr= a(t)f(h_()) dt= +oe

where h+(t) =max {h(t), 0} and h_(t) =min {h(t), 0}. Then (1) is oscillatory.
Proof As before, we may assume that y(t)> 0, y’(t)> 0 and y"(t)_-< 0 on to, ).

Integrating (5), we obtain

(8) y’(t)-y’(to)+ a(s)f(y(s)+ h(s)) ds=O.
to

Since y"=< 0, lim,_ y’(t) exists and is finite; hence the integral in (8) converges as --> .
We note that for all t>=to, y( t) + h( t) > h/( t). To see this, we write y+h=

y + h/- h_ and observe that

(i) forh+--0, y+h--y-h_=x>0=h+, and

(ii) forh_=O, y+h=y+h+>h+ (sincey>O).

Since f is nondecreasing, we have that f(y + h) >=f(h/). With a(t) ->_ 0, we can estimate
as follows:

(9) a(s)f(h+(s)) ds<= a(s)f(y+h) ds<o.
to to

By applying (H3) to (9), we obtain the desired contradiction.
TIEOREM 3. Assume that (H1) holds and, in addition, that a( t) >= 0 with o a( t) dt
and h satisfies:

(H4) h t)l <- M, and lim h (t) does not exist.
t---

Then the derivative of every solution of (1) is oscillatory. Furthermore, all unbounded
solutions are oscillatory.

Proof Let x(t) be a nonoscillatory solution of (1), say x(t)> 0 on [to, ). We
first show that if x(t) is unbounded, then it must be oscillatory. Following the same
argument as before, we may assume that y(t)> O, y’(t)> 0, and y"(t)<-0 on [to, ).
By (H4) Ih(t)l--< M. Suppose that x(t) is unbounded, then y(t) must also be unbounded.
Otherwise x(t) y(t) h(t) becomes bounded. Let tl ->- to be such that y(tl) 2M;
then y(t)>=2M for all t>-q. Now, y(t)+h(t)>-2M-h_(t)>-M, hence f(y+h) >-
f(M) which, upon substituting in (8) and using o a=, we obtain the desired
contradiction.
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We now suppose that x(t) is bounded and show that x’(t) must be oscillatory.
Since h(t) is bounded, so is y(t). Note that y"<-_ 0 implies that y’(t) - 0 and y(t) - c
as o, where c is some positive constant. If x’(t) is eventually of one sign, it cannot
be x’(t) < 0 because y’(t) / h’(t) < 0 would contradict y’> 0 when we set equal to
any zero of h’(t). On the other hand, if x’(t) > 0, then limt_ x(t) b for some positive
constant. Hence, h(t) x(t) y(t) tends to b c as - oo. This clearly contradicts (Ha).
The proof is now complete.

THEOREM 4. Assume that (H1) holds and a(t) >-_ 0 with o a o. Suppose, in
addition, that h satisfies:
(Hs) There exist sequence {s, }, {g. } such that limn_ sn lim_ g as n --> o,

and h(sn)=inf{h(t): t>-s,} h(g)=sup{h(t): t>-g}.

Then (1) is oscillatory.
Proof. Once again we begin with y(t) > 0 and y’(t) > 0 on to, ). Note that there

exists no such that s,o-> to and for -> s,o-> to,

(10) y(t)+h(t)>-y(So)+h(so)=X(So)>O.

Substituting (10) into (8) and using the fact that f is nondecreasing and o a =, we
find that y’(t)--> - as t--> which clearly contradicts y’(t)> 0 on to, ).

COROLLARY 1. Suppose that (H1) holds, a(t)>-0 with o a =c, and h(t) satisfies
the condition that lim,_ h (t) 0 or h t) is periodic in t. Then (1) is oscillatory.

If h(t) --> 0 as --> or h(t) is periodic, then it is easy to see that (Hs) is satisfied;
hence Corollary 1 follows from Theorem 4.

3. In this section, we shall consider the so-called superlinear and sublinear
equations. In the case of the Emden-Fowler equation (4), this corresponds to y 1
and 0< 3’ < 1, respectively. For the more general equations (1) and (2), we said it is

for any e > 0,

for any e > 0.

For the unforced equation (2), in the superlinear case Macki and Wong [20] have
extended a well-known result of Atkinson 1 by proving the condition that a (t) -> 0 and

T

13 lim ta (t) dt o
T--> 0

is necessary and sufficient for the oscillation of (2). Kamenev 10] shows that condition
(13) alone suffices for oscillation, if we drop the assumption that a(t)>-O. We now
show that Theorem 4 can be improved in the superlinear case by relaxing the assumption
that o a-o to (13).

THEOREM 5. Assume that h(t) satisfies (H1) and (Hs), and a(t)>-O satisfying
(13). Suppose, in addition, that f x satisfies (11 ). Then (1) is oscillatory.

Proof. We begin with x(t) > 0, y(t) > 0, y’(t) > 0 and y"(t) _-< 0 on to, c). By (Hs),
there exists no such that for _-> s,o_-> to we have that

(14) y(t)+ h(t) >- y(t)+ h(s.o)= z(t),
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when z(t) is defined by (14). Since h(s,o) is constant, from (5) we derive

(15) z"+ a(t)f(z)<- y"+ a(t)f(y+ h)=0

because z’= y’ and z"= y". Moreover, for t_-> S,o,

(16) z(t) y(t) + h(s,o) >- y(S,o) + h(s,o) x(S,o) > O.

Thus, we can now reduce the proof to the second order differential inequality (15)
and apply the original method of proof for (2) as given in [20] to arrive at a desired
contradiction. For the sake of completeness, we adopt a somewhat simpler argument
developed in later papers (see, e.g., [19], [30]). By (16), we can divide (15) by (f(z)) -1

and then multiply through by to arrive at

(17)
f(z)

+ ta(t)=0.

Now, integrate (17) from some tl => s, to and obtain

(18) -TS-i_ ds+ sa(s) ds=O.

Carrying out the first integral in (18), we have that

sz" tz’(t) tlz’(
(19)

,f(z) f(z(t)) f(z(h)) , f2(z) ,f(z)"
Since the second integral on (19) above is nonnegative, and we also have that z’(t)> O,
we can estimate (18) by dropping these two terms as follows:

(20) sa(s) ds <-_ tlz’(tl) +
t, f(z( tl) .I z(t,) f()"

The last integral is finite by (ll) and the fact that z’>0, so (13) produces the desired
contradiction in (20) upon letting tend to . We remark that in (19) we have loosely
used the term f’(z), although differentiability of f has not been assumed.-However,
since f is nondecreasing we can make the integration by parts into a rigorous proof
by approximations. Another approach is to use Lebesgue-Stieltjes integrals.

Next we turn our attention to the sublinear equation and refer to the corresponding
results of Belohorec. In the special case of f(x)= Ixl v sgn x, 0< 5’ < 1, Belohorec [4]
proved the analogue of Atkinson’s theorem: the condition that a(t)-> 0 and

(21) lim
T-eo

is necessary and sufficient for the oscillation of (2). Subsequently, Belohorec [5] also
showed that condition (21) also remains sufficient for oscillation without a(t)>-O.
However, extension to (2) in its more general form, i.e., f satisfying (12), remains
elusive. An attempt was made by Coles [6]; however, the additional assumption required
on f, which states that there exists a positive constant c such that for all x

>--c>O,(22) f’(x)
f()

seems somewhat artificial. On the other hand, Coles indicates at the end of his paper
[6] that the natural extension of divergence condition (21) should perhaps be

(23) lim f( t)a( t) dt oe.
T 0
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In our next result we give an analogue of Theorem 5 in the sublinear case, except that
ours is subject to additional conditions on f that f is even, f(-x) -f(x) and also

(24) f(uv) >-f(u)f(v) for all u > 0, and v large.

Condition (24) may be referred to as supermultiplicativeness. Aside from rather
restricted nature of this assumption, which is clearly satisfied by f(x)=lxl sin x,
0< 3’ < 1, our result does extend Belohorec’s original result [4] when applied to (1)
with g(t) 0.

THEOREM 6. Assume that h(t) satisfies (H1) and (Hs), and a(t)>= 0 satisfying (23).
Suppose, in addition, that f(x) satisfies (12) and (24). Then (1) is oscillatory.

Proof We follow the argument in Theorem 5 up to the second order differential
inequality

(15) z"(t)+ a(t)f(z(t)) <=O, >: to,

with z(t) > 0, z’(t) > 0 and z"(t) -<_ 0 on to, ). Since z" <- 0, we have for some 0 < A < 1,

(25) z(t)-Z(to) z’(s) ds>-z’(t)(t-to)>=Az’(t)t.
to

Using (25) in (15) above, we obtain

z"(t)+a(t)f(Az’(t)t)<=O, t>=to
which by the supermultiplicative property (24) off may be further reduced to

(26) z"(t) + a( t)f( t)f(Az’(t)) <-- O.

Dividing the above through by f(Az’(t)) and integrating, we first note that

f z,,(s) ds :% f zz’(t) dsc

,of(hz’(s)) A aaz’(,o)f(:)’
from we can estimate (26) as follows:

f 1 f Xz’( to) d(271 a(s)f(s) ds<-_
axz’(,) f()to

The last integral in (27) is finite in view of (12) and the fact that z’ is nonincreasing.
The desired contradiction thus follows by applying (23) to (27).

4. In this section, we first apply the results given in the previous two sections to
the specific example:

(4) x"+ tlx[ sgn x sin y > 0.

In (4), g(t)= sin t. A convenient second primitive h(t) can be chosen with the
following asymptotic behaviour:

(28) h(t) sin + O(t-l), -> .
Applying Theorem 1 to (4), we deduce from (28) that (4) is oscillatory for all 6 > 1
and for all values of a. Next, we apply Theorem 2 to (4), and again by using (29) in
(H4), we conclude that (4) is oscillatory if a+y6>-l. So if a =>-1, 3>0, then
hypothesis (H3) is satisfied and we have oscillation.

Last, we consider Theorem 4 fore this specific example and note that for 6-_<0,
h(t)= sin satisfies (Hs), so we have oscillation of (4) if a =>-1 and 6 =<0. This
conclusion is complementary to that determined by Theorem 2 and can be obtained
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also by applying the original results of Kartsatos [11], [12]. For the superlinear case,
3’ > 1, we can use Theorem 5 to improve the condition on a and conclude oscillation
for a _->-2 and 6 _-< 0. Likewise in the sublinear case, with 0 < y < 1, we use Theorem
6 to deduce oscillation (4) for a >--(1 + y) and 6-<0.

Next, consider the following example:

(29) x"+ t’x eIl=-- e-t sin t,

which arises from a certain radial solution of the Klein-Gordon equation in physics
(see Atkinson and Peletier [3] and also Wong [31]). This example is also discussed in
detail by Rankin [23], but the conditions required on g(t) seem almost artificial. In
any case, Rankin’s result, when applied to (29), yields oscillation for a _->-1. Here,
h(t)=l -te cos t, which tends to zero as . An application of Theorem 5 will result
in oscillation of (29) for all c _->-2 in this superlinear case.

As a third example, we consider the following sublinear equation, with 0 < 2’ < 1,

(30) x"+ t’(l+sin t)[xl sgn x=sin 1 +-- + t

First note that h(t)=-1 + (1/t) sin t, which satisfies (Hs) (here h(t) is neither periodic
nor does it tend to zero), and then apply Theorem 6 to conclude oscillation of (30)
for a ->_-(1 + 3’).

For concluding remarks, we first note that Kartsatos [11], [12] and others stated
their results for the more general nth order equations. Kusano and Onose [19] and
others extended further to include delay differential equations. Some of our results
admit ready extensions to higher order equations and others may not. We hope to
return to such a discussion at a later data. Second, our results are based mainly on
known techniques for nonlinear oscillations with nonnegative "potential" a(t), and
little is known concerning what occurs when a(t) is allowed to change signs even in
the linear case. Howard [9] made an extensive investigation using techniques for the
linear equation without explicitly requiring a(t) to be nonnegative. Unfortunately, his
results do not apply to the many interesting examples when a(t) does change sign. In
particular, we are unable to determine whether the following simple linear is oscillatory:

x"+ (1 +2 cos t)x =sin t.

The solution to such a question will represent a major step forward in the study of
forced oscillations. Third, we remark that our results depend heavily on the assumption
that f(x) is nondecreasing. It will be useful to prove results which do not require f(x)
to be monotone.

Returning to Theorem 6, we claimed that in the special case when g(t)---0 (which
obviously satisfies (Hs)) it is an extension of Belohorec’s result [4] originally proved
for f(x) ]xl v sgn x, 0 < y < 1. However, the supermultiplicative assumption (24) is
rather restrictive and seems no better than Coles’ condition (22). We believe that such
an extension remains valid without the additional assumption (24), and in any case,
one should expect it to be replaced by some less restrictive conditions. Finally, we
began this paper by referring to a problem posed nearly twenty years ago, on the
oscillation of (1) subject to a periodic forcing term. The original question stated in
[29] was in fact (1) with g(t)= sin t, i.e., a periodic function with zero mean value.
The same question can now be extended by requiring g(t) to be only an almost periodic
function with mean value zero.
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In closing, we refer the reader to the survey article by Kartsatos [13] and two
others by the author [30], [32], where additional references and other open problems
may be found.
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RECURSIVELY GENERATED POLYNOMIALS AND GERONIMUS’
VERSION OF ORTHOGONALITY ON A CONTOUR*
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Abstract. Let {Pn} be a sequence of polynomials generated by the three-term recurrence Po 1, Pl
z + bo, p,,+--(z + b,,)p,,-c,,p,,_, n => 1. Using only the hypothesis that {b,} and {c,} are bounded complex
sequences (with cn # 0), we show by constructing a weight function as a convergent Laurent series--with
coefficients given explicitly in terms of b, and cn--that the p are orthogonal on a contour in the sense that
Geronimus describes (and that the Bessel polynomials exemplify). We thus obtain an elementary approach
to this kind of orthogonality and provide a construction of the weight function which is an alternative to
the continued fraction representation discussed by Askey and Ismail.

Key words, orthogonal polynomials, three-term recurrence relation, orthogonality on a contour
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1. Introduction. In order to establish a frame of reference for this paper we review
several points concerning orthogonal polynomials. Let be a real-valued, nondecreas-
ing function on (-c, ), all of whose moments _x d exist. A sequence of
polynomials {pn}massumed without loss of generality to be monicis orthogonal (on
the real line) with respect to if

(1) I p,,(x)p,,,(x) d’qt(x) {O’ m n,
hn>0, m=n>=O.

It has long been known that a sequence orthogonal in this sense satisfies a three-term
recurrence relation

(2) pl=x+bo,

P,,+I (x + b,,)p,, c.p,,-1, n >= 1,
where b. is real and c. > 0. An early version of a converse to this statement is usually
attributed to Favard. In its present form, which is due to the development of certain
representation theorems for moment functionals, it runs as follows: if {p.} is generated
by (2) where {b.} and {c.} are arbitrary complex sequences with c. S0, then there
exists a function of bounded variation on (-m, az) such that (1) holds, with h. 0.
Furthermore can be chosen to be real-valued if and only if {b.} and {c.} are real
sequences; is nondecreasing with infinite spectrum if and only if b. is real, c. > 0.
For a complete discussion see Chihara [2].

The concept of orthogonality in (1) is of course not the only one possible. Another
for which (2) also holds (with complex coefficients and c. 0) is that of orthogonality
on a simple closed curve C, as discussed by Geronimus [3]: instead of the distribution

there is assumed to be a weight function w having one or more singularities inside
C and such that

(3) {o,(1/27ri) p,,(Z)pm(Z)W(Z) dz=
h. 0,

mn,

m=n>=O.

Perhaps the best known example is the sequence of Bessel polynomials, for which w
has an essential singularity at the origin [4]. However, the Bessel polynomials are not
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unique in having this type of orthogonality: Geronimus showed that a sequence of
polynomials which is orthogonal in the sense of (1) on a finite interval is also orthogonal
in the sense of (3).

A problem to which a great deal of research has been devoted is that of recovering
the distribution function from the recurrence (2). In 1] Askey and Ismail treat this
problem by showing that under certain conditions w exists as a continued fraction
obtainable from (2), and then they derive a fundamental relation between w and
from which may be determined once w is found. Motivated by the example of the
Bessel polynomials we show in this paper that w can be obtained directly from (2) as
a convergent Laurent series, with coefficients given by explicit formulas in terms of bn
and cn. Our only hypothesis is that {bn} and {cn} are bounded complex sequences with
c, 0--we do not make any use of the theory of continued fractions (nor refer to
orthogonality on the real line). Whether this approach would be helpful in recovering

remains to be seen; it does provide an elementary proof that many families of
recursively generated polynomials are orthogonal in the sense of (3), itself a fact of
considerable interest.

2. Preliminaries: formal construction of the weight function. We start with the
recurrence (2), in which b and c, are taken to be complex, with c, 0. We assume
for the present that (3) holds and furthermore that w has the representation

(4) w(z) WjZ -1, W 1
j=l

for all z outside some circle Izl R lying interior to C. Our immediate task is to
calculate the coefficients w in (4). One way to approach this problem is the following.
Let the coefficient of zk in p, be denoted by a(n, k) for n =>0, 0 -< k=< n (note that
a(n, n)= 1 since the polynomials are monic) and set a(n, k)=0 if k> n. Since po 1
it follows from (3) that

(5) (1/2zri) p,,(z)w(z) dz=
hoO,

Inserting (4) and the representation

p.(z)= a(n, k)z
k=O

into (5) and integrating term by term yields

wl=ho 1

w2=-a(1, O)wl

(6) w3 -a(2, O)w a(2, 1 )W2

Wn+ a(n, k-1)w,,
k=l

n>l

n 0.

n_>l.

We can thus compute all the coefficients wj from (6). Recall that the moment/x, of
the weight function w is given by

/x. (1/2zri) [ z"w(z) dz,
c
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so if w has the representation (4) then

/z,, (1/27ri) E wjz"-j dz=
CJ

n>=O.

But we can write z" as a linear combination ofthe polynomials Po, Pl, ",Pn generated
by (2)

(7) z"= y(k, n)pk(Z)
k=0

so that we also have

(8)

w,+= tz, (1/27ri) fc z’w(z) dz

(1/27ri) I T(k, n)pk(Z)W(Z) dz
C k=0

y(0, n), n-->0.

It is this representation, rather than (6), that will be used to derive our results, and in
doing so we shall find a way to calculate all the y(k, n) (cf. [5, pp. 45ff] for related
calculations).

So far, by assuming the orthogonality expressed in (3) and the existence of a
weight function w given by (4), we have shown that the coefficients wj are given by
(6) or (8). If we now take (8) as our starting point and formally construct the series
(4) by letting w+ y(0, n) for n _-> 0 we of course have no a priori guarantee that it
will converge (the convergence question being our main concern), but when it does
the following theorem applies (cf. the proof of Favard’s Theorem [2, pp. 21-22]).

THEOREM 1. Let {p,} be generated by (2) and suppose the series (4) is constructed
by setting W,+l y(O, n) for n >= O. If this series converges for all z outside some circle
[z[ R and C is any simple closed curve having [z[ R in its interior, then

O, rn n,

(9) (1/27ri) f pn(Z)Pm(Z)W(z) re=n=0,

Cj, m=n>=l.
kj=l

Proof The case rn n 0 is clear, so assume n-> 1. Then it suffices to show that

.j=l

O<m<n,

m=n>=l.

If m =0 the result follows from the way w was constructed; if rn 1 then, since (2)
implies

zp,(z) p,+,(z) b,p,(z) + c,p,_(z),

we have

(1/2ri) I zp.(z)w(z) dz (c,/27ri) f p,_l(z)w(z) dz { O’
C C Cl,

The conclusion follows by induction.
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In view of Theorem 1 it is clear that, given a sequence {Pn} generated by (2), we
can establish orthogonality in the sense of (3) and simultaneously exhibit the weight
function by simply constructing the series (4) and proving it converges outside some
circle [z[ R. Since we intend to establish this convergence by assuming that {bn} and
{c} are bounded complex sequences, we need a formula for wj explicitly in terms of
b, and c, and we shall obtain it from (8) with the aid of the following lemma.

LEMMA 1. Let {p,} be generated by (2), and consider the representation (7)

"= (k, n)p(z).

With the understanding that y( i, j)= 0 if i>j or i< O, we have

(10) y(k, n + 1)= y(k-1, n)-bky(k, n)+ Ck+,y(k+ 1, n),

valid for 0 <- k <- n + 1, n >- O. In particular,

y(n,n)=l,

y(O, n + 1)=-boy(O, n)+ c,y(1, n),

y(n,n+l)=y(n-l,n)-b,, n>=O.

Proof Because of (7) we have

Zn+l-- y(k, n)zpk(Z
k=0

y(k, n)[pk+,(z)--bgpg(Z)+Cgpk_i(Z)]+y(O, n)[p,(z)-bo]
k=l

n+l n--1

2 Y(J- 1, n)pj(z)- bjy(j, n)pj(z)+ , C+ly(j+ 1, n)p(z)
j=2 j=l j=0

+ y(0, n)pl(z)- y(O, n)boPo(Z)

y(n, n)p,+(z)+[y(n-1, n)-b,y(n, n)]p,(z)

n-1

+ Z [y(j-l,n)-bjy(j, n)+c+y(j+l,n)]p(z)
j=l

+[-boy(0, n)+ ely(l, n)]po(z).

But z0+ also is given by

n+l

z"+1= Y y(j, n+ 1)p(z),
j=0

so the conclusion follows by equating the coefficients of p(z) in these two expressions
for Z

n+l

Through (8) and repeated use of Lemma 1 (i.e., by solving the difference equation
(10)) we can now determine the wj in terms of b, and c,. Initially the results appear
very involved, but after displaying the first few y(k, n) and introducing suitable
notation, we shall be able to guess a formula for y(k, n), prove its validity, and then
use it to prove convergence of the series Y wsz-.
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We begin by making a few calculations using (10)"

W1 3/(0, O) 1,

w2 3’(0, 1)=-bo,

w3= y(O, 2) b+ c,,

w4 y(0, 3) -b3o-2bocl- b, Cl,

y(1, 1)= 1,

’),(1, 2) -bo- b,, y(2, 2) 1,

y(1, 3)= b+ bob, + b+ c, + c2,

y(2, 3) -bo- bl- b2, 3/(3, 3) 1,

etc. Rewriting these as iterated sums, cumbersome though it may seem at first, we take
a step toward recognizing the general pattern"

(11)

0

w:= y(O, 1) E bj
j =0

0 Jl
W3--Y(0,2)-- 2 2 b,b_+ .. Cjl

Jl =0 j2=O Jl

0 J J
W4--y(0,3)=- E E E bjlbjbj3- E

jl=0 j2=0 j3=0 jl=l j2=0 j=0 j2=l

Jl 2 2

y(1,3)= E E bj, bj2+ E cj,, y(2,3)=-E bjl.
Jl =0 j2=O Jl Jl =0

y(1,2)=- E bj,
Jl =0

Jl 0 j+l

Jl+l
Y c%.

Jl =0 j2 j3=0 Jl =0 j2=0 J3= Jl j2

The pattern developing here can be brought out more clearly by introducing the
following notation. Let I(k, q) denote the set of all possible ordered k-tuples Pk
(P,, P2, ",Pk) consisting of q ones and k- q zeros, where k -> 1 and 0 =< q _<- k (e.g.,
I(3, 1)={(1,0,0),(0, 1,0),(0,0, 1)}). For fixed integers N_->0, k_->l and fixed pk C

I(k, q), let S(N, Pk) denote the sum
N+Pl Jl+P2 J2+P3 Jk-l+Pk ( k

(12) S(N,
Jl =Pl Jz=P2 J3=P3 Jk =Pk i=

and let S(N, po)=l. Furthermore, for fixed N, k and q (with O<-q<=k) let
pkI(k,q) S(N, Pk) denote the sum of all the S(N, Pk) having pk in the index set I(k, q);
set pkI(k.q) S(N, pk)=0 if q> k or N<0. We also agree to set Ypkk.q) S(N, pk) 1
if k=0.

By way of examples we note that
N j+l N+I Jl

E S(N, p2)--Z E bjlCj2-]-Z E Cjlbj2
p2I(2,1) jl=0 j2=l jl=l j2=O

(since I(2, 1 {(0, 1 ), 1, 0)}), and that sums over the index sets I k, 0), I k, k) actually
involve only one iterated sum each

N Jl J2 Jk-1
E S(N, pk) E E E E bj, bj2bj3""bk,

pkI(k,O) jl-----0 j2=0 j3=0 jk=O

N+I j+l J2+l Jk_l+l

pkI(k, k) jl=l j2=l j3=l jk=l

Every sum appearing in the representations in (11) for y(0, 1), y(0, 2), y(1, 2),
y(0, 3), y(1, 3), ),(2, 3), and y(0, 4) has the form (12), and consequently we can now

We one more for good measure"

0 Jl J2 J3 Jl J2
ws:y(0,4): E E 2 2 bj, bjbjb,+ 2 E E cl,bjb

jl=0 j2=0 j3:0 j4=0 j=l j2=0 j3=0

0 Jl+1 J2 0 J J2+1

+ E E E bjlCjbj,+ E E
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write these as

W2 2’(0, 1)=- Y,
k=l pkl(k, l-k)

s(0, ),

w3 2,(0, 2) S(0, P2) + Y
p2 I(2, 0) pl I(1, 1)

y(1, 2)= Y’. Y’. S(1, Pk),
k=l pkI(k,l-k)

2

s(0, p)= E E
k=l pkl(k, 2-k)

(13) w4: 2,(0, 3): Y S(0, P3)- Y S(0, P2):
p3I(3,0) p2I(2, 1) k=2 pkl(k,3-k)

2

y(1, 3)= E S(0, p2)+ Y, S(0, p,)= E E S(1, p),
p2I(2,0) pll(1, 1) k=l pkl(k,2-k)

2,(2, 3)= E E S(2, Pk),
k-1 pkI(k,l-k)

w5 2’(0, 4) E S(0, P4) --p4 (4, O)

4

E E s(0, p).
k=2 pkl(k,4-k)

s(o, p),

s(o,p),

E s(0,p)+ E s(o,p)
p3 I(3,1) p2 I(2,2)

10 ifk=q=0, N->0
S(N, Pk)=

if either N <0, or q > k, or q <0.

The property of the sum Epkl(k,q) S(N, Pk) which will be needed most is furnished
in the following lemma.

LEMMA 2. For all integers N >- O, k >= 1, m >- 1,

(15) Y’. S(N, p,,)= E S(N- 1, pro)+ bN Y’. S(N, Pm-1)
Pm I(m, k-m) Pm I(m, k-m) Pm_l I(m-1, k-m)

+cN+, E S(N+I, pm-1).
Pm_lI(m--l,k--m--1)

Proof In view of (14) it is clear that (15) is trivially true whenever k<m or
k > 2m, so suppose from the start that k _-< 2rn =< 2k. It then follows from (12) that for
N=>I

(16)

N+Pl JI+P2 J2+P3 Jm-l+Pm ( bJiS(N,p)= E E E E I-I C/i 1--p.

Jl :Pl J2:P2 J3 =P3 Jm =Pro i=

E E E E I-It "p pbj,
Jl =Pl J2=P2 J3 =P3 Jm =Pm

+ [( CN+P1)Pl(b N+p,)’-P’] E E’’" E c’Pil--P"ji bj
Jz=P2 J3 =P3 Jm =Pro

S(N 1, Pm) + [(C N+p,)P’(b u+p,)1-P’]S(N +Pl, Pro-l)

(14)
pkel(k,q)

where [(M-j) is the greatest integer less than or equal to (M-j) This will be
a key result (Theorem 2), but in order to prove it we need to investigate S(N, Pk) in
more detail. As already noted above, for convenience we set

M-j

2,(j, M)= (--1)J+M E Y, S(j,
k=M-j-[(M-j)/2] pkl(k,M-j-k)

These representations (and additional ones which fit the developing pattern here but
which we omit) form the basis for conjecturing that
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(where Pm-1--(P2,P3,’’" ,Pro)), and thus summing over the index set I(m, k-m)
yields

(17) Y’, S(N, Pro) E S(N-l, pm)
Pm I(m, k-m) Pm I(m, k-m)

+ [(CN+p,)PI(bN+p,)I-P’]S(N+pl, Pm-1)-
pml(m,k-m)

Now p (p, p, , p) (p, p_) is an ordered m-tuple having k- m ones and
m-(k-m)=2m-k zeros. Among the (k-) possible m-tuples of this type (kYI)
will have Pl 1; i.e., P-I is an ordered (m 1)-tuple having k m 1 ones and 2m k

k-) ordered m-zeros, and consequently Pro-1 I(m- 1, k- m- 1). The remaining (-
tuples will have p 0; and for these remaining ones p_ is an ordered (m- 1)-tuple
having k- m ones and 2m k- 1 zeros, so that P-I I(m 1, k- m). We may thus
rewrite the second sum on the right of (17) as

(18) [(CN+pl)PI(bN+p)I-P1]S(N+pl, Pm-1)
ml(m,k-m)

E bS(N, p_) + E c+S(N+ 1, p_)
pm_ I(m--1, k-m) Pm_l 1(m-l, k-m-l)

which completes the proof for N 1. If N 0, the equality in (16) takes the form

S(O, Pm) [( CO+p,)P’( bo+p1) ’-Pl]S(O + p,, Pro-l)
and the conclusion still holds, since p,<m.k-) S(-1, p) =0, by (14).

In the recurrence relation (2) the case with constant coefficients

(19) b,=bO, nO, c=2c>0, c,=c>O, n2

turns out to be especially important because it will provide a very nice bound for wj,
leading to convergence for wjz -j. The polynomials generated by this special case are
just the monic Chebyshev polynomials of the first kind, orthogonal on the interval
(-b-2x/,-b+2x/). For these Chebyshev polynomials the sum pk,k,-q)S(N, Pk)
takes on the following form.

LEMMA 3. Let bn, cn in the recurrence relation (2) be the constants prescribed in
(19). Then for all integers M >-0 and all integers j, m satisfying O<-j <-M, M-j-
[(M-j)/a]<=m<=M-j,

pmI(m,M-j-m) 2M -j 2m M rn

Proof. The proof is by induction on M, using (15) in Lemma 2 (the result (20)
was initially guessed by doing an inordinate amount of elementary algebra). It is easy
to check that (20) holds for M- 0, M 1. Assume then that it holds for some integer
K>0, with j,m satisfying O<-_j<-K and K-j-[(K-j)/2]<-_m<=K-j. Then by
Lemma 2

E S(J, Pro) E S(j-1, pro)
pm I(m, K +l-j-m) pm I(m, K+l--j-m)

+ b _, S(j, Pm-1)+ C E S(j + 1, lm_l).
Prn_l (m--1, K +l--j--m) Pm_l m--1, K -j--m)

By the induction hypothesis the three sums on the right are, respectively,

S(j-l, pm) S(j-l, pm)
pml(m,K+l-j-m) pmI(m, K-(j-1)-m)

2K-(j-1)-2m K-m
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b Z S(j, Pm-1)= b 2 S(j, Pro-l)
Pm_l I(m--1, K+I -j-m) Pm_l l(m--1, K -j-(m- 1))

K
b
2K -j- 2(

(2K-j-2(m- 1)) K+j+2(m_I)cK_j_(m_I)
m--l) \ K-(m-1)

b-

E S(j + 1, Pm-1) C ., S(j + 1, Pm-1)
Pm_l I(m--1, K --j--m) Pm_l I(m--1, K --(j+ 1)--(m-- ))

( K )=c
2K-(j+l)-2(m-1)

(2K-(j+ l)-2(m-1))b-+(j+,)+2(m-,)cK-(j+l)-(m-1)K-(m-1)

and thus

But the first and third terms in the square brackets yield

2K + 1-j-2m K- m 2K +l-j-2m K+l-m /

2K+l-j-2m \ K+l-m

and

2K +l-j-2m K+l-m ] 2K +2-j-2m K+l-m /

2K+2-j-2m \ K+l-m

and consequently (20) holds for M K + 1.
We are now in position to prove the validity of our conjecture about y(j, M) and

then to prove a convergence theorem for wjz -j.

THEOREM 2. For each integer M >-0 and all integers j satisfying 0 <-j <-M

M-j

(21) y(j, M) (-1)j+M E E S(j, Pk).
k=M-j--[(M-j)/2] pkI(k,M-j-k)

Proof We have already seen in (13) that the formula is valid for
y(0, 0), , y(1, 2) and y(2, 2). So assume as induction hypothesis that for some K > 0
and all j satisfying 0-<j _-< K, (21) is valid for y(j, K) and consider T(J, K + 1). From
(10) in Lemma 1 and the induction hypothesis we have
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y(j, K + 1) y(j 1, K) b y(j, K + c+, y(j + 1, K)
K -(j-l)

=(--l)j-I+K X X S(j--l, pk)
k=K-(j-1)-[(K-(j-1))/2] pkl(k,K-(j-1)-k)

(22)
K-j

bj(-1)j+/ _, ’, S(j, pk)
k=K-j-[(K-j)/2] pkl(k,K-j-k)

K --(j+l)

+Cj+,(--1)j+I+K 2 2 S(j+ 1, p).
k=K-(j+I)-[(K-(j+I))/2] pkl(k,K--(j+l)-k)

A change of index in the first double sum on the right of (22) converts it to

K-j

E E S(j- 1, pk+,).
k=K-j-[(K-(j-1))/2] pk+lI(k+l, K--j-k)

By using (14) and the fact that the definition of greatest integer function implies

K-j-[(K-(j- 1))/2] K-(j+ 1)-[(K-(j+ 1))/2]<- K-j-[(K-j)/2]

we can start all three double sums on the right of (22) at k= K -j-[(K -(j- 1))/2],
and end all three at k K-j, so that (22) becomes

y(j, K + 1) (-1)j+:+’

(23)

E E S(j- 1, pk+,)
k=K-j-[(K-(j-1))/2] Pk+lI(k+l,K-j-k)

But this result, by Lemma 2, is

T(j, K + 1) (-1)++’

or, letting k i- 1,

y(j, K+ 1) (-1)++1

+ bj E S(j,
pk l(k, K -j-k)

+ cj+, Z S(j + 1, Pk) ].pkI(k,K-(j+l)-k)

K-j

E E S(j, Pk+l),
k:K-j--[(K-(j--1))/2] pk+lI(k+l,K-j-k)

E E S(j, pi),
i=K-j+I-[(K-j+I)/2] pil(i,K+l-j-i)

valid for 0=<j_-< K. The case j K + obviously yields T(K + 1, K + 1) 1, and thus
(21) holds for K + 1 whenever it holds for K.

The sought-for formula for W,+l in terms of b, and c, is now available from (21).
COROLLARY 1. The coefficient W,+l for the Laurent series (4) is given by

(24) Wn+l-- y(0, n) (--1)" E S(0, pk), n-->--0.
k=n-[n/2] pkI(k,n-k)

Applying Lemma 3 to (24) yields the following.
COROLLARY 2. If b, and c, have the constant form (19), (i.e., the polynomials are

the Chebyshev polynomials of the first kind) then denoting the coefficient in this special
case by yr(O, n) we have

k=n-[n/2l 2n -2k n

3. Convergence of the Laurent series for w(z).
THEOREM 3. Let the sequence {w} be generated by (8), and suppose that there

exist constants b >= O, c > 0 such that in (2) Ibkl <--_ b for k >- 0; Icll <= 2c, [Ckl <= C for k >= 2.
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Then

(26) Iw,,+,l--< IT-r(0, n)[
j=o 2j j

Proof With these bounds on b and c it is clear from the definition of S(N, p)
in (12) and the conclusion (20) in Lemma 3 that

IS(j,p),<( n )(2n--j--2k)b-"++Zkc"--t".,__ 2n --j 2k n k

Thus (24) and (25)imply Iw,+l <-lyT(0, n)]. The change ofindexj n- k in (25) yields
the sum on the right of (26).

THZORZM 4. Let the sequence {w} be generated by (8), and suppose that there exist
constants b >= O, c > 0 such that in (2) Ib] <- b for k__ >= 0; Ic, <= 2c, levi <= c for k >- 2.
Furthermore without loss of generality suppose b <= 2.,/c. Then for all n >= 0

(27) w,+, -< (2nn) (/) ", n_->0.

Proof The hypotheses imply that (26) holds and that b"-2c <= 2"--(/) ", so from
(26) and a combinatorial identity [6, p. 72] there follows

(28) [w.+,l < (x/) rl
2n_2j (x/-)

Remark. Polynomials generated by the recursion formula (2) when b, 0 for all
n _-> 0 are called symmetric polynomials. In this special case it is clear from (26) that

(29) ’w2n+l’-<(2r/) n, 1422n+2--0 n=>0,

assuming the boundedness condition stated there for {c,}.
We come finally to our main result.
THrORV.M 5. Let {p,} be a sequence ofmonicpolynomials generated by therecurrence

relation

po 1,

p=z+bo,

p,+ (z + b,)p, e,p,_, n >= 1,

having complex coefficients b,, c,, with c, # O. Suppose there is a constant c > 0 such that
[b,[-<_ 2v/7c for art n >- 0; Ic,{ <- 2c, [c,I <-- c for n >-_ 2. ren the series

w(z)= Z wz-j=l

with coefficients given by (8) (or equivalently by (24)) convergesfor all z outside the circle
[z] 4/7. Furthermore, on any simple closed contour C having [z 4x/7 in its interior,

O, m # n,

(1/2ri) f P"(z)Pm(Z)W(z) dz= ii ci, m=n>=l.m=n=O’
Proof Because of (28) the series wz- converges at least for [zl> 4- (in the

symmetric case it follows from (29) that the convergence holds at least for Iz > 2v/-).
The orthogonality property now follows from Theorem 1.
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Remark. A number of examples were helpful in gaining some insight about the
kind of conditions to impose on {bn} and {cn} in order to guarantee convergence of
the series wjz-. In addition to the already mentioned monic Chebyshev polynomials,
which suggested bounds for the {b} and {c}, the monic Laguerre polynomials with
parameter a 0 show what can happen without a boundedness condition. In this case
b =-2n- 1 for n >-0, c n2, n >= 1. Here the hypotheses of Theorem 5 are clearly
not satisfied; in fact we find that w =j! for j-> 1, so wz- diverges for all z.

Acknowledgment. It is appropriate to express here sincere appreciation to Marvin
B. Sledd, who first interested me in orthogonal polynomials.
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THE LINEARIZATION OF THE PRODUCT OF
TWO ZONAL POLYNOMIALS*
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Abstract. The linearization coefficients gin, are defined by

c,, v)c v) E g c v)

where C(V) is the zonal polynomial corresponding to the partition r and V is a positive definite matrix.
A formula for g,)p is proved, and the partitions r for which g,)p # 0 are characterized. An alternative
computation of C,(Ik) is presented.

Key words, zonal polynomials, linearization of products, partitions
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1. Introduction and notation.
Introduction. Zonal polynomials are polynomials of a real, symmetric k x k matrix

V. In the general theory ofharmonic analysis, the polynomials are called zonal spherical
polynomials of the homogeneous space GL (k)/O(k), where GL (k) is the general
linear group of invertible real k x k matrices and O(k) is the orthogonal group of k k
matrices. They were introduced into multivariate statistical theory by A. T. James, in
order to represent certain probability density functions in series form. For example,
when V is distributed according to the Wishart distribution, Wk(N, :E)--the distribution
of V X’X where the rows of the N x k matrix X are independently and identically
distributed according to the multivariate normal law, N(0, E)--an important problem
is to determine the density function of the eigenvalues of V. By introducing the zonal
polynomials {C(V)}wthe subscript - is a partition of t--James (1960) elegantly
expressed this density using a bilinear sum of zonal polynomials.

The problem of expressing the product of two zonal polynomials as a linear
combination of other zonal polynomials
(1.1) C(V) Cp (V) gpC(V)

arose in related statistical problems considered by Constantine (1966), Hayakawa
(1967), and Khatri and Pillai (1968), who required the coefficients gp in order to
compute integrals of products of zonal polynomials. The computation of gp is the
subject of this paper. Tables for these coefficients were computed by the above authors,
but a general formula for them is still unknown. The case/x (1) was solved in Kushner
(1985). In this paper, the case (m),
(1.2) C,,,( V)Cp( V) E g<,.,)pC.( V)

is solved; a simple formula for the coefficients g) is given and the partitions r

appearing in (1.2) are characterized. Also, the value of C.(Ik) is computed, It appears
that the only other way of computing this value is that of James (1961) and Constantine
(1963). Kikuchi (1981) has noted that it is not included in Farrell’s (1976) treatment
of zonal polynomials nor is it in the more recent treatments of Saw (1977), Kates
(1981), or Takemura (1984). The present computation is in the spirit of Kushner,
Lebow, and Meisner (1981) and thus supplies a missing link in that treatment of zonal
polynomials.

* Received by the editors September 23, 1985" accepted for publication May 19, 1987.
f The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962.
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In the mathematical literature, (1.1) is called the linearization of the product of
two zonal polynomials; the "g-coefficients" are called the linearization coefficients.
Problems of this sort, involving polynomials of one variable, are described in Askey
(1975). Hylleraas (1962), for example, formulated a linearization problem in order to
compute the integral of a product of Jacobi polynomials. Thus, analytic problemsmthe
computation of integralsmhave motivated linearization problems involving zonal poly-
nomials and polynomials of one variable. Nevertheless, more directly related to our
problem (1.1) is the better known algebraic problem of linearizing the product of two
Schur polynomials (MacDonald (1979)),

1.3) s,so , cos.

The linearization coefficients c, arising in this problem are found by the Littlewood-
Richardson rule--a combinatorial algorithm rather than an analytic formula--and are
nonnegative integers which give the multiplicity of the representation (z) of the general
linear group in the direct product (/) (p), as well as the multiplicity of the representa-
tion [r] of the symmetric group in the direct product [/] x [p] (Robinson (1961)). By
applying the method of this paper to the case k (m) of linearization problem (1.3),

(1.4) s(,.)so

one can prove that the partitions r appearing in (1.4) are precisely those that appear
in (1.2) and that c(), 1 if z appears in (1.4). Stanley (1986) has recently found a
combinatorial formula for the linearization coefficients (for the case /.t (m)) for a
wide class of polynomials, which includes the zonal and Schur polynomials.

Notation.
(A) Partitions.
(A.1) A partition =(tl, t2,’’ ") is a finite sequence of nonnegative integers ti

satisfying ti => t+l. The partition r is denoted by r- (t)or by r n], where t- h+l hi.
If t 0, t is called a part of r. p- l(r), the length of r, is equal to the number of
parts of r. tp O, but tp+1-0, Eta, the norm of r.

(A.2) z[j] is equal to the truncated partition of at most j parts given by [j]-
[nl,n2,’’’,nj]=(tl tj+l, t2- tj+l, tj- /j+l).

(A.3) If r=(tl,t,"’, tj)=[nl, n2,’",nj] is a partition, the symbol z-l is
defined by the sequence r (tl 1, t 1,. , tj 1) nl, n2," , n l] and there-
fore the symbol z[j]- by z[j]- 1= (t- b+- 1, t2- tj+- 1,. ., t- t+- 1)
nl, n2, , n- 1]. If tj -> 1, then r- is also a partition. If t < 1, any expression such

as a,_ will, in this paper, equal zero.
Note that the definition of ’-I distinguishes between partitions that differ by a

string of zeros at the end, e.g., if ’1 (4, 2) and z2- (4, 2, 0), then

but

rl 1 (3, 1), a partition

r2-1 (3, 1, 1), a sequence.

(B) Matrices.
(B.1) V is a symmetric k x k matrix. Usually V> 0, i.e., V is positive definite. X

is a k x k matrix.
(B.2) V is the upper left x matrix of V; Vk V; X is the upper left x matrix

of X; Xk X. Sometimes (B.2) will not be in effect: X1, X2 will denote matrices of a
type specified.
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(B.3) An upper (right) triangular matrix T=(to) is one that satisfies tij =0, i>j.
A lower (left) triangular matrix S (so) satisfies so =0, i<j. Upper triangular (respec-
tively, lower triangular) always means upper right triangular (respectively, lower left
triangular).

(C) Operators.
(C.1) Dr=l((1 + 6o)(O/Ovo)) is an operator formed from the determinant of a

symmetric k x k matrix of partial differential operators.
(C.2) Dx [(O/Oxi)[ is an operator formed from the determinant of a k x k matrix

of partial differential operators.
(C.3) Di is the upper left xi determinant of Dr; Dk Dr.
(C.4) Iff is a function of V and L is an operator on f, [LJ](V=0) means the

evaluation of Lf at the matrix V =0. Sometimes this will be written as L[f](V =0).
Similarly, if g is a function of X and L is an operator on g, then [Lg](X) means the
evaluation of Lg at the matrix X.

k(C.5) L=H=,D’, where -=[n]. If P(V)=AC(V), then 2tt!a
[LP](V=O) (Kushner and Meisner (1984)).

(D) Eigenfunctions and eigenvalues.
(D.1) If z=(t)=[n] and X is a kxk matrix, (x)=Hk ]xi[ "i. When X= V,i=1

a symmetric matrix, (V) I] ki= [V], was called a "prototype polynomial in
Kushner, Lebow, and Meisner (1981) and the "power function" in Terras (1985).

[V,,,[D,,=o,,,(-) if l(’)<=m,
where

by

cr,,,(’) l-I (m i+ 2t)
i=1

(Maass (1971, p. 83)).

(D.2) The expectation operator E, in the Wishart distribution Wk(n, ,) is defined

[Enf](,)-- Cn],[-k/2 I f(V)]V]"-k-)/2 exp (-() tr VZ-) dV
V>0

k F((n + 1)/2). The prototype polynomial, , is anwhere C 2(n)/2(-)/4 Hi=I
eigenfunction of all the expectation operators:

E,=Zt(n/2)
where (a)=(a),(a-)t...(a-(k-1)/2), is Constantine’s generalized hyper-
geometric symbol (James (1964)).

(E) Miscellaneous.
(E.1) O(k) is the group of ohogonal k x k matrices, dH is the normalized Haar

measure on O(k). All integrals, f(H)dH, are over the full ohogonal group, f(V)
is called ohogonally invariant if f(H’VH)=f(V), H O(k).

In integrals of the form f(X) dX, where X ranges over the space of x q matrices,
dX is Lebesgue measure normalized so that

f exp(-()trX’X) dX=(2)Iq/2.

(E.2) If a- b-1 is an integer, the factorial symbol [a, b] is defined by

[a,b]=a(a-1)...b ifab,

[a, b] 1 if a-b =-1,

i.e., [a, b] F(a + 1)/F(b) if b # 0, -1, -2,....
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If a- b _->-2 is an even integer,, the factorial symbol [a, b]2 is defined by

[a, b]2 a(a-2).., b if a -> b,

[a, b]2 1 if a- b =-2,

[a, b]=2(’-b+2’/zF(+ 1)/F() if b# 0,-2,-4,.

(E.3) If (ai), 1 _<- =< are vectors in En, n-dimensional Euclidean space, then
1 <=i <- denotes the vector subspace of En spanned by (ai), 1 <=i<= n (E, is also used
for the expectation operator (D.2), but its meaning will be clear from the context).

2. The product of two zonal polynomials. Let p and/x be two partitions of r and
m, respectively, whose lengths satisfy l(p)<= k and l(/x)=< k. Then from Kushner and
Meisner (1984)

(2.1a) C.(V):a f lfftx(XVX1) e-(1/2)trXX dX1, V>O,
3

(2.1b) Cp(V)=a I dP’(X’VX)e-(’/9-)trxx2dX2’ V>0,

where X1 is a kxq matrix (ql=>/(/x)), X2 is a kxq2 matrix (q2>=l(p)), a,=
C,(Ik)/((27r)q’k/22’(k/2),) and ap Cp(Ik)/((27r)q2k/22r(k/2)). It follows that

(2.2) C( V)C( V) a,a0 I O(X VX,)Oo(X’ VX) e-(1/2)tr(XX,+xx2) dX dX2.

Suppose that l(p) + l(tz) <= k. Choose q and q2 so that ql + q2 k. Define a k x k matrix
X [X; X] formed by adjoining the matrix X2 to the matrix X. Further, define

(2.3)

(2.4)

(2.5)

Then (2.2) can be written as

(2.6)

V= (v0), ql+l<-i,j<-k,

,(v) ,(v),

G(V)=O(V)O(V).

C,(V)Cp(V)= aa, f G(X’VX) e-(1/2) trX’X dX

where the integration is over the space of k x k matrices X. Suppose now that/x (m),
a partition having at most one part, so that l(/x) =< 1. Also, suppose l(p) =< k- 1. Choose
ql 1 and q2 k- 1. Define

(2.7) fro(V) (1/(2"m !))(I)(,.)( V)
and

(2.8) F( V) fm( V)dP,( V).

Finally, define a function of V by

(2.9a) {m, l, p, h}(V)-IvI f f(X; VXl)eo(XVX=)h(X) dX

(2.9b) --IV[/I F(X’VX)h(X) dX.
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In (2.9), is any nonnegative integer and h(X) is a suitable function of Xmwe will
only use rapidly decreasing functions of the form h(X) polynomial (X) e-(1/2) tr x’*

From (2.6) with/- (m) and (2.9) we have that

(2.10) C(,,)(V)Cp(V)=a(,,)ap2"m!{m,O,p,h}(V)

where h(X)=- e-(1/a)trx’x.
In the sequel, 7.=(q,..., tk)=[n, ,nk] denotes an arbitrary partition of

of at most k parts and p-(rl,’", rk-1)= [m,..., mk-] denotes a fixed partition
of r at most k-1 parts.

3. The L operator. According to Kushner and Meisner (1984) (see (C.5), 1)
the coefficient gzp is given by

(3.1) 2’t!g= L[C(V)C(V)](V=O), l(7.)<=k.

The goal of this paper is the explicit evaluation of the right side of (3.1), when/x (m).
In this case, (3.1) can be written as

(3.2) 2’t!g[,,)o=a(,,)ao2"m![L{m,O,p,h}](V=O), l(7.)<=k,

where the function { m, 0, p, h} and a are defined in 2, and L is the operator defined
in 1. In the evaluation of the right side of (3.2), which occupies 5-10, we will
utilize two lemmas concerning the operator L. Lemma 1 uses the notation 7.- i, a, b]
and [a, b]2 defined in 1.

LEMMA 1. Ifp(V) is an orthogonally invariant polynomial, then

where

L[I vl’p( v)]( v- o) bk(7.)[L_p]( V= 0), 7"--(tl, ta,’’’, tk),

(3.3) b(r)=2k’/I]= (Tl+k),-(Tl+k-2i+2) Tl=2h-l.

Proof. The zonal polynomials span the orthogonally invariant polynomials
(Takemura (1984)). Consequently, p(V) can be expanded into a sum of zonal poly-
nomials

(3.4) p(V) E AC(V)

where the coefficients A(see (C.5)) are given by

(3.5) 2’t!A=[Lp](V=O).

Since [v[ic(v)-(C(Ik)/C+i(Ik))C+i(V), we also have

vl’p(v) y A C(Ik) C+i(V)
C+i(Ik)

C_,(I)
E Az i--’-7--C V

Applying (3.5) to the above expansion of the polynomial Vlip(V) into a sum of zonal
polynomials gives

(3.6) LEI vI’p( v)]( v= o) =2’t!A _i
c(I)



692 H.B. KUSHNER

Again using (3.5), but with the partition --i instead of ’, gives

(3.7) 2’-ki(t ki) A_i L_ip]( V 0).

Combining (3.6) and (3.7), we obtain

2’t[ C_,(Ik)
(3.8) L,[IVlp(V)](V=O)=2t_ki(t_ki) C(ik[L,_,p](V=O).
We now evaluate the ratio C_(Ik)/C(Ik). From James (1964) we have that

Hk (2tl + k)2tt[ Cr-i(It) (k/2)’r-i /=1(3.9) 22<t-i(t-ki)! C(I) -(k/2) H/k=1 (2tl-l+ k-2i)!"

Now

(3.10)

Also,

(k/2)
(k/2),_,

I-Ikl= ((k-l+ l)/2),,
,=, ((k-l+l)/2),,_,

] [k-l-1 k-l+l ]d-tl,4c- --i
I=1 2 2

k

1-[ 2-[2h-l+k-l,2h-l+k-2i+l]
/=1

k=- II [r,+-, r+-i+].
/=1

(2h + k- l) k

= (2tl-2i+k-/)=. =I-[ [2tl-l+k, 2tl-l+k-2i+l]
(3.11)

k

H [T/+k, T/+k-2i+I].
/=1

Dividing (3.11) by (3.10) evaluates the right side of (3.9) as

II [r,+, r,+-i+] (r,+,(r+-i+/=1 /=1

and so (3.9) may be written as

2(’-k’)(t ki)’C,(Ik). I=1 (T+k),-(T+k-2i+2)
which, by (3.8), is the assertion of the lemma.

LEMMA 2. If g is a function of the symmetric k x k matrix V, then

[Lg](V= 0) [Lt_](V_ 0)

where G, a function of the matrix Vk-, is defined by

G(Vk-1)=[D’kg]( V=( vk-’O ))"
Proof L= Lt_3D and only D involves differentiation with respect to the

variables v, 1 k.

4. Matrix factorization; subspace basis. In the sequel, we need to know that, under
ceain conditions, a square matrix can be factored into various kinds of triangular
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matrices and also that a subspace has a "trapezoidal basis." Here, we prove these
results In this section Xi, Si, T denote the x upper left matrix of X, S, T, respectively
(see (B) of 1). Lemma 3, below, is immediately applied in 5; the other results in
this section are not used until 8.

LEMMA 3. If the upper left x determinants of the k x k matrix X satisfy

[Xi[ 0, l<-_i<-k,

then there exist an upper triangular k k matrix, T, and a lower triangular k x k matrix
S, such that

(4.1) X-ST.

S can be uniquely chosen so that its diagonal entries are all equal to 1.

Proof. The decomposition (4.1) is the well-known Gauss decomposition (Naimark
and Stern (1982, p. 249)).

To formulate the next lemma, call an x n matrix A (ao) a "trapezoidal matrix"
if, for -< -< l, aj 0, n + + 1 -<j _-< n. (If n, the matrix A is a lower left triangular
matrix.) If C {a}, 1 _-< _-< l, where ai are the row vectors of A, then (a) will be called
a trapezoidal basis for the vector space C. Related to Lemma 3, but without any of its
exceptional cases, is the following result.

LEMMA 4. Let C be a subspace of En, Euclidean n-dimensional space. Suppose that
dim C- I. Then there exists a trapezoidal basis for C.

Proof. Let G be the x n matrix whose row vectors are any basis of C. We must
show that there exists an invertible x matrix F such that FG is trapezoidal. If FG
is trapezoidal, then

fi E {gn-,+l+i, gn-1+2+i, ", gn}+/- Gi, 1 <-- <- l- 1

where f/, 1 _<- <_- l, is the ith row vector of F, gj, n + 2 _-<j -< n, is the jth column vector
of G, and Gi is the orthogonal complement of the indicated subspace. Vectors f and
g and the subspace Gi all are contained in El. G is the orthogonal complement of
a space having at most l- independent vectors; hence, dim G _-> i. The subspaces G
satisfy G1 c G2 c c Gl-1 c GI El.

Construct a basis of E as follows. Since dim G1 --> 1, select fl 0 from G1; since
dim G2 -> 2, select f2, linearly independent of fl, from G2; and so on, until we arrive
at a basis, {f/}, 1 =< _-< l, of E with the property: f E G, 1 _-< _-< I. The required invertible
matrix F is constructed by taking f, 1 _-< _-< as its row vectors. (A similar construction
was used in Lang (1966, p. 183).)

LEMMA 5. Any k k upper triangular matrix T, all of whose i, 1)-minors are not
zero, can be decomposed into T ATI where

and

0

.0

a 0 0

a2 a 0

0 a a 0

0 ak- ak-
0 0 ak

tll 0 0

0

To
0

aiO, l <-i<-k,
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Here To is a k- 1)x k- 1) upper triangular matrix, and A can be uniquely chosen so
that ak 1.

Proof. Let ui denote the ith row vector of T1. Then the ith row vector of AT1 is

a,(u, + u,+,) (u+, o).

If t, denotes the ith row vector of T, define

k ti(4.2) Ul (_)k , (_) --, 1 <-- <--_ k,
i=l ai

where the nonzero numbers a, are to be determined by setting the jth component
(j_-> 2) of Ul equal to zero

The system

itij
<-j=k.o= E (-)-, 2 <

i=1 ai

k

(4.3) 0 2 toY,, 2 <--j <= k,
i=1

is a system of k- 1 equations in k unknowns. Let c, be the co-factor of til in the matrix
T, i.e.,

ci--(-)i+lci,

where C,, the (i, 1)-minor of T, is the subdeterminant of T obtained by striking out
row and column 1 from T. Under the conditions of the lemma,

Yi OCi, 1 <= k,

a a scalar, exhausts all the solutions of (4.3). Define then ai C-1, and the row vectors
of T1 by (4.2), to obtain the assertion of the lemma.

If R is a k k matrix, let R(j) denote the submatrix of R formed from rows 1
to j and columns 2 to j 4-1.

LEMMA 6. If IX(j)[ 0, 1 <--_j--<_ k- 1, and if IX[ O, 1 <- 1<-_ k, then there exist a
lower triangular matrix S, matrices A and T1 of the form given in Lemma 5, such that
X SATe. The ai may be chosen so that ai 1, 1 <-_ <-_ k.

Proof. By Lemma 3,

(4.4) X=ST

where S and T are lower and upper triangular, respectively, and s, 1, -< k. The plan
of the proof is to apply Lemma 5 to the T in (4.4). T is invertible since IS[[T[ IX[ 0.
The (i, 1)-minors of T are equal to :e TIb,, where bi, 1 <-_i <- k, are the components of
the first row vector of T-1. Let (b,..., bl), an /-dimensional vector. Then from

blT= (1, 0,’’’, 0)

we find

(4.5) bi
IT(1-1)I

IT,
The matrices X(1 1) and T(l 1) are related by

X(l-1)=Sl_lT(l-1)
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which follows from (4.4). Since [S-11 1, we obtain

IX(I-1)[-IT(I-1)[.
From (4.5), we then find that the (l, 1)-minor of T is given by

(-)l+llTlbl=(-)l+l( I tjj)lX(l-1)l.
j---/+l

Certainly no tj is zero, since I]k__l t IXI # 0. We conclude that none of the (i, 1)-
minors of T are equal to zero. Lemma 5 then permits us to write

T=AT1.
Substituting the above representation of T in (4.4) gives the first assertion of the lemma.
Replacing S by SD- where D diag (al, a2," ", ak) gives the second assertion.

5. Operators bi-invariant with respect to matrix multiplication: eigenfunctions, eigen-
values, and an integral. An operator L is bi-invariant with respect to left and right
matrix multiplication if it satisfies the chain rule property

(5.1) [LF](X) [Lf](TIXT2).

In (5.1), f is a polynomial of the k x k matrix X and F is the polynomial of X defined,
for any two fixed matrices T and T2, by

F(X) f( TXT).

The operator L- IXIDx is bi-invariant with respect to right and left matrix multiplica-
tion. Let T1 and T: be two upper triangular matrices. The polynomial ( 1) (X)
satisfies

(5.2) d( TXT2) d(X)d(T T2).

This property is a generalization of the well-known property

dp( T’ VT) dp( V)dp( T’ T), T upper triangular,

of the "prototype" polynomials $(V). We will now use (5.2) to show that $(X) is
an eigenfunction of every bi-invariant operator. The following proof of this assertion
is modeled on the proof of the analogous statement in Selberg (1956) or Maass (1971).

THEOREM 1. The polynomial dp(X) is an eigenfunction of every bi-invariant
operator.

Proof. Let the bi-invariant operator L operate on both sides of (5.2), obtaining,
for any two upper triangular matrices,

[L$](TXT2) d(T T2)[L$](X).

Setting X I, the k x k identity, in the above equation yields

L$](T T2) ,$(T T2)

where [LcI)](I). According to Lemma 3, every k x k matrix X satisfying IXI # 0,
1 <= <- k, can be represented in the form X T T2, where T1 and T2 are upper triangular.
Therefore, the eigenfunction property

(5.3) [Ld](X) Ad(X)

holds, except possibly at matrices X for which one or more of the determinants Ixl
vanish. It follows that (5.3) also holds at any matrix X for which both sides of the
above equation are continuous, proving the theorem.
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LEMMA 7. Supposef(X) >-_ 0 is an eigenfunction of IXIDx and thatfsatisfies either

(5.4a) (a) f(XT)=O(T’T)f(X)
where T is upper triangular, or

(5.4b) (b) f(SX) =O,(S’S)f(X)
where S is lower triangular. Then

(5.5) IXlDxf trk(/ )f

where o’k(/x) (given in 1) is the eigenvalue in

(5.6) VlOvO ()0.

Proo We confine ourselves to (a), the upper triangular version of the lemma.
Define a function g of the symmetric matrix V X’X by

g(X’X) f f(HX) dH.

Setting X T, an upper triangular matrix, in the above equation and using (5.4a) gives

g(r’r)=c,(r’T)

where c Jf(H) dH. If X’X is positive definite, an upper triangular T can be found
such that X’X T’Z Therefore

g(X’X)=c(x’x)

and

(5.7) cO(X’X) J f(HX) dH
whenever X is invertible. If c --0 in (5.7), thenfvanishes identically. For, f(HX) dH
0 and f(HX)>-O imply that f(HX)=O for every H O(k); in particular, f(X) =0.
Assume then that c 0.

The operators IX[D and[VlDv act identically on functions of the variable X’X.
If F(X)- G(X’X), then

(5.8) IXIDxF -IVIDvG, V x’x.

Also, by assumption,

(5.9) ]XlDxf
Operate with the invariant operator ]XlDx on both sides of (5.7), using (5.8) and (5.9).
We obtain

ctrk(tz)O(X’X) f f(HX) dX cO,(X’X)
d

from which follows the equality

that is,

IXlDxf o-(g )f.
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According to Theorem 1, the polynomial ,(X) is an eigenfunction of [X[Dx.
We now compute its eigenvalue.

THEOREM 2.

(5.10) IXIDx= trk(’/2).

Proof. Setting T1 I in (5.2) shows that (X) satisfies the functional equation

(XT)=(T)(X)

cI)/2(T’T)d(X), T upper triangular.

Now assume that the parts of z are even integers. Then (X) -> 0. The three conditions
of Lemma 7 are now satisfied by the polynomial , so the assertion of the theorem
is established for this case. Next, for any partition z, consider the equation, obtained
by evaluating (5.10) at X I

(5.11) [IXIDx](I) o’(’r/2).

Equation (5.11) has just been proved in the case when the parts of z are all even. Both
sides of (5.11) have an obvious meaning even when ti, the "parts" of z are arbitrary
real numbers. Indeed, both sides of (5.11) are polynomials in ti, 1 =<i=< k, and, since
both sides of (5.11) are equal when all the ti are even integers, we may deduce the
truth of (5.11) for all real t. In particular, (5.11) is true for any partition z. Theorem
2 now follows from Theorem 1 and (5.11).

The remainder of this section is devoted to the evaluation of the integrals (5.14),
(5.16), (5.17), below. The evaluation repeatedly uses "integration by parts," unlike the
evaluation of the analogous integral, v>o (V) e-(1/2) tr v dV, which is directly accom-
plished by a change of variables, as in Selberg (1956), Constantine (1963), or Maass
(1971). The integration by parts formula to be used is

(5.12) fDxg (--)kgDxf div B.

In (5.12), f and g are functions of X, B is a vector of functions of X, and div is the
divergence operator. Equation (5.12).follows from a more general result in Maass
(1971); a different derivation of (5.12) is in Kushner (1980). If f and g are suitable
functions, then

(5.13) I fDxg dX (- k l gDxfdX

follows from (5.12). In particular, we may use (5.13) when f is a polynomial in X and
g is a polynomial in X times the function e-(1/2)tr x,x.

THEOREM 3. Define c by the integral

(5.14)

Then

(5.15)

Also,

(5.16)

c,=(27r) -k2/2 f d(X) e-(1/2) trX’X dX.

p

C2-= I-[ [Tt-T/+l-2, T-T+I]2, p=l(’), T=2t,-i,
l<_i

c 0 if the t are not all even.

(a) 2’/2(k/2)/2 f (H) dH= c
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where (a) is Constantine’s generalized hypergeometric symbol defined in (D.2) and

(5.17) (b) (27r) -k2/2 / (X) e-<l/-)trA-’x’x dX=dP/2(A)IA]k/2G, A>0.

Proof. (a) By the substitution X HT, H O(k), T an upper triangular matrix
with nonnegative diagonal entries, we have

k

dX 2kgk I-I t-’ dH dT,
i=1

/hgk "lTk(k+l)/4 r(i/2),
li=l

cb.(HT) ,(H)( T),
so G, as defined in (5.14), is given by

(5.18) C,=(2w)-k/22kgk I- ,(T) e-(1/2) tr T’T i=lI tkii-i dT f cI),(H) dH.

But (T)=/2(T’T), and if the change of variables, V= T’T, with dV=
2k 1-I k t+-i dT is used in (5.18), we obtaini=1

Cz (2,rr)-k2/2gk ff (I)./2( V) e-(1/2) tr V dV I
(5.19)

v>o ]VII/-------- (H) dH

[EkO,/2](Ik) f O,(H) dH

where Ek is the expectation operator in the Wishart Wk(k, ,) distribution. By r/2 we
mean the partition r/2 (ti/2), 1 <- <-_ k, and by /2(V) we of course mean the function

k

(I)-/2( V) H Ivl ’’/2,
i=1

which is, in the terminology of Kushner, Lebow, and Meisner (1981), an EP function,
satisfying EkCI)/2 2’/2(k/2)/2/2 by Constantine (1963). In particular,

(5.20) [EkO-/](Ik) 2t/2(k/2)/2
Substituting (5.20) in (5.19) gives

G- 2t/2(k/2)z/2 dPz(H) dH.

(b) Write A-l= TT’, T an upper triangular matrix. By the substitution Y XT,
we have

dY=ITIk dX, (yT-1) q)( Y)q)(T-1)
so the integral (5.17) is given by

(27r)-k2/2 I O.r(X e-(1/2) trA-’X’X dX
d

q(r-1)l rl- (y) e-,/: t ’ dr

dr

/:(A)A]/ (Y) e-(1/2) tr y,y dY

=*,/2(A)IAI/2c,.
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Next, we prove that if the ti are not all even, then the integral (5.16) is zero. Let
K =diag (1, 1,. ., -1, 1,. ., 1) with the -1 lying in the/th place. Then K O(k) is
upper triangular and (HK)=d(H)d(K)=(-)’,(H). Using the substitution
H- HK in (5.16), we obtain

(5.21) c=(-)%
or c 0 if any tl is odd.

Finally, we now evaluate the integral (5.14) when ti are all even. Let h(X)=
e-(1/2)trx’x and note that Dxh=(-)k[X[h. Then with r=(tl t2 tk)

I [Dx_I](X)h(X) dX

((- 1)/) I _(X)h(X) dX;

the last two steps follow from (5.13) and (5.10).
Doing this nk/2 times we obtain

(5.23) dp,(X)h(X) dX= 1-I crk((r--(2j--1))/2) dP,tk_ll(X)h(X) dX
j=l

nk/2
(2r)(2-’)/2 [-I cr((r-(2j- 1))/2)

j=l

(5.24)

where (r-(2j-1))/2 is the "partition" whose ith part is (t,-(2j-1))/2 and Xk_ is
the (k- 1) x (k- 1) upper left submatrix of X. If nk 0, the empty product I] may be
omitted from (5.24). Again repeating this process, we obtain

p nil2
(5.25) dp(X)h(X) dX (27r) k2/2 l-I l-[ er,((r[i]-(2j- 1))/2), p l(r).

i=1 j=i

Now the/th part of the "partition" (r[i]-(2j- 1))/2 is (tl- ti+l-(2j- 1))/2, 1 -<_ -< i.
By (D.1) of 1, tr,((r[i]-(2j-1)/2))-l-i=(i-l+h-t,+l-(2j-1)), and (5.25)
becomes

(5.26)
I P hi 6dp.,.(X)h(X) dX--(27r) k2/2 I-[ I-I (i-l+tl-t+l-(2j-1))

i=1 j=l 1=1

p ti --ti+l
--(27r) k2/2 H H 1-I (i--l+.tl--ti+l--j) (tp+l--O).

i=1 oddj=l 1=1

Writing 2r for z in (5.26) and noting that
2(ti--ti+ I)

1-I (i-l+2tl-2t,+l-j)=[Ti-T+l-2, T- T + 112,
odd

allows (5.26) to be written as

ff p

d2(X)h(X) dX=(2rr)k2/2 l-[ IT/-T/+1-2, T/- T+l]2

which is formula (5.15).
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6. Invariant operators; computation of C(Ik); lengths of partitions. An operator
L invariant with respect to congruence transformations, V T’VT, is one that obeys
the simple chain rule law

[Lfr](V) [Lf](T’VT), T any real matrix,

where f is a polynomial of the positive definite matrix V and fr(V)-f(T’VT). More
generally, if

(6.1) g(V) I F(X’VX)h(X) dX, F(V) a polynomial,

then it can be shown that

(6.2) [Lg](V) I [LF](X’VX)h(X) dX.

Let D Dr. With L VInD", an invariant operator with respect to congruence transfor-
mations, (6.2) becomes

[V["[D’g](V) IV[" f [DnF](X’VX)IXI2"h(X) dX

from which we obtain

(6.3) [O’g](V) f [D’F](X’VX)IXI2"h(X) dX.

As a first application of (6.3), we now compute the value of C(I). As mentioned
in 1, it appears that the only other computation of C(I) is that of James (1961)
and Constantine (1963).

From Kates (1981) or Kushner and Meisner (1984),

(6.4) (27r)k2/22t(k/2)C(V) Cz(Ik) f dPz(X’VX e-(1/2) trx’X dX.

But from Kushner and Meisner (1984) (see (C.5)),

(6.5) [LC](V=O)=2tt!.

Operating with L on (6.4) and using (6.5) yields

(6.6) (27r)k2/222’t!(k/2),=C,(Ik)[L, fdp,(X’VX) e-(1/EltrX’xdX](V=O).
By evaluating the right side of (6.6), we will obtain a formula for C(Ik). The procedure
is to repeatedly apply Lemma 2, Theorem 2, and (6.3).

Using (6.1) and (6.3) with F(V)=(V) and h(X)=e-(1/2)trx’x, the right side
of (6.6) is, by Lemma 2 and Theorem 2,

(6.7) C(k).ck( 7.) [ L[k-] p,[k-](X- Vk-Xk-1)X2"k e-(/2) tr xx dX] Vk- )

where

"--1

try(r)= I-I Ok(r--j) ifn-->l (z=(tl,tE,’’’,tk)),
j=0

r(r) 1
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and

k-1

(6.8) Lr-,= H DT,.
i=1

Continuing in this fashion enables us to evaluate the right side of (6.6) and so to
obtain the equation

p

(2r)V2’(k/2)d! C,(I) 1-[ 1-[ o’(’[i]-j)
i=1 j=0

(6.9)

ff (I)2.r(X) e-(/2)trX’x dX, p= l(’).

The product in (6.9) is evaluated as was the product in (5.25). We obtain
n.--1p hi--1 p

H H o-,(-[i]-j)= H H H (i-l+2(h-t+)-2j)
i=1 j=O i=1 j=0 l--1

p 2(ti-ti+)-2

(.0 II II II (i- +(,-/-j
j=0 l=

P

II It,-r/-, r- r+].
lNi

Finally, we use (5.15) and (6.10) to evaluate the right side of (6.9), obtaining

P

’(/.t!= c.(I) II It,-r/-,
(’

It,- r. -, r,- r + ]
P

(6.12) C.(Ik) l-I [Tt- T+,- 1, T/- T + 1].
l<=i

We now show that the formula (6.12) for C(I) is equivalent to that of James and
Constantine. In (6.12), when T- T+- 1 < T- T / 1, the symbol T- +- 1, -+ 1]= 1. This happens when 2 > -+ 2(t- t+) + 1, implying that t ti+l. Even
in this case, when i l,

(- +,-1)
(6.13) +1- 1, - + 1]

(T,- )

Noting that - > 0 for i> 1, it follows from (6.13) that

v (--+1--1)
[-+,-1,-+1]=_ --jti=! i=l

, (--+1--1)
=(-Tt+l-1)[ H

,>, (-)

(- +,-)
(6.14) =(- +,-1)] i, (-- )(- -1)

=(_ +1_1)1( Tv+,-1) (_ )(--1) i>,

(+)
H" (fixed l),
i>/(-- )
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which, with (6.12), gives the James-Constantine formula for C(Ik) (James (1964)),

22’(k/Z)t C(Ik) l=l (T/+p)!

As a second application of (6.3), we now prove that the lengths of the partitions
z appearing in (1.1) satisfy

(6.15) max (l(tz), l(p)) <-_ l() <- l(l)+ l(p).

Let G( V)=- d,( V)o( V) as in (2.5). Then G is a function of the variables in V
where j= l(/x) + l(p), implying DiG=O, if i>j. Hence, by (6.3) and (2.6) (thinking of
the k in (2.6) as i), DiC,(V)Co(V)=-O if i>l(tz)+l(p). Consequently, if /(r)>
l()+l(p), then O=[LC,(V)Co(V)](V=O)=2’t!go, from (3.1). This proves the
right side of (6.15). To prove the left side note that if </(/z), then C,(V) 0, which
implies that

c.(E)G(E) =E goC(E)=-o

or

g,=0 ifl(z)<i<l(ix)

In calculating linearization coefficients via (3.1), it therefore suffices to take any
k >- l(z) + l(p ).

7. g-coefficients: characterization of partitions; integral representation. In this sec-
tion, we characterize the partitions z appearing in (1.2) whose g-coefficient is not zero.
Also, an integral formula for these g-coefficients is derived. The positivity of the
coefficients is an immediate consequence of the integral formula, which is finally
evaluated in 10.

THEOREM 4. Suppose z (tj), 1 <--_ j <-- p + 1, p (), 1 <--_ j <-- p and rp+ O.
if

(7.1a) tj >-- r >-- t+l l <--_j <-- p

and

(7.1b) t=r+m,

then

(7.2a) 2tt!gm)o: C f dp(X)ffp(X*) e-(1/2)trx’X dX

where

(7.2b)

(7.2c)

(7.2d)

/x 2[tj- r], 1 =<j-<_p+l,

,=2[r-tj+l], l<-j<=p, p=l(p),

C:m!a(m)ao2t (I (RI-Rj+I-1),-(RI-Tj+I+I)
l<_j

(7.2e) X=(xo), l<-i,j<=p+l,

(7.2f) X*=(xo), l<-_i<=p, 2<=j=<p+l, theupperrightpppartofX.

In (7.2d), T 2h l, R 2 ri I. a is defined in 2.
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If - does not satisfy (7.1), then g(m)p =0.
Proof. The proof starts with the expression for g(m)p given in (3.2). Let k-p + 1.

From (6.15), l(r) <- k. The first goal is to calculate the effect of D, on the function
{m, 0, p, h}. The procedure is similar to, but more complicated than, that used in 6.

With F(V) defined by (2.8), the function g defined in (6.1) is just g(V)
{m, 0, p, h}. From (6.3), we therefore have

(7.3) D{m, O, p, h} f [DF](X’VX)X2h(X) dX.

We now calculate DF. By the Laplace expansion of a determinant, we can write the
operator Ok as

D 2

_
+other terms

where D_ is the (k-1)x (k-1) minor of 2(O/OVll) in D. The other terms" all
contain a O/Ov, 2 k. Therefore, DF= D[f( V)o( V)] (2(O/Ov))fD_o.
For any n,

(7.4) DF= 2
0
f-o.

We now simplify the right side of (7.4). First, note that (2(O/Ov))f =f_. For any n,

(7.5) 2
0

f=f_, 0 if i<0.

Second, from 1, we have that g_lO_lo ff_l(0)o or D_Io ff_l(0)o_.
With O=(r)=[m], the symbol 0-1 (-1), lNjNk-1. Similarly, for any n,

or

(7.6) D,_,O, trk_,(p)O,_,, O,_,, 0 if mk-, < n,

and

0 0 if mk- < n,(7.7) D ,t:p O’k_l(p)Ctz,_n,

where p n (r- n), 1 -<_ -<_ k- 1. p n is a partition only if mk- > n.
The eigenvalue trT,_(p) may be computed via

rt--1

(7.8) tr,_l(p)= I-I trk-l(p--j)
j=0

and is zero if mk- < n. Evaluating the right side of (7.4) by (7.5) and (7.7) gives

(7.9) [DT,F](V) o’7,_,(p)f,,_,( V)ai,,,_,(V).

Substituting (7.9) in (7.3), we obtain

(7.10) D,{m, 0, p, h} o’,_l(p) f f,,-,(X’VX)q’o_,(X’VX)[XlZ"h(X) dX.

The first goal of the proof is accomplished in (7.10).
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The second part of the proof is controlled by Lemma 2, since we need to calculate
L.{m, O,p, h} only at the matrix V=0. To do this, we use (7.10) to first evaluate
D{m, O, p, h} at the matrix V= (v-’ Oo)" Now

(7.11a) f,,_(X’( Vk-’ 00)X)=f,, (X_
0

V_,X_l)

and

(7.11b) o_,(X’( Vk- 00)X)=)k_2](X_o ,,t v-,x-,)[x*l’ -")1 v-,[-’-,

where X* is defined in (7.2f). From (7.10) and (7.11a), (7.11b), we obtain

D{m’ O’ p’ h}]( V= ( V-’O
(7.12) _,(fl)[Vk_llmk-’-n fm_n(X_1Vk_lXk_l)

tk-(Xk-1Vk-lXk-1)hk-l(X) dX

_,(p){m n, m_,- n, o[k-], h_,}

where

7.3) h_,x)

and hk(X) h(X). Note that the { } function in (7.12) is now a function of the
(k-1) x (k-1) matrix Vk-. The second pa of the proof is accomplished in (7.12).

In the third pa of the proof, an expression is obtained for the effect of L on
the function { m, ( p, h} at V 0. From Lemmas 1 and 2, with (t) n], 1 k,

[{m, l, p, h}](V=0)= b()[_,{m, 0, p, h}](V=0)
(7.4)

b()[t-,](V-, =0)

where

(7.15) G( Vk_,) [Dk m, O, p,
0

Evaluating (7.15) via (7.12), with n nk-1, allows (7.14) to be written as

(7.16)

[L{m, l, p, hg}](V 0) b(’)o’7,-t(p)

[Ltk_,]{m- nk + l, mk-,--nk + l, p[k-2], hk-,}]( Vg_, =0).

The third part of the proof is accomplished in (7.16).
The left side of (7.16) involves the k x k matrix Vk, and partitions " and p. The

nk--lright side of (7.16) involves, except for the constants b(’) and O’k-1 p), the (k- 1) x
(k-1) matrix Vk-1 and the truncated partitions ’[k-1] and p[k-2]. This enables us
to proceed inductively into the fourth part of the proof. Indeed, repeating k-i times
the procedure which results in (7.16), we obtain:

(7.17) [L.,.{m,l,p, hk}](Vk=O)=Ci[L.[i]{Mi, li, p[i-1],h,}](Vi=O)
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where
k k-1

(7.18) Mi=m , (j-i)nj+ (j-i)mj+(k-i)l,
j=i+l j=i+l

k-1 k

(7.19) li= m- n+l,
j=i j=i+l

k

(7.20) h,(X) hk(X) H IX-ll=-l-%+lxl=<%-/,
j=i+l

and
k

(7.21) Ci I] b(r[j])o’jL,,(p[j- 1]).
j=i+l

In terms of the parts of the partitions " and p, (7.18)-(7.21) are
k k-1

(7.22) Mi=m t+ ri+(k-i)l,
j=i+l j=i+l

(7.23) 1 ri- ti+l + 1,
k

(7.24) hi(X) hk(X) H
j=i+l

k
t.----I[(7.25) C, I-I b-%’+t(Y[j])f-1 (ptJ 1]).

j=i+l

When k, (7.17) is identically true, since M m, l l, C 1. When k- 1, (7.17)
yields (7.16) since M_=m-n+l=m-t+l, l_=m_-n+l=r_-t+l,
C_, b(r) "k--’ tk--lz

_
() b() .k-l

Set 1=0 and i=0 in (7.24) and (7.25). The exponents of IX_l and of must
be nonnegative integers, yielding (7.1a). The conditions (7.1a) also ensure that M and
l are nonnegative integers and that C 0. The symbol [Lto{Mo, lo, p[-1], ho}] ho,
where, from (7.24),

k

ho(X) e-1/2) tr X’X H ]X-II2(D-’-)IXI
j=l

k-1 k

(7.26) e-(,/2)tr X’X H Ixjl2r-9+’) 1-1 Ixl2’-r)
j=l j=l

e-(1/2)tr X’Xf(X,)ft(X)
the integrand in (7.2a). The constant Co is given by

k
t.- 5Co 1-[ bjJ-+’(’r[J ])o’f_ (p[j 1 ])

j=l
(7.27)

k-1 k-1

H bjg-%l(’[J]) H
j=l j=l

an expression which we now simplify.
The "o’-symbols" in (7.27) are evaluated as in (5.25)

tr;(p[j] i) H (J + 2rl 2r;+, 2i)
1=1

H (RI-R+I-2i-1).
1=1
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It follows that

and

/j/l --rj+l--1
’/’-9/l(p[J]) H o’j(p[j]--i)

i=O

5+1--9+1-1

/=1 i=o

2J(+’-r+l) (I (R,- Rj+ 1), (R,- Tj+
/=1 /1)]

(7.28) H ,rg+,-%,(p[j]) 2
1

"-’s (R,-Rj+I-1),(R’-Tj+I+I)
where a Ygj(t+l- r+).

The "b-symbols" in (7.27) are evaluated using (3.3) with i= r-tS/l k =j, and
the partition r[j] in place of r. The/th part of r[j] is h- b+l. To evaluate bgS-%l(r[j]),
the T+k in (3.3) is replaced by 2(h-tg+l)-l+j= T/- T+I-1; the T/+k-2i+2 in
(3.3) is replaced by Tt-T+I- 1-2r+2tg+l+2= TI-Rj+2. We obtain

(7.29) bj-+l(7"[j])=2j(9-+l) (Tt- Tj+I- 1), (T/- Rj +2)
/=1

or

(7.30) II b/ r[j]) T/- Tj+ 1), ( T/- Rj + 2)
l<=j

where b Yg- j(r b+l)- Note that a + b r.

Multiplying (7.28) and (7.30) together, with p= l(p), k=p+ 1 (or any k>-p+ 1)
evaluates the Co in (7.27). Using this expression for Co and (7.26), the case i= 0, 0
of (7.17) is

[L{m, O, p, h}](Vk=O)= Co O(X)O(X*) e-(1/2) tr X’X dX

which, with (3.2), yields (7.2a).

8. More eigenfunctions. Theorem 4 expresses the g-coefficients by integrals of the
form

(8.1)

where

and

v--(2)-k2/2 f Ou,(X)Ov(X* e-(1/2)trX’X dX

k

(x) H Ix, e’, e,, e2,’" ", ek]
i=1

k-1

H Ix,*L
i=1

,,= [A,f,’’’, f-,].

Here, X is a k x k matrix and X* is the upper right (k- 1) (k- 1) submatrix of
X. When f 0, 1-<i -< k-1, the integral (8.1) was evaluated in 5. The procedure for
the evaluation of (8.1) is similar, but more complicated. It uses two eigenfunction
properties of the integrand in (8.1).
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THEOREM 5. Let f(X)=(X)(X*). Then f(X) is an eigenfunction of all the
bi-invariant operators.

Proof. The function ,(X) satisfies the functional equation (5.2). For any upper
right triangular T2, and T1 of the form given in Lemma 5, the function g(X) (X*)
satisfies

g(TXT) Wl(T1) w2(r)g(X)

where w are functions of the matrices T, 1 <_-i _-< 2. Consequently, for two such upper
right triangular matrices, f(X) satisfies

(8.2) f(TXT) w( T1, T2)f(X)

where w is a function of the matrices T1 and T2.
Let A be a matrix in the form given in Lemma 5. Since ai # O, 1 <-_iN k, f(A) O,

because

and

ebb(A) al(ala2) e2 (al ak)e # 0

(A*) a{l(aa2)f... (al ak_l)fk- O.

Let X A in (8.2); we then obtain

(8.3) f(TAT1) w( T1, T2)f(A).

Using (8.3) to eliminate the w function from (8.2), we obtain for f(X) the functional
equation

(8.4) f(TXT) =f(T’2AT1)f(X)/f(A).

In (8.4), T2 is any upper right triangular matrix; T and A are matrices of the form
given in Lemma 5. Operating on both sides of (8.4) with a bi-invariant operator L gives

(8.5) LJ](T’zXT) =f(T’AT1)[Lf](X)/f(A).

Setting X A in (8.5) yields

[Lf](TAT) Af( T’AT)

where h [Lf](A)/f(A). By Lemma 6, any matrix X, certain ofwhose subdeterminants
do not vanish, can be represented in the form T;.AT1, where A is a constant matrix.
Therefore, the eigenfunction property

(8.6) [Lf](X)=Af(X)

holds, except possibly at matrices X for which one or more of the subdeterminants
vanish. As in Theorem 1, it follows that (8.6) also holds at any matrix X for which
both sides of (8.6) are continuous, proving the theorem.

When ek 0 and the first column vector of X is fixed, the function f defined in
Theorem 5 may be viewed as a function of X*. The second eigenfunction property
relates to this function.

THEOREM 6. Suppose that the first column vector ofX is fixed and define
k-1 k-1

F(X*)= H IX, e’ H Ix,*l
i=1 i=1

viewed as a function of the variables in X*, the k- 1) x k- 1) upper right part of X.
Then F is an eigenfunction of all the bi-invariant operators (acting on functions ofX*).
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Proof. We begin by proving that, if Xll # 0, there is a lower left invertible (k- 1) x
(k 1) triangular matrix S such that, if Y# denotes the (k 2) x (k 2) lower left part
of a (k 1) x (k 1) matrix Y, then

(8.7) [Xi+ll I[(SX*)#],I, 1 -<_ -< k- 2.

In (8.7), the matrix S depends only on the entries, {Xil}, 1 -< <- k- 1 in the first column
of X. Now Cauchy’s composition law (Karlin (1968)), states that

(8.8) IABIp E IAIIBI.
In (8.8), p (rl, r2,"" ", r) and K--(kl, k2,’’’ k) are two fixed partitions, each
having parts; " runs over all partitions having parts; [CIpK is the subdeterminant
of the matrix C formed from rows {rl} and columns {k/}; and A and B are any two
square matrices of the same order. Define partitions p and (j), both of length i, by

(8.9a) p=(i+l,..., 3, 2),

(8.9b) (j)= (i+l,...,j,..., 2, 1).

f indicates that j does not appear in the partition (j). If S is a lower left (k 1) x (k 1)
triangular matrix, and -< k- 2, then

(8.10) ISlp O, unless z (j), 1 _-<j_-< + 1.

Let K (i, , 2, 1). Note that

(8.11) ISX*[pK [[(SX*)#],[.
In (8.8), set A S and B X*. Together with (8.10) and (8.11) we then obtain

i+1

(8.12)
j=0

If a (k- 1) (k- 1) lower triangular matrix S can be found satisfying

(8.13) ]Sip<j>= (-)J+’xj,, 1 <-j <-_ i+ 1 <-- k,

where p and (j)which depend on iare given in (8.9a), (8.9b), then the right side
of (8.12) is equal to ]X+], which is the assertion (8.7). We now demonstrate the
existence of such a matrix.

Let C {a}, where a (xi), 1 -<_ -<_ k- 1. Since a 0, C is a (k- 2)-dimensional
subspace of Ek_, Euclidean (k- 1)-dimensional space. From Lemma 4, with k- 2,
n k- 1, C has a trapezoidal basis: C {a}_ {s}, 2 =<j =< k- 1, where the final k- 1 -j
components of s are zero. Define the vector s by s (1, 0, 0,..., 0) Ek_ and let
S be the (k 1) x (k 1) matrix whose row vectors are s, 1 -<j =< k 1. S is a triangular
matrix. If s C, i.e., if x 0, then S is invertible. For fixed 1 =< =< k-1 and any
vector y (y, Y2, Yk-) Ek-, let 37 (y, y2, , y) E. Then

(8.14) {a,}+/- {}, 2 =<j --< i.

For, #0, hence dim {ai}l i-1, and certainly the i-1 independent vectors ,
2-<j-< i, are orthogonal to a. Equating the Grassmann coordinates of the subspaces
appearing in (8.14) gives, for scalars A # 0,

IS[p(j)-- Ai(--)J+Ixjl, 1 <--j <= i+ 1 <--_ k,

and renormalizing the vectors s results in a invertible triangular matrix S satisfying
(8.13). This concludes the proof of (8.7).
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We now use (8.7) to obtain the assertion of the theorem. Let Y--X*. Then (8.7)
together with I(SY),I- IS, IYil, 1 <- =< k- 1 implies that the polynomial F defined in
Theorem 6 can be written as

(8.15)

where

e’w(S)H(SY)F(Y)=Xll

k-1 k-1

(8.16) H(Y) H
i=2 i=1

and

k-I

w(S)- I] Isil -f’.
i=l

But the polynomial H(Y) is the analogue of the polynomial f(X) in Theorem 5.
Therefore, H is an eigenfunction of all the bi-invariant operators (acting on functions
of Y X*) and also so is the left-translate of H and, by (8.15), the function F(Y)=
F(X*).

9. More eigenvalues. In this section, we compute the eigenvalues of the functions
f(X) and F(X*) defined in the previous section.

The sum of two partitions is defined by component-wise addition. (This definition
holds for both representations of partitions ( 1).) Thus , the sum of the two partitions
Ix and u defined in the previous section, is

(9.1) a-ix+u=[e+f,e2+f2," ",ek-+fk-,ek], k-2.

If k- 1, u is defined to be a "null partition," i.e., a partition without any parts. In this
case, a--ix -levi. If k 3, define also the partition Ix* by

(9.2) * [e, , e_].

/3, the sum of Ix* and u, is

(9.3) /3 IX* +/) e2 +fl, e3 +f2," "’, ek-1 +fk-2, fk-1], k ->_ 3.

If k _-< 2, Ix* is the null partition. In this case, if k 2,/3 u [fl]; if k 1,/3 itself is
the null partition.

Using the above notation and that of the previous section, the next theorem gives
the eigenvalues of the functions f(X) and F(X*), defined as in Theorems 5 and 6,
respectively.

THEOREM 7.

(9.4) (a) ]X[Dxf crk(1/2a)f a tx + u.

(9.5) (b) IX*lDx.F-- O’k-l(1/2fl)F, fl Ix* 4- 12.

Proof (a) In (8.4), let T1 =/. Also, call A1 the matrix obtained by setting ai 1,
1-<i <- k, in the matrix A. We obtain a functional equation for f
(9.6) f(SX) f(SA)f(X), S (sij) lower triangular.

But

el(SllS22)e2 (SllS22 Skk) ekd(SA) s



710 H.B. KUSHNER

and

((SA,)*) s’(SllS2_)s2’’’ (s,,s2_"" Sk-,,k-1)sk-’

/(SS’)
implying f(SA1) ,(SA1)((SA1)*) (+)/2(SS’). Therefore (9.6) can be written
as

(9.7) f(SX)-(+)/2(SS’)f(X), S lower left triangular,

which is condition (5.4b) of Lemma 7. By Theorem 5, f(X) is an eigenfunction of
]XIDx. Now assume that the ei and f are even integers, in which case f(X)-O. The
assertion of part (a) then follows, in this case, from Lemma 7. To prove (9.4) in the
general case, when the ei and f are any integers, one can argue as in the proof of
Theorem 2.

(b) Let X** (xij), 2 i, j k, a submatrix of X*. If Y X*, then Y# X**. It
was shown in the proof of Theorem 6 that F(X*) is a multiple of a left-translate of
a function H defined in (8.16), which in the present notation can be written as

(9.8) H(X*) (X*).(X**).
The eigenvalue of F(X*) is the same as the eigenvalue of H(X*). Since H(X*) is
the analogue of the function f(X), part (a) of this theorem can be applied to obtain
part (b).

10. Evaluation of integrals anti g-eoetlieiems. In this section, after evaluating
integrals of the form (10.1a) below, we prove a simple formula for the g-coefficients
g(,)p.

THEOREM 8. Let k-[el, e2,"" ", ek] and u-[fl,f,""" ,fk-1] be two partitions
whose parts are even. The integral

(10.1a) c,, (2"rr) -k/2 f )t(X)c(X*) e-(1/2)trX’X dX
d

is given by

(10.1b)

where

cu, 2’ 1- (T/- Rj 1), (T/- T + 1)
t_-<j

[1 1 ]-(RI-T+,-2),-(RI-R+I) q=/(/z),

q

(10.2a) 2-=/z+u, z=(t), t= tj,
j=l

(10.2b) 2p :/z*+ v, p (rj),

T 2t -j, Rj 25 -j, and tz * [e, e3, ", eq_l].
Proof The function g(X)= e-(1/2)trx’x satisfies Dxg=(-)k[x[g. Using (5.13) we

express c c(k) by

c(k) (2)-k2/2(--) k j _l(X)(X*)Dxg dX
(10.3) =(2)-k2/2 j- Dx[_I(X)(X*)]g(X) dX

(2)-/ f [XI-’IX]D[_,(X)(X*)]g(X) dX.
d
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From Theorem 7, part (a), and (10.3), we obtain

C(k) (27r)-kE/20"k(tZ + V--1) f dp-2(X)dp(X*)g(X)

Repeating this process ek/2 times, we get

(10.4) c,.,,,(k)=(2rr) -k2/2 I-I O’k
I,Z+ v--2i+ 1

,:, 2
+tk_,l(X)+(X*)g(X) dX.

The variables in the kth row of X do not appear in tk-ll(X),.,(X*). Fix the
variables in the first column of X and integrate with respect to the remaining variables
(those of X*). By (5.13), with X* in place of X, and Theorem 7, part (b), we further
reduce the integral in (10.4), obtaining

tx+ v-2i+ 1 tx*+ u-1c,(k) (27r) k2/2
O"k

2 O’k-1 2i=

j +t_,(x),I,_,.(X*)g(X) dX.

Again repeating the process fk-1/2 times, we obtain

(10.5)

I +"t"-’(x)’:t’"t’<-2(X*)g(X)dX.

The variables in the kth row and column of X do not appear in
,,t_(x)t_2(x*). Integrating these 2k-1 variables in integral (10.5) yields a
recursion relation for c,

ek/2(__ #x + v 2 + 1 )c,,(k) 1-I, r
i= 2

(10.6)
fk_,/2

[I trk-1 C,,tk_,,,.tk_l(k- 1).
i=1 2

Note that in (10.6), /z, v, and /z* are partitions of at most k, k-1, and k-2 parts,
respectively.

The recursion relation (10.6)immediately yields a product formula for c

6 /2 (#x[j]+v[j-1]-2i+l)c= (5j=li= 2
(10.7)

ii f/21-[1 (#x*[j-1]+v[j]-2i+l)2i
o’

In (10.7), /**[j--1]--[e2, e3,"" ", ej], a partition of at most j-1 parts. (As usual, all
the empty products, those with ej =0, and f 0, do not appear in (10.7).)

We now simplify (10.7) by writing/x and v as

(10.8a) /z 2[tj ry],

(lO.8b) v 2[r- t+l]



712 H.B. KUSHNER

which are the inverse forms of (10.2a), (10.2b). From (10.8a) we have/x[j] + u[j- 1]
2[q-t_, t2-t3,"" ", tj-1--tj, tj--t]. By the same technique already used to evaluate
o’-symbols

q ej/2 q tj--rj

H H tr((tx[j]+u[J-1]-2i+l)/2)=I] I-[ H (j-l+2(h-))-2i+l)
j=l i=1 j=l /=1 i=1

(10.9)
1=2cI (T- Rj- 1), (T- T + 1)

where c--;=lj(tj-t). Again, from (10.8b) we have
2[r- r2, r2 r3,. ., rj_ rj, rj- tj+l]. Therefore,

q fj/2

H H o)((/x*[j-1]+ u[j]-2i+l)/2)
j=l i=1

q r-+l
(10.10) 1-I I-I 1]

j=l l=l i=l

/z*[j 1 + u[j]

(j- + 2(rt- tj+,)- 2i + 1)

1
=2b fl (Rt- T+,-2), (R-R

where b =j(r)-tj+). Note that c+ b t. From (10.7), after multiplying (10.9) and
(10.10) together, we get the assertion of the theorem.

THEOREM 9. Suppose that r ti), and p (ri), are partitions of and r, respectively.
if
(lO.11a) ti>:ri>:ti+, l<=i<-p=l(p)

and

(10.11b) t=m+r,

then the g-coefficient g()o defined in (1.2) is given by

m! [2/- 1, 1]
(RI-R)g’o (2m)! i-- 1! l<

(10.12)

l<j

where 61 tl- r, RI 2r- l, 2h- I. efactorial symbol [b, c]2 is defined by

[b, c]:=b(b-2)(b-4) c ifb-c=2nO,

[b, c]2 if b-c=-2.

If r and p do not satisfy (10.11a), (10.lib), then g)o =0. Ifg)oO, then

(10.13) l(o) l() l(p)+ 1.

Proof From Theorem 4 and Theorem 8 (with q =p + 1)

2tt g)o maao22’(2)k/

r(k(R,-R+,+I))r((- ++1))
, r((R,- 1)) r(k(-R+
+ r(( R+ )) r((Rl- +))
, rr,-+1 rR,-Rj+1
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which simplifies to

t! g(’,)o m a(,,)ap2t (2r) (p+1)2/27r-(v+1)(v+-)/2

F (-R,+I) F (R,+p+2)
I=1

r((r,-++ r((,-+
, r((,-+ r((r-+

m[a(mao2(2)(p+a/-(p+(p+l/

r (-1+1) r
1=1

v+ F(( & + 1)) F((R- ))
1))F((-j))< V((R +

(10.14) F((-&++2))

m]a(ao2’(2)(p+/-(v+(p+/

r((-+

ma(m)ao2(2)(P+l)/-(p+I)(p+)/

,< r((R, + )) ,< r(( R + 2))"

When m =0, r p, r and go) 1. In this case, (10.14) is

r! ato)ap2(2)(P+)/2-tP+)(P+2)/2(p+)(+2)/4

(10.15) F (R+p+3) F (Rt+p+2)
/=1

p+l

H (e/(,-&)).
l<j

Dividing (10.14) by (10.15) eliminates a and other terms from (10.13), giving

1 r(( , + ))
a(otgo r m a(m)2m-(p+)(p+)/4

(10.16
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Now if b-c=2n>--2, then [b, c]2=2b-c+2)/2F(l+b/2)/F(c/2) (c#0,-2,-4,...).
Also, F(1/2(T-Rl+ 1))= F(1/2)2r’-"[261-1,112 and F(1/2(T-RI+2)) 61! Hence, (10.16)
can be written as

a<o)t! gm)p r! miami) p+H 1, 112

(10.17) Vlp+2
1< R 1, R, + 1 ]2

Finally, atm is given in 2 (with ql 1 and k =p + 1) by

am C(Ip+I)/((2)P+l/2m((p + 1 )/2)m) 2ram / ((2m (2)k/),

SO

(10.18) atm/ato 2mm/(2m).

Substituting (10.18) in (10.17) gives the formula (10.12) of the theorem.
The interlacing condition (10.11a) is from Theorem 4. The inequality (10.13) is

the case l(m)= 1 of (6.15).
As an example of the theorem, let m 2, p (3, 1, 1) (r, r, r3) with r 5 and

p=3. With r=0, the only paitions of 7= t=m+r satisfying (10.11a),

t 3 t2 1 1 t4 0 ts, tl + t2 + t3 + t4 7,

are (5, 1, 1), (4,2, 1), (4, 1, 1, 1), (3,3, 1), and (3,2, 1, 1).
The above five paaitions are the only ones for which the coefficient g<), 0,

as is also seen from atri and Pillai’s (1968) table. Let r (4, 2, 1). Then from

1 2 3 4 5

gi 5 0 -1 -4 -5

7 2 -1 -4 -5

i 1 1 0 0 0

we calculate

4

I] (RI-Ri) :5"6"9"1"4"3=a,
I<j

4

H [2t$1-1,112=[1,112. [1,112. [-1,112. [-1,112 1 b,
/=1

4

H t/!--1.1" 1" l=l=c,
1=1

1, 2 1, 3 1, 4 1, 5 2, 3 2, 4 2, 5 3, 4 3, 5 4, 5

7 8 11 12 3 6 7 3 4 1

6 9 10 1 4 5 3 4 1
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I-I TI Rj I, RI- T + I ]2
l<j

[6, 4]2[7, 712110, 1012111, 111212, 2]2[5, 5]2[6, 6]2[2, 4]2[3, 5]2[0, 2]2

=6.4"7.10" 11.2.5.6=d,

4

]-I Tl Rj, RI- T] [7, 3]2[8, 6]2[ 11, 9]2[3, 1 ]2[6, 4]2[3, 3]2
l<j

=7.5.3.8.6.11.9.3.6.4.3=e,

m I/(2m)I (mt) 2,/41() 2.2

4.3.2.7.6=f
According to (10.12),

fbad
ce

2"2.5.6"9.4.3.6.4"7. 10. 11.2.5"6

4.3.2.7.6.7.5-3.8.6.11. 9"3.6"4

25
189’

as given in Khatri and Pillai’s (1968) table.

11. Special cases and applications.
(a) The linearization of tr VCp(V).
This is the case m= 1 of Theorem 9, solved in Kushner (1985). Here (10.11a),

(10.11b) imply that g<q)p#0 if and only if, for some l<-_i<-l(p)+l, -=pi

(Kronecker delta) It follows that T/-(rl, r2, /’i-l, ri + 1, /’i+1, ") or tl rl + l
Rl + 2l and 1 1. Also,

and

TI Rj, RI T]2 Rl Rj -F 2t t, RI Rj 2t 112

Tl R 1, R Tj + 1 ]2 RI- Rj 1 + 2I, Rl- Rj 26112.
Evaluating the product (10.12) leads to

(11 1) (1 + r)g’(1)p H (Ri-Rj+I) (Ri-Rj+2)
j=l [j=

where p l(p) and p is a partition of r. Equation (11.1) is an equivalent, though more
compact, form of the formula given in Theorem 1 of Kushner (1985).

(b) The linearization of the product of polynomials in one variable. Variations
of the method of this paper but by no means the full machinery--result in formulas
for the linearization coefficients for some of the problems described in Askey (1975).

(c) An integral. A special case of the integral

(11.2) c2,:(27r) -k2/- f 2(X)ldet X[ e-(1/2)trX’X dX, v=n-k-1
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occurs in Schwager and Margolin (1982, p. 950). In (11.2), Idet X denotes the absolute
value of det X. When u 2e is an even integer, the integral (11.2) is given by Theorem
3 since

implies

(11.3)

(X)[det XI (2(,r+e)(X),

C2.r, C2(.r+e), / 2e.

The partition (li)= A " + e, having k parts, is given by

(/,) A r+e=(tl+e, t2+e," ., tp+e, e, e,. e)

from which we obtain

L= T + 2e, l<=i<-k,

L+I T+=-(k+ 1)

where Li 21 i, T 26 (and t 0, p < -< k + 1). Hence, Lt L T/- T if 1 -< -<

k. Theorem 3 gives

k-1 k

2(’r+e)=C2h H [Tt-T+l-2, Tt- T+l]2 H [Tt+2e-Tk+,-2, T- Tk+l]2
l<-i 1=1

k k

H IT/-r/+l-2, T/- T,+l]2 I] [Tl+2e-Tk+,-2, T/- Tk+,]2
l<=i !=1

(11.4)
p k

H [T-T+1-2, T/- T/+112 H [T+ ,+k-1, T/+k+I]2
li /=1

k

=c2 l-I [T+u+k-1, T+k+l]2.
1=1

In general, c, can be computed using the substitution X HT, as in Theorem
3. We obtain

(11.5) 2r,u--(27r)-k2/22kgk I (2r(T)lTl’e-(1/2)trT’T i=lI t-i dr I (I)2(g)dg.

In (11.5), ITI is, as usual, the determinant of T. In the same way that (5.18) followed
from (5.17), we write the T-integral in (11.5) as an integral over the k xk positive
definite matrices, and (11.5) becomes

C2r,, (27r)-k2/2gk f dPz( v)]gl(n-k-2)/2 e-(1/2)tr V dV f fI)2z(H) dH

(11.6)
(-1-/ II r((n + + //r(i/

i=1

"[-’]( I ,,(g dH

(11.7) 2/ H F((,+ i)/2)F(i/2) 2’((n- 1)/2),[c.,/2(k/2)]
i=1

(11.8) 2/c2[
i=1
II r((/]--i)12)lF(i/2)]((n 1)12)/(k/2).
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In (11.6), En-1 is the expectation operator in the Wishart distribution, Wk(n--1, E).
Equation (11.7) follows from (11.8) from (D.2) of 1 and Theorem 3. For any integral
u, c2, is given by (11.8). If u is an even integer, after simplification, (11.8) reduces to
(11.4). The case considered by Schwager and Margolin (1982) was " (4).

Acknowledgments. I would like to thank Donald Richards for suggesting applica-
tion (c) and the referee for suggesting a shortening of the proof of (5.21).

REFERENCES

R. ASKEY (1975), Orthogonal Polynomials and Special Functions, CBMS-NSF Regional Conference Series
in Applied Mathematics 21, Society for Industrial and Applied Mathematics, Philadelphia, PA.

A. G. CONSTANTINE (1963), Some noncentral distribution problems in multivariate analysis, Ann. Math.
Statist., 34, pp. 1270-1285.

(1966), The distribution of Hotelling’s generalized Tg, Ann. Math. Statist., 37, pp. 215-225.
R. FARRELL (1976), Techniques of Multivariate Calculation, Lecture Notes in Mathematics 520, Springer-

Verlag, New York, Berlin.
T. HAYAKAWA (1967), On the distribution of the maximum latent root ofa positive definite symmetric random

matrix, Ann. Inst. Statist. Math., 19, pp. 1-17.
E. HYLLWRAAS (1962), Linearization ofproducts ofJacobi polynomials, Math. Scand., 10, pp. 189-200.
A. T. JAMWS (1960), The distribution of the latent roots of the covariance matrix, Ann. Math. Statist., 31, pp.

151-158.
1961 ), Zonalpolynomials ofthe realpositive definite symmetric matrices, Ann. of Math., 74, pp. 456-469.
(1964), Distribution of matrix variates and latent roots derived from normal samples, Ann. Math.
Statist., 35, pp. 475-501.

S. KARLIN (1968), Total Positivity, Stanford University Press, Stanford, CA.
L. KATES (1981), Zonal polynomials, Ph.D. thesis, Princeton University, Princeton, NJ.
C. G. KHATRI AND K. C. S. PILLAI (1968), On the noncentral distributions of two test criteria in multivariate

analysis of variance, Ann. Math. Statist., 39, pp. 215-226.
D. KIKUCHI (1981), Comparison of the James and Farrell approaches to zonal polynomials, Technical Report

258, Department of Statistics, Ohio State University, Columbia, OH.
H. B. KUSHNER (1980), Wishart expectation operators and invariant differential operators, Ph.D. thesis,

Yeshiva University, New York, NY.
H. B. KUSHNER, A. LEBOW, AND M. MEISNER (1981), Eigenfunctions of expected value operators in the

Wishart distribution, II, J. Multivariate Anal., 11, pp. 418-433.
H. B. KUSHNER AND M. MEISNER (1984), Formulas for zonal polynomials, J. Multivariate Anal., 14, pp.

336-347.
H. B. KUSHNER (1985), On the expansion ofC* V+ I) as a sum ofzonal polynomials, J. Multivariate Anal.,

17, pp. 84-98.
S. LANG (1966), Linear Algebra, Addison-Wesley, Reading, MA.
H. MAASS (1971), Siegel’s Modular Forms and Dirichlet Series, Lecture Notes in Mathematics 216, Springer-

Verlag, New York, Berlin.
I. G. MACDONALD (1979), Symmetric Functions and Hall Polynomials, Oxford University Press (Clarendon),

London, New York.
M. A. NAIMARK AND D. I. STERN (1982), Theory of Group Representations, Springer-Verlag, New York,

Berlin.
G. de B. ROBINSON (1961), Representation Theory of the Symmetric Group, University of Toronto Press,

Toronto, Canada.
J. SAW (1977), Zonal polynomials: An alternative approach, J. Multivariate Anal., 7, pp. 461-467.
S. J. SCHWAGER AND B. H. MARGOLIN (1982), Detection of multivariate normal outliers, Ann. of Statist.,

3, pp. 943-954.
A. SELBERG (1956), Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces

with applications to Dirichlet series, J. Indian Math. Soc., 20, pp. 47-87.
R. STANLWY (1986), personal communication.
A. TAKEMURA (1984), Zonal Polynomials, Institute of Mathematical Statistics Lecture Notes Monograph

Series, Volume 4, Hayward, CA.
A. TERRAS (1985), Special functions for the symmetric space ofpositive matrices, SIAM J. Math. Anal., 16,

pp. 620-640.



SIAM J. MATH. ANAL.
Vol. 19, No. 3, May 1988

1988 Society for Industrial and Applied Mathematics
015

THE TRIDIAGONAL APPROACH TO SZEGI’S ORTHOGONAL
POLYNOMIALS, TOEPLITZ LINEAR SYSTEMS, AND RELATED

INTERPOLATION PROBLEMS*

P. DELSARTE? AND Y. GENIN?

Abstract. The basic topics of the paper are the three-term recurrence relation Xk+I(Z)=
(ak + 6kZ)Xk(Z)--ZXk_I(Z) and the associated tridiagonal matrix. This relation, which underlies the Bistritz
stability test, can be used as a starting point for a novel approach to the trigonometric moment problem
and its relatives. In particular, the "tridiagonal approach" is shown to provide a new solution method for
the classical Carath6odory-Fej6r and Nevanlinna-Pick interpolation problems. The results include some
Levinson-type and Schur-type algorithms, of reduced complexity, for computing reflection coefficients
associated with nonnegative definite Hermitian Toeplitz matrices.

Key words, three-term recurrence, Szeg6 polynomials, Toeplitz matrices, interpolation problems

AMS (MOS) subject classifications. 30E05, 42A70, 30D50

1. Introduction. The Schur-Cohn test to check polynomial stability 18], [23] and
the Levinson algorithm to solve Toeplitz linear systems 14], [21] are intimately related
topics which have found various applications in the areas of discrete systems analysis,
digital signal processing and linear least-squares estimation 19], [20], [22], [24], among
others. These methods are quite efficient from the points of view of computational
complexity and numerical accuracy. From a theoretical viewpoint, they owe a significant
part of their popularity to the fact that they are direct implementations of two standard
results of the Szeg6 theory of orthogonal polynomials on the unit circle [2], [12], [15],
[26].

The Bistritz stability test [3], [4], [8] and the split Levinson algorithm [5], [6]
have been proposed recently as substitutes for the Schur-Cohn test and the Levinson
algorithm. These two methods are based on a remarkable three-term recurrence relation
(with two very different interpretations). Their computational complexity and memory
requirement are smaller than those of the corresponding standard algorithms; the
number of multiplications and the storage space are reduced approximately by a factor
2. Although the recurrence relation just mentioned is not classical in the framework
of Szeg/5’s theory, it can actually be derived from the well-known recurrence relation
for orthogonal polynomials on the unit circle [5].

This paper contains a thorough study of a suitable mathematical environment of
the three-term recurrence relation or, equivalently, the associated tridiagonal matrix,
underlying the Bistritz test and the split Levinson algorithm, in the general case of
complex data. Our approach is of a function-theoretic nature essentially, in the sense
that it brings out a new mathematical framework for some important aspects of the
theory of Carath6odory functions (C-functions). In particular, the celebrated
Carath6odory-Fej6r (CF) and Nevanlinna-Pick (NP) interpolation problems [2], [25],
which have interesting applications in systems, circuit and signal theory (see [7], 10],
[11], [16], [17], for example), can be treated successfully in this framework. The
"tridiagonal approach" yields not only new solvability criteria but also new efficient
recursive "Schur-type" and "Nevanlinna-type" algorithms for the CF and NPproblems.
It is interesting to note that, in contrast with the classical Schur and Nevanlinna

* Received by the editors June 23, 1986; accepted for publication June 10, 1987.
t Philips Research Laboratory Brussels, Av. Van Becelaere 2, Box 8, B-1170 Brussels, Belgium.
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algorithms that essentially involve Schur functions [2], the proposed new methods are
specifically tailored to deal with Carath6odory functions. Furthermore, while establish-
ing these results, we obtain a simple extension of the split Levinson algorithm to the
complex case, as well as a straightforward derivation of a generalized version of the
Bistritz stability test.

The technical contents of the paper can be summarized as follows. The tridiagonal
polynomial matrix Jn(z) associated with the three-term recurrence relation Xk/I(Z)=
(Ogk + IkZ)Xk(Z)--ZXk_I(Z), with k=0, 1,..., n, is introduced and examined in 2.
Two independent solution polynomials Xk(Z), denoted by pk(Z) and qk(Z), are identified
in terms of certain subdeterminants of Jn (z); they are characterized by their symmetry
and antisymmetry properties; they are called first-kind and second-kind polynomials.
In particular, all polynomials qk(Z) vanish at the point z 1. The theory is essentially
restricted to the case where the tridiagonal matrix J,(1) is nonnegative definite.

In 3, the sequences of such polynomials pk(Z) and qk(Z) are shown to be in
one-to-one correspondence with well-defined sequences of first-kind and second-kind
Szeg6 orthogonal polynomials. In that context, pk(Z) and qk(Z) can be identified as
"singular Szeg6 polynomials." The explicit relation between the recurrence paramete.rs
ak and the Schur-Cohn parameters (or reflection coefficients) of the associated Szeg/5
polynomials is explained in detail.

The quasi-orthogonality properties of the polynomials pk(Z) with respect to any
positive measure underlying Szeg6’s theory are examined in 4. The Gram matrix of
these polynomials is shown to coincide with the tridiagonal matrix J,(1), which yields
an explicit congruence relation between J,(1) and the Toeplitz matrix relative to the
Szeg/5 polynomials. A Levinson-type algorithm to compute prediction filters and
reflection coefficients for nonnegative definite Hermitian Toeplitz matrices is obtained
in that context.

The properties of the zeros of the polynomials pk(Z) and qk(Z) are discussed in
5. It is shown that these zeros are located on the unit circle ]z 1. Moreover, the

zeros of pk(Z) alternate with those of qk(Z) and with those of (1-- Z)Pk_I(Z). On this
occasion one gives an explanation of the Bistritz stability test for complex polynomials
which has the remarkable feature of revealing the close connection between this test
and the Schur-Cohn test in a transparent manner.

In 6, the classical "coefficient problems" for C-functions are revisited in the
light of the tridiagonal approach. First, a new decomposition principle for an arbitrary
C-function f(z) is obtained; it is based on the extraction of a lossless rational function
of degree one from f(z), having its pole in z 1 and assuming the same value as f(z)
in z- 0. It is then shown that the CF interpolation problem with n + 1 constraints can
be solved by n iterations (at most) of this decomposition method. The new algorithm
generates a sequence of complex numbers ak from the data. With the exception of
some pathological situations, the nonnegative definiteness of the associated tridiagonal
matrix J, (1) turns out to be a solvability criterion for the problem. Furthermore, the
general solution can be parametrized in terms of an "almost arbitrary" C-function by
means of a simple homographic transformation involving the first-kind and second-kind
polynomials pn(z), pn+l(Z) and q,(z), qn+l(Z). A suitable implementation of this so-
lution method provides an efficient Schur-type algorithm to compute the reflection
coefficients for a given nonnegative definite Toeplitz matrix; it generalizes the split
Schur algorithm [6] to the complex case. It involves about twice less multiplications
than the classical Schur algorithm and the same number of additions. (Thus the gain
in complexity is roughly equal to that of the Levinson-type algorithm of 5 with respect
to the classical Levinson algorithm.)
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The Nevanlinna-Pick interpolation problem is considered in 7. It is shown that
the methods and results of the preceding section can be carried over to this problem
via suitable iterative transformations of the unit disk, mapping the given interpolation
points to the origin. This gives rise to a new solvability criterion for the NP problem,
together with a new explicit description ofthe solution space and a new Nevanlinna-type
algorithm for its actual computation. As an application, a generalization of the Bistritz
stability test is proposed; it involves the values assumed by the given polynomial at
rn points arbitrarily selected in the unit disk, where m is the polynomial degree.

2. Tridiagonal matrices and associated polynomials. Let there be given a sequence
of n + 1 complex numbers ao, al, ", an. For an integer k, with 0 <- k-< n, define the
tridiagonal matrix, or Jacobi matrix,

(2.1)

ao + CoZ z

1 al+ clz z

Jk(Z) 1 ..
1 Ogk + l.kZ

where z is a complex variable and the bar denotes the conjugate. Note that (2.1) can
be written in the form Jk(Z) Ak + Z,’k where Ak is the lower-triangular matrix having
ao, a 1," ", ak on the diagonal, 1 just below it and 0 elsewhere, and the tilde denotes
the conjugate transpose. With Jk-l(Z) let us associate the polynomial pk(Z), of formal
degree k, defined by

(2.2) pk(Z) det

for k=0, 1,. ., n+ 1, with the convention po(Z) 1. Since Jk(z) equals zJk(1/) it is
clear that Jk(Z) enjoys the symmetry property

(2.3) /3k (z)= pk(z),

with the notation k(z)= Zk:k(1/). Furthermore, computing the determinant of Jk(z)
by Laplace’s rule, we obtain the three-term recurrence relation

(2.4) Pk+l(g) (Cek + kg)Pk(g)- ZPk-l(g),

with the initial conditions p_l(z)=0 and po(z)= 1. As a straightforward consequence
of (2.4) we have

(2.5) pk+l(0) akpk(O).

It is worth mentioning that (2.4) can be viewed as a special case of the Frobenius
relation occurring in Pad6 approximation (see 13] in that respect). However, the main
applications of (2.4) treated in this paper are quite different from those considered in
classical Pad6 theory. Let us incidentally point out that the complex symmetric poly-
nomial pk(Z) yields the real trigonometric polynomial

(2.6) Itk(0) e-ikpk(e2i),

which is a linear combination of the functions cos 10 and sin 10 with =< k and k
(mod 2). The recurrence relation (2.4) assumes the nice form

(2.7) $k+l(O)=(Xk cos O+ yk sin O)l]lk(O)--clk_l(O),

with Xk --2 Re Ok and Yk --2 Im Ok. The "real case" Yk -0 (for all k) is closely related
to the theory of orthogonal polynomials on the interval [-1, +1]. (See [26], and
especially [5] in the context of this paper.)
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In the sequel we exclusively consider the situation where the real symmetric matrix
Jn(1) is nonnegative definite. (Equivalently, the matrix iAn is dissipative.) In view of
the tridiagonal structure (2.1), this implies that J-l(1) is positive definite. In particular,
the real part of each ak has to be positive. Our assumption can be expressed in terms
of the polynomials (2.2) by the conditions p,/l(1) -> 0 and Pk(1) > 0 for k 1, 2, , n.
In this context it is quite natural to introduce the Jacobi parameters

(2.8) Ak pk(1)/Pk-l(1),

for k 0, 1,. ., n + 1, with the convention Ao . (It is interesting to compare (2.8)
with the expression ak_ pk(O)/pk-(O).) The positivity constraints above can then be
written in the form

(2.9) hk > 0 for _-< k_-< n and /n/l 0.

The Jacobi parameters Ak can be determined from the data by means of a simple
continued fraction. Indeed, (2.4) yields the recurrence relation

(2.10) Ak+=2Reak--Z-[ for 0_--< k<_- n.

Without going into any detail let us mention that the general situation where J, (1) has
an arbitrary inertia could presumably be treated with the help of the theory of
pseudo-Carath6odory functions developed in [9].

For certain applications it is useful to consider a dual family of solutions of the
recurrence relation (2.4). The second-kind polynomials qk(Z) are defined by

(2.11) qk(Z) (1-- Z) Oct J,_l(Z),
where Jg(Z) is the submatrix of Jk(Z) obtained by deleting its first row and column.
It is clear that we actually have

(2.12) qk+l(Z) (ak + akZ)qk(Z) Zqk-l(Z),

for k= 1,2,-.-, n, with the initial conditions qo(z)=0 and ql(z)= 1-z. The main
difference with the first-kind polynomials pk(Z) lies in the fact that qk(Z) enjoys the
antisymmetry property

(2.13) fltk(Z) --qk(Z),

instead of (2.3). Furthermore, all polynomials qk(Z) vanish at the point z 1. As a
consequence ofthe assumption (2.9) we can show that the derivative of qk(Z) is negative
at z 1, for _--< k _-< n + 1. Applying the classical Jacobi theorem to the corner entries
of Jk(Z) we obtain the interesting relation

(2.14) pk(Z)qk+(z)--qk(Z)Pk+l(Z)=(1--Z)Zk,
by use of (2.2) and (2.11). Equivalently, (2.14) can be deduced from (2.4) and (2.12),
by induction. Note that we have qk(O)= alpk(O) for k_>-1.

Let us add a short comment on the role played by the point z 1 in the whole
theory (see (2.8) and (2.11), for example). In our approach it is quite important that
the second-kind polynomials qk(Z) all vanish for some fixed point " of unit modulus
and that the first-kind polynomials satisfy the inequality -k/pk()>--O, with possible
equality when k n + 1 only. The polynomials in question have the general form
pk(z)-detJk_(Z) and qk(Z)--(l/2---l/2z)det J_l(Z), with Jk(Z) as in (2.1). In this
paper we make the choice " 1 for the sake of definiteness and simplicity, which
entails no loss of generality. Indeed, for an arbitrary " with I1-1, we can construct
"normalized polynomials" p’k(Z)=-k/2pk(Z) and q’k(Z)=-k/2"k(’Z) having the
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required properties (with " 1); the corresponding parameters ofthe tridiagonal matrix
(2.1) are deduced from the original parameters by the formula a, ak-k/2.

3. Connections with the Szegii polynomials. From the symmetric polynomials
Pk+l(Z) and pk(Z) let us construct the comonic polynomial ak(Z) of formal degree k via
the identity

(3.1) pk+l(0)(1 --z)ak(z)=pk+l(Z)--Ak+lzpk(z),

where Ak is the Jacobi parameter (2.8). Let pk ak.k denote the coefficient of zk in
ak(z). By definition,/k+(0) + PkPk+(O)= Ak+d3k(0). Using (2.5) and (2.10) we deduce

(3.2) pk=( 1

which yields the remarkable identity

(3.3) Ip, l =) ,, 1 kq._

Therefore, the positivity conditions (2.9) can be expressed by [Pk[ ( 1 for 1 k-<_ n- 1
and Iml--< 1.

Let 8k(Z)=zkgtk(1/) denote the reciprocal of ak(Z). As explained below, the
monic polynomials 8k(Z) constitute a family of Szeg6 polynomials. To discover the
intrinsic meaning ofthe parameter Pk let us compute the polynomial ak-l(Z) + pkak-l(Z)
by using (3.1) with k replaced by k-1. Applying (2.4), (2.10), and (3.2) we readily
obtain the recurrence relation

(3.4) ak(Z) ak-l(Z) d- pkZk_l(Z).

Therefore, the numbers Pk constitute the sequence of Schur-Cohn parameters 18], [23
of the polynomial a, (z).

Some "second-kind Szeg6 polynomials" can be obtained from the antisymmetric
polynomials (2.11) by a relation similar to (3.1). Define the polynomial rk(Z), of formal
degree k, via the identity

(3.5) pk+l(0)(1 Z)rk(Z) qk+l(Z)- Ak+lZqk(Z),

for k=0, 1,..’, n. Note that we have rk(0)= ag and rk,k=--6fflpk for all k. By a
similar argument as above we can prove the recurrence relation

(3.6) rk(Z)= rk-l(Z)--pkZk-l(Z).

This shows that the polynomials k(Z)= zkfk(1/) defined from (3.5) constitute the
family of second-kind Szeg6 polynomials associated with the first-kind Szeg6 poly-
nomials k(Z) (see [12]).

Next, let us explain how the polynomials pk(Z) and qk(Z) can be recovered from
the Szeg/5 polynomials k(z) and r(z). Using (3.1) and (3.5) we readily derive the
relations

Ak+,pk (Z) Pk+l(0)ak(z) + Pk+l(0)k(Z),
(3.7)

Xk+lqk(Z) Pk+l(O)rk(Z)

for k 0, 1,. ., n. Alternative relations, involving ak-1 and rk-1 instead of a and
can be obtained by substituting (3.4) and (3.6) into (3.7). The results are

(3.8)
Pk(Z) pk(O)ak-,(Z) +k(O)ZSk--l(Z),

qk(Z) pk(O)rk_,(Z) ffk(O)zr"k_,(Z),
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for k 1, 2,..., n+ 1. Thus, within a constant factor, pk(Z) and qk(Z) coincide with
the "singular polynomials" (3.4) and (3.6) obtained by substituting the number

(3.9) ek k(O)/pk(O),

of unit modulus, for the Schur-Cohn parameter Pk. Since qk(1) vanishes, the second
relation (3.8) yields the useful result

(3.10) ek rk-l(1)/k-l(1).

This allows us to determine the sequence of numbers Ek from the parameters Pk.
Indeed, (3.6) yields the recurrence relation

(3.11) ek+l=(ek--Pk)/(1--ekk).

The initial value is el 6o/ao. Equivalently, (3.11) can be written in the form of the
factorization

(3.12) 1 --[pkl2= (1 ekk)(1 + ek+lk).

(Note that the theory is significantly simpler in the case of real data, which yields
ek--1 for all k.)

It remains to find out an expression for the values pk(0) or, equivalently, the
numbers ak, in terms of the Schur-Cohn parameters Pk. From (3.2), (3.3), and (3.12)
we deduce both identities ak(1 gkPk) A 1 and ak(1 + ek+lk) Ak+I, whence

(3.13) ak-ak (1 + ekk_)-l(1 YkPk)-.
For a given value of no, this allows us to determine the gek’S from the pk’S, with the
convention po 1. In summary, the sequence of symmetric polynomials Pk(Z) can be
computed from the Szeg6 polynomials k(Z) by means of the first formula (3.8), with
the help of (3.13) and (2.5). Furthermore, the recurrence relation (2.4), with the
appropriate numbers Ck, can be deduced from the Szeg6 relation (3.4). A verification
ofthe latter property is left to the reader. There are completely similar results concerning
the associated antisymmetric polynomials qk(Z). This subject will be examined in
further detail in the next section, from the viewpoint of Toeplitz systems of linear
equations.

In the case where J,(1) is singular we have A,+I =0 (i.e., p, en+l) which yields
the identities p,+(z)=p,+(O)(1-z)a,(z) and q,+l(z)=p,+(O)(1-z)r,(z) via (3.1)
and (3.5). Since q,/l(Z) has a simple zero at z 1, the value of r,(1) cannot vanish;
this is the only restriction that our approach (with the choice " 1) places on the
Szeg/5 theory.

Let us finally comment on the environment of the formulas (3.8). The two-variable

Christoffel-Darboux polynomial of the second kind can be defined by

(3.14) Qk(, z)-- rk_l()rk_l(Z)- rk_()Zk_l(Z)

(see [26]). In view of (3.10) we have qk(Z)= flkQk(1, Z) for a real constant /3k. There
is a similar interpretation for pk(Z) in terms of a suitable two-variable "Green poly-
nomial" Pk(, Z).

4. Orthogonality relations and Levinson-tyle algorithm. A family of monic poly-
nomials k(Z) satisfying the recurrence relation (3.4) with the constraints IPkl < 1 for
1 _<-- k -< n 1 and IP, --< 1 is known to be a Szeg6 family, in the sense that the k(Z) are
pairwise orthogonal on the unit circle with respect to a certain positive measure do(0).
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Let us explain this property in precise terms (see [2], [12], [26]). The inner product
(x, y) of any two pseudopolynomials x(z) and y(z) with respect to dto(0) is defined by

(4.1) (x, y)= (e)y(e doo(O)

For an appropriate choice ofthe measure, the polynomials (z) satisfy the orthogonality
relations

(4.2) (k, l)= k,l,
for 0 k, n, where is the Kronecker symbol and k is a nonnegative real number.
More precisely, we have k > 0 for 0 k n 1 and , 0, with , 0 if and only if
Ipl 1. In fact, the squared norms k obey the recurrence relation k (1
For the sake of normalization it proves convenient to set

(4.3) o Co= Re (afro).
From (3.3) and (2.5) we deduce the useful identity

(4.4) Ak 2k-,lpk(O)l 2.
Except in the singular case p,l 1 (i.e., A,+l 0), the measure dw(O) is not unique.

However its first 2n + trigonometric moments

(4.5) c, e- d(0), -n s n,

are uniquely determined from a(z) or, equivalently, from the parameters p,...,
(Here co is supposed to be given. Note the propey c_ g.) Conversely, the poly-
nomials a(z) can be computed from the moments (4.5) as follows. Construct the
Hermitian Toeplitz matrix

(4.) G [c-,: 0 s, ],

which is the Gram matrix of the monomials 1, z,..., z with respect to the inner
product (4.1). It is positive definite for 0 N k N n 1 and nonnegative definite for k n.
The ohogonality relations (4.2) can be expressed by the fact that the coecient vector
a=[a." 0 < < k] r of the comonic polynomial a(z)==o a,z is the solution of
the system of linear equations

(4.7) Ga [, 0,-.-, 0]
Note that we have det C/det C_ for k 1, 2,..., n.

In view of (3.7), the coecient vector p =[p.: 0NtNk]r of the symmetric
polynomial pk(Z) k ztt=oPk, satisfies the linear system

(4.8) Cp =[e, 0,..., 0,]
for k 1, where rk k+(O)/Ak+ (2pk+(0)) -1, by (4.4). Applying (2.5) we obtain
the impoant formula

(4.9) ak rk-/ rk,

with the convention o (2ao) -1. From (4.8) we then deduce the set of relations

(Pk, Pk)= Re (a 1),
(4.10) (Pk, P) (2atal+" ak) -1 for k > l,

(pk, Z’pl)=O fork-l>t>0,

for 0k n. Let us then introduce the pseudopolynomials Vk(Z) by normalizing and
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shifting the polynomials pk(Z) as follows:

(4.11)
v2t(z) x/O2tz-tp2t(Z),

V2t+I(Z N/ 2,+1 z-tp2t+I(Z)

It is easily seen that the relations (4.10) assume the simple form

(4.12)
(Vk,

(l)k, l)k_t) tt, for >- 1.

This shows that the tridiagonal matrix J, (1) A, + A, can be interpreted as the Gram
matrix of the pseudopolynomials Vo(Z), vl(z),’", v,(z) with respect to the inner
product (4.1). There is a close connection between (4.11) and (2.6). It appears that
qk(O/2) and 1(0/2) are orthogonal when k and have the same parity. This is generally
not true for opposite parities, except in the case of real data (see [5]).

It is interesting to note that (4.12) can be interpreted as a congruence relation
between the Toeplitz matrix C, and the Jacobi matrix J,(1). Indeed, we have

(4.13) J,(1)= V,C,V,,
where Vn is the square matrix of order n + 1 whose columns are the coefficient vectors
of the pseudo-polynomials Vk(Z). By definition, Vn is a triangular matrix within
permutation of its rows. The result (4.13), or simply (4.4), yields an interesting positivity
test for a given Hermitian Toeplitz matrix Cn of order n + 1. Indeed, it shows that the
conditions (2.9) on the Jacobi parameters ’k characterize precisely the fact that Cn is
nonnegative definite and Cn_l positive definite. The ,k’S can be obtained from the
entries of Cn as by-products of the Levinson-type algorithm described below.

Given a nonnegative definite Toeplitz matrix Cn of nullity 0 or 1, the polynomial
an(z) defined from (4.7) yields the optimal prediction filter of length n for a stationary
stochastic process having Cn as its autocorrelation matrix [20], [22]. The Levinson
algorithm [14],[21] is a recursive method to compute the predictors ak(Z) together
with the Schur-Cohn parameters Pk (called reflection coefficients in this context). Let
us now explain how the "singular predictors" pk(Z) can be determined from Cn by a
recursive method essentially different from but formally analogous to the Levinson
algorithm. The outcome will be an efficient procedure to compute the desired predictor
an(z), together with the reflection coefficients Pk and the Jacobi parameters Ak. The
special case of a real Toeplitz matrix Cn has been recently treated in detail by the
authors, who proposed the name "split Levinson algorithm" for their new method [5].

Recall that the coefficient vector of pk(Z) is the solution of the Toeplitz system
(4.8). Assuming pk-(Z), pk(Z) and ’k- to be available at the kth step of the algorithm,
let us indicate how to compute pk+(Z) and ’k. In view of (4.8) we simply have

k

(4.14) "rk-- Z Ck-i Pk, i.
i=0

Then the parameter ak is given by (4.9) and the updated polynomial pk+(Z) results
from the recurrence relation (2.4). The initial conditions are p_(z)=O, po(z)= 1 and
’o (2ao)-. (Thus, Re -o Co/2.) The numbers of real additions and multiplications
in the kth step of the algorithm are found to be 8k + 15 and 4k + 14, respectively. The
corresponding numbers for the Levinson algorithm are 8k-6 and 8k-4. The gain in
computational complexity stems from the symmetry property Pk,k_,=k,, of the
coefficients of pk(Z), which allows one to significantly economize on arithmetic
operations. Furthermore, the same property leads to a reduction of the memory space
by a factor 2 (roughly speaking).
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The predictor a,(z) can be computed at the end of the algorithm by means of
(2.8) and (3.1) with k n. The successive Jacobi parameters Ak can be determined
from the numbers ak with the help of the recurrence relation (2.10). Then the reflection
coefficients Pk are obtainable from (3.2). Note that ek rk-1/k-1.

TO conclude this section let us indicate how the entries Co, Cl,’", cn of the
Hermitian Toeplitz matrix C, can be computed from the numbers Ceo, a1,’’ ", an in
a direct manner. As shown in 6, we have the remarkable interpolation property

qn+l(z) -l n+l(4.15) =ao +2 c,z +O(z ),
p.+,(z) ,=,

where pn+,(Z) and qn+,(z) are obtained from the recurrence relations (2.4) and (2.12)
with the initializations indicated above. The significance of (4.15) will become clear
in the sequel.

5. Zero location and Bistritz stability test. It is well known that the "predictor
polynomial" a(z) is devoid of zeros in the closed unit disk Iz[ <- 1 if and only if the
associated Hermitian Toeplitz matrix C is positive definite (in case Co> 0). In view
of (3.4), this can be interpreted as the Schur-Cohn stability test Io, < 1 for < 1 _<-t--< k
(see [18], [23]). Furthermore, if Cn is nonnegative definite and has rank n then an(z)
has n distinct zeros on the unit circle [z 1 (see [15]). The same statements can be
made concerning the polynomials r(z).

Next, let us examine the properties of the zeros of the polynomials p(z) and
q(z). Consider first the "nonsingular case" where Jn(1) is strictly positive definite. It
follows from (3.7) or (3.8) that p(z) has k distinct zeros on the unit circle (for
l_<-k-<_n+l) and q(z) has the same property. In fact, the zeros of p(z) separate
those of q(z) on the unit circle. This follows from the fact that the quotient function
g(z) q(z)/p(z) has degree k and is a Carath6odory function of lossless type, in
the sense that it satisfies the inequality Re g(z)>-O in the unit disk Izl< 1 and the
equality Re g(z)=0 almost everywhere on the unit circle Iz[ 1. Furthermore, it can
be shown that the zeros of p(z) separate those of (1-z)p_(z), because the quotient
of these polynomials is a lossless function of degree k. The proof of the former result
is elementary; the proof of the latter is contained in the derivation of the Bistritz test
given below.

In the "singular case" where det Jn(1) vanishes and J_(1) is positive definite,
the properties mentioned above have to be slightly modified (when k n + 1). Recall
that pn+,(z) and qn+l(Z) are proportional to (1-z)a,(z) and (1-z)rn(z), respectively.
It turns out that the zeros of an(z) separate those of rn(z), on the one hand, and those
of pn(z), on the other hand.

The remaining part of this section is devoted to explaining how the Bistritz stability
criterion fits nicely into the general framework of the paper. The Bistritz test is an
interesting new method to check whether a given complex polynomial x, (z) of degree
n is stable, in the sense that it does not vanish in the closed unit disk Izl--< 1 (see
[3],[4],[8]); this method has a lower computational complexity than the classical
Schur-Cohn stability test. Without loss of generality we assume that x,(1) is real. The
main part of the Bistritz algorithm consists in computing the descending sequence of
symmetric polynomials pk(Z), for k n, n-1,..., 1, 0, from the recurrence relation
(2.4) with the initialization

(5.1) pn(Z)--Xn(Z)+n(Z), (1--Z)pn_,(Z)--’X,,(Z)--,,(Z).

(Note that po(z) is generally not equal to unity as in 2. In the present context, the
normalization is not given a priori.) The Bistritz criterion says that x,,(z) is stable if
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and only if the parameters Ak=Pk(1)/Pk_l(1) exist and are positive for k=
n, n- 1, , 1, which means that the tridiagonal matrix J,-l(1) built from the complex
numbers ak --Pk+l(O)/pk(O) is positive definite. The following argument contains a
simple proof of this result.

Using (3.7), (3.8), and (5.1) we derive the identity

(5.2)
x,,(z)+,,(z) =--A" [ 1 + z

+ a,_l(Z)-e,,,_(z)]_-x,,(z)- ,(z) 2 1 z a,-i-+ e,d,_(z)
by straightforward computation. If J,_(1) is positive definite, then so is the Toeplitz
matrix C,_, which implies that a,_(z) is stable. Therefore, both terms in the right-hand
side of (5.2) are lossless functions, which implies that x,(z) is stable. Conversely, if
x,,(z) is stable, then the left-hand side of (5.2) is a lossless function, having a pole at
z 1 with positive mass A,. The second term in (5.2) is precisely obtained by extraction
of this pole; hence it is a lossless function, which implies that a,_(z) is stable. It then
follows from (3.3), via the Schur-Cohn criterion, that all parameters Ak are positive.

6. Carath6odory-Fej6r interpolation problem. This section contains a new
approach to the trigonometric moment problem or, equivalently, the coefficient problem
for Carath6odory functions. In fact, we are mainly interested in the partial trigonometric
moment problem, which is equivalent to the Carath6odory-Fej6r interpolation problem
[2], [25]. Recall that a function f(z) of the complex variable z belongs to the class C
of Carathdodory functions if it is analytic and satisfies Ref(z)=>0 in the unit disk

Izl<l. Consider the Maclaurin expansion f(z)=yo+2,=cz. The well-known
Carathdodory- Toeplitz theorem says thatf(z) is a C-function ifand only ifthe Hermitian
Toeplitz matrix Ck built from the coefficients c,, with Co Re 3’o and c_, ,, is nonnega-
tive definite for all k.

The Schur criterion provides a very interesting alternative solution to the same
problem. Recall that a function b(z) belongs to the class S of Schurfunctions if it is
analytic and satisfies Ib(z)l-< 1 in the unit disk. From a given function b(z) let us
construct a sequence of functions Chk(Z) by means of the Schur recurrence relation

(z)- (0)
(6.1) qbk+(z)

z(1 /ik(0)6k(Z))’
for k 0, 1, etc., with the initialization bo(z) b(z). The Schur criterion says that b(z)
is an S-function if and only if we have ]b(0)] =< 1 for all k. (In case ]b,(0)] 1 for a
certain n, the criterion says that b,(z) has to be a constant; this characterizes the
Blaschke products b(z) of degree n.) Since the bilinear transform b(z)=
(1-f(z))/(1 +f(z)) establishes a bijection between the class S and the class C (supple-
mented with the "function" f(z)=00), the Schur criterion can be used to solve the
Carath6odory coefficient problem. Note the identity b(0)= p, for k >= 1, where the
p’s are the reflection coefficients defined as in 3 and 4.

Let there be given n + 1 complex numbers y0, c, , c,. The Carathdodory-Fejr
(CF) interpolation problem requires to determine the set of C-functions f(z) satisfying

(6.2) f(z) ),0+2 ctzt+ O(z"+l).
t=l

This problem can be completely solved with the help of the Schur relation (6.1). When
the Toeplitz matrix C, =[c_t’O<- s, t<- n], with co=Reyo and c_t=c-t, is positive
definite, there is an infinite number of solutions f(z), given by

r.()-6(z).(z)
(6.3) f(z)

a.(z) + z4)(z).(z)’
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where b(z) is an arbitrary S-function. (Here a,(z) and r,(z) denote the reciprocals
of the first-kind and second-kind Szeg6 polynomials associated with C,. The parameter
ao is set equal to yl.) When C, is nonnegative definite but singular, there is a unique
candidate solution, namely the rational lossless function f(z)= r,,(z)/am(Z) where m
is the rank of C,. In the remaining case, there is no solution. These results are quite
classical (see especially [2]), except perhaps the explicit representation (6.3), for which
a detailed proof can be found in [10].

In the sequel it is explained how the symmetric and antisymmetric polynomials
pk(Z) and qk(Z) or, equivalently, their recurrence parameters ak, yield alternative
solution methods for the problems mentioned above. Roughly speaking, these data
replace the classical polynomials ak(Z) and rk(Z), and the reflection coefficients Pk.

Given a C-function g(z) let us denote by (g) the inverse of the mass ofg(z) at
the point z 1. More precisely,

(6.4) /z(g) [lim (1-z)g(z)] -1.
z’l

Thus we have (g)= when g(z) has no quasi-pole at z 1. By convention, we set
/.,(g) =0 for the trivial "function" g(z)= o. In the remaining cases,/z(g) is a positive
real number. The following lemma plays a crucial role in our approach; it could be
viewed as a substitute for the Schwarz lemma underlying the Schur criterion.

LEMMA 1. Let fk (Z) be a C-function and define fk+ (Z) by means of the relation

Ogk - l,kZ 1
(6.5) fk(Z)=+

1-z (1--Z)(1--Z-1)fk+l(Z)
where Ck=fk(O). Then fk+l(Z) is a C-function satisfying

(6.6) 0<-/z(fk+l) =< 2 Re tk,

with the possibility fk+l(g) oO. Conversely, let ak be a complex number and let fk+l(Z)
be a C-function, subject to the constraint (6.6). Then the right-hand side of (6.5) is a

C-function satisfying fk(O) ak.

Proof Set k(Z)=(fk(Z)--ak)/Z(fk(Z)+k). We readily verify that (6.5) can be
written in the form

1 [l+z l+k(Z)](6.7) fk+l(Z)
4Reak 1--z 1--bk(Z)

Assume first fk(Z) to be a C-function, with fk(0)= ak. It follows from the Schwarz
lemma that qk(Z) is an S-function. Hence, (6.7) shows that fk+l(Z) is a C-function
(since it is the sum of two C-functions). Furthermore, (6.5) yields the identity

(6.8) /J-l(fk) +/-/’ (fk+l)-- 2 Re ak,

which proves the bound (6.6).
Next, consider a C-function fk+l(Z) satisfying (6.6), for a given number Crk. The

interpolation property fk(O)= ak is a straightforward consequence of (6.5). Further-
more, the constraint (6.6) exactly says that the mass of the first summand of (6.7) at
z 1 does not exceed that offk+l(Z). Therefore, the second summand is a C-function,
which means that qk(Z) is an S-function, implying that fk(Z) is a C-function. U

It is worth mentioning that Lemma 1 can be deduced immediately from the theory
of pseudo-Carath6odory functions [9]. The first summand of (6.5), denoted here by
Uk(Z), is the lossless function of degree 1, with its pole in z 1, satisfying Uk(O) =fk(0).
Then the second summand has the form of the canonical factorization of the residual
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pseudo-Carath6odory function fk(Z)--Uk(Z); indeed, the inverses of the functions
(1-z)(1-z-1) and fk/l(Z) are the density factor and the Carath6odory factor of
fk(Z)-- Uk(Z) (see [9]).

The recurrence relation (6.5) can be used to solve the CF interpolation problem
(6.2) by an iterative procedure formally similar to the Schur method based on (6.1).
Indeed, the expression (6.5) with k 0 provides a parametrization of all C-functions
satisfying the interpolation constraint fo(0) ao in terms of a C-function f(z) subject
to the only restriction 0 _-</z (f) -< 2 Re Co. The remaining interpolation constraints can
be transferred to the function fl(z) and the method above can be iterated in an obvious
way. Thus it is seen that the problem admits a solution if and only if the inequalities
(6.6) are satisfied at each step of the algorithm. Furthermore, it is intuitively clear that
there is an infinite number of solutions unless one of the bounds (6.6) is tight.

Let us now examine the method in some detail. The recurrence relation (6.5) is
used to solve the problem (6.2) with the initialization fo(z)=f-l(z). From a computa-
tional viewpoint it is interesting to express (6.5) in terms of the functions Wk(Z) defined
from the identity

(6.9) fk(Z) Wk_(Z)/(1--Z)Wk(Z),

with w_(z)= 1-z and Wo(z)=f(z). Thus we have

(6.10) Wk(Z) [(1 z)kfo(Z)f,(z) f(z)]-’.

Using (6.9) we can write (6.5) in the form

(6.11) ZWk+I(Z) (ak + 6ZkZ)Wk(Z)-- Wk-I(Z).

It is easily seen that, except in some "pathological situations," the interpolation
constraints (6.2) determine the n+l parameters ao, a,..., a, (and conversely).
Indeed, from (6.9) and (6.11) we deduce the identities

(6.12) a Wk-I,O/Wk,O,

(6.13) Wk+l, OgkWk,,+ + kWk,, Wk_l,t+l,

with Wk(Z)= t=o Wk, zt. In general, these have to be used for 0_-< k_-< n and 0 -< t_-<

n- k- 1, with the initial conditions w_,o 1, w_,l =-1, w_, 0 for t->_ 2, and Wo,o
Yo, Wo, 2c, for t_>-1. But the algorithm is bound to stop when it meets the situation
wl,o=0 for a certain with 0 -<l_-<n. If Wl,t=0 for t=0, 1,..., n-l-l, then the
interpolation constraints are satisfied by the choice Wl(Z)=O,i.e., fi(z) =cx:; this will
be referred to as the degenerate case. If Wl, 0 for some t, then it is clear that the CF
problem admits no solution. The case where Wk,O# 0 for 0_--< k_-< n will be called
nondegenerate; it will be appropriately characterized by the convention n + 1 (which
does not refer to the properties of W,+l(Z)).

From the parameters ao, a, , o1_ thus obtained let us construct the tridiagonal
matrices Jk (Z), as in (2.1), and the corresponding polynomials Pk (Z) and qk (Z). We
are now in a position to describe the complete solution of the CF problem in terms
of these data. (Henceforth we rule out the case where wl,o 0 and Wl, 0 for some _-> 1.)

THEOREM 2. A necessary and sufficient condition for the CF interpolation problem
to be solvable is that the matrix Jl-l(1) be nonnegative definite. In the degenerate case
(l <-_ n) there is a unique solution, given byf(z)- ql(z)/pl(z); it is lossless and its degree
equals or l- 1 according as J_a(1) is positive definite or singular. In the nondegenerate
case (l n + 1), ifJ (1) is singular then there is a unique solution, namely the rational
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lossless function f(z)= q,+l(z)/p,+l(Z), which has degree n; if Jn(1) is positive definite
then there is an infinite number of solutions f(z), given by

(6.14) f(z)
zq,(z)- (1 z)g(z)q,+l(Z)
zp,(z) (1 z)g(z)p,+l(Z)

where g(z) is a C-function subject to the only constraint

(6.15) 0=</x(g) <= A,+I

Proof Let us write the recurrence relation (6.11) in the form

(6.16) Jk(Z)[Wo(Z), --Wl(Z), (--1)kwk(Z)]T=[W_I(Z), 0,’’’, O, (--1)kzwk+I(Z)] T,
for k=< 1-1. The four corner entries of J-(z) can be explicitly determined with the
help of (2.2) and (2.11). Solving (6.16) for Wo(Z) and Wk(Z) we then obtain

(6.17) f(z)pk+(Z)= qk+l(Z)+ zk+lwk+I(Z),
(6.18) Wk(Z)Pk+I(Z) 1 Z + ZWk+,(Z)pk(Z),

by use of w_(z) 1 z and Wo(Z) =f(z). Note that (6.17) can be used to define qk+(Z)
and Wk+(Z) from f(z) and pk+(Z). Furthermore, note that (6.18) can be deduced from
(6.17) and (2.14). Dividing (6.18) by 1 z, using (6.10) and (6.4), we deduce the identity

(6.19) ,u,(fo)/x(f)’"" tX(fk)[Pk+l(1) tX(fk+,)pk(1)] 1.

Alternatively, this can be derived from (6.8) and (2.10).
Assume first the CF problem to admit a solution f(z). In view of Lemma 1 we

have 0</z (fo) -<-, 0< tz(fk) < for k= 1,. ., l- 1, and 0 <-/x(fi) < c, with/z(fi) =0
in the degenerate case. Hence (6.19) yields Ak+l >---- tz(fk+) >= O, which implies that Jl_(1)
is nonnegative definite. Note incidentally that we have tz(fk)= Zk for all k if and only
if/z(fo) , which means that f(z) has no quasizero at z 1.

Conversely, assume J/_(1) to be nonnegative definite, which implies Ak >0 for
1 _-< k -< 1 and /1 0. Let us choose any C-function fl(z) satisfying 0 _-</x (f/) _<- AI.We
have to show that the function fo(z) obtained by repeated use of (6.5) belongs to class
C. (Then f(z)=fl(z) is a solution to the CF problem.) In view of Lemma 1 it suffices
to prove that the constraint (6.6) is satisfied for k l- 1, l-2,. , 0. To that end let
us make use of the descending recurrence relation

(6.20) -(A) x x+- (f+),

deduced from (6.19), or directly from (6.8) and (2.10). By induction, (6.20) yields
0 <= I (fk) <= Ak whence the desired property 0 -</z (fk) -< 2 Re Ck_ for 1 =< k -< I.

It remains to describe the set of solutions. In the nondegenerate case (1 n + 1)
we obtain the expression (6.14), with g(z)=f,+(z), by elimination of w,+(z) and
wn(z) between (6.9) and two versions of (6.17). When J,(1) is singular, the only
possibility is g(z) c, which yields f(z) q,+(z)/p+(z). Similarly, in the degenerate
case (l-< n) we must havefi(z)=c, whence f(z)= ql(z)/pl(z). These rational functions
f(z) are clearly lossless. Their degree properties are described in 5.

It is very interesting to compare the formulas (6.3) and (6.14), which must be
equivalent. Expressing p,(z), q,(z) and p,+(z), q,+(z) in terms of an(z), r(z) by
means of (3.7) and (3.8) we obtain a simple relation between the "parameter functions"
b(z) and g(z) occurring in (6.3) and (6.14), namely

(6.21) g(z)
1 [l+z 1 -k- gn+lb(g) ]2A,+ 1-z 1-
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This establishes a bijection between the S-functions b(z) and the C-functions g(z)
satisfying (6.15), in perfect agreement with Theorem 2.

Using Lemma 1 in the opposite direction we can obtain an interesting new criterion
to check whether a certain function f(z), given by its Maclaurin expansion, belongs
to class C. This criterion is expressed in terms of the sequence of complex numbers
ak =fk(0), with k 0, 1, etc., deduced from the recurrence relation (6.5) applied to the
initial function fo(z)=f-l(z). An important distinction has to be made between the
regular case, where the sequence of ag is infinite, and the singular case, where the
sequence has finite length n + 1 (ending with ce,) because the algorithm yields f,+(z)

THEOREM 3. The given function f(z) belongs to class C ifand only if the tridiagonal
matrix Jk(1) builtfrom the parameters at =f(0) is positive definite, for all k, in the regular
case, and is nonnegative definite for k n in the singular case.

Proof The "only if" part follows directly from Theorem 2. The "if" part can be
deduced from the Carath6odory-Toeplitz theorem with the help of the congruence
relation (4.13).

It should be noted that the singular case corresponds exactly to the case of a
rational lossless function f(z), whose degree equals the rank of J, (1). As an interpreta-
tion of Theorem 3 one can say that a C-function f(z) admits a formal continued
fraction expansion

(6.22) f(z)-]Uo(Z) t-
lUl(Z) +lu2(z)+’’’,

with ut(z) (at + ctz)/(1 z) for even and u,(z) (1 z-)(at + d,z) for odd t, yield-
ing nonnegative definite matrices Jk(1). This fraction contains a finite number of terms
if and only if f(z) is a rational lossless function. More precisely, if (6.22) contains
n + 1 terms then f(z) has degree n or n + 1 according as J, (1) is singular or not.

To conclude this section let us explain how the basic relations (6.12) and (6.13)
of our approach to the CF problem give rise to a new efficient "Schur-type algorithm"
computing the reflection coefficients pg for a given nonnegative definite Toeplitz matrix
C, (of rank n or n + 1). In the case of real data, the method described below reduces
to the split Schur algorithm recently proposed by the authors [6]. The formulas (6.12)
and (6.13) allow us to determine the sequence of parameters ao, a,. ., a, from the
data Wo,o yo (with Reyo Co) and Wo, 2ct for 1 _-< =< n. Then the reflection coefficients
p, p2,"" ", pn can be recursively computed with the help of (3.13). In explicit form,
we have

(6.23) pg 6g [ffgg_l(g -1- g_l)]-1,
for k 1, 2,..., n, with the initialization po 1. The number ek appearing in (6.23)
can be determined by

(6.24) ek Wk-,O/ k-l,0.
Indeed, we have Wk(O)pk+(O)= 1 by (6.18), so that (6.24) results from the definition
(3.9). It can be verified that the number of multiplications required by this method
(based on (6.12), (6.13), (6.23), and (6.24)) is approximately reduced by a factor 2
with respect to the classical Schur algorithm, while the number of additions remains
unchanged. These conclusions are very similar to those concerning the Levinson-type
algorithm of 3.

7. Nevanlinna-Pick interpolation problem. Given n + 1 distinct points
Zo, Zl,’", zn in the unit disk Izl < 1 and n4-1 complex numbers Uo, Ul,’", un, the
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Nevanlinna-Pick (NP) interpolation problem requires to determine the set of C-func-
tions f(z) satisfying

(7.1) f(Zk) Uk for k=0, 1,. ., n.

This appears as a natural analogue of the CF problem. It is classically solved by means
of the Nevanlinna algorithm [2], which is an extension of the Schur algorithm. Let us
now explain how the NP problem can alternatively be approached by a suitable
modification of the "tradiagonal method" used in 6. From the given point Zk define
the binomial

z-z II-zl2

with /3k=.(7.2) yt‘(z) =/3t‘
1 zt‘ 1 -levi

The Blaschke function yt‘(Z)/k(Z acts as a transformation that preserves the unit
disk, fixes the point z 1 and maps the point z Zk to the origin z 0. Therefore, the
following key result is obtained from Lemma by a simple change of variables.

LEMMA 4. Let fk(Z) be a C-function and define ft‘+l(Z) by means of the relation

(7.3) ft‘(z)
Ozt‘(z)+ 6t‘(z) yt‘(z)t‘(z)

1 z (1 2-z) A+I(Z)

where Cek=fk(Zk) and )3k(Z)= Zfik(1/). Then fk+l(z) is a C-function satisfying

(7.4) 0-</x(ft‘+l)_-< 2/3{ Re at‘,

with the possibility ft‘+ (Z) (X). Conversely, let at, be a complex number and let ft‘+ (Z)
be a C-function, subject to the constraint (7.4). Then the right-hand side of (7.3) is a

C-function satisfying ft‘ zt‘ at‘.
It is easily seen that Lemma 4 yields an iterative solution method for the NP

problem, like Lemma 1 for the CF problem. Let us briefly describe the method in
question. Define the functions wt‘(z) exactly as in (6.9), (6.10). Then (7.3) can be
written in the form of the recurrence relation

(7.5) yt‘ z)y z wt‘+ Z cet‘ z + 6t‘ z) wt‘ z wt‘_l(Z),

for k 0, 1,..., n. The initial conditions are given by w_(z)= 1-z and Wo(Z)=f(z),
yieldingfo(z) =f-(z), where f(z) is supposed to be a solution of the NP problem (7.1).

Thus, except in some "pathological situations," the interpolation constraints (7.1)
determine the n + 1 parameters ao, al," ", cn via the identities

(7.6)

(7.7) Wk+ Zj [(O,kfit‘(Zj)+ ff,kyk zj Wt‘ Zj Wt‘_ Zj ]/ yt‘ zj t‘ zj ).

In principle, they have to be used for 0=< k <- n and k+ 1 =<j-< n, with the initial
conditions w_(zj) 1 zj and Wo(Z) u. But the algorithm has to stop if it meets the
situation Wl(Zl)=0. Then it is clear that the NP problem can have a solution only if
wt(zj) =0 for j l, l+ 1,..., n; this will be called the degenerate case. The normal
situation where Wk(Zk) 0 for all k will be called the nondegenerate case and is
conveniently characterized by n + 1.

As explained below, the complete solution of the NP problem can be expressed
in terms of an appropriate tridiagonal matrix Jk(Z) built from the data z and aj. The
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definition is

(7.8) Jk(Z)

aoo(Z) + coYo(z)
o()

yo(z)

Yk-l(z)
y"k-1 (Z) kfik (Z) -+- kYk(Z)

for k=0, 1,..., 1-1. Note that yk(1)=k(1)=flk; hence Jk(1) is a real symmetric
matrix. From Jk(Z) define the polynomials pk(Z)=detJk_l(Z) and qk(Z) (1-- Z)
det Jk_l(z), exactly as in (2.2) and (2.11). They enjoy the symmetry and antisymmetry
properties (2.3) and (2.13). Furthermore, they obey the recurrence relations

(7.9) Pk+ (Z) (Okfik(Z) + .kYk (Z) )Pk Z) Yk-1 Z)k-1 Z)Pk-1 (Z),

(7.10) qk+(Z) (Ckfk(Z) + kyk(z))qk(z)--Yk-l(Z):k-(z)qk-(Z),
with the initial conditions p_(z)=O, po(z)= 1 and qo(z)=0, q(z)= 1-z. As a gen-
eralization of (2.14), we have the identity

k-1

(7.11) pk(Z)qk+l(Z)--qk(Z)pk+(Z)=(1--Z) H yi(z)i(Z).
i=0

Define the Jaobi parameters Ak =pk(1)/pk-l(1) as in (2.8). It is clear that the
matrix Jn(1) is nonnegative definite if and only if the positivity constraints (2.9) are
satisfied. (In this case, J,_l(1) is positive definite.) The Jacobi parameters can be
recursively computed from the data ak and flk by the formula

(7.12) Ak+l 2flk Re Ok _1h1,
which directly follows from (7.9). It is a generalization of (2.10). The initialization is
given by Ao

The solution of the Nevanlinna-Pick interpolation problem can be expressed in
terms of these ingredients in essentially the same way as in Theorem 2. The only
difference lies in the expression of the general solution in the nondegenerate case; it
is given by

(7.13) f(z) =y"(z)"(z)q"(z)-(1-z)g(z)q"+(z)y,(z),(z)p,(z) (1 z)g(z)p,+l(Z)

where g(z) is a C-function subject to the only constraint

(7.14) 0_--</z(g) _--</32 An+ l,

In particular, if J,(1) is singular then (7.14) forces g(z)=; this yields the unique
solution f(z)= q,+(z)/p,+(z), which is lossless and has degree n.

The proof will not be repeated here, since it is basically the same as that of
Theorem 2. Let us only indicate the appropriate substitutes of the identities (6.8) and
(6.17), which are required to derive (7.13). From (7.3) we immediately deduce

(7.15) fl/x (fk+) 2/k Re ok --/.t-l(fk).
By comparison with (7.12) this allows us to show that the property 2klZ(fk+)<=
holds for all k if and only if it holds for k n (under the positivity assumption).
Hence, if the condition (7.14) is satisfied, with g(z) f,+l( Z), then so are all conditions
(7.4). The representation (7.13) can be obtained with the help of the identity

(7.16) f(z)Pk+l(Z)-- qk+(Z)+( I Yi(Z)i(Z))
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which results from a similar computation as in 6. In fact, we deduce formula (7.13),
with g(z)=f,,+l(z), by equating the ratio w,,(z)/w,,+(z) derived from (7.16) to the
function (1-z)g(z), in agreement with (6.9). It is interesting to mention the analogue
of (6.18), which is

(7.17) Wk(Z)Pk+I(Z) 1 z + yk(Z)k(Z)Wk+I(Z)pk(Z).

As an illustration of the theory let us finally indicate a generalization of the Bistritz
stability test. Consider a complex polynomial x,,(z) of degree m, having the property
that Xm(1) is real. Construct both symmetric polynomials

(7.18) bm(Z)= Xm(Z)’--m(Z), b,n_(z)
1-z

Choosing m distinct points z0, z,. ., Zm_ in the unit disk, define complex numbers
Ck and symmetric polynomials bm-k-2(z), for k 0, 1, , rn 1, from the relations

(7.19) ak bm-k(Zk)/(1--Zk)b,,,-k-(Zk),

(7.20) yk(Z)k(Z)b,,-k-2(Z)=(akk(Z)+6kYk(Z))b,,_k_(z)--b,,-k(Z),

with the initialization (7.18). By construction, b,(z) is a polynomial of formal degree
(for =>0), and b_(z) vanishes. It is interesting to note that b,,_k(Z) can be written

in the form

(7.21) b,,,_k(Z) bo det Jm_l(Z),k-1

for a real constant bo, where k-J,,_ (z) is the submatrix ofJ,,_ (z) obtained by suppression
of its first k rows and columns. The Bistritz stability criterion can be generalized as
follows.

THEOREM 5. The polynomial x,,(z) is stable (i.e., devoid of zeros in the closed unit
disk Izl <-1) if and only if the tridiagonal matrix J,,-l(1) built from the data Zk and ak
exists and is positive definite.

Proof Setf(z)=(1-z)b,,_(z)/b,,(z). It is well known that x,,(z) is stable if and
only ill(z) is a lossless function of exact degree m. In this case, f(z) can be viewed
as a solution to the NP problem (7.1), with Uk=(1--Zk)b,,_I(Zk)/b,,(Zk) and n= m-1.
Let us construct rational functions fk(Z) and complex numbers ak =fk(Zk), for k=
0, 1,’’ ", m- 1, by use of the recurrence relation (7.3) with the initialization fo(z)=
f-(z). By comparison between (7.5).and (7.20) it is seen that the functions (6.10) are
related to the polynomials bt(z) by the simple identity

(7.22) Wk(Z) (1 z)b.,_k_l(Z)/bin(z),

for -1 =< k <= rn. The desired result is obtained by straightforward application of the
generalized version of Theorem 2; the present situation corresponds to the nondegener-
ate case and the choice g(z)= in (7.13), yielding f(z)= q.,(z)/p,.(z). [3

When comparing the method above to that indicated in 5 (in the "confluent
case" z 0 for all j) one should note that the parameters ak are numbered in the
reverse order, which is a simple matter of notation. Of course, the positive definiteness
of J,,_(1) amounts to the property Ak > 0 for k 1, 2,..., m, where the parameters
Ak are determined by use of the recurrence relation (7.12), with Ao o. An equivalent
version of the criterion of Theorem 5 says that Xm(Z) is stable if and only if the values
assumed by the polynomials bt(z) at the point z 1 are nonzero and have constant
sign for 0 -< =< m. This is a straightforward consequence of the identity (7.21).
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ON COMPLETE SYMMETRIC FUNCTIONS*
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Abstract. This paper is devoted to the study of some properties of the complete symmetric functions.
These functions play an important role in the theory of partitions and in the combinatorics as well. Among
other things, the representation formulas as well as the recurrence formulas and inequalities involving
functions under discussion are given. Some applications are also included.
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1. Introduction. Let (Xo, , x,) E,+I (n => 0). The rth complete symmetric func-
tion hr (r=0, 1,’") in the variables Xo,’", x, is defined by

(1.1) hr hr(xo, ", Xn) X X,
io+...+

where io,’", i.{0, 1,..., r} (see, e.g., [6]). The sum (1.1) involves (,+r) terms.
Without loss of generality we may assume Xo<=xl<= <-x,. Setting xi-q (0<= i<=n),
we obtain h --(n+rr)qr. In what follows we will assume Xo < x.

The functions h play an important role in the theory of partitions (see [1] for
more details). Also they are useful in combinatorics. Letting xi q (0=<i=< n), where
q is an indeterminate, we obtain

hr=[n+r]’r
where as usual

[] (q’-l)(q’-q) (qm_qk-1)
i(q: 1)(qE q)

denotes the q-binomial coefficient or Gaussian polynomial (see, e.g., [1]). Another
choice for xi, namely xi=r+i (0<=i=<n; r=0, 1,...) leads to

(1.2) h,,,(r,r+l,. .,r+n)=Sr(m+n+r,n+r) (m,n, r6No)

(see 7 for the proof of (1.2)). Here St(’, ") stands for the r-Stirling number of the
second kind. The number St(k, n) (O<= r<= n <= k) is defined combinatorially as the
number of partitions of the set {1, 2,..., k} into n nonempty disjoint subsets, such
that the numbers 1,2,..., r are in distinct subsets (cf. [3]). The classical Stirling
numbers of the second kind S(k, n) coincide with Sr(k, n) when r=0 or r= 1.

In our proofs the B-splines of Curry and Schoenberg [5] play an important role.
Some elementary properties of these functions are given in 2. The representation
formulas for hr are discussed in 3. In 4 we deal with the generating functions for
hr. Some new recurrence formulas for hr are given in 5. Inequalities involving the
functions under discussion are given in 6. Section 7 is devoted to applications.

2. Preliminaries. Throughout this paper we will denote by , 7/, No, and N the
sets of all reals, integers, nonnegative integers and positive integers, respectively.

Received by the editors September 2, 1986; accepted for publication June 4, 1987.
? Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901.
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For our further aims we introduce the B-splines of Curry and Schoenberg [5].
Let-.-_-< t_l--< to<= tl <=’’’ be a bi-infinite partition of R with at most n (n N) values
of the t’s equal to each other, i.e., ti < ti+, for all 7/. The function

n--1Mi,,(t) n[ti, ti+,](’-t)+

is the B-spline of degree n-1 (order n) with knots at t,..., ti+,,. As usual [t,. .,
t+,]g denotes the divided difference of order n for the function g at the points
(0<= <= n) and

(x- t)+n--l= (Max {0, x- t})-’

denotes the truncation power function. For the reader’s convenience we list below
some well-known properties of the B-splines:

(i) Mi,(t) > 0 for (fi, t+,) and M,,(t) 0 otherwise. Thus supp M, t,
ti+n].

(ii) In each interval ti+j, t+j+] (ti+ < ti++; j =0, 1,. ., n- 1) M, coincides
with an algebraic polynomial of degree n- 1 or less.

(iii) Let t+ be a knot of multiplicity k, i.e., let t+_l < t+j ti++k- < ti++k,
then Mi,, is exactly n- 1- k times continuously differentiable on (ti+_, t++k).

(iv) Iff C"[ti, ti+,], then

Mi ( t)f(")( t) dt.[ti, "’/’+’]f=- t,

(v) The following recurrence formula

ti+n 1
Mi,(t)

t- ti
Mi,n-l(t) +’ M,+l,-l(t)

n ti+n- ti ti+n- ti

(i67/, n>=2, t6R)

holds true (see, e.g., [14]).

3. Representation formulas for the complete symmetric functions. The formula (I. I)
seems to be rather inconvenient for our further purposes. In this section we otter
several equivalent formulas for hr. First of all we need more notation. Let Xo <= x <=. <=

x,. In order to describe exactly where the equalities hold, we suppose that

(3.1) XoX X --" ,7"d, ", Td
10 ld

where each z is repeated exactly l times with d li n + 1 Then given any sufficientlyi=-O

differentiable functions Uo," , u, we define a matrix

(3.2)
Xo, Xn] :=[Da.

Uo, u. ’u(x,)],.=o

with d Max {j" xi x+j}, i=0, 1,..., n, where, as usual, D" denotes the
operator of differentiation. Further let

S"={ (hi’ h") "" h-->O’ frall i’ i=1 hi<= 1}
denote the n-simplex.

Also let C denote a simple closed contour enclosing a simply connected region
of the complex variable z in which are situated the points to," "’, Zd.

We are ready to state and prove the main result of this section.
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THEOREM 3.1. Let r N]o. Then

(3.3) hr-[Xo,""" ,xn]tn+r,
and also

(3.4) hr
n+

Mon(t)trdt
r

where Mo.n denotes the B-spline of order n with knots at Xo, xn. Also

(3.5) h (n+r). (r+ 1) A,x, dA,
S =0

where Ao 1- A An and dA dA dan. Moreover, if ’i and li are the same as
in (3.1), then

(3.6) h
1 f Z

n+r dz

and also the following formula:

(3.7) hr det [Xo
k 1 t," tn_ tn+r et

1_ 1,...,

holds true.

Proof The formula (3.3) has been established in [8]. In order to prove (3.4) we
set ti+j =xj (j O, 1,..., n), next i= 0 and f(t)= n+r into (iv). Hence and from (3.3)
the desired result follows. For the proof of (3.5) we apply the Hermite-Genocchi
formula for divided differences

S =0

(cf. [2]). Setting above f(t)= n+, then making use of (3.3), we obtain (3.5). Direct
applications of (3) in [8, p. 14] to (3.3) gives the assertion (3.6). Equation (3.7) follows
immediately from (2.86) in [14] and from (3.3). This completes the proof. V1

COROLLARY 3.1 [13]. Let xj=-cos(Trj/n) (j=0,1,...,n) be the Chebyshev
points. Then

[m/n] (n + 2m2-2" ) ifr=2m(3.9) hr ,=o m-in/ (m=0, 1,...),
0 ifr=2m+l

where, as usual, [x] denotes the largest integer not bigger than x.

Proof First we will establish the first formula of (3.9). Let g be an integrable
function on [-1, 1] and let

aj[g]=2 I- g(t)T(t)
7r /1-t2

dt

denote the jth Fourier-Chebyshev coefficient of g with Tmthe jth Chebyshev poly-
nomial of the first kind. We will use the following result due to S. Bernstein:

(3.10) [Xo,’’’, Xn]g 2n-1 E a(2i+l)n[g]
i=0
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(see, e.g., [12]). Also it is known that

[n/2]+m

(3.) "+2" =2-"-’+ Y?
j=0

where

n + 2m) T,+z,,__j(t)
J

ajTkj:= Y aj if ki=O, a ifkO Tkj
j=l j=i

(of. [12, (2.40)]). Hence we obtain

(3.12)
m-in/

Combining (3.3), (3.10), and (3.12) yields

t’/,(n+2mh2,, [Xo," ", x,]t"+" 2-2m E
i=o rn in /

The second formula of (3.9) follows immediately from (3.4) and from the fact that the
B-spline Mo,, is an even function in the case under consideration. The proof is
completed.

COROLLARY 3.2 [13]. Let x=-coscj, where a=(2j+l).tr/(2n+2) (j=0,
1,..., n) be the zeros of T,/I. Then

(3.13)
ifr 2m,

(m=0, 1,...,).

Proof It is a well-known fact that

[Xo," x,]g= (-1) "+1 (-1) sin ag(x).nl j=o

In order to prove the first formula of (3.13) we set above g(t)= "+2m. Hence and by
virtue of (3.3) we get

h2m =[Xo," xn]tn+2m- (-1) sin cej COS
n+2m

n+l j=o
cj.

The last sum depends upon the numbers ,, where

, := (-)J sin a cos kj (k-integer).
j=0

It is easy to verify that

1
(3.14)

where

E,k := (-1) sin kaj.
j=0
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Hence, we obtain

krr ] E,,k (-- 1) sin
(2j + 1) kTr

cos
2n+2 j=0 2n+2

COS
2n+2

_1 (_ 1) sin
(j + 1) kr

2=o [ n+l

=0.
1 (n+ 1)kr
2

1)’sin
n+l

sin
n+l

Therefore if krr/(2n+2) # (p+1/2)Tr (p-integer), i.e., if k # (2p+ 1)(n+ 1), then E,,k=O.
Assume now k (2p + 1)(n + 1). Then

E.k-- (-1) sin(2j+l)(2p+l)(n+l)’n’--(-1)P(n+l).
=o 2n+2

Hence and from (3.14) we conclude that

1 (--1)k+l(n + 1)

(3.15) nk 1 )k-1-(-1 (n+l)

0

Setting cos p in (3.11), we obtain

COS
n+2m

Oj --2 -n-2m+l

k+l
if is odd,
n+l

k-1
if is odd,
n+l

otherwise.

/2]+tn ( )t,,
yo n + 2m

cos (n + 2rn 2i)c.

Therefore

-2" [n/2]+m

(3.16) h2m 2-n-am+l En+l i=o
(n +t2m) n,n+2m--2i.

In the last sum the only nonzero terms are those for which

n+2m-2i+1 n+2m-2i-1
is odd or is odd,

n+l n+l

i.e., if rn q(n + 1) (q-integer) or rn 1 q(n + 1), respectively. Hence one gets
m q(n + 1) or rn 1 q(n + 1). Simultaneously 0 <- _-< [n/2] + m. Therefore 0 -<

q<=[m/(n+l)] or O<=q<=[(m-1)/(n+l)]. Hence and from (3.16) and (3.15) the
assertion follows. For the proof that hr 0 if r is odd we apply the same arguments
like those in the proof of Corollary 3.1. This completes the proof.

The functions hr are well defined when r No. In many places they are defined to
be zero when r -1, -2,. (see, e.g., [6]). Assuming that (3.3)-(3.7) are the defining
formulas for hr with r 7/we get hr 0 for r -1, -2, , -n. If r -n 1, -n 2, ,
then hr is not necessarily equal to zero. This confirms the following.

COROLLARY 3.3. Let xj # 0 for all j. Then for 1, 2,. , we have

(-1)"(3.17) h-n-I Hj=o xj

[Xo, X,]t [Xl]t 0

det
[Xo," ", xn-1]t [Xl," "’, Xn-1]t [x,-]t
[Xo,""", x,]t Ix,,’’’, xn]t [Xn_l, x,]t’
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Hence in particular

(3.18) h-n -1) //=o X
and

=o /=o Xj.
l#j =0

Proof. In order to prove the identity (3.17) we apply the following formula:

1 (__1) [ [Xo, .xl]f [Xl]f. 0 0. ]
det[x" " x"]

f(x) -H=f(x) [Xo,...,x,]f [x, x,]f [x,_, x,]f

which holds true providedf(x) 0 for allj (see [11, Ex. 2.4.19]). Setting abovef(t)
and next making use of (3.3), we arrive at (3.17). The identities (3.18) and (3.19) follow
immediately from (3.17). The proof is completed. [3

Combining (3.5) and (3.18) yields

I [ ]--n--I fih,x dh 1/n! x (N e 0).
S =0 =0

The last identity is due to R. Feynman.
We close the section with a differentiation formula for hr.
COROLLARY 3.4. Let x be of the multiplicity lj (O<=j <- n; 1 <- lj <- n). Then

0

Ox hr(xo, xj_,, , xj$ Xj+l, Xn)

lj(/ + 1)’.. (6 + l- 1)hr(xo,’’’, Xj-I,?j,’’" Xj] Xj+I,’’" Xn).
lj+t

Proof The last result follows immediately from (3.3) and from the well-known
formula for the divided differences (see 11 ]).

4. Generating functions. Let H denote a generating function for the complete
symmetric functions, i.e., let

H( t) E hrtr.
r=O

Then

H(t)= I (1--Xit) -1
i=0

(see, e.g., [6]). In this section we give simple formulas for the exponential generating
function E, where

tn+r
E(t) E hr (n GIN).

r=o (n+r)!

We have the following.
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THEOREM 4.1. Let n N. Then
xt(4.1) E(t)=[Xo, ,x,](,) e

where the subscript (x) denotes that the divided difference operator acts on the variable
x. Also

(4.2) E(t) =.. Mo,.(x) ext dx,

where Mo,. denotes the B-spline of order n with knots at Xo, , x.. Moreover, ifx # xj

for j, then

(4.3) E(t)= eV/wj
j=0

with

Wj-" -I (Xj--Xi) (O<=j<=n)
i=o
mj

Proof. First we will show that the following identity

(4.4) [x0,"" ", x,]f r2o= hr --;i-l.
holds true provided f is sufficiently smooth. We have

f(x) Y f(r)(o)--.= f(n+r)(o)
r=0

Hence

X
n+r

(n+r)!"

[Xo,’’’,x,,]f= E ([Xo,’’’,X,,]x"+r) f(’+’)(O)
(n+r)!

Proof In this case we have

wj (-1)"-Jh"j n -j) !.

Direct application of (4.3) yields the desired result, l-1

5. The recurrence formulas for h,. For the sake of notation we write often hr(i,j)
instead of hr(xi, Xi/l, , xj) (0 -< -<j =< n). We are ready to state and prove the main
result of this section.

Hence and from (4.1) the desired result follows. This completes the proof.
COROLLARY 4.1. Let Xj a +jh (O<-j <= n). Then

e"[em--1]h

[Xo,’’’, x.]g g(xj)/ wj.
j=O

Taking into account (3.3) one obtains the assertion (4.4). In order to prove (4.1) we
insert f(x)= ex’ into (4.4). The identity (4.2) follows immediately from (4.1) and (iv).
For the proof of (4.3) it is enough to apply the well-known formula for the divided
differences with distinct knots
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THEOREM 5.1. For any rN]o and n the complete symmetric functions satisfy
the following recurrence relations:

(5.1) hr(O,n)=hr(O,n-1)+x, hr_l(O,n) (r),

(-1)--J
(5.2) hr(O, n) h,_j+r+l(0,j),

j----O Xj" X

(5.3) hr(0, rl)- {hr+,(1 ,/1)-hr+l(0,/1-1)},
Xn Xo

(5.4) h(0, n)-
X X0

{xnhr(1, n)-xoh(O, n-1)},

h(xo+ % x, + y) ( n + r)1=o
"ylhr-l(Xo, Xn)

Proof The recurrence relation (5.1) has been established by Menon [7]. Below
we will present another proof. We need Leibniz’ formula for divided differences

(5.6) [Xo,’’’, x,](f, g)= ([Xo,’’’, xj]f)([xj,..., x.]g),
j=O

where f and g are real-valued functions defined on [Xo, x,]. Making use of (3.3) and
(5.6) we obtain

h(0, n) [Xo," ", x,](tn+r-1, t)

([x,]t)([Xo,..., x,]tn+r-1) + ([x,_,, x,]t)([Xo,"., Xn-1]tn+r-1)

=x,h_(O,n)+h(O,n-1).

In a similar fashion we can establish (5.2). For our purposes we need the following
identity:

(5.7) [Xo, ", x;]= (-1); I-I x (x, 0, all l),
l=0

which follows immediately from (3.18) and (3.3). From (5.6) and (3.3), we obtain

hr(O, n)=[Xo,’’’, x"](1-t tn+r+l)
([X,] ) ([Xo, X,] t’++l)

+ ([X,-X,] ) ([Xo, X,-,]t"++) +

-t-([Xo,’"" Xn] ) ([Xo]tn+r+l).

Hence and from (3.3) and (5.7) the desired result follows. In order to prove the formula
(5.3) we apply the well-known recurrence for the divided differences

1
[Xo, Xn]tn+r- {[Xl,’’" ,Xn]tn+r-[xo, xn_,]tn+r}.

X X0
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Hence, by virtue of (3.3), the assertion (5.3) follows. For the proof of (5.4) we employ
the recursion (v) setting =0 and 6/j=xj (O<=j < n). Further, multiplying both sides
by and performing integration over [Xo, xn], we obtain, in view of (3.4),

n-1 1
hr(O, 11)-

rl -Jr- r X XO
{xh(1, n)-xoh(O, n-l)}

r+l 1
{hr+(1, n)-hr+l(O,n-1)}.

n -[- r x Xo

Hence and from (5.3) we get the desired result (5.4) provided n _-> 2. Direct calculations
show that (5.4) holds true if n 1. We prove now the last statement of our theorem.
For r 0 the assertion is a trivial one. Assume r N. Let Mo, (" Xo, , xn) Mo,, (’).
It is well known that the following identity

Mo,(’lXo+ y,’", x + y) Mo,(’-TIx0,’’’, xn)

holds true for any y . According to (3.4) we obtain

hr(xo+% Xn+T) (n+r) f", Mo,,(tlxo+y,’" ,xn+T)trdt
r ., xo+,

Mo,n(t-ylxo,’’" ,xn)trdt
r xo+v

Mo n(ZlXo, Xn)(Z "31- /)r dz,
r

where z y. Hence and from (3.4) the assertion follows. The proof is completed.

6. Inequalities involving h. In this section we assume xj >= O, all j. Thus 0 =< Xo -<

=< x. with Xo < xn. In [7] it is proved that

(6.1) hp_mhq+,,=hp +m+l

(6.2) hr-lhr+ <= h
(6.3) h’r/r>- h/,

(p<-q,O<-m<p),

(rN),

(1-<r=<s).
These inequalities are strict unless all but one of the variables are zero. The inequality
(6.2) tells us that the sequence {hr} is logarithmically concave. The companion
inequality to (6.2) is provided by the following.

THEOREM 6.1. Letp, q, r>0 and let I/p+ I/q= 1/r. Then the following inequality

[(n+r(l+m)) hr(l+m)]/r [(n+pl)-in hpl

holds true provided that r( + m), pl, qm No. Hence, in particular

(6.5) n n n

(1 + m, 21, 2m No),
and

(n+r)(r+l)
(6.6) h--< ---l)r hr_hr+ (rN).
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Proof Let Lv =- Lp (S, E,/x ), -o<p < o, be the space of all pth power nonnegative
integrable functions over a given finite measure space (S, E,/x). Iff Lv and if

then for any fl Lp and any f2 Lq with lip + 1/q 1/r (p, q, r > O)

(see [16]). In order to prove the inequality (6.4) we set dtz=dt, fl(t)= Mo,n(I)I/Pt l,
f2(t) Mo,n(t) 1/q" tm. Taking into account the above result and (3.4), we arrive at (6.4).
The inequality (6.5) follows immediately from (6.4) by letting p =q 2. Setting
(r+ 1)/2, rn (r-1)/2 into (6.5) we obtain (6.6). This completes the proof. D

Let

x7 (re; r#O)
n+l i=o

denote the rth mean in variables Xo,’", x,. It is well known that A1 <-Ar(r>= 1). We
are in a position to prove the following.

THEOREM 6.2. For any r N

(6.7) A1 <- hr <=Ar.

Proof In order to prove the inequality (6.7) we will apply the following result:

f(A1) <- Mo,,( t)f( t) dt<= xj),
n+lj=

where f is a convex function on (Xo, x,). The inequalities are strict unless f is a
polynomial of degree one or less (see [10]). Setting above f(t)= (rN) and next
making use of (3.4) we arrive at (6.7). The proof is completed. ]

Our next result reads as follows.
THEOREM 6.3. Let m, r No and let

[x,, o) ifm is odd,
a e

(-o, oo) ifm is even.

Then

(6.8) E (-1)"-j Jhm+r-j 0.
j=o n

Proof There is nothing to prove when m 0. Assume m > 0. The inequality (6.8)
follows immediately from the obvious inequality

tr(ce t)mMo,n(t) dt >=O

and from (3.4). This completes the proof.
Imposing some restrictions on the distribution of the x’s we can prove more

inequalities involving
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THEOREM 6.4. Let 1/(n + 1)j=o xj _--> 1. Then for any r and s with 0 <- r <- s the
following inequalities

(r+ 1)(r+2) s
(6.9) hi" -<

-(n+r+l)(n+r+2) (n+s)
hs,

and

(6.10) hr <- hs
hold true. Moreover, if 0 <- Xo <-" <= xri <- 1 with Xo < xn then

(r+l)(r+2) s
(6.11) hr >-

(n + r+ 1)(n + r+ 2) (n + s) hs.

Proof Let Hr’.-(ri+rr)-lhr (rE[o). Hence in particular Ho=l, H1=1/
(n+l)Y=oXj. It has been shown in [9] that the sequence {hr}o is logarithmically
convex, i.e.,

(6.12) H2<=HI"_IH,,+I (tEN).
We already know that the sequence {hr} is logarithmically concave. In order to prove
the inequality (6.9) let us observe that if for some r N, Hi"-1 <- Hr, then also Hr <-

This follows from (6.12). The inequality Hi" <- Hl"+l(rNo) implies

r+l

n+r+l

Hence (6.9) follows. Inequality (6.10) is an obvious consequence of the previous
inequality. For the proof of (6.11) we apply Theorem 6.3 with rn a 1. The proof
is completed.

We close this section with the following theorem.
THEOREM 6.5. Let

0 --< Xo =<" ----< xi-1 < xi xri

for some (1 <= <= n ). Then

Xn(6.13) hn+r_i(Xo, ,xi)
(x. Xo) (x. x,_)"

In particular if 0 <-_ Xo <=" <--xri-1 < x,, then

Xn(6.14) hr(xo, ,x,) <-
(X Xo) (X Xn_l)

Proof Let f be a real-valued and sufficiently smooth function defined on [Xo, x,].
Then Newton’s theorem provides

n+r j--1

/(t)= 2 ([Xo,’’’,xj]f) H (t-xt)+R(f),
=0 1=0

where R(f)= 0 if and only if f is a polynomial of degree n + r or less. Setting above
f(t) "+r and next using (3.3), we obtain

n+r j--1

tn+r= Z hn+r-j(O,J) H (t-Xl).
=0 /=0

Putting x,, we get
n+r j--1

x,"+= h.+l"_(O,j) I-I (xri-x).
j=0 /=0
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If for some (1 _-< _-< n), xi x,, then the above identity reduces to

i--1 i--1 j--I

x+r=h,+r_,(0, i) H (x,-xl)+ h,+r_j(o,j) I-I (x,-xl).
=0 =0 1=0

Since the last sum is nonnegative, the assertion (6.13) follows. Setting n in (6.13),
we obtain (6.14). This completes the proof.

7. Applications. In this section we give some two-fold applications of our previous
results. In 7.1 and 7.2 we deal with the q-binomial coefficients and the r-Stirling
numbers of the second kind, respectively.

7.1. Assume xi qi (i 0, 1, ., n; q > 0, q # 1). We already know that h ["+r]
(r o; n ). Hence and from (5.1) we rediscover the well-known recurrence formula
for the q-binomial coefficients

+q (1_-< r-<_ m)
r r-1

(see, e.g., [1]). From (5.2), we obtain in a similar manner

m+l]
j=o q’’’q

From (6.4), we obtain the following inequality involving the q-binomial coefficients:

{ ( n + r(l + m))-l [ n + r(l + m)]}n

<-{(n+pl)-l[n+Pl]}l/P{(r+qm)-[r+qm]ll/qn n n n

(p, q, r>0; I/p+ I/q= l/r; (l+ re)r, pl, qm

Combining (6.2) and (6.6) we get

< (r, m eN; r < m).r- r+ -(m-i; r-

The inequality (6.3) gives us

(1NrNs; n No).

The inequality (6.7) implies the following inequality:

q+’-I {(+r)-[+r]}/{N q(+l_l }/
(r; n o).

From (6.9), we obtain

In+r] (r+ 1)(r+2) sin+s]<__ (O <= r_<_ s)
r (n + r+ 1)(-;) (n+s) s

provided that q > 1. This inequality is reversed if 0< q < 1. Finally, (6.14) implies the
following two inequalities:

In+r] =< 1
r (l-q") (l-q)
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when0<q<l and

n + r] qn(n+r)
r (qn l) (qn _qn-1)

when q > 1.

7.2. Assume now xi r + with r e No and 0, 1,. ., n. First we will show that
the identity (1.2) holds true. It is proved that

kSr(k + r, n+ r)= Jr, r+ 1,’", r+ n]t

(reNo, k>-n>=O) (cf. [3]). According to (3.3) we can rewrite the last identity as

Sr(k + r, n + r) hk_ (r, r+ 1,. ., r+ n).

Hence (1.2) follows. Applying (1.2) to (5.1), we obtain

Sr(k, n) S(k, n 1)+ nSr(k- 1, n) (0 <- r<--_ k; k >= n 1)

(see [3]). Equation (5.2) leads to the following recurrence relation for the r-Stifling
numbers of the second kind

(_1)--
Sr(k+r,n+r)=

j=0 (r+j) (r+ n)
S(k+ r+ 1,j+ r) (0 -< r_-< k; n 6[o).

Setting 3’ r, xi (0=< =< n) into (5.5), we obtain

Sr(n+k’n+r)= (O<=n<-k;rt)’

where, as usual, S(., denotes the Stirling number of the second kind. The polynomial
(in r) that appears on the right-hand side is commonly referred to as the Stirling
polynomial of the second kind (see [4]). We will close this section-giving three
inequalities involving the numbers S(., .). Combining (6.2) and (6.6) gives us

Sr(l--1, k)Sr(t+ 1, k)<-Sr(l, k)

(l-r)(l-k+l)
<-(1-r+l)(l-k) S(l-l,k). S(I+I,k) (O<-r<-_k<l).

The left inequality tells us that the sequence {S(-, k)} is logarithmically concave. Our
second inequality reads as follows"

(r+ n)k- n(r+ n- 1) k (r+ n) k

<=Sr(k+r,n+r)<= (rNo;O<=n<=k).
n! n!

There is nothing to prove when n 0. Assume n > 0. In this case the right inequality
follows from (6.10) and (1.2). For the proof of the left inequality it is enough to apply
the following one:

[r, r+ 1,. ., r+ n]tk >- (r+ n)k/nt--(r+ n 1)k/(n 1)!

(cf. [17]). Next, taking into account that

Jr, r+l,...,r+n]tk=Sr(k+r,n+r) (rNo;k>-n>-O)

we obtain the desired result. Our last inequality reduces to that given by Wegner [17]
(see also [15]) when r 0.
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Before the presentation of our last result we introduce more notation. Let 0 <=/x -< v
v-integers) and let

Further, let

x(t)= amt (am, ).
m:l

a =min {x(t): r -< t=< r+ n},

b =max {x(t): r<- t_-< r+ n},

with r [o, n [. If f is a convex function on (a, b), then the following inequality

f a Sr(mq- n+ r, n+ r) <-- J f(x(t))2 dt
Ix n

holds true, where

J,=2n (-1) "-j (n).
=1 (n-j)!(n+j)!

Our inequality is a special case of the following one:

g am hm(xo," ", xn) <= Jn g(X())2 dt

with g convex on (a, b), where now

a rain {x(t): xo<_- <_- x,,},

b max {x(t): xo_-< <_- x}

(see [9] for the details). Setting x =j+ r, all j, we obtain the desired result.
Let us notice that J1 1, J2 2/3, J3 11/20, J4 151/315, J5 15619/36288.

Acknowledgments. The author thanks Professor Stefan Paszkowski for his proofs
of Corollaries 3.1 and 3.2. Thanks are due to Professor Philip Feinsilver for drawing
my attention to the Feynman identity and for useful conversations. ! would also like
to thank Mrs. Linda Macak for her excellent typing.

REFERENCES

G. A. ANDREWS, The theory ofpartitions, in Encyclopedia of Mathematics, Vol. 2, Addison-Wesley,
London, 1976.

[2] K. E. ATKINSON, An Introduction to Numerical Analysis, John Wiley, New York, 1978.
[3] A. BRODE, The r-Stirling numbers, Discrete Math., 49 (1984), pp. 241-259.
[4] L. CALITZ, Weighted Stirling numbers of the first and second kind--I, Fibonacci Quart., 18 (1980),

pp. 147-162.
[5] H. B. CuY AND I. J. SCHOENErtG, On P61ya frequency functions IV. The fundamental spline

functions and their limits, J. Anal. Math., 17 (1966), pp. 71-107.
[6] I. G. MACDONALD, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1979.
[7] K. V. MENON, Inequalities for symmetric functions, Duke Math. J., 35 (1968), pp. 37-45.
[8] L. M. MILNE-THOMSON, The Calculus of Finite Differences, Macmillan, London, 1951.
[9] E. NEUMAN, Inequalities involving generalized symmetric means, J. Math. Anal. Appl., 120 (1986), pp.

315-320.
[10], On interpolating means, J. Math. Anal. Appl., to appear.
11] S. PASZKOWSKL Collection of Exercises in Numerical Analysis. Part I, Polish Scientific Publishers,

Lodz, 1969. (In Polish.)



750 EDWARD NEUMAN

[12] S. PASZKOWSKI, Numerical Applications of the Chebyshev Polynomials and Series, Polish Scientific
Publishers, Warsaw, 1975. (In Polish.)

13], private communication.
[14] L. L. SCHUMAKER, Spline Functions: Basic Theory, John Wiley, New York, 1981.
[15] M. SOBEL, V. R. R. UPPULURI, AND K. FRANKOWSKI, Selected Tables in Mathematical Statistics,

Vol. 4, American Mathematical Society, Providence, RI, 1977.
[16] CH. L. WANG, Variants of the H61der inequality and its inverses, Canad. Math. Bull., 20 (1977), pp.

377-384.
17] H. WEGNER, ber die Stirlingschen Zahlen der zweiter Art, J. Reine Angew. Math., 266 (1974), pp. 88-99.



SIAM J. MATH. ANAL.
Vol. 19, No. 3, May 1988

1988 Society for Industrial and Applied Mathematics
017

OSCILLATION PROPERTIES FOR SOME POLYNOMIAL
ANALOGUES OF THE PROLATE SPHEROIDAL WAVE FUNCTIONS*

MARCI A. PERLSTADT’

Abstract. Slepian, Landau, and Pollak found that a certain finite integral operator commutes with a
much simpler second-order differential operator. The eigenfunctions that these operators share are prolate
spheroidal wave functions and the study of these eigenfunctions has led to applications in several areas.
Grfinbaum displayed analogues of this commutativity for certain integral operators involving orthogonal
polynomials. We discuss some implications of this commutativity for these eigenfunctions.

Key words, orthogonal polynomials, prolate spheroidal wave functions, oscillation
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1. Introduction. Let f be a square integrable function with Fourier transform
f Ff For s and subsets of E, we let A be the operator that restricts f (timelimits
f) to s and let B be the operator that restricts f (bandlimits f) to , i.e.,

Af f X and Bf f x.
In a series of papers [1], [2], [3], Slepian, Landau, and Pollak studied the integral
operator that timelimits then bandlimits and then again timelimits a function, AF-1BFA
(here F-1 denotes the inverse Fourier transform). The eigenvalues and eigenfunctions
of this operator proved critical to an understanding of the "space" of "nearly" time
and bandlimited functions. The realization that the operator AF-BFA commuted
with a relatively simple Sturm-Liouville type second-order differential equation with
simple spectrum 1 was crucial in determining many properties of the eigenfunctions,
including the fact that the eigenfunctions were prolate spheroidal wave functions.

In recent years the problem has been looked at for more general Fourier situations
[4], [5]. In particular, we will be interested in the case of expansions in terms of
orthogonal polynomials {pi (x)} where the orthogonality is with respect to a nonnegative
continuous weight w(x) on c. Assuming polynomials are complete for the space of
functions square integrable with respect to the inner product

(f g)w(x), f f(x)g(x)w(x) dx,
,I

we have for such functions that

f(x)= Y’, f(i)p,(x) where F(f)=f(i)=(f(x),p(X))w(,),.
i=0

Here and throughout the remainder ofthis paper we assume the p (x)’s are orthonormal.
If now A is the operator that restricts f to s c , i.e.,

Af=f X
and B is the operator that restricts f(i) via

f(i), i=0,1,’’-,L,Bf(i)=
0, i> L,

* Received by the editors October 29, 1986; accepted for publication (in revised form) May 18, 1987.
5" Department of Mathematics, Drexel University, Philadelphia, Pennsylvania 19104.
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we can again study AF-1BFA. In this case (see [6])

(.) AF-BFAf(x) K(x, y)f(y)w(y) dy, K(x, y)= 2 p(x)p(y).
i=0

We can also study the band-time-bandlimiting operator BFAF-1B which can be
represented as an (L+ 1)x (L+ 1) matrix G [6] with

(1.2) (G) I p(x)p(x)w(x) dx, i,j=O, 1,..., L.

In [5] it is shown that for the classical orthogonal polynomials, AF-1BFA has a
commuting second-order ditterential operator and G has a commuting tridiagonal
matrix provided M is chosen properly. We will use this commutativity to establish a
number of properties of the eigenfunctions for these operators. Most of these properties
are analogous to those found in 1] for the case of the standard Fourier transform and
these eigenfunctions can be viewed as polynomial analogues of the prolate spheroidal
wave functions.

2. Background. We begin by noting the following lemma whose proof can be
found in [6].

LEMMA 2.1. Let { Pi (x)} be a complete orthonormal family of polynomials (i
O, 1, 2, , degree ofpi(x) i) with respect to the continuous nonnegative weightfunction
w(x) on . Let c be such that

Then

O Is W(X) dx I% w(x) dx.

(i) AF-1BFA and BFAF-1B have L+ 1 positive eigenvalues,

1 > Ao_-> AI_->. "-> AL> 0.

(ii) If Co(X), 1(x)," ", eL(x) are eigenfunctions ofAF-1BFA corresponding to
eigenvalues Ao, A1," , AL, respectively, then BFi is an eigenvector ofBFAF-1B corre-
sponding to Ai for 0, 1, , L.

(iii) If ?(),5(1),...,5() are eigenvectors of BFAF-1B corresponding to
Ao, A 1, ", AL, respectively, then AF-1 is an eigenfunction olAF-1BFA corresponding
to A.

(iv) The chi(x)’s are polynomials of degree less than or equal to L and can be
normalized so that

(a) Ai(x) J K(x, y)i(y)w(y) dy,
(b) (i(x), Cj(X))w(x),C -’-tij and
(c) (,(x), (X))w()., ,.

(v) /f we let ---M= c_ M and ---Af =f. X- we have
(a) ---AF-BF A4,,(x)= (1 -,,)(x), and
(b) (---A,, "A,)w(x). (,, ,)w(x).- 1

We now turn our attention to the problem Griinbaum investigated in [5], namely
that of determining for which orthogonal polynomial families the operator AF-BFA
commutes with a second-order differential operator and the matrix G of (1.2) commutes
with a tridiagonal matrix. He found the following.

THEOREM 2.2. For the classical orthogonal polynomials (Jacobi, Hermite, Laguerre,
and Bessel), orthogonal on (, e) with respect to w(x), if we choose A (r, e) where
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< r < e, then there exists a second-order differential operator D commuting with
AF-1BFA and a tridiagonal matrix T commuting with G.

The differential operators D are explicitly constructed in [5]. If we apply D to

Pn (x) and use a number of properties peculiar to the classical orthogonal polynomials,
we find that there are constants To such that

Dp,, (x) Tnn_lPn_l(X) + TnnPn (x) -+- Tnn+lPn+l(X ),

Thus taking

L

(2.3) (x) 2 cP,, (x)
n=0

and applying D to (2.3), we obtain a three-term recurrence for the c):
T,,,,_ ..i) + T,,,..i) + Tnn+.(i) C()ltSn--1 t; {Sn+ /.Zi

where Di (x) xi4 (x). Thus we may take the To’s as the entries of the matrix T that
commutes with G. An example of this sort is carried out in [4].

Our efforts will be limited to the Jacobi, Hermite, and Laguerre polynomials.
Since we will make use of D and T, we will give them explicitly below.

The orthonormalized polynomials {pi (x)} all satisfy [9] recurrences of the form

b(n)xp(x)v/. a(n)v/h,,+ p.+(x)+ c(n)x/, p,(x)+ d(n) hv/hn_ p_(x),

second-order differential equations of the form

l d [ w(x) d ]w(x) dx
p" (x) .p. (x).

and first-order equations of the form

W(x) d /h,,-1
w(x) dx

p" (x) ,.p. (x) + x.p. (x) + y._p._,(x).

Here we have (following the notation in [9]) that for the
(a) Jacobi polynomials on (-1, 1)"

w(x)=(1-x)’(l+x) (c, > -1),

tx,, -n(n + a + fl + l),

a(n)=2(n+ 1)(a +fl + n+ 1)(ce +/3 +2n),

c( n (ce +/3 + 2n + 1 )(/3 2

(n)
n( -t)
c+fl+2n’

y(n-1)=
2(n + a)(n + fl)
a+fl+2n

W(x)=(1-x)w(x),
2,+3+1

hn
a+fl+2n+l
r(a + n + 1)r(/ + n + 1)
n!F(a++n+l)

b(n)=(a +/3+2n)(ce +/3 +2n+ 1)

(a+fl+2n+2),.

d(n)=2(a+n)(+n)

(a+fl +2n+2),

t(n) -n,
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(b) Laguerre polynomials on (0, oo).

w(x)=e-Xx (a > -1),

a(n)=-(n+l),

c(n)=(2n+a+l),

a(n)=n,

y(n-1)=-(n+a);

W(x)=e-Xx’+’,

h,, F(1 + a) (n + c)’n
b(n)= 1,

d(n)=-(n+a),

(n) =o,

(c) Hermite polynomials on (-oo, o).

w(x)=e W(x)=e

/x,, -2n, h,, "rrl/22"n !,

a(n) 1, b(n) =2,

c(n) O, d(n)=2n,

a(n) =0, (n) =0,

y(n-1) =2n.

The commuting operators D, given in [5], have the form

D--- (x-o’)W(x) +Ax
w(x) dx

where for the Jacobi polynomials, A L(L+ a + fl + 2); Laguerre polynomials, A L;
Hermite polynomials, A 2L.

The matrices T are given by

a( i) ,/hi_+, i=O, 1," ", L-l,T+I., T,,+I (A +/zi +/3,) b- V hi

Ti=(A+tzi+fli) c(i)+ai_cr/x,, i=0, 1 L.
b(i)

Note that since all of the super- and subdiagonal elements of the matrices T are
nonzero, we are guaranteed that T has simple spectrum [10, p. 300]. Thus the eigen-
vectors of T are also eigenvectors of G.

3. Statement of the main result. Our goal here is to show that in the special cases
where commuting operators D and T exist, we know a great deal more about the
eigenfunctions and eigenvectors t?() than what was stated in Lemma 2.1. We have,
in fact, the following.

THEOREM 3.1. For the Jacobi, Hermite, and Laguerre polynomials with A (tr, e)
as described above we have

(a) AF-1BFA and BFAF-1B have simple spectrum (away from 0), i.e., 1 > Ao>

(b) Ifthe eigenvalues ofthe commuting matrices Tare ordered so that/Zo>/Zl >" >
I-t with corresponding eigenfunctions dp,, dpi then, infact, io O, il 1,..., it L.
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(C) o, 1," ", / each have L simple zeros on (6, e) and i has exactly zeros
on A (tr, e ). Furthermore the zeros of chi separate those of bi+l.

(d) For a vector (Xo,. ", XL), let S-() be the number of sign changes in the
sequence Xo, Xl," ", xL with zero terms discarded. Let S+() be the maximum number
of sign changes in the sequence Xo, Xl," ", xL where zero terms are arbitrarily assigned
values of +1 or -1. Then S-(t?(i) S+((i) i, for i--0, 1,..., L, for the case ofJacobi
and Hermite polynomials. For the Laguerre polynomials S-(() S+(()= L-i.

Before beginning the proof of Theorem 3.1 we note that in many applications we
are primarily interested in the b(() as eigenfunctions (eigenvectors) of AF-IBFA
(BFAF-1B) as opposed to as eigenfunctions (eigenvectors) of D(T). Theorem 3.1(b)
allows us to extend properties of the and ?( that are readily derived from D and
T to the operators AF-BFA and BFAF-1B.

Proof. We begin by showing that if (a) and (b) are established then (c) and (d)
follow readily.

If we write

(3.1(e)) -x (x-)W(x)-x"(x) +Aw(x)x,,(x)=tx,,w(x),(x),

then we can apply the argument in [7, pp. 719-721] to show that if/x>/zj, then Cj
has at least one more zero than i on (r, e). For completeness we sketch the argument
here.

Suppose that /x>/xj. Multiplying equation (3.1(e)) for bi by bj and equation
(3.1(e)) for Cj by and subtracting yields

d___ax
(3.1(f))

(, tx)w(x),(x)j(x).

If we integrate this equation from tr to Y (Y < e), we get

(3.1 (g)) () o’) W())(()) ()) 4 ())())) ( x) (x)(x)w(x) dx.

Suppose is chosen so that i (:) 0 and (x) 0, x e (or, ). Without loss ofgenerality
we may assume (x)> 0 on (o-,)?) and thus that I()?)< 0. Suppose now that (x)
has no zeros in (o-, :) and without loss of generality we take (x)> 0 on (o-, ). Then
(3.1 (g)) becomes

(3.1 (h)) ( o) W(:) ()) (:) (x x) (x)(x)w(x) dx.

But in all cases being studied (:- o’) W(:) > 0 and i >, thus forcing the left-hand
side of (3.1(h)) to be negative and the right-hand side of (3.1(h)) to be positive. This
contradicts the assumption that (x) has no zeros on (o-, ).

We can now repeat this argument on ()?,)7) where )7 is the next zero of (x). A
similar argument integrating (3.1 (f)) from )? to )7 will show that (x) has a zero
between : and )7. This argument can be repeated to show that there is a zero of (x)
between any two consecutive zeros of (x).

In a similar fashion we see that if ff is the largest zero of (x) on (o-, e), then
(x) has a zero in (5, e). Thus has at least one more zero than (j > i).
Noting that the ’s are polynomials of degree -<L and thus have at most L zeros,

we conclude that has at most j zeros. Furthermore we can show that since o has
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no zeros, applying the argument above to the interval (r, e) (i.e., integrating (3.1(f))
from o" to e) with i-0 and j- 1 enables us to conclude that bl(X) has exactly one
zero and that bj(x) has exactly j zeros.

We can now repeat the argument above on the interval (6, o-) (see Lemma 2.1(v)),
i.e., integrate (3.1(f)) from to r ( < tr), to show that if/xi </j, then th has at least
one more zero than bi on (6, tr). Thus b has L-j zeros on (tS, o-).

The interlacing property of the zeros is immediate thus proving (c).
Part (d) follows from consideration of the matrix T. If T is oscillatory [8] then

(d) follows immediately. A tridiagonal matrix is oscillatory if its super- and subdiagonal
elements are positive and its successive principal minors are all positive [8]. Clearly
in the Jacobi and Hermite cases the matrices T all have positive elements along the
super- and subdiagonals but it need not be that the successive principal minors are
all positive. Note, however, that if TG= GT, then also (T+AI)G= G(T+A/) and
T+ Al has the same eigenvectors as T does, but has eigenvalues/Zo + A >/1 + A > >
L+ A. Since there are a finite number of principal minors of T+ Al, all of which are
polynomials in A with leading coefficient 1, we can choose A sufficiently large so as
to guarantee that the principal minors of T+ Al are positive and so T+ Al is oscillating.
This assures (d) in these two cases.

In the Laguerre case the elements along the super- and subdiagonals of T are
negative. We can replace T by -T and carry out the same argument, only now the
eigenvalues are -// > --1 > "> -/o, and thus this reordering leads to S-(t7)
L-i.

We now consider (a). Note that p(x) is an eigenfunction of AF-BFA correspond-
ing to A 0 if and only if

(3.2) j- (X AX)p(x)f(x)w(x) dx 0

for all polynomials f(x) of degree <-L. For ifp(x) is an eigenfunction ofAF-BFA, then

KL(X, y)p(y)w(y) dy Ap(x)= A [ KL(X, y)p(y)w(y) dy.

The last equality is due to the fact that p(y) is a polynomial of degree _-<L and K(x, y)
is a reproducing kernel for such polynomials. From this we see that

(X- Ax)KL(x, y)p(y)w(y) dy 0, or

(X-IX)p(y)p(y)w(y) dy p(x)=O
i=0

and so the coefficients of p0(x), p(x),..., pl(X) in the above sum must each be 0.
Thus for any polynomial f(x) of degree -<_L we have (3.2). Conversely if (3.2) holds
for all polynomials of degree -<L, then we have

K(x, y)p(y)w(y) dy 2 p(x) pi(y)p(y)w(y) dy
i=0

p(x) p(y)p(y)w(y) dy
i=0

A [ K(x, y)p(y)w(y) dy Ap(x)

and thus p(x) is an eigenfunction.
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Suppose now that AF-BFA does not have simple spectrum. Then there exist
eigenfunctions f(x) and g(x), linearly independent polynomials of degree -<_L, corre-
sponding to eigenvalue A. Without loss of generality, we may assume one of these, say
g(x), has degree strictly less than L. Since g(x)(tr-x) has degree -<L, by (3.2) we have

(3.3) (x Xx)g(x)(- x)w(x) ax o.

But the left-hand side of (3.3) is in fact equal to

(1-A) fcg2(x)(o’-x)w(x) dx-A f (cr-x)g2(x)w(x) dx

and this is clearly less than 0, contradicting (3.3). Thus AF-BFA has simple spectrum
proving (a).

To prove (b), we claim that it suffices to show that the ordering in (b) holds for
just one value of o-. For suppose that L is fixed and that we write G(cr) for the matrix
G of (1.2) in order to denote its dependence on tr. Since the elements of G(cr) are
analytic functions of o- and the eigenvalues ,j (o-) of G(o-) are distinct, we know that
the functions Aj(o-) are analytic functions of cr [12]. Now if the ordering in (b) holds
for some particular cr and for some r’ the ordering does not hold, i.e., A (or’) > A_l(o"),
for some j, then by continuity considerations for some tr" between o- and or’, A_(o’")=
A(o’"), contradicting (a). This shows the claim.

Before continuing the proof of (b), we make note of the following ideas from the
theory of total positivity [13], [14], [15]. A kernel K(x, y) is said to be totally positive
on (a,/3) 14] provided the Fredholm determinants

(3.4) K(x’’’’’ x")= det (K (xi, yj))"i, =o>0=
Yo," ", y,

for all ce<-_Xo<X<’’’<xn<-_ and a<=yo<y<...<y,<= and n=0, 1,2,....
Gantmacher and Krein prove the following theorem [13, pp. 207-217].
THEOREM. Let K (x, y) be a totally positive continuous symmetric kernel on (a, ),

and suppose that

(3.5) K (X" " xn) > O for all a < xo < x < < xn < and n O, 1, 2,
\ Xo Xn

Then the integral equation

K(x, y)f(y)w(y) dy Af(x)

has positive simple eigenvalues Ao > A >. > 0. The corresponding eigenfunctions Cho(X),
bl(X), are such that qbi has exactly (simple) zeros in (a, fl).

If we could show that for some r, Kl(X, y) satisfies the conditions of the theorem
on (tr, e) then we could conclude that, by the proof of (c), the ordering in (b) holds.
In fact, a o- can be found so that KL(x, y) satisfies (3.4) and (3.5), but only for
n 0, 1,. ., L. With only minor modifications of the proof in [13], however, we see
that if (3.5) holds only for n 0, 1,. ., L then the eigenfunctions b(x) have exactly
zeros in (r, e) for i=0, 1,..., L.
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In order to show thatKL(x, y) satisfies (3.4) and (3.5) for n 0, 1, , L and some
tr, we will make use of Karlin’s notion of extended total positivity [11]. We call the
kernel K (x, y) extended totally positive of order r on (a,/3) if

(3.6) I(")(x, y)=det(Oi+K(x---t’ Y)]" >0Ox; Oy) ] i,j=o

for n =0, 1,..., r and for all x, y (a,/3). A theorem of Karlin [11] states that if (3.6)
holds then (3.4) holds with strict inequality for n 0, 1,. , r. Thus it suffices to show
that there exists r so that/n)(x, y)> 0 for n 0, 1,..., L and x, y (r, e).

Let

A(")(z)

po(z) pl(z) pL(z)]

[p(o;(Z) p";(z).., p(z)J

Po z) pl(z) p,,(z) p(z)]
p!z) p’.,z).
) p?(z) p;(zlJ

Then /")(x, y)=det (A(")(y)(A(")(x))r). We consider the cases of Jacobi, Hermite,
and Laguerre polynomials separately.

(i) Jacobi polynomials. Noting that A(l)(z) is a square upper triangular matrix
whose diagonal terms are nonzero constants, we have at once that

/)(x, y) det (A()(y)) det (A(L)(x)) 7- (det (A(L)(y)))2 > 0.

If we fix x then/")(x, x) is the determinant of the nonnegative definite matrix
A("(x)(A(")(x)r). For n L this matrix is positive definite (/)(x, x)>0) and thus
the eigenvalues of this matrix are positive numbers

0<to _-<rl=<r2 =<" "=<7"t.

By the separation theorem for the eigenvalues of a symmetric matrix [10], the eigen-
’< ’<...< r_l of A(L-)(x)(A(-(x))r interlace with the ri’s, and thusvalues ro "F1

< < T_I0< ro -<_ r <- r1-<_ r .= r_l= rL

and/(LL-1)(X, X) r. r_, > 0. Continuing in this fashion we see that/")(x, x) > 0
for n =0, 1,. ., L.

Since RO(x,y) is a continuous function of x and y for each n and since
/)(1, 1)> 0, we have that/"(x, y)> 0 in a neighborhood of (1, 1). In particular,
if r is sufficiently close to 1,/"}(x, y)> 0 for all x, ye(o-, 1) and n=0, 1,... ,L.

(ii) Laguerre polynomials. Here we can basically repeat the argument for Jacobi
polynomials, only this time on the set --A=(0, r), i.e., we consider the operator
.-.AF-IBF A of Lemma 2.1 (v). The eigenvalues in this case are > --AL > 1 --a_, >

> 1- ao> 0 with corresponding eigenvectors bL, 4e-, ", 4o. The same D and
T of Theorem 2.2 commute with .-.AF-BF A and BF---AF-B, respectively. By
taking r sufficiently close to 0 we can conclude that Rn(x, y) > 0 for all x, y e (0, r),
n 0, 1, , L. Thus 4i has L- zeros in (0, r) and thus zeros in (r, oo), completing
(b) of Theorem 3.1.
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(iii) Hermite polynomials. In this case we will use the Cauchy-Binet formula
14]. This gives us that

/")(x,y)= A(,)(y)(1 2 n)
l<--il<i2<’"<in<ZL il i2 in

(3.7)

where

(A(")(x)) T ( ill i22 ..’" )

is the determinant of the n x n matrix obtained by omitting all rows from B except
jl,...,j, and all columns from B except i,.., i,. Note that A")(y)(] 2" ’) is a
polynomial in y. We will show that the leading coefficient of the polynomial is always

2 i".) > 0 for all y > o- and all choicespositive Thus if r is sufficiently large, A")(y)(i 2
of i < i2 <" < i, and n 0, 1, , L. This in turn would enable us to conclude that
every term in the sum (3.7) is positive for x, y (r, o0) and thus that/")(x, y) > 0 on

It remains only to show that the leading coefficient of

A<")(x)
i i2

is positive
The p(x)’s are the orthonormalized Hermite polynomials and, since their leading

coefficients are all positive, we may renormalize them to have leading coefficient 1
1--" 2--’.without affecting the sign of A(n)(x)(i, i.). Thus A(n)(x)(]l i2 in is the determinant

of

X II + Xl2+ xin +
x i’- -Jr’’ i2x i2-1 -+- inx i"- "q-

2! xq-2 +. 2! x-2 + 2! x"-2 +"

x"-(’- (n 1)! x’2-("
n-1 n-1 n-1

(here (j)=0 if j> i) and this determinant has x degree at most i + i2 +’’" + i.-().
Thus the coefficient of xi++i-- () is (n- 1)!(n-2) 2! times the determinant of

(3.8)

1 1 1

(’;) (’;)

il
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That determinants of matrices of the form (3.8) are greater than or equal to 0
follows immediately from the fact that these determinants are minors of the transpose
of the matrix (B)ij- (), i, j 0,. ., N, and all minors of B are known to be greater
than or equal to 0 [15, p. 50]. Suppose now that the determinant of (3.8) is 0. Then
the n rows of the matrix (3.8) must be linearly dependent and thus there exist constants
Co, Cl," ", cn-1, not all 0, so that

(x)(x- 1) (x)(x- 1)’’" (x-(n-2))
(3.9) Co ’11- c,ix .qt.. C2 "- "4g- Cn2! (n-l)!

has n distinct roots, il, i2,’", in. But the polynomial in (3.9) has degree n-1, a
contradiction. Thus the determinant of (3.8) is always positive. This completes (b) of
Theorem 3.1.

4. Comments. In [16] Gilbert and Slepian looked at the operator AF-1BFA for
Legendre polynomials with (-or, or), where 0< tr < 1. They sought a commuting
differential operator. The results in this case were more complex and simplicity of
spectrum did not follow. The general techniques they employed in studying this
problem, however, form the basis of the argument in the proof of Theorem 3.1(a). We
further note that this argument applies quite generally to show that AF-1BFA has
simple spectrum away from 0 (regardless of whether or not the underlying polynomials
are classical ones) as long as (or, e).

The fact that the matrix T is oscillating as noted in the proof of Theorem 3.1(d)
means that much stronger results can be stated about the eigenvectors t?i). See, for
example, [8] and [15].

In the case of the standard Fourier transform discussed in [1], applications have
arisen based on the oscillation properties of the eigenfunctions [17]. Some related
applications for the polynomial cases will be discussed elsewhere.
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REGULARITY THROUGH APPROXIMATION FOR
SCALAR CONSERVATION LAWS*
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Abstract. In this paper it is shown that recent approximation results for scalar conservation
laws in one space dimension imply that solutions of these equations with smooth, convex fluxes
have more regularity than previously believed. Regularity is measured in spaces determined by
quasinorms related to the solution’s approximation properties in LI(I) by discontinuous, piecewise
linear functions. Using a previous characterization of these approximation spaces in terms of Besov
spaces, it is shown that there is a one-parameter family of Besov spaces that are invariant under
the differential equation. An intriguing feature of this investigation is that regularity is measured
quite naturally in smoothness classes that are not locally convex--they are similar to Lp spaces for
0 < p < 1. Extensions to Hamilton-Jacobi equations are mentioned.

Key words, regularity, approximation, Besov spaces, conservation laws
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1. Introduction. It is well known that discontinuities may form in the solution
u(x, t) of the hyperbolic conservation law

(C) ut + f(u)x O, x E , t > O,
0) e

even if the flux f and the initial data u0 are smooth. (In gas dynamics these discon-
tinuities represent shocks.) Hence, classical solutions of (C) do not generally exist.
Weak solutions of (C) are not unique, but both existence and uniqueness of weak so-
lutions that satisfy an auxiliary "entropy" condition were shown by Vol’pert [22] and
Kru.kov [15]. The regularity of these weak solutions is the topic of this paper.

There have been two different approaches to studying the regularity of solutions of
hyperbolic conservation laws of one or more independent variables. Both approaches
are "structural" in that they describe properties of the solution without quantifying
a norm, seminorm, or quasinorm that says, for example, that one function is twice
as smooth as another. The first approach is to show that "generic" solutions of the
scalar equation (C) with Co initial data are piecewise Coo. This approach has been
followed, for example, by Schaeffer [21], Guckenheimer [13], and Dafermos [5], [6]. A
typical result is that except for a set of first Baire category in the Schwartz class $,
initial data in $ results in piecewise Co solutions u(x, t). (Various assumptions are
made on the flux f, typically that it is convex or has isolated points of inflection.)

The second, more measure-theoretic, approach is to show that the set of singu-
larities of a solution u(x, t) is more restricted than those of an arbitrary function of
bounded variation in R R+. Consider the following definitions. If u(x, t) BV(R2),
then it is known [11], [22] that for every point (x, t) outside of a set of one-dimensional
Hausdorff measure zero (called the set of singular points), there exist numbers u+ and

*Received by the editors July 8, 1987; accepted for publication December 18, 1987. This
work was supported in part by the National Science Foundation under grant DMS-8403219 and
by the Institute for Mathematics and its Applications with funds provided by the National Science
Foundation.

?Department of Mathematics, Purdue University, West Lafayette, Indiana 47907.
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u- and a direction u R2 such that

1 /{ lu(y, T) u+ldy dv O.
(,-). (,)_>o} ((=,),,-)

If u+ u-, then (x, t) is a point of approximate continuity; if u+ # u-, then (x, t) is
a point of approximate discontinuity (a jump point). Furthermore, the set of regular
points consisting of the jump points is at most a countable union of rectifiable sets
of dimension n- 1. DiPerna [9], [10] showed for genuinely nonlinear systems of two
equations that the singular set of any solution u constructed by the random choice
method of Glimm [12] is in fact at most countable, and that at each regular point of u, u
has true one-sided limits that satisfy the Rankine-Hugoniot conditions. Furthermore,
the shock set of u has "nice" structure.

In a similar vein, Oleinik [18] has shown that if f is convex, then u is continu-
ous except on the union of a countable set of Lipschitz continuous curves (shocks).
Dafermos [6] and Liu [16] establish similar results.

Rather than considering structural properties of solutions, either of the solution
values (e.g., smoothness) or solution singularities (e.g., shocks), I consider smoothness
in certain approximation spaces that are closely related to Besov spaces. I show that
if uo is in one of these approximation spaces, then u(., t) is in the same space for all
later time if f is convex and smooth enough. (Of course, the results in this paper also
hold if f is concave.) These function spaces are not Banach spaces, and are not even
locally convex topological vector spaces, but they are composed of functions that are,
in some sense, smoother than arbitrary functions in BV, or even arbitrary piecewise
C functions (see 6). In 2 1 rationalize this approach by arguing that BV(R) is the
wrong space in which to measure smoothness, precisely because it is a locally convex
topological vector space. The convexity of the "unit ball" of BV(R) allows only coarse
measurement of the smoothness of functions that are discontinuous.

In this paper I consider a function smooth if it can be approximated-well in L
by possibly discontinuous, piecewise linear functions with free knots--the better the
approximation, the better the smoothness. This notion is developed in 3, in which I
recount certain results of DeVore and Popov [7], [8], based on work by Petrushev [19],
[20], that characterize the approximation spaces used here.

In 4, results from [17] are used to show that solutions of (C) that are initially in
BV(R) preserve whatever smoothness is obtained by the initial data in the sense given
in 3. In particular, it is shown that there is a one-parameter family of Besov spaces
that are invariant under the action of (C) provided the initial data is of bounded
variation. In 5, I point out that this is indeed a new result, because BV(R) is not
contained in the approximation spaces when the order of smoothness is greater than
one.

In 6, I show that there is, in general, no smoothing by the solution operator of
(C) in the approximation spaces considered here. This result follows from the partial
reversibility in time of the equation (C). The question arises because it is known that
if f is uniformly convex, then initial data in L (R) generate solutions that have locally
bounded variation for all positive time, so there is some smoothing action from L (R)
to BV(R).

These ideas also have applications to regularity of solutions of Hamilton-Jacobi
equations based on approximation properties in L; this will be explored in a later
paper. However, in 7 I present one result that follows immediately from the results
in 4.
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2. Why nonconvex spaces are natural. I begin with a specific example. Let
uo be the characteristic function of [0, 1] and let f(u) u. Then the solution u(., t) of
(C) is the characteristic function of It, 1 / t]. Except for the two jumps at the points t
and 1 / t, u(., t) is a very smooth function of x for every t. If the space that one uses
to measure regularity allows any jumps at all (which it must, because solutions of (C)
can develop jumps even for smooth data when f is nonlinear), then u(., t) must be a
relatively smooth function in that space.

Consider the inclusion of the functions u(., t) in BV(R), or in fact in any normed
or seminormed space whose unit ball is convex, and define the smoothness of u(., t)
to be its norm in this space. The solution u(., t), being a translation of uo, must have
the same smoothness as uo. (Of course, I am assuming that the norm or seminorm is
translation invariant.) This implies that any convex linear combination of u(., t) (for
0 < _< 1, say) will also have the same smoothness, because the unit ball of BV(R) is
convex.

It is easily seen that convex linear combinations of u(., t) can approximate arbi-
trarily well in L ([0, 1]) any monotone function that takes the values 0 at 0 and 1 at 1.
But, as is shown in 5 in a particular technical sense, an arbitrary monotone function
is very rough, in that one can say very little, a priori, about the size and distribution
of discontinuities in the interval [0, 1], for example, except that the sum of the jumps
is bounded.

Thus, the convex hull of the solutions u(., t) of (C) for our chosen uo contains
functions that are quite rough. It is shown in 4 that these rough ,functions cannot
arise as solutions to (C) if uo and f are smooth enough. It is in this sense that one
discards information when one concludes that the solution of (C) at any particular
time t has exactly the same smoothness as all functions in the convex hull of u(., t)
for t > 0. I conclude that it is better to measure the smoothness of solutions of (C)
in spaces whose "unit balls" are not convex.

3. Approximation spaces and Besov spaces. Smoothness will be defined
by how well a function can be approximated by piecewise polynomials with free knots.
This section summarizes results in [7] and [8], which are given as general references
for this section.

Consider the approximation of functions in LP(I) for 0 < p < oc and a finite
interval I C R. For any .f LP(I) and any positive integers r and N, let

ErN(f, LP(I)) inf Ill

where the infimum is taken over all discontinuous, piecewise polynomial functions
defined on I of degree less than r with N- 1 free interior knots. In other words, for
each function f and number N one picks the best set of knots to minimize

For each positive number a choose an integer r > a. For any q (0, oc], define
.,q’(LP(I)) to be the set of functions for which

1/q

(In this and all later cases, make the usual modification when q oc.) It can be
shown that all values of r greater than a specify the same space. Note that a is
the primary determinant of smoothness: If c1 > c2, then no matter the value of
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ql and q2, ql (LP(I)) C .q2(LP(I)). However, if eel C2 O and ql > q2, then

The spaces (LP(I)) are not as strange as they might seem. If one denotes
by (iP(I),free) the spaces described above, and by (LP(I), uniform) the similar
spaces defined by considering approximation using only uniform knot sequences, then
the space (LP(I), uniform) is the eesov space B(LP(I)) given below (cf. [7]). Also,
if is not an integer and 1 p < , then (LP(I),uniform) is the Sobolev space
Wa’(I) (cf. [1, p. 223]). Thus, there is a strong connection between approximation
spaces and more classical function spaces.

(LP(I)) can be characterized as the inteolation space of LP(I) and certain
Besov spaces using the real method of interpolation. For (0, ) and q (0, ],
define the Besov space B(LP(I)) as follows. Pick any integer r > ; let Ar(f,h)(x) be
the rth forward difference of f at x with inteal h; and let Ih (x I x +rh I.
Define

wr(f,t)() sup [[Ar(f,h)[[L().
Ihl<t

The Besov space B(Lp (I)) is defined to be the set of functions f for which

(/o[fIBg(L(Z)) [t-w(f t)L(i)] q dt/t

is finite. Set IIflIB (L (Z)) IlfllL (Z) + [flS(L(I)). I specifically require the case
when p and q are less than one.

The real method of interpolation using K-functionals can be described as follows.
For any two spaces Xo and X1 contained in some larger space X, define the following
functional for all f in Xo + XI:

K(f,t, Xo,X) inf (llfollxo +tllflllXl},
f--fo+f

where fo E Xo and f E X. The new space Xo,q (Xo,X1)o,q (0 < 0 < 1,
0 < q _< cx)) consists of functions f for which

II/llxo, -Ilfllxo/x, + [t-OK(f,t, Xo,X)]q dt/t

where Ilfllxo+Xi K(f, 1, Xo, Xl). Using results of Petrushev [19], [20], the following
theorem is proved in [8].

THEOREM 3.1 (DeVore and Popov). When 0 < p < oc, 0 < q <_ oc, and 0 <
a < , define a 1/(/ + l/p). Then

(LP(I)) (L(I), B(L(I)))a/,a,
and if q 1/(a + l/p),

(LP(I)) B(Lq(I)).
Thus, there is a two-parameter family of spaces (LP(I)) that are Besov spaces,

albeit with q possibly less than 1.

Set A(f,h)(x) f(x) and Ar(f,h)(x) Ar-(f,h)(x + h)- Ar-(f,h)(x).
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Although there is not now an exact characterization of all the spaces (LP(I))
in terms of Besov or other spaces, the above theorem allows one to make rather
precise statements about inclusions of these spaces in Besov spaces. For example, if
0 < q < 1/(a + l/p), fl > a, 1/(fl + l/p), and 5 1/(a + l/p), then

B(L(I)) .,q(LP(I)) C .,q(LP(I)) C ,(LP(I)) B(La(I)).

There is an atomic decomposition for functions in B(LP(I)); see [71 for details.

4. Regularity for scalar conservation laws. I modify several results in [17]
to prove Theorem 4.2, which is the major result of this paper. The definitions from 3
will be used, assuming always now that Lv L1. First, I prove the following lemma.

LEMMA 4.1. There is a constant C such that,for all uo in BV(R) with support in
[0, 1] and for any N, the best LI([0, 11), discontinuous, piecewise linear approximation
with N- 1 free interior knots Vo to uo satisfies

Proof. Let (vi}/N=0, with vo 0 and VN 1, be the ordered set of knots of
vo. Consider now only one interval Ii (vi, Ti+I); let AT Vi+l --Vi, and let
supxei uo(x), u_ infxeI, uo(x), and Au - u_. Let s be the slope of vo in Ii.

If IslAv > Au, then it is easily calculated that the Ll(Ii) difference between uo
and vo is at least

4 8

which is simply the area of the set of points that are greater than but less than vo plus
those points that are less than u but greater than vo. If Isl > 2(1 + x/’)Au/Ar, then
this error is greater than the error of the constant approximation vo ( + u)/2 ,
so one must conclude that Isl _< 2(1 + vf)Au/AT. Thus

Vari, vo -ISl/XT
_< 2(1 + v)Au
_< 2(1 + v/-)Vari, uo.

So Y’i Var,vo _< 2(1 + V)luolBV(a).
Consider now the jump IVo(Ti+)--Vo(T-)I. Subscript the quantities s, , u_, , AT,

and Au to indicate the interval Ii to which they pertain. Without loss of generality
assume that si_l > 0 and si > 0. Then vo(v/-) _< i-1 + (1 + V)Aui-i and

vo (T/+) >_ i (1 + Vf)Aui. So

So, Ei Ivo(ri+) vo(T-)l <- (4 + 2/-)lUoIsv(a). Adding these two constants will
give the required value of C. [3

The previous argument can be extended to show that the ranges of uo and all
best piecewise linear approximations vo are uniformly bounded and contained in some
interval, here denoted by Vt.
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THEOREM 4.1 (Approximation). Let uo E BV(R) have support in the interval
I [0, 1]. Assume that f" >_ 0 and that f’ and f’" are bounded on 12. Then u(., t)

fhas support in It [infe f’(c)t, 1 + supen ()t] lu(.,t)IBV(R _< lU01BV(R), and
for any N >_ 1,

(4.1)
t

flllEF(N)(U(’,t),Ll(lt)) <- E(uo, Ll(I)) + I1

where F(N) [(C11olv(.) + 4)N + 4] and C1 i8 ffiVet in Lemma 4.1.

Proof. I will not discuss the first two conclusions of the theorem, which are clas-
sical. The proof of the third part models very closely the proofs of Theorems 3 and
4 in [17]. However, for the sake of completeness, I will recall the major parts of that
paper.

Let vo be the best L1 (I), discontinuous, piecewise linear approximation with N-1
free knots to no. Then, as shown in Lemma 4.1, IV01BV() _< CllU01BV(a). Consider
the C, piecewise quadratic function g with knots at the points j/N, j Z, that is
defined by: g(j/N) if(j/N) and g(0) f(0). In [17] I constructed an explicit
solution to the perturbed problem

vt+g(v)=O, xR, t>0,
(P)

v(x, O) vo(x), x e R,

provided that one augments the knots of vo by putting a new knot at each isolated
point x for which vo(x) j/N for some j. (If vo is discontinuous at x, and there are
k values of j such that min(vo(x-), vo(x+)) < j/N < max(vo(x-), vo(x+)), then add
k knots at the point x.) Although these knots are not needed for the definition of vo,
the solution v(., t) of (P) may develop discontinuities in its first derivative ("kinks")
at these new knots for positive times.

The new knots number no more than (2 + IvolBv())N + 1, by the following
argument. Let the original knots of vo be vo 0 < T1 < < TN 1, let a2i

a2i+l Ti for i 0,..., N, and consider the B-spline basis for vo with the knots
{hi}. (See de Boor [2, Chap. 9] for this construction.) For each i, let ki denote
the number of original intervals (a,a+l) that had i new knots added. The value
of -i iki is to be bounded. Now, i ki 2N + 1. But if i points are added in
an original interval (aj,aj+), the variation of vo in that interval must be at least
(i- 1)IN, so i(i- 1)kilN <_ IV01BV(N), or Y’i(i- 1)ki <_ NIV01BV(R). Adding
these two known inequalities shows that )-i iki <_ (2 + IvolBv(a))N + 1, as claimed.
Thus, the total number of knots in vo (counting the points ai and the new points,
all of which may travel along different characteristics for t positive) is bounded by
(4 + Cx luolBv(a))N + 3.

It is shown in [17] that v(., t) is piecewise linear for all time and that the number
of knots decreases monotonically, because f" is nonnegative. Theorem 3 of [17] shows
that

Ilu(" ,t) v(., t)llL,() <_ [lUo VOIIL() / tJif’-- g’ll oo I olBv( ).
Because of the way g is constructed, Ill’- g’ll oo _< IIf"’IIL/(dN), so (4.1) follows
immediately. []

The proof can be easily modified to cover the case where f C and is piecewise
C3 on intervals Ij with inf II.l positive.

Theorem 4.1 can be used to prove the following main result of this paper.
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THEOREM 4.2 (Regularity). Assume that there is an E (0, 2) and a q
such that uo has support in [0,1] and uo BV(R)N (LI([0,1])). Assume that
f >_ 0 and that f and f’ are bounded on . Then u(.,t) has support in It
[infen f’()t, 1 + supe f’()t] and u(. ,t) BV(R)N (Ll(It)).

Proof. Inequality (4.1) shows that the error in approximation (by piecewise linear
functions) of u(., t) is no more than the error in approximation of uo plus something
of O(N-2), and that the number of knots remains O(N) for all later times. This is
sufficient to show that u(.,t) (Ll(It)) if a < 2.

By combining Theorem 4.2 and the characterization of the spaces (i(I)) in
terms of Besov spaces, the following corollary is obtained.

COROLLARY 4.1. Let 0 < ( < 2, and set q- 1/( + 1). If uo has support
in I [0,1] and uo BV() B(Lq(I)), f" >_ 0 and f and f" are bounded on, then u(., t) ha8 8upport in I [inf f()t, 1 / sup f()t] and u(., t)
BV(R) B(Lq(I)).

Thus, there is a one-parameter family of Besov spaces that are invariant under
the action of the semigroup S that takes uo to u(., t).

Theorem 4.2 and Corollary 4.1 are of interest only when c is greater than one,
because any function in BV([0, 1]) can be approximated to within o(g-1) in L ([0, 1])
by piecewise constant functions with N- 1 uniformly spaced knots, so BV([0, 1])
(L([0, 1])) when 0 < c < 1, or when c 1 and q--

5. Approximation spaces and BV. In this section I give examples of the
known fact that N(LI([0,1])) BV([0,1]) and, if ( is greater than one,
BV([0, 1]) .

First, I present an increasing function in BV([0, 1]) but not in for any c
greater than one. The function will take the value 0 to the left of 0 and will take
the value r2/6 to the right of 1. Its definition is as follows.

The jumps of will be at the points p/2k for p an odd integer between 1 and
2k 1 with k a positive integer. For each k, the size of the jump at the point p/2k
will be 1/(k22k-l). Between the jumps, will be constant, so that if one arbitrarily
defines to be right continuous, is given by the formula

1
k22k-1

p/2k<x
k>0, 0<p<2k, p odd

Because for each k there are 2k-1 odd integers p between 0 and 2k, (1), which is the
sum of the jumps, is indeed r/6. Figure 1 is a graph of (x)/(1).

Now consider the approximation of this function by possibly discontinuous
linear functions with 2M 1 interior knots for some positive M. Because behaves in
exactly the same way on each interval (j/2M, (j + 1)/2M), it can be shown that the
optimal placement of knots will be at the points j/2M for 0 < j < 2M. Because there
is a jump of height 1/((M + 1)22M) in the center of each interval (j/2M, (j + 1)/2M)
and the width of the interval is 1/2M, the best linear approximation on this interval
will have error greater than C/((M + 1)222M). Summing these errors over the 2M

intervals gives a global error of greater than C/((M + 1)22M), or, if one sets N 2M,
C/(logU(N)N). This quantity is asymptotically greater than C/Na for any a greater
than one, so is not in . Thus, one can conclude that if the conditions of Theorem
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FIG. 1. A function in BV([0, 1]) but not in.4(Ll([O, 1])) .for anya > 1.

4.2 hold with a > 1, then this function cannot be the solution u(., t) of (C) for any
positive time t.

It is perhaps simpler to construct a function in that is not of bounded varia-
tion. For x between 0 and 1, define

()
( 1

for2-v _( x ( 1.5.2-N, N>0,
for 1.5.2-N _( x ( 2-N+I, N > 0,

with (x) 0 for other values of x. (See Fig. 2.) It is clear that (x) can be
approximated exactly by a piecewise constant function with 2N knots for 2-g (

x < 1. By setting (x) 0 for x greater than 0 and less than 2-N, one obtains a
global error in LI(R) of less than 2-N with O(N) knots. In other words, this can
be approximated exponentially well by piecewise constant functions, and hence is in
N for any values of a and q, yet is not of bounded variation.

Thus, the class q says little about the size of the jumps by themselves, but more
about the combination of the size and distribution of the jumps in the functions. The
example of a function of bounded variation but not in had its jumps distributed
uniformly in the interval [0, 1], thereby inhibiting good approximation by piecewise
linear functions. In contrast, the example of a function in ,q but not of bounded varia-
tion had its jumps concentrated in a very small region. One may conclude intuitively
that solutions of (C) that satisfy the hypotheses of Theorem 4.2 may be rough, but
they are rough only in very small regions. This intuition is quantified in the atomic
decomposition formula given in [7] for functions in Besov spaces.

6. Lack of smoothing. There is, in general, no smoothing in the spaces
q(L(I)) for solutions of (C) as t progresses, even if the flux f is uniformly convex.
This follows because of the partial reversibility of (C), as described below.

Define initial data uo as follows: Let uo(x) be zero for x less than 0 and greater
than R, and constant between 1 and R, where R is a large parameter to be chosen



REGULARITY FOR CONSERVATION LAWS 771

FIG. 2. A function in 4(L1([0, 1])) .for all > 1 but not in BV([0, 1]).

later. Between 0 and 1 define uo (x) by

1
so(x)-- Z kr2k, r>0, >1.

p/2k<x
k>0, 0<p<2k, p odd

Then it can be shown that u0 is in any space N(LI([0, 1])) containing /r (LI([0, 1])).
Therefore, u(.,t) E (51([0, R])) for the same values of c and q.

Consider the solution u(. ,t) of (C) for t between 0 and T for some T when
f(u) u2. The increasing part of uo between 0 and 1 spreads out into a series of
expansion waves, and there is a shock emanating from the point (R, 0) in (x, t) space.
For a fixed T, if R is big enough then these waves will not interact. Consider now the
solution of

Vt -[- g(v)x O, x R, t > O,
v(x, O) u(x, T), x e R,

with g(u) -u2. It is easily seen that v(x, T) so(x) for x between 0 and 1, while
the rest of v(x, T) consists of constant states and a linear function representing a
rarefaction wave. It follows that v(x, O) u(x, T) cannot have more smoothness than
uo in the sense of these approximation spaces.

It is interesting to note that u(., t) is piecewise Co for all positive and is in the
Sobolev space WI’OO([0, R]), yet it is not in the spaces ([0, R]) if a is large enough.

7. Hamilton-Jacobi equations. A special Hamilton-Jacobi equation in one
space dimension is given by

(H-J)
wt+f(w,)=O, xn, t>O,

o) e n.
Problems of existence and uniqueness of solutions of (H-J) were solved in papers by M.
G. Crandall and P. L. Lions [3], [4], in which they showed that the notion of "viscosity
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solution" of (H-J) led to well-posedness. Certain "structural" regularity results are
known for solutions of (H-J); see, for example, [14].

The problem (C) can be derived formally from (H-J) by setting u wx and
differentiating (H-J) with respect to x. This association is more than formal, however,
because Crandall and Lions showed that the viscosity solution of (H-J) is the limit
as e tends to zero of the solution of (H-J) with the right-hand side replaced by
(hence the name "viscosity solution"). The entropy solution of (C) is also the limit as
e tends to zero of the equation with the right-hand side replaced with eu (see, e.g.,
[15]), so if w) is in L1, then the formal calculations are in fact valid. Thus one can
immediately derive the following theorem from the results in 4.

THEOREM 7.1. Let wo have support in [0, 1], and assume that there is an
(0,2) and a q (0, oc] such that Wo BV(R) (L1([0,1])). Assume also that

f" >_ O, f(O) O, and that ff and f" are bounded on gt (see the comment following
Lernrna 4.1). Then w(.,t) has support in/t [infcen f’()t, 1 + supen f’()t] and
w(. ,t) BV() (Ll(It)). In particular, when q 1/(a + 1) and w BV(R)
B(Lq(I)), then wx(. ,t) e BV(R) V) Bg(Lq(It)).

Acknowledgments. This paper was written after extensive conversations with
R. DeVore and V. Popov, and I am deeply indebted to them for their assistance.
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Abstract. A well-known model for the evolution of the (space-dependent) concentration and (lumped)
temperature in a porous catalyst is considered. A sequence of invariant regions of the phase space is given,
which converges to a globally asymptotically stable region B. Quantitative sufficient conditions are obtained
for (the region B to consist of only one point and) the problem to have a (unique) globally asymptotically
stable steady state.
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1. Introduction. This paper is concerned with a well-known model (Aris [1]) for
the evolution of a single reactant concentration u and of the uniform temperature v
in an isothermal catalyst

(1.1) Ou/Ot=Au-qb2f(u, v) in l-l, Ou/On=r(1-u) on Oil,

(1.2) dv/dt=Atz(1-v)+Ach2 ff(u, v) dx.

Here, A is the Laplacian operator and n is the outward unit normal to the boundary
of the bounded domain l)c Rp (p--1, 2, or 3). The parameters 42, tr, A, and /x are
strictly positive.

As it has been frequently pointed out in the literature ([1] and references given
therein), the isothermal model (1.1), (1.2) is not unrealistic because temperature is
often lumped in practice, due to the high conductivity of the solid catalyst. In fact,
such a model is a first approximation, as/3 0 and u 0, of the nonisothermal model,
in which temperature is spatially distributed, and given by

(1.3) L-Ov/Ot=Av+d2f(u, v) in12, Or u(1-v) on 012.

In this limit, the parameters A and/. of (1.2) are A L/Va and ix u/Sa, where
V and Sa are the volume and the external area of the domain 12 (see [2]).

The following basic assumptions will be made"
(H.I) The domain 12= Rp is bounded and (if p> 1) it is uniformly of class C2+",

for some 0 < a < 1. Then, it satisfies uniformly the interior and exterior sphere properties"
there are two constants, p > 0 and p2> 0, such that, for every point q of 012, two
hyperspheres, S and $2, of radius p and p2, are tangent to 012 at q and satisfy: S = f,
S2 fq fl {q}.

(H.2) The function f: [0, [ [0, [ --> R is of class C and there is a continuous
function F’[0, c[-->R such that: (i) f(0, v)=0 for all ve[0, [; (ii) 0 <f(u, v)<=F(u),
If.(u, v)l--< F(u), 0<L(u, v) for all (u, v)e ]0, [ ]0, [.
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under grant N/r 2291-83.
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Assumption (H.1) is made for some existence and comparison theorems to be
applicable. Assumption (H.2) is satisfied by

(1.4) fl(u,v)=u"exp(7-7/v), m->-l, T-->0,

(1.5) f(u,v)=ur"(k+u)-rexp(),-3,/v), m>-l, 3,>-0, k>O,

(1.6) f3(u, v)=u"[kexp(’),,-’),,/v)+u]-" exp (3,- 3,/v),

m>-l, 3’ >-r3’>-0, k>0.

The Arrhenius reaction rate function fl is most frequently used to model thermal
effects on the reaction rate (see [1]). The Langmuir-Hinshelwood functions f2 and f3
have received a considerable attention in the literature. Function f2 was first proposed
to model carbon monoxide oxidation over platinum catalysts, which is the main reaction
in automotive pollution-abatement devices. Further experimental evidence showed that
several hydrocarbons, such as ethylene and propylene, follow similar rate laws when
oxidized over noble metal catalysts (see [3]).

In this paper, some global asymptotic stability properties of the steady state of
(1.1), (1.2) will be obtained. Of course, results in the literature for model (1.1), (1.3)
(see [4]-[6]) apply to (1.1), (1.2) after small changes; unfortunately they are rather
mild: the steady state of (1.1), (1.3) is globally asymptotically stable (and hence, it is
unique) if the parameter 42 is small enough. A slightly stronger result was proven in
5], but it requires the function f to satisfy f(u, 0) > 0 for u > 0, and this property does
not hold if f is given by (1.4)-(1.6). The results of [4] were obtained by means of a
generalized Gronwall inequality. The results of [5], [6] were established by constructing
sub- and supersolutions converging to the steady state; the same idea has been used
also in the analysis of related reaction-diffusion problems (see, e.g., [7]-[10]).

Our approach is somewhat different, although it is also based on comparison
theorems. We shall construct a sequence {B,,} of invariant, stable regions of the phase
space of (1.1), (1.2), such that every region B,, traps the transient state of the system
in a finite time for arbitrary initial conditions. If the sequence {B,,} converges to a
region of the phase space B in an appropriate uniform sense, then such region is
globally asymptotically stable for (1.1), (1.2). Therefore, B contains the nonwandering
set of (1.1), (1.2) (i.e., the set of points (u, v) of the phase space of (1.1), (1.2) such
that, for every neighborhood of (u, v), U C()xR, and every T>0, there are a
constant > T and a point (Uo, Vo) U that are such that the solution of (1.1), (1.2),
with initial conditions (u(0), v(0))=(u0, Vo), satisfies (u(t), v(t)) U (see Hirsch
[11])). In particular, B contains every (stable or unstable) steady state, periodic, or
quasiperiodic solution,..., of (1.1), (1.2). If B consists of only one point, then such
point is a globally asymptotically stable (and hence, a unique) steady state of (1.1),
(1.2). This method of finding globally asymptotically stable invariant regions for
nonmonotone flows is similar to that used by Leung [12] in his study of some
prey-predator problems; in some sense, the ideas are in the spirit of the work by Keller
[13] and Sattinger [14] on semilinear elliptic problems.

In 2 we shall prove some basic results and state some definitions. In 3, a
sequence of invariant regions of the phase space of (1.1), (1.2), of the type described
above, will be obtained. The results of 3 will be applied in 4, to obtain some
quantitative sufficient conditions for the steady state of (1.1), (1.2) to be globally
asymptotically stable for a function f of a rather general type: f(u,v)=
g(u) exp(y-y/v), which includes the particular instances of (1.4) and (1.5). In
particular, we shall obtain global asymptotic stability of the steady state if b2 is
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sufficiently small or large, or if the function g is increasing and y is sufficiently small.
As a corollary, some sufficient conditions for the steady state of (1.1), (1.2) to be
unique will be obtained. For results on existence and uniqueness of the steady state
of (1.1), (1.3), see [4], [6], [15], [16]. It should be pointed out that to prove uniqueness
for large b- is not an easy task (see [16]).

The following notation will be widely used in the sequel. If l-I is defined as above,
and if Ul, u2 C([I), then Ul --< u2 will mean that Ul(X) <- u2(x) for all x [I, and Ul < u2
will mean that ul -< u2 and Ul # u2. If ul(x)< u2(x) for all x fl, then we shall write
/1<< 1,/2

2. Preliminary results and definitions. Let us first consider some basic results
concerning the evolution problem (1.1), (1.2), with initial conditions

(2.1) u(x, 0) a(x) > 0 for all x 6 fl, v(0) -> 0,

where C2(1)) and satisfies the boundary condition (1.1). By a (classical) regular
solution of (1.1), (1.2), (2.1) we shall mean a couple of functions

U C"(fi x [0, oo[) N c2’l(fi x ]0, oo[), /) Cl(EO, 00[),

which satisfy (1.1), (1.2), (2.1) pointwise, and are such that u(., t) => 0, v(t) _-> 0 for all
> 0. Here, u C1’ means that the functions (x, t) --> u and (x, t) --> Du are continuous.
u C2’1 means that u Cl’ and the functions (x, t) OZu and (x, t)Ou/Ot are
continuous, where Du and DZu are the matrices of first- and second-order x-derivatives
of u. Observe that negative concentrations and temperatures are not allowed since they
do not make sense from the physical point of view.

The following consequence of maximum principles will be widely used in the
sequel.

LEMMA 2.1. Let gl be as in assumption (H.1), and let W be a function of cl’(fi x
[0, oo[) N c2’l(fi x ]0, oc)[), such that

(a) W(x, O) >- O for all x fl.
(b) 0 W/Ot > AWfor all (x, t) 6 gl x ]0, o[ such that W(x, t) < O.
(c) 0 W/On > 0 for all (x, t) 0i-I x ]0, c[ such that W(x, t) < O.
Then W(x, t) >= 0 for all (x, t) i-I x [0, o[.
Proof The result follows by standard arguments, using maximum principles

(Protter and Weinberger [17]).
Global existence and uniqueness of solution of (1.1), (1.2), (2.1) will be a con-

sequence of the following a priori bound.
LEMMA 2.2. Under assumptions (H.1) and (H.2), let u u(x, t), v v(t), be a

regular solution of (1.1), (1.2), (2.1). Then, there is a constant a > 0 and a function
p 6 C2(i)), such that

u(x, t) _--< 1 + q(x) exp (-at) for all (x, t) 61 x [0, oo[.

Proof As is well known, the problem

(2.2) A, +

has a smallest eigenvalue a > 0, and eigenfunctions such that 0 >> 0. Hence, may
be chosen to be such that q, => 2(g -1), >>0 and the function W= W(x, t)=
1-u(x, t)+[2exp(-at)-exp(-2at)]O(x)/2 satisfies W(.,t)>=O for all t->0, as it
comes out when Lemma 2.1 is applied.
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THEOREM 2.3. Under assumptions (H.1) and (H.2), the problem (1.1), (1.2), (2.1)
has a unique regular solution if C2(,) and satisfies the boundary condition.

Proof. For given t and , let be as in Lemma 2.2 and let k 1 + max {O(x)" x f}.
Then, no regular solution of (1.1), (1.2), (2.1) is affected when f is replaced, in (1.1),
(1.2), by another function, f" R2- R, that is defined by: f(u, v)=0 for u <0, f(u, v)=
f(u, lvl) for O<=u<=k, f(u, v)--f(k, lv[) for u> k. Any solution of (1.1), (1.2), (2.1),
with f modified as above, is a regular solution of the original problem (the converse
is trivially satisfied). That is, if u cL(I) [0, o[) C.I(I), ]0, o[), v C([0, o[) is
a solution of the modified problem, then u(., t)-> 0 and v(t) => 0 for all > 0. Since
f(u, v)>-O for all (u, v)R, (1.2) yields dv/dt>=Atz(1-v) and v(t)>=O for all t>0;
also, u(., t)->0 for all t>0, as it comes out when Lemma 2.1 is applied to W=
u exp (-t), and it is taken into account that f(u, v) 0 for u < 0. Then, we only need
to prove the conclusion of the theorem when f is replaced by f, and this comes out
from standard theory on semilinear equations (e.g., from [18, Cor. 3.3.5] and [19,
Lemma 4.2]), when taking into account thatf is locally Lipschitz and globally bounded.

The following e- stability definitions of the Lyapunov type will be used in the
sequel. They are given in terms of the distance d, associated with the norm

II(u, v)ll-max{lu(x)l" x fi}+l l for (u, v) C(fi)R.

The distance between (u, v)C(fl)xR and B c C(II)xR is defined as usually
d[(u, v), B] inf (ll(u u’, v- v’)ll (u’, n}. Observe that C(f) x R includes the
phase space of 1.1 ), 1.2), (2.1).

DEFINITION 2.4. Let B c C(fl)xR. B is said to be an invariant region for the
problem (1.1), (1.2), (2.1) if, for any regular solution of the problem, (u(., 0), v(0)) B
implies (u(., t), v(t)) B for all t>0. An invariant region B is said to be stable if,
for every e > 0, there is a 6 > 0 such that for every regular solution of the problem
d[(u(.,0), v(O)),B]<6 implies d[(u(., t), v(t)),B]<e for all t>0. A region B is
said to be globally asymptotically attracting if every regular solution of the problem
satisfies d[(u(., t), v(t)), B]--> 0 as t--> o. An invariant region B is said to be globally
asymptotically stable if it is stable and globally asymptotically attracting. A region B
is said to be globally finitely attracting if, for every regular solution of the problem,
there is a constant T< such that (u(., t), v(t))B for all -> T.

The concept of globally finitely attracting region and the following lemma will be
used in 3.

LEMMA 2.5. Let the sequence of regions {B,,} and the region B f-) {B,," m N},
of C [l x R, be such that

(a) Every B,, is invariant, and globally finitely attracting for (1.1), (1.2), (2.1);
(b) For every meN, there are two constants, e,,,>0 and 6,,,>0, such that

N(B, 6m)C B,,, N(B, e,,,), where

N(B, ) {(u, v) C(II) R: d[(u, v), B] < };

(c) e,--->0 as m --->

Then the region B is invariant and globally asymptotically stable for the problem.
Proof. Since B f) {B m N}, the region B is clearly invariant. B is stable since

for every e > 0 there is an m N such that e, < e; then the definition of stable region
is satisfied with ,. Finally, B is globally asymptotically attracting since for every
e > 0 there is a constant T such that d[(u(., t), v(t)), B] < e for all >= T. To see that,
take m such that e,,, < e and take into account that Bm is globally finitely attracting
and B, c N(B, e,) N(B, e).
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3. Invariant regions. In this section, we obtain a sequence of regions satisfying
the hypothesis of Lemma 2.5, which leads to a globally asymptotically stable region
of the phase space of (1.1), (1.2), (2.1).

Let {a m} be a strictly decreasing sequence of real numbers, such that c 1 as
m - oo and ao(a 1) -< M-af(ao, 1/ao), where the constant M > 0 is defined below.
Let the sequence {am} be defined by am 1/a for all m N. From assumption (H.2)
(see Introduction), it turns out that there is a constant M > 0 and a function h "[0, a] x
[ao, oo[ R, of class C and bounded, such that h _-> 0, Oh/Ou >- 0, Oh/Ov >- 0, -Oh/Ou <-_

Of/Ou<M for all (u, v)[O, a]X[ao, OO[.
We consider the sequence of regions {Bm}C C(fl)x R, defined by

(3.1) Bm= (u,v)C(l))xIl:um<u<um, Gm<v+A udx<Gm, vm<V<V

where Uo, u, Go, G, Vo, and v are

(3.2) Uo 0, Go ao-/z -ltrSa(a- 1), Vo ao, u a,
GO ao(1 + A Va) +/x-1trS,

(3.3)
v=a+Iz-lrk2Vasup{f(a, v)+h(a, v)" v>-ao}

(Va and Sa are the volume of fl and the area of Off, respectively), and where Urn, U m,
Gin, Gm, Vm, and v (m => 1) are defined, inductively, by

AUm 2Mum am,b2[f(um_, Vm-l) Mum_] in fl,
(3.4)

aUra/On O’(Ol Urn) on Off,

hu ck:Mu amck2[f(um-, Vm-1) Mum-] in fl,
(3.5)

ue3U / e3 n cr a on Off,

Gm am + A Isa um dx + tz-lCr loa (1- um) ds’
(3.6)

Gm -t- A fa um dx + tz-ltr foa (1- um ds’

(3.7) Vm=max {om, Gm-A faumdx, wm), vm=min{Gm-hfaumdx, wm}
with

(3.8) Wm-"Olin-lt-/’1’--1(2 III If(urn’ /)m-l)+ h(um, /)m_l)-h(u m, /)m-l)] dX,

(3.9) wm olm 4r" -lt2 If If(urn’ vm-’) + h(um’ /)m-1)- h(um’ /)m--l)] dx.

LEMMA 3.1. Let m >-0 be an integer. If a regular solution of (1.1), (1.2), (2.1)
satisfies, for all >= O,

(3.10) Uo<=U(’,t)<=u, ao<=V(t) /fm=O, or

(3.11) um<u ,t)< < =/)m-1=u vm_=v(t) < ifm>-l,
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then there is a constant T such that for all T,

(3.12) Gm <= v(t) + A fa u(x, t) dx <- Gm, I) <--_ v(t) <-- v m.

If, in addition, the inequalities (3.12) hold for 0, then they also hold for all > O.
Proof. By using (3.10) or (3.11), the time derivative of G(t) v(t)+ A u(x, t) dx,

dG/dt= Aiz(1-G)+A2lz f udx+Acr foa (l-u)ds,
and drdt are easily seen to satisfy, for all t-> 0,

Atz(G,,-G+I-am)<-dG/dt<-_AIx(G"-G+I-a ") for m_->0,

Atz(1-v)<-_dv/dt<=Aix(v-v+ 1 a),

Atz(w,,-v+l-a)<-dv/dt<-AIx(w"-v+l-a m) for m=>l.

From these inequalities, the conclusion of the lemma readily follows.
LEMMA 3.2. The sequences defined by (3.1)-(3.7) satisfy, for all m N"
A. u,, << u,,+ << u m+l << u m, G < Gm+l < Gm+l < Gm, tm </)m+l < vm+l <
B. n is an invariant region for the problem (1.1), (1.2), (2.1).
C. B,, is a globally, finitely attracting region for (1.1), (1.2), (2.1).
Proof An induction argument will be used in the three cases. It will be proved

that the required property holds for m 0 and that it is satisfied for m =p if it holds
for m=p-1.

A. Both steps of the induction argument are easily accomplished by means of
maximum principles.

B. To prove that Bo is invariant, observe that if a regular solution of-(1.1), (1.2),
(2.1) is such that (u(.,0), v(O))Bo, then it satisfies, for all t->0 (i) u(., t)->_Uo=0
(definition of regular solution); (ii) v(t)>=Vo=ao (use the inequality dv/dt >
A/x(1-v)); (iii) u(., t)<-u=a (apply Lemma 2.1 with W=a-u); and (iv) Go <-

v( t) + A u(x, t) dx <= G, v( t) <= v (Lemma 3.1). In the same way, if Bp_ is invariant
and if (u(.,O),v(O))BpCBp_, then for all t>=O, (u(.,t),v(t))Bp_l and (i) Up<=
u( ., t) <= u p (apply Lemma 2.1 with W u Up and with W u p u), and (ii) Gp <=

v( t) + A u(x, t) dx <- G p, Vp <= v( t) <= v p (Lemma 3.1).
C. To prove that Bo is globally finitely attracting, observe that any regular solution

of (1.1), (1.2), (2.1) satisfies, for some finite constants, T1, T2, and T3 (i) 0=Uo<=
u(., t) <= u= a for all >_- T (Lemma 2.2); (ii) v(t) >= Vo ao for all >- T2 (use the
inequality dv/dt>-Atx(1-v)); and (iii) Go -< v(t)+A u(x, t) dx <- G, Vo <- v(t)<= v
for all t-> T3 (take the time variable t-max { T, T2} and apply Lemma 3.1).

Now, we assume that Bp_ satisfies property C and prove that Bp also satisfies it.
Let (u, v) be a regular solution of (1.1), (1.2), (2.1). By taking an appropriate origin
of the time scale, we may assume that Up_l<-_ u(., t)<= u p- and Vp_ < v(t)<= v p- for
all t-> 0. Then there are finite constants, T and T2, such that (i) Up <= u(., t)<= u p for
all >- T (apply Lemma 2.1 with W u + @p exp (-at)- aPup and with W apU

p +
@P exp (-at) u, where a > 0 is the smallest eigenvalue of (2.2), and pp _-> 0 and @P _-> 0
are eigenfunctions such that d/p>=aPup-U(.,O) and d/P >= u( ., O)- apUP); (ii) Gp <-

v(t) + A ta u(x, t) dx <-- G p, )p < v( t) <--_ v p for all -> T2 (take the time variable T1
and apply Lemma 3.1).
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THEOREM 3.3. A. The sequences defined by (3.2)-(3.7) satisfy u,- u,, u" u*,
uniformly in ,; G, - G,, G - G*, v, - v,, v - v*, as m -, where u,, u* C-(),
G,, G*, v,, and v* satisfy

(3.13) Au, qb-f(u,, v*) in f, Ou,/On o-(1- u,) on

(3.14) Au* dp2f(u *, v,) in

(3.15)
G* l + A Ia u* dx + tx-ltr loa (1- u*) ds,

G* l + A Ia u* dx + lx-’tr lo, (1- u,) ds,

(3.16)

(3.17)

v, max {1, G, A I u* dx,

l+lx-162 Ia[f(u,, v,)+h(u,, v,)-h(u*, v*)] dx},
v*=min{G*-AIau, dx,

(3.18) 0<<u,_-<u*<<l, 1-< G, _-< G* < oo, l_<-v,-_<v*<oo.
B. The region

B= (u,v)C(lI)xR: u,<u<u*= G,<v+A= udx<G*,= v,<v<v*=

is invariant, and globally asymptotically stable for the problem (1.1), (1.2), (2.1).
Proof. A. The monotone, bounded sequences {Gin}, {Gm}, {Vm}, and {v"} are

convergent, and their limits satisfy (3.18) (Lemma 3.2A). In the same way, the
monotone, bounded sequences {u,} and {u"} are pointwise-convergent to some func-
tions u, and u* satisfying 0<< u,_-< u*. By means of elliptic estimates, it may be seen
that u, and u* are twice continuously differentiable and satisfy (3.13), (3.14), and that
the convergence is uniform in f (only slight modifications are necessary in the proof
of Theorem 2.1 of [14], or in the proof of Theorem 10.3 of [20]). Then (3.15)-(3.17)
are obtained as limits of (3.6), (3.7). The inequality u*<< 1 is easily obtained when
maximum principles are applied to (3.14).

B. The sequence {B,,} satisfies the hypothesis (a) of Lemma 2.5 (Lemma 3.2).
Hypothesis (c) is also satisfied if 8, and E are

(1 + A Vfl)i min {min {u,- urn" x 1)}, min {u" u*: x

G,-G, G’-G*, V:--Vrn,

em 3(1 + A Va) max {max {u, urn" x e 1)}, max {u U*" X ( ’},

G,-Gm, G"-G*, v,-v., v"-v*}.

Observe that 8, > 0 for m 0, 1,. , as it comes out from the inequalities u,, << u,-<
u*<< u m, G, < G, <= G* < Gm, vm < v, <- v* < v (for m 0, 1,. .), which are easily
obtained from Lemma 3.2A.

l + p.-4)2 Ia[f(u*, v*)+ h(u*, v*)-h(u,, v,)] dx },
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Then, we only need to prove that hypothesis (b) is also satisfied. To this end,
observe that.

(i) If (u, v) N(B, 6rn), then there is (u’, v’) B such that

dE(u, v), (u’, v’)]--max {lu-u’["

Hence, u, <- u’ <- u*, G, <- v’ + A Set u’ dx <= G*, v, <= v’ <= v* and

u u (urn u*)+ (u*- u’)-]u u’l (1 + A Va) 6rn +0- 6rn >= O,

Grn-v-A udx>-(Grn-G*)+ G*-v’- u’ dx

-->(1 + A Vn)6rn + 0- (1 + A V,)6rn _>- 0,

vm-v>= (vm-v*)+(v*-v’)-]v-v’l>= (I+AVn)6m+O-6,,, >=0.

Similarly, it is easily seen that u urn >= O, v + Z et u dx Gm >= 0 and v vrn => O. Hence,
(u,v)Brn.

(ii) If (u, v) Brn and ir (u’, v’) C() is iven 6y

u’(x) max {u.(x), min {u(x), u*(x)}} for x ,
v’=max {v,, G,-A u’ dx, min {v, v*, G*-A fetu’ dx}},

then (u’, v’) B and d[(u, v), (u’, v’)] =< 2ern/3 < ern, as is easily seen. Therefore, (u, v)
N(B, ern).

Remark 3.4. Some remarks about the results above are in order.
A. It is easily seen, by means of an induction argument, that for every solution

of (3.13)-(3.18), (u,, u*, O,, O*, 1)., 1)*), the sequence defined by (3.2)-(3.7) satisfies

(3.19) urn << u, u* << urn, Grn < G, <- G* < Gm, 1)rn < 1), <- 1)* < I)

for all m N. Therefore, the solution of (3.13)-(3.18) that is approached as moo by
the sequence (3.2)-(3.7), (6,, 6", (,, (*, ,, *), is maximal in the following sense:
any other solution of (3.13)-(3.18) is such that ,=< u, <- u*=< 6", (,=< G,=< G*=< t*,, =< v, =< v*-< *. Since such maximal solution of (3.13)-(3.18) is necessarily unique,
the region B of Theorem 3.3 is independent of the choice of the sequence {a m} and
of the constant M. Furthermore, if one takes arn a 1 for all m N in (3.1)-(3.9),
the following sequence of regions is obtained

(3.20)

where Uo, u, Go, G, Vo, and v are

(3.21 Uo 0, Go Vo 1, uo 1, GO 1 + h Vet + Ix- o’Set,

(3.22) v= 1 + Ix--I()2 VI- sup {f(1, v)+ h(1, v)" v=> 1},
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and where u,,, u", G,,,, G", v,, and v" (rn->_ 1) are defined inductively by

Au,,, qb:’Mu,,, b2[f(u,_l, v’-) Mu,,,_l] in 12,
(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

OUm/On=o’(1--Um)

Au qb:ZMu b2[f(u"-, v_a)- Mu-] in ,
OUm/On=(1--Um)

G l + h In u dx + -’g Ioa (1- u) ds’

am l + o um dx +-l foa l um) ds,

max 1, G u dx,

l +-l2 ff[f(Um, Dm_l)+ h(um, Dm-1)-h(um, Dm-1)] dx),
vm=min{Gm-hfnumdx,

l +-l2 f[f(um, Dm-1)+ h(um, Dm-1)-h(um, Dm_l)] dx}.

on Of,

on Of,

The sequence defined by (3.21)-(3.27) is such that (i) it approaches a solution of
(3.13)-(3.18) as m-->oo (since it is seen to satisfy Lemma 3.2A and Theorem 3.3A),
and (ii) it satisfies (3.19) for all m e N and for every solution of (3.13)-(3.18) (to prove
it, use an induction argument, as above). Hence such sequence also approaches the
maximal solution of (3.13)-(3.18) as m--> oo, and the region B of Theorem 3.3 may be
obtained as the limit of the sequence of regions defined by (3.20), which may be easily
computed (numerically in general) from the linear problems (3.23)-(3.27).

B. As it was mentioned in 1, since the region B of Theorem 3.3 is globally
asymptotically stable, it contains the nonwandering set of (1.1), (1.2), (2.1), and the
same is true for any of the regions B, defined by (3.20)-(3.27) (since B c B, for all
rn N, as it was seen in remark A above). In particular every (stable or unstable)
steady state of (1.1), (1.2) is included in B.

C. If every solution of (3.13)-(3.18) satisfies u. u* and v.-- v*, then the region
B of Theorem 3.3 is a singleton, B {(Us, vs)}, and (us, vs) is a globally asymptotically
stable steady state of (1.1), (1.2); in addition, (us, vs) is the unique steady state of
(1.1), (1.2), as it comes out from remark B above. Observe also that (3.13)-(3.18) has
a unique solution in this case. This result will be used in the next section to obtain
quantitative, sufficient conditions for global asymptotic stability and uniqueness of the
steady state of (1.1), (1.2).

4. Global asymptotic stability of the steady state. In this section, we shall obtain
sufficient conditions for global asymptotic stability of the steady state of (1.1), (1.2),
(2.1), when the function f is given by

(4.1) f(u, v)= g(u) exp (y-y/v),

where g:[O, [- R is a cl-function satisfying

(4.2) g(0)=0, g(u)>0 for all u>0.
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Particular instances of such form of f are those in (1.4), (1.5). Some additional
assumptions about the function g will be considered below, when needed.

In order to avoid too many involved expressions, we shall obtain only reasonably
good sufficient conditions for global stability (and not the best ones that can be obtained
from the results of 3).

The role of the parameters 42, A, and tr deserves some attention. The Damk/Shler
number b2 is the basic parameter; the steady-state solutions of 1.1 ), (1.2), for example,
are usually represented by the curve r/- b2, where r/is a significant functional of the
steady state, i.e.,

, ax/Vf(1, 1),

which is called the ettectiveness factor (see 1]). Below, we shall prove that the steady
state is globally asymptotically stable (i) if b 2 is sufficiently small or large, for fixed
values of the remaining parameters; and (ii) for arbitrary values of b if the parameter
3’ is sufficiently small and the function g is increasing. The parameter A is a Lewis
number; increasing values of A are expected to make any steady state of (1.1), (1.2)
more and more linearly unstable (i.e., to increase the growth rate of the linear stability
analysis). This has been shown to be true for lumped chemically reacting systems (see
[21]), and for some distributed systems (such as (1.1), (1.2) iff(u, v)= u exp (y-y/v);
see [2]). Observe that the steady-state solutions of (1.1), (1.2) do not depend on
Some of the results below will be independent of A (they will be valid for 0 < A < o),
and some others (depending on A) will be quite useful for small values of A. The
Sherwood number r is usually fairly large (see [1]). Some emphasis will be put on
obtaining results that are significant as r (see, e.g., Theorems 4.4 and 4.5).

Let us assume that the domain l satisfies assumption (H.1) (see Introduction).
If the function f is as defined by (4.1), then Theorem 3.3 applies. The system (3.13)-
(3.18) may be written as

(4.3) Au,=ckg(u,)exp(y-y/v*) in

(4.4) Au*=kg(u*)exp(,-y/v,) in f, cu*/gn=tr(1-u*) on

v*=l+max{O’-AIa(u*-u*)dx+lx-ltrloa (1-u*)ds,

(4.5) tx-lck[exp (y-y/v,) Ic (g(u,)+ h(u,)) dx

-exp(y-y/v*)I,h(u*)dx]},
v*=l+min{Xfa(u*-u*)ax+ -l foa (1-u,)ds,

(4.6) z-’,k[exp (y-,/v*) f. (g(u*)+ h(u*)) dx

0<< u, _<- u* << 1, 1 _-< v, =< v* < o,(4.7)
where h =[0, 1]--> R is a cl-function satisfying

(4.8) h’(u)>-_O, g’(u)+h’(u)>=O for all 0-< u -<_ 1.
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The function h may be chosen to be such that

(4.9) kl=max{O, max{-g’(u):O<-u<-l}}=max{h’(u):O<-u<-l}.

The main idea to be used in the sequel is the following. According to Remark
3.4C, if every solution of (4.3)-(4.7) satisfies

(4.10) u, =u*, v, v*,
then (1.1), (1.2), (2.1) possess a unique steady state, which is globally asymptotically
stable.

THEOREM 4.1 (Global asymptotic stability for small ok2). Under the assumptions
above, (1.1), (1.2), (2.1) has a unique steady state, which is globally asymptotically stable
if ck 2 satisfies
(4.11) b2 exp y < c/kl,

and one of the following inequalities:

yV{k2(2kl + ks)[k3 -t- klk4q2 exp yl(a klq52 exp y)]b2

(4.12)
exp y+ k2+2k6}b2 exp y_-<

(4.13) yk2(2AtxV+trSa)[ka+ klk4dp2 exp y/(a-kdp2 exp T)]dp2 exp y<=tx,

yk2V,{1 + (2A/x + ksb exp y)[k3 + kk4b2 exp 71(a- kck2 exp y)]b2

(4.14)
exp y =<

where a, kl, k2, k3, and k4 are as in Lemma A.1 (see Appendix), and

ks=max {g’(u): 0_-< u-< 1}, k6 max {h(u): 0-< u--- 1}.

Proof. We shall prove that if (4.11) and one of the inequalities (4.12)-(4.14) hold,
then every solution of (4.3)-(4.7) satisfies (4.10). To this end, observe that if (4.11)
holds, then u, and u* satisfy (Lemma A.1)

(4.15) u*-u.<-k2[ka+klk4dp exp 7/(ce-k, cb exp y)]b2 exp y[1-exp (-y:)],

where

(4.16) =l/v,-1/v*
is such that

(4.17) 0<-:<-1, /(1-)<-v2,/(1-v,)=v*-v,,
as it comes out from (4.7). Subtraction of (4.5) from (4.6) yields

v* v, <_ tx-l cib 2[exp y ,y/ v*) Isa (g( u*) + 2h( u*) dx

(4.18)
-exp (,-,/v.) f. (g(u.)+2h(u.)) dx],

(4.19) v*-v,<-2A f(u*-u,) dx+tx-lo foa (u*-u,) ds.

Integration over in (4.3) and (4.4) and application of Green’s identity yield

(4.20) tr lo (1- u,) ds d exp y- y/ v*) f g(u,) dx,

(4.21) tr loa (1- u*) ds dp2 exp y- Y/ v*) I g(u*) dx"
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Substraction of (4.21) from (4.20) and substitution in (4.19) lead to

(4.22)
v*-v,<-2a la(u*-u,)+la,-’2[exp

Finally, after substitution of (4.15)-(4.17) in (4.18), (4.19), and (4.22), the following
inequalities are obtained:

(4.23) :/(1-:)-<A,[1-exp (-y:)] for i= 1, 2, and 3,

where ylA, ylA2, and TA3 are the first members of (4.12), (4.13), and (4.14). If
one of the inequalities (4.12)-(4.14) is satisfied, then :=0 (i.e., v,= v*), as it comes
out from (4.23), u.= u* (Lemma A.1) and the conclusion of the theorems follows.

Remark. Condition (4.12) does not depend on A, and it is more stringent than
(4.14) if kl 0 and a is sufficiently small. If tr is sufficiently small, condition (4.14) is
more stringent than (4.13).

THEOREM 4.2 (Global asymptotic stability for all b2>0). If, in addition to the
assumptions of Theorem 4.1, the function g satisfies condition (A.6) ofLemma A.2 (see
Appendix), then, for all b2> 0, (1.1), (1.2), (2.1) have a unique steady state, which is
globally asymptotically stable, provided that 3/satisfies one of the following inequalities
(see Fig. 1):

(4.24) k7 yerS//, -< 1 / (1 + 2a/z Va/erSn),

(4.25) ytrSa//x <_- 1/(1 + k7a/x Va/crSa),

.01

,,i,[ IIIIII lllltl
.I I0

K r Xi.tV/r Sf(b)

I0-1

I0

8

6

4

.1 a,,,,,l ,1 ,,,,a

2 5 I0 lOS

FIG. 1. Global asymptotic stability for all 2> O. Plots (a)-(d) correspond to conditions (4.24)-(4.27).
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(4.26) 3/--< 4/(1 + 4k7A V),
(4.27) 3/<= HI (/Z / 2trSc).

Here, k7 is as defined in Lemma A.2, and the positive, nondecreasingfunction HI :[0,
R is defined by H(y)=2for 0y2, Hl(y)=yfor 2<yyl, and H(y) h[hl(y)]
fory < y <, where (i) Yl h(Zl) =4.2488 and Zl 2.6761 is the unique positive
solution of the equation z= sinh z tanh z, and (ii) the strictly increasing functions, hi,
h:[Zl, [ [y, [ are given by

hi(z) =sinh z tanh z/(z-tanh z), h(z) z/(z-tanh z).

Proo If Lemma A.2 is applied to (4.3), (4.4), one obtains

(4.28) 0 u*- u. < 1 -exp (-k7T),

where is given by (4.16) and satisfies (4.17) and

1/v.v*l-, (v,-1)/v.v*<(1-)/4,
(4.29)

(v*- 1)/(v.- 1) (1 + )/(1 ),
as is easily seen when taking into account (4.7).

When using (4.20), (4.21), the following inequalities are obtained from (4.5), (4.6),
upon subtraction or division,

(4.30) v*-v, 2x I.(u*-u,) dx+ -l (u*-u.) ds,

(4.31) v*-v.A f(u*-u.)dx+-[1-exp(-T)]f (1-u.)ds,

(4.32) v*-v.(/)[exp(,,)f (1-u*)ds-exp(-,,)y
n (1-u.)ds],

(4.33, (V*-1,/(V.- 1, exp (2,,) [ I0 (1- u*)ds]/[Ia (1-u.) ds].
(Recall that the function h identically vanishes since g’(u)> 0 for all 0< u 1, accord-
ing to condition (A.6) of Lemma A.2.) A fuaher substitution of (4.5), (4.20) into (4.31)
yields

(4.34) v*-v.A fa (u*-u.) dx+(v.-1)[exp (r)- 1].

When taking into account (4.7), (4.16), (4.28), (4.29), the following inequalities
are obtained from (4.30)-(4.34):

(4.35) /(1-)(2AV,+S,/)[1-exp (-kTy)],

(4.36) /(1-)AV[1-exp(-kTy)]+(S,/)[1-exp(-r)],

(4.37) /(1-)<(2S,/g)sinh(y), (1 + )/(1-)< exp (y)if >0,

(4.38) /(1-)AV,[1-exp(-TkT)]+(1-)[exp(T)-l]/4.

If inequality (4.24) ((4.25) or (4.26), respectively) holds, then (4.35) ((4.36) or (4.38),
respectively) yields 0 (i.e., v. v*); then u. u* (apply Lemma A.1 and take into
account that kl 0) and the conclusion of the theorem follows. If (4.27) holds, then

0 and the conclusion of the theorem follows again. Use the second inequality (4.37)
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if 3’ --< 2 to prove it, and observe that if y > 2 and > 0, then (4.27) and the first inequality
(4.37) yield

H-I(y) < (1/s

but this inequality cannot be satisfied for any sc > 0 since the maximum of its second
member, in 0_-< _-< 1, is H-l(y).

THEOREM 4.3 (Global asymptotic stability for large b2). In addition to the assump-
tions of Theorem 4.1, let the function g satisfy conditions (A.7) and (A.8) of Lemma
A.3. Then, (1.1), (1.2), (2.1) have a unique steady state, which is globally asymptotically
stable for

(4.39)

if 6 is such that 0 < 6 <-a and satisfies one of the following inequalities:

(4.40) y <= yc (1 6)H2(a(1 3)/2 + 1/2a(1 6)),

(4.41) 6<=max{(l+l/a)/[l+ykg(l+Za2)],2a3/[a4+/a]-4a3]},
where (i) the strictly increasing function G and the constants p, a, and ks are as in
Lemma A.3; (ii) the strictly increasing function H:[1, o[ [2, o[ (see Fig. 2) is given
by H2(y) + yfor <-_ y <= 2, Hz(y) h3[hl(y)]for 2 < y < c; (iii) the strictly increasing
functions h3 [0, o[ [3, c[ and h: [0, [ [2, c[ are defined by

h3(z) z sinh z/(z cosh z-sinh z), h4(z) (sinh z cosh z- z)/(z cosh z-sinh z);

and (iv) the parameters al, a2, a3, and a4 are

al rS/tz, a2 Atz V,/rSa, a3 (1 + / a)/(1 + a),

a4 [(1 + a)(2 + a2)+ yk8(1 + 2az)]/a1(1 + a2).

Proof If (4.39) holds and 0< 6 <= a, then (Lemma A.3)

(4.42) 0<< u.<= u* < 6 <- a, O<= u*- u.<= 6[1-exp (-yk8sC)],

FIG. 2. The function H of Theorems 4.3 and 4.4.
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where sc= 1/ v.-1/ v* <- l. Then if the function h is chosen to be such that h(u)=0
for 0 <- u-< a (this may be done, with h satisfying (4.8), (4.9), since the function g
satisfies (A.7)),

(4.43) h(u.(x)) h(u*(x)) 0 for all x l.

Let us first assume that b2 and 6 satisfy (4.39), (4.40) and prove that : =0. To
this end, we define

A. 1 +/z-ltr exp (-y) | (1 u.) ds,

(4.44)
1 +/x-lo exp (ys) / (1 u*)A* ds.

A,=< v, and A*=> v*, as it comes out from (4.5), (4.6), (4.20), (4.21), (4.43). Hence,
if sc were different from zero, it would satisfy

sc= 1/v,- 1/v*<=(A*-A,)/A,A*
(4.45)

<2a sinh (y)/[1 + a(1- 6)exp (-ysc)][1 + a(1- 6)exp (y)],

or

1 > (1-6)[a(1-6)/2+ 1/2al(1-6)+cosh y]/sinh y:,

as obtained from (4.42), (4.44). But this inequality cannot hold for any > 0 since the
minimum of its second member, in 0 =< <, is (1 6) H2(al (1 6)/2 + 1/2al (1 6))/y,
and 3’ satisfies (4.40). Then, =0 (i.e., v. v*), u, u* (Lemma A.3) and the con-
clusion of the theorem follows.

If b 2 and 6 satisfy (4.39) and (4.41), then

(4.46) v, => max { 1, 1 + a(1 6 a26)}, v* > 1 + al(1 6),

as it comes out from (4.5), (4.6), (4.21), (4.42). If sc were different from zero, (4.30),
(4.42), (4.46) would yield

1 < al(1 + 2a2)6[1 -exp (-k8ysc)]/[1 + al(1 6)] max {1, 1 + al(1 6 a26)}.

But this inequality cannot hold for any so>0 if 6 satisfies (4.41), as is easily seen.
Therefore, sc 0 and the conclusion of the theorem follows again.

Remarks. If b is calculated by means of (4.39), (4.40), then it does not depend
on h, while if it is obtained from (4.39), (4.41), then th2 4 as h 4.

It is easily seen that, for fixed values of the remaining parameters, the functions
64 42(6) and 64 yc(6) are strictly decreasing in 0< 6 < 1. Therefore, if

(4.47) y < H2(a/2 + l/2a,),

then the maximum value of 6 satisfying (4.40), 6M, is the unique solution of the
equation y= yc(6). Then, the best value of b provided by (4.39), (4.40) is tr(o’+
p/p)/ G(6 ), with 6=min {a, 6^4}. If (4.47) does not hold, then (4.40) is not satisfied
for any 6 > 0, and Theorem 4.3 does not provide a value of b2 uniformly valid in
0<A <c. Although Theorem 4.3 provides only sufficient conditions for global
asymptotic stability of the steady state, it may be seen, as a converse of Theorem 4.3
in a certain sense, that for first-order Arrhenius kinetics (i.e., for g(u)= u) and large
values of tr (see [2]), the upper linear instability bound (i.e., the supremum of the set
of values of (2 such that the steady state of (1.1), (1.2), (2.1) is linearly unstable), b,
satisfies b24 b2o< if y<(1 +a1)2/a1 and b-+ oo otherwise as h 4.
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Any b provided by (4.39), (4.40), or by (4.39), (4.41), is such that th- as
tr . In order to calculate a value of b2 uniformly valid in 0< r <, which is
expected to exist under mild assumptions on the function g, one would need the
following result, which is stronger than that in Lemma A.3 and seemingly true (under
mild assumptions on the function g)" there are two constants, A and k, such that, for
every tr > 0, (i) the problem (A.1) of the Appendix has a unique solution if A => A, and
(ii) if A<= A2 < A1 <, then the solutions of (A.1) for A A1 and A A2, ul and u2,

satisfy [u2(x)- ul(x)[ -< k(A1- A2), for all x 1. Property (i) may be proved if one is
able to obtain an upper multiplicity bound A when the Robin boundary data in (A.1)
is replaced by Dirichlet data" u 1 on 01; if 12 is the unit ball of R p, this comes out
from results by Dancer [23] that were obtained by means of topological degree theory;
unfortunately, even if the results of [23] are extended to arbitrary bounded domains
of R p, they do not seem to provide the constant k of part (ii) of the required result
above. Related results in the literature, such as those in [24], [25], do not apply to our
case.

Theorems 4.4 and 4.5 below provide a uniform value of b in 0 < tr < c but they
require the function g to be strictly increasing.

THEOREM 4.4 (Global asymptotic stability for large d?a). In addition to the assump-
tions of Theorem 4.1, let us assume that g is such that g’(u) > O for all 0< u _-< 1, and that

(4.48) 2 < 3,<= H2(al/2+ 1/2al),

where the constant a and the function H (see Fig. 2) are as defined in Theorem 4.3.
Then, (1.1), (1.2), (2.1) have a unique steady state, which is globally asymptotically stable

if
(4.49) ch2 >= 2(I/ Sa)2K[pS/IPl + 2-1/pK]/ G(61),
where the constants 6, 81, and K are the unique solutions of the equations

(4.50)

(4.51)

y=(1-6)H[al(1-6)/2+l/2al(1-6)], 0<6<1,

(1 61)/x/2G( 81) (1 + D/2p2) p-l#(1 +p/ crpl)/ G(6 ), 0 < 81 < 1,

(4.52) H2(K/2+2/K)- yas, K >- 1,

the constants pl, P2, and D are as defined in Lemma A.4, and

a5 (1 + D/2p2)p-l[p/pl +x/(p/pl)2 + 21-1/Pa6]x/2G(1)/ a6G(61),
a6 2(/x/Sa)[pS/tzpl + 2-1/P].

Remarks. If 3,<=2, then the conclusion of the theorem is true for all b2>0,
according to Theorem 4.2. Equation (4.50) has a unique solution if 3’ satisfies (4.48),
as was seen in a remark above. For a given value of 8, (4.51) has a unique solution

81 (which is such that 81 < 6), since the first member of (4.51) is a strictly decreasing
function of 81, and it approaches 0 and c as 81 1 and as 81 0, respectively. Since
the second member of (4.52) is larger than 2 (as> 1 and 3,> 2), (4.52) has a unique
solution (recall that H2(1) 2, H2 is strictly increasing and H2(y) o as y ).

Proof of Theorem 4.4. If b 2G(6 exp (y y v.) >- tr(tr + p/Pl), then u. <= u* <= 6
(Lemma A.3) and, as in the proof of Theorem 4.3, = 1/v,-1/v* is seen to satisfy
(4.45), which implies =0 (i.e., v.= v*). Then u. u* (Lemma A.1), and the con-
clusion of the theorem follows.

If t])ZG(6) exp (y-y/v.)<tr(tr+p/pl), then U*m=min {u*(x)" x012} satisfy
(Lemma A.4)

(4.53) (1 u*)/x/2G(u*,,) < (1 + D/2p2)P--1N/(1 + p/ O’pl)/ G(6 ).
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Since the first member of (4.53) is a strictly decreasing function of u* and 61 satisfies
(4.51), 61 --< u* and

(4.54) 61 < u*(x) for all x 01"/.

Then, U*m and u max {u*(x)" x 01-/} max {u*(x)" x 1} satisfy (Lemma A.4)

tr(1 U’m) < (1 + D/Zp2)P-lx/za, G(1),
o-(1 u*) > A, G(61)/[p/pl +x/(p/pl)2 + 21-1/pA, G(61)] tzK,/Sn

(4.55)

(4.56)

where

(4.57) A, b2 exp (2, 3’/v,).
Since K>-I and (2 satisfies (4.49), we have A, G(61) >= d2G(61) >-_ a6, and

(4.58) (I + D/Zpz)p-lx/2A, G(I) Sn/tzK,<=as.
Furthermore, (4.49), (4.56), (4.57) yield

(4.59) K <= K,.
Then, if A, and A* are as defined by (4.44), 1/v,-1/v*<= (A*-A,)/A,A* must
vanish because otherwise it would satisfy

< a5 sinh (y)/(K/2+ 1/2K +cosh y),

as it comes out from (4.44), (4.55), (4.56), (4.58), (4.59), or

as> (K/2+ 1/2K +cosh y)/sinh ysc,
and this inequality cannot hold for any : > 0 since the minimum of its second member
in 0<= < oois H2(K/2+ 1/2K)/y, and K satisfies (4.52). Therefore, 0 (i.e., v, v*),
u, u* (Lemma A.1) and the conclusion of the theorem follows.

Observe that the second member of (4.49) does not depend on h. The following
theorem provides a better result if h is sufficiently small. It also applies-for arbitrarily
large values of or.

THEOREM 4.5 (Global asymptotic stabilityfor large b2). In addition to the hypothesis
of Theorem 4.1, let us assume that the function g satisfies condition (A.6) of Lemma
A.2, and that

(4.60) y> 2, 6=max {(1 + 1/al)/[1 +yk7(1 +2az)],2a3/[a7+x/a-4a3]}< 1,

where the constants al, a2, and a3 are as in Theorem 4.3, k7 is as defined in Lemma
A.2, and

a7 [(1 + al)(2 + a2) + yk7(1 + 2a2)]/al(1 +
Then, (1.1), (1.2), (2.1) possess a unique solution, which is globally asymptotically stable
if

b2 -> 2(/x /S)2K[pSa/tzpl + 2-1/K]/G(61)
where 61 is the unique solution of

(1-61)/,/2G(61)=(l+D/2p2)-14(l+p/crpl)/G(6), 0<61<1,

the constants pl, p2, and D are as in Lemma A.4, and

(4.61) K y 2 + A Va +4(3, + Vn)2 + 4yk7 Vn]/2.

Remark. If y-<_2 or if 6 => 1, then the conclusion of the theorem is true for all

b2> 0, according to Theorem 4.2.
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Proof If qb2G(6) exp(3,-3,/v,)>=tr(tr+p/pl), then u,<-u*<=6 (Lemma A.3)
and, as in the proof of Theorem 4.3, : 1/v,-1/v* is seen to satisfy

=< al(1 + 2a2)6[1 -exp (-k73,)]/[1 + a(1 3)] max {1, 1 + a(1 6 a26)}.

This inequality cannot hold for any so> 0 if 8 is given by (4.60). Therefore, 0 (i.e.,
v, v*), u, u* (Lemma A.1) and the conclusion of the theorem follows.

If bG(8) exp (3,-3,/v,)<o’(tr+p/p), then u*=min {u*(x)" xO} satisfies
(4.53) (Lemma A.4). As in the proof of Theorem 4.4, this implies that u* satisfies
(4.54). Then u*,, and u max {u*(x)" x 0f} are seen to satisfy (4.55), (4.56), where
A, is given again by (4.57), and K satisfies (4.59) again. In addition, u, and u* satisfy
(4.28) (Lemma A.2). Then B, and B*, which are defined by

B* l-A fa(u*-u*) dx+l-ltr Ia (1-u*) ds,

1 +/x -1
tr exp (3,:) f (1 u*) ds,B*

satisfy

0--<B*-B*--<A I.. (u*-u,) dx+(B*-l)[1-exp (-3,)],
(4.62)

B,>-I+K-AVa, B*=> I+K,

as it comes out from (4.56), (4.59). Also, B,_-< v, and B*_> v* (see (4.5), (4.6), (4.21)).
Hence, = l/v,- 1/v*<-_ (B*- B,)/B,B* satisfies

: -< [1 -exp (- 3,)]/(1 + K A Va)+ A Vail -exp (- k7 3,:)]/(1 + K)(1 + K A Va),

as obtained from (4.28), (4.62). But this inequality cannot hold for any so>0 if K is
given by (4.61), as it is easily seen. Therefore : 0 and the conclusion of the theorem
follows.

Finally, since the steady-state solutions of (1.1), (1.2) do not depend on the
parameter A, the following corollary is true.

COROLLARY 4.6. If, for some A > O, the hypothesis of one of the Theorems 4.1-4.5
hold, then (1.1), (1.2) has a unique steady state.

5. Concluding remarks. A sequence of nested, globally finitely attracting, invariant
regions of the phase space of (1.1), (1.2), (2.1), converging to an invariant, globally
asymptotically stable region, has been obtained in 3. In 4, some quantitative sufficient
conditions (b sufficiently large or small, or g increasing and 3’ sufficiently small) for
global asymptotic stability of the steady state have been obtained, for a kinetic function

f ofthe typef(u, v) g(u) exp (3,- 3,/v). Some ofthe results, which were not uniformly
valid in 0< A < if 3, is too large, have been explained by comparison with linear
stability results that were obtained in [2]. Of course, similar results to those of 4 may
be obtained for any kinetic function satisfying assumption (H.2), such as that in (1.6).

The results of 3 remain valid when the Robin type of boundary data is replaced
by Dirichlet boundary data (u=l on 0II), and troa(1-u)ds is replaced by

(Ou/On) ds everywhere. To see that, a unit order (see, e.g., Amann [26]) must be
used to replace the definition of the order relation << at the end of 1 by u << u2 means
that there is a positive constant c such that Ul(X)+ ce(x)<-u:(x) for all x ll, where
the unit e is defined by Ae + 1 0 in fl, e 0 on 0fl. Such order definition could have
been used in 3 to obtain results for both Robin and Dirichlet problems at the same
time, although it has not been done for the sake of clarity.
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Growth restrictions on the function f are not necessary for the ideas of 3 to
apply. The assumption fo (u, v) > 0 has been imposed because it is satisfied by the most
commonly used kinetic functions (i.e., by those in (1.4)-(1.6)), but it could be removed;
then the definition of the sequence (3.1)-(3.7) should be changed somewhat.

The ideas of this paper are naturally extended if: (a) the Laplacian operator A is
replaced by a uniformly strongly elliptic operator; (b) the function f and/or the
boundary data depend on the space variable x; or (c) the linear boundary conditions
in (1.1) are replaced by appropriate nonlinear ones. They apply also to some more
general reaction-diffusion problems, such as the nonisothermal model (1.1), (1.3) (this
point is currently under research). Nevertheless, (1.1), (1.2) has been considered first
because such isothermal model (a) has practical interest in itself (not only as a limit
of (1.1), (1.3)), as was explained in the Introduction, and (b) it retains the main intrinsic
difficulty of (1.1), (1.3), namely, the flow defined by (1.1), (1.2) is not monotone. Also,
global stability results for (1.1)-(1.2) may be (and have been) compared with local
stability results, which were obtained in [2] for the slab geometry and first-order
Arrhenius kinetics.

Appendix. Let us consider the elliptic semilinear problem

(A.1) Au Ag(u) in 1, Ou/On r(1- u) on 0f,

where A >_-0, o-> 0, 1 c Rp (p 1, 2, or 3) satisfies assumption (H.1) and the C a-
function g satisfies (4.2).

LEMMA A.1. Under the assumptions above:
A. The problem (A.1) possesses a minimal and a maximal solution, u., C2()

such that

(A.2) 0<< .u ff << 1.

B. The solution of (A. 1) is unique if 0 <- A < a/ kl <= o, where a > 0 is the smallest
eigenvalue of (2.2), and ka is given by (4.9). Furthermore, if Ul and u2 are the solutions
of (A.1)for A=A1 and for A=A2 with 0=<A2<A1 <a/k<-c, then

0(( U2 U __-- k2[k3 + k4Alkl/(a Alkl)](A1 A2),

where

kz max {g( u)" O <- u <= l }, k3=max{qq(x)"xf}, k4=max{qz(X)"xl},

tl >> 0 is the unique solution of
Ad/ + I O in 12, Od//On + rb O on

and d/2 is any eigenfunction of (2.2) such that
Proof A. For the existence of the minimal and maximal solutions of (A.1) see,

e.g., 13], 14], or [20]. Inequalities (A.2) follow by standard arguments, using maximum
principles.

B. Since the function u g(u) + ku is nondecreasing in 0 =< u =< 1, U
satisfies

(A.4) AU+AkIU>-O in1), OU/On+trU=O on0O.

Then, if Ak < a, the generalized maximum principle (see [17]) shows that U-<0.
Therefore, .u J and the solution of (A.1) is unique.

Since the smallest eigenvalue of (2.2) depends continuously on the parameter tr

(see, e.g., [22]), one may choose e > 0 sufficiently small for the smallest eigenvalue of

(A.5) Aq+aq=0 in f, Oq,/On+(r-e)q=O on 0f,



GLOBAL STABILITY IN ISOTHERMAL CATALYSTS 793

al, to be such that klA1 a Then if >> 0 is an eigenfunction of (A.5), U (u2- u)/O
satisfies

q,AU+2VO. VU<-_A[g(u2)-g(u)]+a1(u-u) inO, OU/On+eU=O on01".

Then, standard maximum principles show that U >> 0, i.e., that u2 >> u.
Finally, U= u-ul-(Ai-A2)k[d/l+Akd/z/(a-Alkl)] is easily seen to satisfy

(A.4) with A A1. Therefore, U =<0 and the second inequality (A.3) readily follows.
Remark. If g’(u)>=O for all u[0, 1], then ka =0, the solution of (A.1) is unique

for all A-> 0 and inequalities (A.3) become 0<< u2-u _-< kk3(A1- A2). Under an addi-
tional mild assumption on the function g, the following lemma provides another upper
bound to u2-Ul, which is stronger than that above when A is large.

LEMMA A.2. In addition to the assumptions of Lemma A.1, let us assume that

(A.6) k7 sup {g(u)/ug’(u)" 0< u _-< 1} < c.

Let Ul and u be the solutions of (A.1) for A A1 and A A2 with 0 _-< A2 < A1 < oo. Then

0<< u- ul =<[1 (A2/A1)k] max {u(x)" x 1)}.

Remark. Assumption (A.6) implies that g’(u)>0 for all 0<u=< 1. Although the
converse is not true in general, it is true if, for example, the function u g’(u) is
nondecreasing in a neighborhood of u 0, as is the case for most commonly used
kinetic functions (e.g., for those given in (1.4), (1.5)).

Proof U u2- Ul >> 0 satisfies

AU=A2g(u)-Alg(u) inf,, OU/On+o’U=O on01.

Let Xo be a point (not necessarily unique) where the maximum of U is attained. Since
r > 0 and U(xo)> O, Xo cannot be a point of 01. Then, A U =< 0 at x Xo and

A2/A <- g( Ul (x0))/g(u2(xo)) <- Ul(Xo)/ U2(Xo)] l/k7,

where the second inequality is easily obtained when using (A.6) (the function u
g(u)/u /z, is nondecreasing). Then the conclusion of the lemma readily follows.

Let us assume now that the function g is such that there exists a constant a,
0 < a -< 1, satisfying

(A.7) g’(u)>0 for all0<u<=a, g(a)<g(u) for alla<u<=l,

(A.8) ks sup {g(u)/ug’(u)" 0< u _-< a} <

Then, we have the following.
LEMMA A.3. Let us assume that, in addition to the hypothesis ofLemma A.1, (A.7)

holds. If
(A.9) AG(a) -> o-(o- +p/p)

then (A. 1) has a unique solution, u u (x), which satisfies

(A.10) AG(u(x))<-_r(r+p/pl) for allxl,

where p is defined in the interior sphere property (assumption (H.1); see Introduction),
and G’[0, 1]-> R is the strictly increasing function

(A.11) a(u)= g(z) dz.
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If, in addition, (A.8) holds and if u and u2 are the solutions of (A.1) for A A
and A A2, where A1 and A2 satisfy (A.9) and A2 <A < o, then

(A.12) 0<< u- Ul -<[1 (A/A)kS] max {u(x)" x

Proof. Let u u(x) be a solution of (A.1) and let Xo be a point (not necessarily
unique) of 12 where the maximum of u, u4 =max {u(x)" x12}, is attained. Xo012
because otherwise Au(xo)>0. Let S c12 be the hypersphere, of radius p, that is
tangent to 012 at Xo. We consider the problem

(A.13) Aw =Ag(w) in S1, w- ut on 0S,

where the C-function gl’[0, 1]->R is such that g(u)=g(u) for O<-u<-a, g(u)>0
for a < u -<_ 1. Problem (A.13) has a unique solution (Lemma A.1), which is spherically
symmetric (Gidas et al. [27]), and given by

(A.14) rl-pd[rp- dw/dr]/dr=-d2w/drE+(p-1)r- dw/dr=Agl(w) in0<r<pl,

(A.15) dw/dr=O at r=0, w=u at r=

where r= xx and x is the center of S. Furthermore, the solution of (A.13) satisfies
w(x) >= u(x) for all x S, as it is easily seen by means of maximum principles. Hence

>(dw/dr)(A.16) tr(1-u)=(Ou/On)x=xo= r=p,

On the other hand, integration of (A.14), (A.15) yields

(A.17) rp-1 dw/dr= A z-g(w(z)) dz.

Therefore, the function r+w(r) is strictly increasing and (A.17) yields pdw/dr<
Argl(w(r)) for all O<r<-o. Hence, (A.14) implies that the function r dw/dr is also
strictly increasing, and (A.17) leads to

pf-(dw/dr) 2 > A zp-lg,(w(z))(dw/dz) dzr=p

(A.18)
> A(ep,)P-’[G(u)-G(w(ep))],

for any real constant e such that 0< e < 1, where

(A.19) Gl(U) gl(Z) d.

But, as it is seen from (A.17), (A.19),

(A.20) pf-l(dw/dr)=o,> Ag(w(epl)) p-1 dz

(A.21) Gl(W(eO1)) < w(eo)g(w(eo)) < utg(w(eo1)).

Equations (A.16), (A.18), (A.20)-(A.21) lead to the inequality

aG,(u4 < or(1 u )[ e -Pcr(1 u4 )+pu/pl(1 e P)],
which is valid for 0 < e < 1. Then, when replacing e p by 1 u4, we obtain (recall that
0< ut < 1)

(A.22) AG,(u) < tr(tr +P/Pl).
Since the function G is strictly increasing and G(u) G(u) for 0 _-< u -< a, if A satisfies
(A.9), then (A.22) yields u4 < a, i.e., any solution of (A.1) satisfies

(A.23) u(x) < a for all x e 12.
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Then, (A.1) has a unique solution, as it comes out when Lemma A.1 and maximum
principles are applied and (A.7) and (A.23) are taken into account. Inequality (A.10)
is readily obtained from (A.22).

Finally, (A.12) is obtained by the argument of the proof of Lemma A.2, when
taking into account that ul and u_ satisfy (A.23).

LEMMA A.4. In addition to the assumptions of Lemma A.1, let us assume that
g’(u) > 0 for all 0 < u <= 1, and let u u (x) be the (unique) solution of (A. 1) for a given
value of A>O. Then, usa=max{u(x):x012}=max{u(x):x12)}, and u,,=
min {u (x)" x 0I} satisfy

(A.24) cr(1-usa)> AG(usa)/[p/p+x/(p/p)2+21-1/PAG(usa)],
(A.25) tr(1 u,,,) < (1 + D/2p))P-x/2AG(u,,),
where p and p are defined in the interior and exterior sphere properties (assumption
(H.1); see Introduction), D is the diameter of 1 and the strictly increasing function
G’[0, 1] R is defined by (A.11).

Proof The argument that led to (A.21) in the proof of Lemma A.3 shows that usa
satisfies

AG(usa < o’(1 usa )[ e 1-Po(1 usa +pusa/ iOl 1 8
p

for all 0< e < 1. Then, if e p =1/2 (A.24) is readily obtained.
Let Xo 0f be a point (not necessarily unique) where u,, is attained. Let $2 be

the hypersphere of radius p2, tangent to 0fl at Xo to which the exterior sphere property
refers. Let x2 be the center of Sz and let S be the hypersphere of center at x2 radius
p2 + D. Then = S-$2. Let w" S-$2- R be defined by

(A.26) Aw Ag(w) in S- S, w u,, on 0(S- S2).

Problem (A.26) possesses a unique solution, which is spherically symmetric, and given
by

r1-p d[ r p-1 dw/dr]/dr Ag(w) in p < r < P2 + D,
(A.27)

w u,,, at r =/92 and r P2 + D
where r xx. To see this, observe that (A.27) has (at least) a solution (see, e.g., Keller
[13]), and that (A.26) has (at most) one solution (Lemma A.1).

The (unique) solution of (A.26) satisfies (apply maximum principles)

O<w(x)<u,, for all xS-S2, w(x)<-u(x) for all x12.

Hence

(A.28) -(dw/ dr)r=o >- (Ou/On ),,=,,o tr(1

On the other hand, let r > p2 be the smallest value of r where dw/dr 0. Since
rl <-p2 + D/2 (see Gidas et al. [27]), when (A.27) is multiplied by r2p-2 dw/dr and the
resulting equation is integrated between p2 and r, we obtain

[O-(dw/dr)r=o]= -2A r2-g(w(r))(dw/dr) dr

(A.29)
_-<2Ar- g(w) dw < 2A(0+ D/2)-2G(u,)

where w= W(rl);>0. Then (A.25) readily follows from (A.28), (A.29), taking into
account that (dw/dr)=o < O.
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TRANSPORT EQUATIONS WITH SECOND-ORDER DIFFERENTIAL
COLLISION OPERATORS*

CHRIS COSNERt, SUZANNE M. LENHART, AND VLADIMIR PROTOPOPESCU

Abstract. This paper discusses existence, uniqueness, and a priori estimates for time-dependent and
time-independent transport equations with unbounded collision operators. These collision operators are
described by second-order differential operators resulting from diffusion in the velocity space. The transport
equations are degenerate parabolic-elliptic partial differential equations, that are treated by modifications
of the Fichera-Oleinik-Radkevic Theory of second-order equations with nonnegative characteristic form.
We consider weak solutions in spaces that are extensions of Lp to include traces on certain parts of the
boundary. This extension is necessary due to the nonclassical boundary conditions imposed by the transport
problem, which requires a specific analysis of the behavior of our weak solutions.

Key words, transport equations, electron scattering, degenerate parabolic-elliptic PDE, traces
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1. Introduction. Recently, an abstract theory of the time-dependent transport
equations has been given [4], covering a fairly large number of possible applications.
The transport equations in [4] are first-order partial differential equations, with general
time-dependent phase spaces, boundary conditions, and transport operators (irrespec-
tive of dimensionality), and they are analyzed largely by the method of characteristics.
In the present article, we consider transport equations with unbounded collision
operators, that are described by second-order differential operators resulting from
diffusion in the velocity space. Clearly the method of characteristics does not work
for these equations which are of degenerate parabolic-elliptic type. Instead we use the
theory of second-order equations with nonnegative characteristic form developed by
Fichera and Oleinik and Radkevic [10]. Our analysis extends that of [10] by giving a
more careful discussion of boundary values of weak solutions. This extension is
necessary due to the nonclassical boundary conditions imposed by the transport
problem.

The results of [4] are quite general. The major limitation of the theory presented
in [4] is related to the collision part of the transport operator. Namely, (i) the collision
operator is assumed to be separable into a sum of two operators describing the "in"
and "out" scattering, respectively, and (ii) the "out" operator is required to be a
bounded operator. The second assumption allows them to consider the transport
operators as a bounded perturbation of a first-order differential operator derived from
a real vector field. Accordingly, the strategy to obtain the existence and uniqueness
results in [4] was to use the method of characteristics for the vector field and a
perturbative approach for the full transport operator. Obviously, this strategy fails
when the collision operator is not bounded with respect to the vector field. This happens
to be the case in several important physical problems such as Brownian motion [6]
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and electron scattering 5], in which collisions are characterized by very small deflection
angles. Mathematically, these collisions are described by second-order differential
operators accounting for diffusion in the velocity space. Since the collision operator
acts only on the velocity variable, this leads to a special type of partial differential
equation known as degenerate parabolic-elliptic or ultraparabolic [9].

For one-dimensional systems in the absence of external forces, the Hilbert space
theory of the stationary transport equations with second-order differential collision
operators has been recently developed to a quite satisfactory general level [1], [2].
Under certain regularity assumptions, the existence and uniqueness results for one-
dimensional time-dependent problems follow immediately from the corresponding
stationary theory (see [3], [7]). Since the results of [3] are based on (half-range)
eigenfunction expansions, they appear to be limited to one-dimensional geometries,
which allow for the separation of spatial and velocity variables in the streaming term
of the transport equation.

The aim of this paper is to extend the existence and uniqueness theory for transport
equations with second-order differential collision operators to a more general setting
than considered previously. In 2, we shall consider the existence of weak solutions,
under boundary conditions of classical type, in LP spaces, 1 < p < oo. Time will not
be singled out as in ordinary evolution problems, but rather treated together with
position and velocity, which will allow inclusion of noncylindrical phase spaces and
time-dependent transport operators.

In this paper, only bounded phase spaces have been considered, which leaves out
the Fokker-Planck equation but includes the electron scattering equation. Existence
theory in the spirit of Theorem 2.4 is probably feasible, even for unbounded domains,
at the expense of extra technicalities. Much of the existence theory proceeds by duality
arguments which single out L as a distinct case. At this stage, it is not clear how to
include it in the analysis.

Section 3 is devoted to the uniqueness issue. Since our definition of solution is
rather weak, uniqueness is not always guaranteed. To recapture this feature, we have
to strengthen the requirements on the solution. Some of these aspects of the uniqueness
question are discussed in 3 and 5. Section 4 extends the existence and uniqueness
to include the case of general boundary conditions, encountered in transport problems.

In 5, we construct a solution in a Hilbert space setting which provides uniqueness.
A different Hilbert space setting also providing uniqueness is discussed in connection
with recent results of Degond and Mas-Gallic [7] for the one-dimensional electron
scattering problem.

2. Existence. In this section we shall discuss existence and a priori estimates for
solutions of boundary value problems of classical type for transport equations with
data in Lp. To be specific, we shall consider the operators

Ou
(2.1) Lu =-Ve. tx(, x, t)Vu-. Vxu+:" Veu-Au---Ot
and

(2.2) Lou=V./Xo(:, x)VCu-:. Vxu+:. Vu-Au
where x RN, : R, ; V and V denote gradients taken with respect to : and x;
/z and/z0 are smooth, positive functions, and A > 0 is a convenient positive constant.
Due to the nature of the applications, we only consider first-order terms of the form
shown in (2.1) and (2.2) (see the remarks at the end of this section for elaboration).
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The problems we consider have the form Lu f in f with u specified on an appropriate
subset of 0f/ and similarly, Lou =f on fo where f/ and fo are smooth, bounded
domains in N XN X and N x, respectively. Observe that we can change A in
(2.1) by replacing u with a e-u’ u for any constant a; since we shall study Lo as the
operator obtained by taking a given L and omitting the O/Ot term, we also have no
essential loss of generality by taking a convenient choice of A in Lo.

To describe the appropriate parts of the boundary of or f/o on which to specify
boundary data, we shall use some ideas from the theory of second-order partial
differential equations with nonnegative characteristic form. The ideas we use are
modifications of those that were developed by G. Fichera and which are discussed in
detail in the book of Oleinik and Radkevic [10]. Our modifications consist primarily
of more detailed and, in some cases, more delicate analyses of the behavior of weak
solutions on the boundary of domain. The extra information about the boundary values
of our weak solutions will be used in 4 to treat certain boundary conditions occurring
from transport problems which are nontypical for second-order equations. Since our
methods are the same for L and Lo, we give a detailed analysis only for L.

The notation used in [10] is somewhat different from that sometimes used in
discussions of transport problems, such as [4]. The differences in notation reflect an
interest focussed on different aspects of the operators L and Lo and their physical
interpretation. We shall give a brief discussion of how they are related and then state
most of our results in the notation of [4], which emphasizes the transport character
of L and Lo.

Suppose that __q_ N xnx is a bounded domain with 0f of class C2,a. We
shall denote points of by (x, s, t). If (x, sc, t) 0f, let n(x, so, t) x x E denote
the inner normal to 0 at (x, sc, t). It will be convenient to write n- (n, n, n) with

n , n N, and n, E. Following Fichera as presented in 10], we divide 0f into
four subsets. Let E3 {(x, , t) Of" n(x, , t) 0}. The set E3 is the noncharacteristic
part of 0f. Applying the definition given in [10] for general second-order operators
to the specific operator L, let b(x, , t) -. n + . n- nt denote the Fichera function
for L. Let

Eo {(x, sc, t) e 0f\E3: b(x, sc, t) 0},, {(x, sc, t) e 0\,3: b(x, , t) > 0},
{(x, , t) 6 Oa3: b(x, , t) < 0}.

It can be shown that 0, El, , and 3 are invariant under smooth nondegenerate
changes of coordinates. If L* denotes the formal adjoint of L, then the noncharacteristic
paff of 0 for L* is the same as for L; that is, E3(L*)= E3(L). On 03, applying
the definition of [10] to L* gives b*=-b where b* is the Fichera function for L*.

We now give the correspondence between some of the transpo theory notation
used in [4] and the notation of [10]. Let D+=, D-= 2; let d+ denote the positive
measure on D+ given by d+=bdg where dg the surface measure on 0, and let
du-=-bdg on D-.

Our definition of weak solutions to boundary value problems for L and Lo and
our a priori estimates on these solutions are based on the following form of Green’s
identity: let u, v e C(fi); then

(2.3) fa(vLu-uL*v) dxd, dt=- f [vn,. Veu-un,. V,v]d- fo buvd.

This is essentially formula (1.1.14) of [10]. If we require u v=0 on Z3 and use the
notation of [4] we have the following lemma.
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LEMMA 2.1. Suppose u, v C2((1) with u v 0 on -3. Then

(2.4) (vLu-uL*v) dxd{dt= uvdv-- uvdv+.
II D- D

Lemma 2.1 follows immediately from formula (1.1.14) of [10]. Formula (2.4) is
closely related to formula (2.20) of [4]. (Note that in [4], Y=-L and formally
-Y*= Y; this accounts for the apparent sign difference between the two formulas.)

We can now state the basic problem considered in this section and give an
appropriate weak formulation of the problem. We wish to solve

Lu f infl,

(2.5) u 0 on

u=g on D-

where we shall require f LP(II), g LP(D-, dr-). Observe that if u is a classical
solution of (2.5) then for any v C2(1) with v 0 on E3 we have via (2.4) that

(2.6) In (uL*v) dx d dt- fo uv dv+ f, vfdx d dt- fo_ vg dv-.

To give a precise definition for the types of boundary data and weak solutions that
we consider, we must first define certain spaces. Let

Ep LP(fl, dx d dr) x LV(D+, dv+) x LP(D-, dr-),

Ef LV(fl, dx d dt) x LV(D+, dv+) x {0},

E LP(II, dxd dt) x {0} x LP(D-, dr-),

with norms

I1(., u +, "-) (11" + + II"- TM

and a de ned similarly. It is easy to see via the Riesz Representation Theorem
(or its proof) that if 1 < p < oo and 1/p+ 1/q 1 then the dual spaces for Ev, E, and
Ezp are Ep*-- E q, Ep*= Eq, and E*= E.

Suppose f LP() and g LP(D-, dr-).
DEFINITION. A weak solution of (2.5) in Ep is a triple (u, u +, u-) Ep with u- g

such that

(2.7)

for all v C2(fi) with v 0 on E3, where v+= I)ID+/-,

Our objective in the remainder of this section will be to show that such weak
solutions exist and satisfy certain a priori bounds. Specifically, it is crucial for the
applications we consider to be able to control the Lp norm or u/; our arguments are
similar to those of [10] but are modified to allow us that control.

LEMMA 2.2. Suppose that u C2(() with u 0 on ,3, and 1 < p < o. Thenfor A > 0

(2.8) pA flulPdxd, dt4rf lu,pdp+<-p flulP-’(sgnu,Ludxd, dtq-f ]ulp dv-
D JO dD-

and if we denote u+= U[D and u-= UlD- then

(2.9) , llullg<.) / llu/llg<o+,+)<= a l-"lltullg<.) / llu-1lg<D-,-,
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Proof. We follow the proof of Lemma 1.21 of [10], but do not require u 0-on
D-. Applying (2.3) to the pair of functions {(u2+ 6)ply, -1} yields

f A u+ 6 )p/2 dx d, dt + Ia L(u+ 6)P/ dx d, dt

(2.10)

(Observe that since u 0 on E3, we have

Ve(u2+ 6)P/2=(p/2)(u2+ 6)(p/2-1)(2uV#u)--O on 3;

since v -1 is constant the first integral on the right side of (2.3) is zero.) A calculation
yields

L(u2+ 6)P/2=p(u2+ 6)P/2-uLtt-A(u2+ 6)P/2-1[(1-p)u2-F

+ tx(, x, t)(Vtu. Vtu)p(u2+ 6)P/2-Z[(p 1)u2+ 6];

since the last term on the right is nonnegative and since u 0 on 3, we obtain from
(2.10) the inequality

,{A(uZ+

6)P/-A(uZ+ 6)P/-l[(1-p)u+ 6]} dxddt

+ I p(u2 W 6 )P/2- uLu dx d, dt <- 6P/2 Ix Ib] &r + Io_ u2 + 6)/2 du-

frO+ U
2 + 6 )p/2 dv+.

Letting 6 - 0 yields

PA falulPdxddt+p falulP-uLudxddt<-fo_lulPdv--Io/lulPd’+,
which is equivalent to (2.8). To obtain (2.9) from (2.8) we use Young’s inequality, as
in the proof of Proposition 4 in [4, 3]" if a,b>O and l<p<oo, 1/p+l/q=l, we
have ab <= aP/p + bq/q. Applying the inequality with a  -’/qltul, b ’/qlul and
integrating over II yields

p fa lul,-lltu] dx d dt <- p f (A-’/ltu]’/p) dx d at

+P fa (Aq/qlu](P-)q/q) dxdsCdt

Using the last inequality to estimate the first term on the right side in (2.8) and
combining like terms yields (2.9).

The same type of analysis may be applied to L*. Noting that the sign of b changes
and thus the role of D+ and D- are reversed for L*, we have Lemma 2.3.
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LEMMA 2.3. Suppose that v C2() with v 0 on ,3, and 1 < q < o. Thenfor A > O,

qA Ia lvlq dx d dt + ;
(2.11)

=< -q J. lvi-(sgn v)L*v dx d dt + Jo [v[q du+

and if v+= rio+, v-= vo-, then

We now turn to the question of existence of salutions to (2.5) in the sense of (2.7).
TnzozM 2.4. Suppose that A 1, 1 <p<,f LP(O), andg LP(D-, dp-). en

(2.5) has a solution (u, u+, u-) Ep in the sense of (2.7) with u-= g, and that solution

satisfies the estimate

(2.13) inf [llu +
(y,z,O)Z

where

Z {(Y, z, O) EPl" IyL*vdxddt+ Io+ zv+ d’+=O

for all v cZ(fi) with v =0 on E and v+=

Remark. If Z {0}, then (2.13) becomes

(2.14) u ,,/ u+ll ,,+.+) [Ifll ’.) + IIg %o-.-).

Conditions implying Z {0} are given in the next section. The dimension or "size" of
the subspace Z measures the nonuniqueness of solutions in our sense in a given Lp

class. That Z need not always be {0} is illustrated in the next section via a counter
example adapted from [10].

Proof Let q be such that l/p+ l/q= 1. Since A 1 it follows from (2.12) of Lemma
2.3 that for v C2() with v 0 on Z3 we have

(2.15) [l(v, 0, v-)ll, II(L*v, v+, 0)llo where v=
Let be the completion in E of the subspace {(L’v, v+, 0)" v C2(fi), v=0 on E3}.
If (, , 0) then there must exist a sequence v, C() with v, =0 on E3 such
that (L*v,, v, 0) (, ff, 0) in E (where v= v, lo+), so the sequence {(v,, 0, v)}
with v v,]o- is Cauchy in E by (2.15), and we obtain a uniquely defined limit
(0, 0, ) E satisfying

Thus, the map (L’v, v+, O)(v, O, v-) extends to a bounded linear map G"
with [[G]]I. Suppose (,,,0)E with G(,1,0)=(0,0,2). Define a linear
functional F on E as follows:

o) f_ d-
3D
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By H61der’s inequality, we have

IF(, I//1, 0) 0 (- Ilfll ’(, / = (o-,- g ’(D-,-

(.) "(o-,a-) [llfll LP() LP(D-,d-)]

I1(, ,, 0)11 r[l( 0, g)[I .
Thus, F is a bounded linear functional on with IIFII I1( 0, g)ll . Since 7 is a
closed subspace of E, it follows from the Hahn-Banach theorem that we may extend
F to a functional on all of E with I111 I1( 0, g211. In general, the extension

q*of F and the element of E E associated with F are not unique. In fact,
can be identified with the factor space E/Z where

Z= (y,z, 0)ef: ydxddt+ zd+=0 for all (, ,0)e
D

Since is the closure of {(L’v, v+, 0)" ve C(fi), v=0 on 3}, we may characterize

Z {(Y, z, O) EP" IayL*vdxdsCdt+ fo+ zv+ dv+=O

v e C2() with v 0 onfor all

From the identification of E with EP/Z it follows that F can be represented by a
coset [(u, w, 0)+Z] E/Z; that is, for (, , 0) and (0, 0, 2) G(, , 0) we
have

(2.18) f. Ofdx d, dt- fo_ g du-= F(, , o) f, u dx d, dt + fo w du+.

If (, , 0) (L’v, v+, 0) for some v C() with v=0 on 3, (2.18) becomes (taking

(2.19) favfdxddt- fD- v-gdp-= fnuL*vdxddt+ f wv+

If we let u+=-w and u-=g, then (2.19) is equivalent to (2.7). Also, llFll?.
q*II(f 0, g)][z, and since we may identify E with the factor space E/Z it follows

from the definition of the norm for a coset that

(2.20) inf [l(u, w, 0)+(y, z, 0)llz IIFII [[(f 0,
(y,z,O)Z

By the definition of the norms on Ef and E, and using u+= -w, (2.20) is equivalent
to (2.13).

The analysis for Lo is essentially the same as that for L, so we shall only state the
corresponding results. Suppose that oRu x RU is bounded with 0o of class C2’.
Let n(x, )=(n, ne)Nx denote the inner unit normal at (x, (). Let

Z {(x, ) 0: n(x, ) 0} let bo -" n + . n,

D {(x. ) z 0n2: bo(x. ) > 0}.

Dff {(x, ) 0OZ; bo(x, ) < 0} and du bo d on D.

Z as
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Define the spaces

Et LP(no) x LP(D-, dv-) x LP(D-ff, dye),

Eta1 L’(no) x L’(D, du) x {0},

E= L’(o) x {0} x LP(D, du),

with norms as for E, E, and E. We are interested in solutions in E of

Lou f ino,

(2.21) u 0 on

u g on D
with ( 0, g) E2. Such solutions are defined as for (2.5); that is, (u, u +, u-) E is
a solution of (2.21) if u-=g and for every v C2(o) with v =0 on X we have

; I u+v+dv=In vfdxd’-I v-gdv(2.22) uLv dx

where v v] o,.
Corresponding to our results for (2.5) we have the following lemma.
LEMMA 2.5. Suppose that u C2(o) with u 0 on and 1 < p <. enfor A > O,

(2.23) pA [ulPdxd+ f ]u[pdv-p ]u]- sgn (u)Loudxd+ f ,u]pdv,
JD dno Jo

(2.24) pA

Moreover if we denote u= u] o, then

(2.25)

and

Using the estimates of Lemma 2.5 yields the following existence result via essen-
tially the same proof as that of Theorem 2.4.

THEOREM 2.6. Suppose that A 1, 1 <p<,f LP(o), and g6 LP(D, dp). en
(2.21) has a solution (u, u +, u-)E in the sense of (2.22) with u-=g and that solution
satisfies the estimate

(2.27) inf
(y,z,O)Zo

where

Zo={(y, z, O)EEI" II yL*vdxd+ I zv+ dv+=O

for all vE C2() with v=0 on X and v+=vlo:.
Remark. Again, if Zo {0}, (2.27) becomes

(2.28)

As noted in the remarks following Theorem 2.4, Zo provides a measure ofthe nonunique-
ness of our weak solutions.
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In general, estimates of the type given in (2.14) or (2.28) are not quite strong
enough to permit a free application of semigroup theory. A more careful analysis can
provide somewhat sharper estimates in terms of A when g =0, but those are not quite
sufficient. To obtain a weak solution satisfying strong enough estimates we must return
to the original formulation ofweak solutions on tp given in 10], and thereby relinquish
some control over the boundary behavior of our solutions.

In the case g=0, if we return to the analysis following (2.17) we have

(2.29)

Since there exist v. e C2(1) with v.=0 on E3 such that (L*v., v.+, 0) (q, q,,, 0) in Eq

and (v,,, O, v-)-->(O, O, q’2) in E2q, and since each v. satisfies (2.12), we have

Lq(l’) L’(D ,dr

so that for a-> 1 (2.29) yields

so that

I(>, @,, o)l--<ra’-<’llll.(r,+ll,,lll.(>+.<,.+]li<’,t-’i"llfll,p(m
-< [11 ..,>+ ,I,, .( o+.<,,.+>1 ’/<,a -’/<’ Ilfll ,,,.,>

IF(, q,,, o)1-< I1(, t]/1, o)11 ,a-l/<’llfll v,.
and thus

(2.30) lll--< * -l/< Ilfll
Using the bound (2.30) in the remainder of the proof of Theorem 2.4 allows us to
replace (2.14) with the estimate

(2.31)

provided A _>-1,/=0, and Z {0}. Similarly, if A- 1, Zo {0} and/=0 in Theorem 2.6,
we may replace (2.28) with

(2.32) u I1,<,o+ u+ll,<m.,; <x-"/llfll"L
To apply semigroup theory to Lo we would really want an estimate on

of order x-’ Ilfll (-o)-We can obtain an estimate on Ilull -o)for certain weak solutions
from the theory of 10], but only at the price of losing essentially all information about
u/, which largely defeats the purpose of the present article. Specifically, in [10] the
Lp weak solutions for

Lou=f in rio,

(2.33) u=0 on 3,
u=0 on D-

are required to satisfy

(2.34) uL*o v dx d vfdx d
1o

for all v C2() with v=0 on EU D. The following is essentially Theorem 1.3.1 of
[10] specialized to Lo.
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THEOREM 2.7. Suppose that A>-I, l<p<c, and fLP(o). Then (2.33) has a
solution u LP(fto) in the sense of (2.34) and the solution satisfies the estimate

(2.35) inf Ilu/yll ,o<- A-’llfll ’o
Y’O

where

,o=(yELP(1)o)" fo yL*o vdxds=O for all v C2(,) with v=O on Y,(_J D-}.
Remarks. In the situation where o {0} we have, from (2.35),

(2.36) u ’(-0) -<- A -’ Ilfll ’(-o).
Other types of possible weak solutions and conditions under which these solutions
coincide are discussed at the end of the next section. Note however that since the test
functions v in (2.34) are required to be zero on D, that formulation of a weak solution
gives no information about the existence or properties of a trace u+ for u on D.

We could replace the coefficients of the first-order terms in (2.1) by general
(sufficiently smooth) functions. This replacement is necessary if one wishes to include
the effects of external forces, via a term of the form u(x, , t)Vu. The replacement of
the other coefficients ofthe first-order terms is possible, but academic, as far as transport
problems are concerned, since their significance is related to the vector field part of
the transport equation. Either replacement changes only the actual form of the charac-
teristic parts of the boundary and the corresponding results follow similarly.

3. Uniqueness. We now consider the question of uniqueness for the solutions
obtained in Theorems 2.4 and 2.6. Clearly, the solutions obtained are unique if and
only if Z={0} and Zo={0); and in that case the estimates (2.14) and (2.28) hold. To
conclude uniqueness we must impose certain additional conditions on f, g, and 1) or
1)o; that some type of additional hypotheses are needed is illustrated by a counter-
example at the end of this section.

Suppose that 01) is given locally by the equation h(x,,t)=,O with
(Vh, Vh, Oh/Ot)O and h>0 inside . Define fl*=- L*h. At points of 01) which lie in
the interior of 01)\E3 (or at limits of sequences of such points) the sign of/3* agrees
with that of b*=-b, the Fichera function for L* (see [10, p. 31]). Let F denote the
boundary in 0f of the set D-UEo. We have the following uniqueness result, which
is a special case of Theorem 1.6.1 of [10].

LEMMA 3.1. Suppose that A >0 and that *<0 at points of D+. Suppose that in
some neighborhood ofeach ofits points F lies on the intersection ofthe surface h(x, , t)=0
defining 01) and a surface (x, , t)=0 with h and of class C such that the normal
h to Of is not orthogonal to the surface (x, sc, t) O. If u Lp (1)) for p >-_ 3 and

(3.1) fa uL*v dx d dt =O

for every v6 C2(() with v=0 on Y,3t-J D+, then u=0 almost everywhere in 1).

Remark. If 0\23 consists entirely of its own interior points in 01) and their limits,
then as noted before the statement of Lemma 3.1 the condition/3* < 0 on D/ is satisfied
automatically since b < 0 on D/.

Lemma 3.1 yields the following uniqueness result.
THEOREM 3.2. Suppose that 12 satisfies the conditions of Lemma 3.1, A _-> 1, and

3_--<p<o. Then if Z is the set defined in Theorem 2.4, we have Z={0}, so (2.5) has a
unique weak solution (u, u /, u-) Ep and the weak solution satisfies (2.14).
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Proof. Suppose (y, z, 0) Z. Then by definition

fn yL* v dx d’ dt+ I zv+ d’+

for any v C2(fi) with v=0 on E3. If v=0 on D+ then v+=0 so for v C2(fi) with
v=0 on E3tAD+ we have

d =0.dx dt

Since (y, z, 0)Z c__ Ep, p>=3 and 12 satisfies the hypotheses of Lemma 3.1, it follows
from that lemma that y=0 almost everywhere in 12. Hence, we have

0du+

for all v+= v]o/ with v C2(1) and v=0 on E3. Since C(D+) is dense in Lq(D+, dr,+)
for any q, we have z=0 almost everywhere on Dr. Thus we see that Z={0}. If
(ul, / / uf) are solutions of (2.5) in Ep then ulu 1, u -) and (/’/2, lg 2, u- g and (u -/’/2,

u+ u2+, 0)e Z, so Z {0} implies u u2 almost everywhere in 12 and u u2 almost
+ + u) in Ep, establishing theeverywhere (&,+) in D+. Hence (ul, u, u-)=(u2,

uniqueness of the weak solution. Finally, (2.14) immediately follows from (2.13) once
we know that Z {0}.

If the boundary of 12o is given locally by ho(x, so)=0, then we can define/3o* L*oho,
and define Fo to be the boundary in 012o of D-U{(x, ) 012o\E3: bo(x, )=0}. Applying
the results of 10] to Lo in the same way we applied them to L, we obtain Theorem 3.3.

THEOREM 3.3. Suppose that h >-1 and *o <0 at points ofD-. Suppose that in some
neighborhood of each of its points Fo lies on the intersection of the surface ho(x, :)=0
defining 012o and a surface o(X, )=0 with ho and of class C such that the normal
to 012 is not orthogonal to (x, )=0. Then for 3_<-p<c we have Zo={0}, where Zo is
the set defined in Theorem 2.6, and hence problem (2.21) has a unique weak solution
(u, u /, u-) Eg, and that solution satisfies (2.28).

We now present an example showing that the condition p_->3 in Theorem 3.3 as
well as in Theorem 3.2 is sharp. In other words the solution may not be unique in Ep.
As a particular realization of (2.1), we consider the equation

Uyy -JI- yUy Us 0

in a bounded domain in the (y, s) plane with s > 0. By making the change of coordinates
2sy=/,/i, s=(ln t)/2 (equivalently t=e =x/eSy) we obtain the heat equation

(3.2) u-u, =0.

Following [10], we consider this last equation in a bounded domain 12 in the plane
(sc, t) such that the boundary of 12 is a closed smooth curve E which in the neighborhood
of (0, 0) behaves like 1:1+, e >0, and which has no tangents parallel to the sO-axis
except at (0, 0) and (0, 1). Then the points (0, 0), (0, 1) belong to D- and Dr,
respectively, and the rest of the boundary belongs to E3. The function w -/ e-2/4’

is a solution of (3.2) in 12. On E, w determines a continuous function which in a
neighborhood of (0, 0) behaves like

We now consider the problem

(3.3) ut: u, 0,
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Since the boundary is smooth, there exists a solution W(:, t) of problem (3.3),
continuous together with its derivatives W, W, W, everywhere in IUE except
maybe at (0, 0) and (0, 1) [8, Thms. 5, 6, p. 64].

The function u: W-w satisfies the homogeneous equation

(3.4) L(u)=0, u[=0,
but is different from zero on a set of positive measure, since W is continuous on U Z
while w-o for :=0 and t-0. Moreover, uLP(I) if p<3. Indeed, since W is
bounded, we have

I lulP d dt= Io lwlP d dt’- I t-p/2 e-P2/4t d dt

t
-p/2 d dt+ C1

J --t 1/(2+)

=2 -p/2+l/(2+e) dt+C1 < C2
o

if-p/2+l/(2+e)>-l, i.e., if p<3.
Following [10] it is not difficult to check that u also satisfies Green’s identity;

therefore, it is a solution of (3.4) different from the one that is identically zero.
The lack of uniqueness comes from our rather general definition of a solution.

Extra regularity requirements can restore this property. For instance, when p >_-3 our
formulation already imposes enough regularity to ensure uniqueness. A different
formulation that imposes more regularity is given in 5, and yields a uniqueness result
for data in L2. When we have uniqueness we may assert that weak solutions obtained
by different methods must coincide. That observation is useful because certain proper-
ties of the solution may be easier to obtain by some methods than by others.

Our approach was chosen to yield information about u+ and u- and their relation
to u and f Another approach, used in [10], can be adapted to yield more precise
information about the sign of solutions. The alternative method is to approximate f
and g with sequences with smooth functions f. and g. such that f. -f in LP(’), g. g
in LP(D-, du-), and then to solve the problem

eAu+Lu=f, in ,
(3.5) u g, on D-,

u=0 on Of\D-

where Au=V. Vu+Vx. V,u+u,. Standard elliptic theory asserts the evidence of a
classical solution to (3.5) for each e and n, and it can be shown as in [10, 1.5], that
if the solution to (3.5) is denoted by u,n then there are subsequences ek0 and nk
such that uk,n converges weakly to tGLP(), with satisfying

(3.6) fn ffL*v dx d dt= fnvfdx d dt- fD vg du-

for all v C2(1) with v=0 on E3[,.J D+. (It seems to be difficult to adapt this approach
to the formulation given in (2.7) where v need not vanish on D/. Since we are interested
in transport phenomena where the relation between the characteristic boundary values
u- and u/ is essential, our main line of analysis uses the alternative approach discussed
in 2.) The advantage of the above method is that iff=<0 and g->0 almost everywhere,
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then we can construct f, and g, by mollification so that f,_-<0 and g, =>0 for each e
and n, so that if->0 almost everywhere in 1. Under the hypotheses of Theorem 3.2,
the weak solution ff in the sense of (3.6) is unique. However, our weak solution u in
the sense of (2.7) is also unique, and satisfies (3.6). Hence, under the hypotheses of
Theorem 3.2, u t->0 almost everywhere.

Another approach to solving (2.5) in a domain of the form foX(0, T] with g=0
on Dff(0, T] would be to assume /x=/x(x, so), use the estimate (2.36) and the
Hille-Yosida Theorem to assert that for p_-> 3, Lo generates a Co-semigroup of contrac-
tions on LP(fIO), and then to use the semigroup in a variation of parameters formula
to solve (2.5). However, the analysis of 2 and 3 can with care be extended to
cylindrical domains; most of the technicalities are contained in [10], and since we
need p-_>3 and a uniqueness result analogous to Theorem 3.3 to obtain (2.36), there
seems to be little advantage to us in the semigroup method. (The semigroup solution
would satisfy (3.6), and hence coincide with t, so we would obtain the same solution
by that approach. If we decompose Lo into a sum of a first-order operator and the
second-order operator generated by V./z(x, )Vs, we could recover the positivity of
the semigroup by noting that each operator separately generates a positivity preserving
semigroup and apply the Trotter product formula.)

In summary, we see that there are various possible formulations of Lp weak
solutions to (2.5) and various ways of producing them. Our choice of approach is
based on our interest in keeping as much information as possible about boundary
behavior of our solution. Under sufficiently strong hypotheses, the various forms of
weak solution all agree; however, without some added hypotheses uniqueness may fail.

4. General boundary conditions. In this section, we shall extend the existence and
uniqueness theory developed in 2 and 3 so as to include more general boundary
conditions encountered in transport problems. The very nature ofthe transport problem
implies that such a boundary condition relates distributions defined only on the
characteristic parts of the boundary (in our case, D/ and D-)"

u-= Ku++g onD-,

where K is a bounded operator,

K :LP(D+, du+) LP(D-, du-),

and, as before, g accounts for the autonomous boundary source. The distribution on
the noncharacteristic part, E3, is set to zero as in (2.5). Our main result is summarized
in Theorem 4.1.

THEOREM 4.1. Consider the following problem:

Lu f in

(4.1) u =0 on E3,

u-= Ku++g on D-

where fl satisfies the hypotheses of Lemma 3.1, fLP(fl.), g6LP(D-, du-), 3=<p<oo,
X >- 1, and [Igll < 1. Then there exists a unique solution of (4.1) in Ep in the sense of (2.7).

Proof When K 0 we may apply Theorems 2.4 and 3.2 and obtain a unique weak
solution (u, u /, u-)Ep with u-=g which satisfies (2.14), that is,
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Let us call this solution (u, u+, u-):= (Ta(f, g), T(f, g)+, Ta(f, g)-). Observe that Ta,
T, and T are linear in f and g and Ta (f, g)-= g. Using the linearity of Tx and T
and the estimate (2.14) we have

T, (f, o)11 ,m--< Ilfll >,

(4.2)
T (f, 0)+11 +, +>_--< Ilfll >,
T (0, g)ll ,>-< Ilgll D-,->,

Ta (0, g)+ll L’D+,d+) Ilgll D-,-)"

Following [4], we seek a solution of (4.1) in the form

(4.3) (u, u +, u-) (Ta(A g*), Ta( g*)+, Ta( g*)-)

where we must have g* satisfying the fixed point equation

(4.4) g* T( g*)-= KT(Z g*)++ g.

(Recall that g*= Ta (Z g)- by definition.) We may rewrite (4.4) as

g* KT(Z 0)++KT (0, g*)++g

or

(4.5)

where

(1-Ma)g*=g+KTx(f, O)+

M,g*:= KT,(O, g*)+.
Observe that M,’LP(D-, d,-)-->LP(D-, dr-). Equation (4.5) has a unique solution
which may be expressed by expanding (I-M,)- in a Neumann series Y’-k--O M
provided IIM < 1. But (4.2) implies

Mg* ’D-,d-)<= [[gll T (o, g*)+ll LP(D+,d1+)

so that IIMII_-<IIKII<I. Then (4.5) has a unique solution g*, and hence (4.1) has the
unique solution

(u, u +, u-)=(Tx(f,g*), T; (f, g*)+, g*).

This argument is equivalent to using the contraction mapping theorem or the Picard
iteration method.

Remark. In fact, we could use the more refined estimate (2.32) to assert

and

where l/p+ l/q= 1; however, that estimate is not required for our analysis.

5. Hillert space solutions. Seeing the difficulties with uniqueness in weak solutions
in E, 1 <p <3, we turn our attention to a stronger notion of solution in a "Sobolev
type" Hilbert space. This approach will give uniqueness in its class and enables us to
compare our results with recent results of Degond and Mas-Gallic [7].



TRANSPORT WITH DIFFERENTIAL COLLISION OPERATORS 811

We construct a Hilbert space that reflects the degeneracy in our equation. This
construction is similar to the construction in Oleinik and Radkevic 10, 1.4]. Define
a class of test functions

={v C’(fio)" v=0 on }.
For (u, v) 74/’, define an inner product

(u, v)e 2 ue.ve.+uv dx d+ u+v+ dvo++ u-v- d

and define the Hilbe space to be the closure of with respect to the norm from
the above inner product,

Ilull=(u, u). for u .
Define the bilinear form, for u, v ,

(u, v)= E ve,ue,+u 2 ve+ 2 v, -(+)uv x
i=1 i=1 i=1

[ + +dp+.

The definition of B(u, v) may be extended to all functions ue, ve , and

IB(, vlC 2 (v,+.+v dxd+ (d
i=1

where C depends on the coecients of the operator Lo. For fixed ve , B(u, v) is a
bounded linear functional on .
DFo. For fe L(o}, g e L(D, d), a function u in N is a weak solution

in of

Lou=f in o,
(5.1) u-=g on D,

u=0 on

if for all v

B(u, v)=I, fvdxd-Io v-gdv.-THEOREM 5.1. Suppose A > -1/2, f L2(f0), g L2(D, dye); then there exists a
unique weak solution in ? of (5.1).

Proof. By the Riesz Theorem on the representation of linear funetionals in Hilbert
space, there exists a linear operator T on with range in such that

n(u, v)=(u,

Since h >-1/2, B(v, v) is strongly coercive,

i=1

1111, >0 for v

This coercivity implies

vll 1/a T(v)I1
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and T is a one-to-one map. Denote by Y(1 the closure of the range of T in the norm
of Yg. Then

vfdx d- Io- v-g dv

is a continuous linear functional on 1. By the Riesz Theorem, there exists u in Y(1
such that

vfdx d- v-g d=(u, T(v)).= B(u, v)
fo D-

for all v c /4/’.

Thus u is a weak solution in Y(.

By approximating u by a sequence {un} in W with

Ilu.-ull - 0 and B(u,, v)B(u, v) for all

and integrating by parts on B(u,, v), we obtain

(5.2)
In (L*v)udxd-I v+u+dv-=In vfdxd+fD v-gdv

D -for all vc C(I), v=0 on X.
We can use (5.2) to show the uniqueness of our weak solution in Yg. Suppose u, t are
two weak solutions in ), then

(L*ov)(u-Kt) dxd=O for all v C2((o),
(5.3)

v=0 on Y_,LID-.
By a result of Phillips and Sarason [10, Thm. 1.6.7], condition (5.3) implies u=
almost everywhere. [3

Remark. If fLP(lo), g6LP(D,dv), p>-_2, and if uYgOE, condition (5.2)
would imply that u would be a weak solution in E. But u is not necessarily in Eop.
We can conclude that if g=0 on Dff, u LP(-o), and then u is a weak solution in Lp

sense, without the Eo
p requirement of Lp traces.

We now discuss another Hilbert space solution analyzed in a recent paper of
Degond and Mas-Gallic [7]. They consider a one-dimensional electron scattering
equation of the following form:

Au=f(x, ) for (x, )c[0, L]x[-1, 1],

(5.4) u(0, :)= Uo(sC) for

u(L, ) UL() for se_--> O, A > O.

This particular solution Hilbert space Y is defined by

V={pL2(-1 1)’x/i sc20L2(-1 1)}

X L([O, L], V) Y= ucX" xCX*
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where X* is the dual space of X. Degond and Mas-Gallic obtain an existence and
uniqueness result in Y. Their assumptions,

Ou
u . L and --x L2,

provide L2 traces on D tA Dff by first-order methods. (See, for instance, [4].) Notice
that the sides, sc =+1, are E0 in our notation, and traces are not needed there. The
combination of operator and domain is such that a priori estimates derived from (5.5)
are all that are necessary; their a priori estimates can be obtained by only taking into
account the first-order terms.

The weighted first derivative regularity in Degond and Mas-Gallic’s paper is
stronger than the regularity required in our case. This additional regularity yields also
a strongly continuous semigroup of contractions on L2 associated with the operator
in (5.4).

Notice their second-order coefficient

/z(sc)-- 1-:

becomes zero on the side boundaries, : + 1. In 2, we considered only strictly positive
functions/x. The theory of equations with nonnegative characteristic forms in Oleinik
and Radkevic [10] covers the case of such nonnegative coefficients /z. But including
such coefficients involves redefining the characteristic parts of the boundary, which
did not suit our goal here.
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1. Introduction. Our goal is to explore a general approach to free boundary
problems, based on the so-called domain perturbation method. Using this method we
get a solution, which is a perturbation of a known one, by mapping (nonconformally)
the unknown fluid domain back to the known domain for an unperturbed solution.
The linear equations of motion then get transformed to a fully nonlinear system, but
since nonlinearities are small, it can usually be treated by the contractive mapping
argument. The earliest reference that we know for the domain perturbation method is
Joseph [6]. It was then used by Shinbrot 10] to prove the existence of double-periodic
water waves .n three dimensions. Our work was motivated by that paper.

Rather than present our results in general form, we prefer to consider two model
problems, whose treatment illustrates how one should approach various possibilities,
and which are of considerable independent interest.

The nonlinear elliptic problems obtained by the domain perturbation method can
be either coercive or noncoercive (here "coercive" means that the problem satisfies
the Lopatinski-Schapiro condition at all points of the boundary). For the coercive
problems we outline an approach using the Schauder-type estimates ofAgmon, Douglis,
and Nirenberg [1], and present it for the model Problem I. For noncoercive problems
there are no Schauder’s estimates. Estimates in the Sobolev spaces (which are available
for Problems I and II) cannot be used, because of loss of smoothness when taking
traces. For the model Problem II we present the second approach based on A spaces,
which are defined and studied below. Similar spaces were used by Shinbrot [10];
however, ours have several advantages: it is easier to establish their properties, the
proofs of the estimates for m > 2 are more transparent, and finally they seem to be
more natural. Problem II leads to a coercive problem, so that the first approach based
on Schauder’s estimates can be used as well. In 6 we present an example of a
physically significant problem, leading to a noncoercive problem which can be solved
only by the second approach. We proceed to describe our model problems.

Problem I. Let x R n. Given a 2r periodic in each variable xi function B(x)
(bottom), find the functions u(x, y), H(x), 27r periodic in each xi, such that

OU
u=0, 1, y=H(x),

On

(1.1) Au=0, B(x)<y<H(x),

u=l, y=B(x),
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where O/On is the outward normal derivative.
Problem II. Let r B(0) be a closed curve in the plane. Find another closed curve

r= H(O) outside of B(O), and a function u on the closed region between B(O) and
H(0) with

Ou
u=0, m=_l, r=H(0),

On

(1.2) Au =0, B(O) < r < H(O),

u=l, r=B(O).

For Problem I we start with fiat bottom B 0, and the corresponding solution
H 1 and u 1 -y. Then for small bottoms B eb(x) we are looking for the solution
in the form

(1.3) H= + eh(x), u 1 y+ ev(x, y),

and show existence if e is sufficiently small. We use the change of variables (x, y)o
(x,y’), y’=(y-eb)/(l+eh-eb), to transform the unknown domain onto a fixed
one, 0-< y’-< 1.

For Problem II notice that if B(0)=I then the solution is H(r)=ho, u=
-hologr+l, where ho-1.76 is defined by hologho =1, and (r, 0) are the polar
coordinates. Then we assume that B 1 + eb(O), and look for the solution in the form

(1.4) H=ho+eh(O), u=-hologr+l+ev(r, 0).

We show the existence of such a solution for e sufficiently small.
Problem II was considered by Hamilton [5] (and also earlier by Schaetter [9] and

Acker [11]). Hamilton proved that for every smooth convex curve B there exists a
unique solution to Problem II (the curve H(0) is also smooth and convex, and u is
smooth). His result is strictly two-dimensional, since conformal mappings were used
to derive a priori estimates. Our existence result complements Hamilton’s in that we
do not require the curve r= B(O) to be convex. In three dimensions we were unable
so far to carry out a similar approach, because of the singularities in the Laplace
operator in spherical coordinates.

We wish to stress the generality of our approach. It can be used to attack problems
with boundary conditions of arbitrary order and variable coefficients, and with non-
linear equations of motion. In contrast, a more common variational approach (see,
e.g., [2, Chap. 3]) is rather restricted (but it is a global method).

Finally, we mention that Problems I and II have an interesting physical interpreta-
tion. For Problem II it is described in [5, p. 215], so that we present a similar
interpretation for Problem I (with similar deficiency as mentioned in [5]). We consider
fluid occupying the half space y > 0, x R n, and assume there is a stream flowing over
the periodic bottom y B(x). The fluid is assumed to be perfect with unit density,
and at rest outside a free surface boundary, so that there is a velocity jump at the free
surface. Let u be the stream potential. By choosing units of length and time we can
make the velocity on free surface y H(x) and circulation equal to one. This leads
us to Problem I.

2. Preliminary results. Let x=(x,...,x,), j=(j,...,j,), n->_l. Let the
function u=u(x,y) be 27r periodic in each variable xi, i=l,...,n, 0-<y-<_l;
u(x, y) =j=_ uj(y) e ix. Define the norms Ilu(x, y)llo =yJ=_maxo<__y__<l [uj(y)l,
Ilull Y== IIDullo, where D is a mixed partial in x and y, m =integer >- 1. Denote
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D [0, 27r]", V D x [0, 1 ]. Let A"(V) be the closure of trigonometric polynomials
ij.xof the form uj(y) e uj(y)c C[0, 1], with respect to the norm I1" I],,. Clearly Am(V)

are Banach spaces with u [[,, -_< u ]], if rn <_- n. The space A"(D) is defined in the same
way for functions independent of y. The norm on Am(D) is denoted by WS][m. If we
are given a function of polar coordinates in the plane, u u(r, 0) =Y,___ u,(r) e
on an annulus 1 -< r=< ho, ho constant, then as before [lUl[o ,___ maxl<__r=<ho [u,(r)[,
and Ilull-Y IIDullo where D is a mixed partial in r and 0. This time domain
V is defined by 1 -< r_-< ho, 0-< 0 =< 27r domain D by r ho, 0-< 0 _-< 2

We write c for all positive constants independent of unknown functions. We write
f=f(D2v) when f depends on the function v and all its partial derivatives or orders
one and two.

LEMMA 2.1. Let u, v A". Then uv Am, and Iluvll -< Cm IlulIIIvlI, C
const (Co 1).

ij" cx3 e k.Proof Let u Y uj_ v Vk Thenj= k

=< Y max v+l Y max u+-+lIluvllo y max u+_+v+
y Y 6 6 Y y Y

For rn _-> 1 we get

IluVlIm-- Y IID=uvll Y E cllDullollD-vllo
Ilrn Il_-<m 0=<#_-<

COROLLArieS. (i) IIg," gll-<- c-llg[l I111.
(ii) -<- c-’ IIg .
LZMa 2.2. Let B be a ball in Rp centered at the origin, f(x, , xp)" B --> R be

a real analytic function. Let g be a vector function on V, g (g,..., gp), Ilgll--
IIg, r. Assume that r is sufficiently small. Then f(g, g) A ana

IIf(g)ll,. --< Co+ cl(r),
where Co const> O, c is analyticfunction of r, depending only onfand r, and c(O)=0.

Proof Let f= Yll__>ofX for x (x, ., Xp) B, f(g) Ell__>o f,g. Then by
Lemma 2.1

I,1_>-o I,1__>o

which is easily seen to be a convergent series for r sufficiently small.
LEMMA 2.3. Am(V)(A"(D)) is boundedly imbedded in C"( V)(C"(D)).
Proof Since for any multi-index a, I1- m, max.y IOul <= Ilull the proof follows.
By [,,/ we denote the norm in the space C"/(V), rn integer >- 0, 0 < a < 1

(see, e.g., [1] for the definition).
3. Transformation to a fixed domain. For Problem I we suppose that B(x) eb(x),

and look for solution in the form (1.3). Notice that on y H(x) 1 + eh(x)
Ou

Vu n
-e Y’.7=l Uihi+uy

a,, ,/i + =lv hi 2

Substituting this and (1.3) into (1.1) we get
2-e , Vy__l, y l/eh,i= l)ihi 1 + e

v(x, y)= h(x), x/a + eZlVhl=
(3.1) Av 0, eb(x) < y < 1 + eh(x),

v=b(x), y=eb(x).
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The change of variables (x, y) (x’, y’) defined by

X Xi, 1, n,

y-eb
y’ =- yd (x) / e(x),

l/e(h-b)

e(x)
eb

d(x)
1 + e(h b) 1 + e(h b)

will transform the unknown fluid domain onto 0-< y’-< 1.
By a straightforward calculation, the problem (3.1) will transform as follows (we

drop primes for the independent variables)

v(x, 1)=h(x),

(3.2)
Vy eg( e, Dr, Dh, Db), y 1,

Av ef(e, Dv, D2h, D2b), 0< y < 1,

v=b(x), y=0.

Here

(3.3) eg
1-x/l/ e21Dhl2 +

ed(x)

where Y y(1 + eh eb) + eb, and

(3.4)
-ef=(d2-1)Vyy+ [2Vx,y(Ydx,+ex,)+Vyy(Ydx,+ex,)

i=1

+ Vy( Yd,,x, + e,,x,)].
We easily see that the functions f and g are analytic in their arguments for small e.

For Problem II we suppose that B 1 + eb(O), and look for a solution in the form
(1.4). By an elementary computation on r= H(0)= ho+eh(O) we have

cu r eh
(3.5)

On x/r2 + e2h,2
Ur rx/r2/ e2h,2

Uo.

Using this formula and (1.4) in (1.2) we get

-1 + ho log r
v r ho + eh,

(3.6)

/ El)

x/r2 + e2h ’ r r/r2 + e2h’ Vo -1,

Av=0, l+eb(O)<r<ho+eh(O),

r ho+ eh,

ho log r
v= r=l+eb(O).

The change of variables (r, 0)- (r’, 0’)

r’= (ho- 1)
r-l-eb

e(h-b)+ho-1
+1, 0r--0
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maps the fluid domain 1 + eb <- r <-_ ho+ eh onto the annulus 1 _-< r’<_- ho. The problem
(3.5) will transform as follows (dropping the primes)

(3.7)

v h+er(e, h), r= ho,

h
Vr ----00 + eg(e, Dv, Dh, Db), r= ho,

Av ef(e, D21), D h, Db), 1 < r < ho,

v hob + eq(e, b), r 1.

Here

ho log ho + eh 1
er h,

e
[voh,+vr(Rpo+qo)h,_h2_(ho+eh)2rl]+eg (ho+eh)2p e ho

with

ho-1 (ho-1)(l+eb)
/1P e(h-b)+ho-l’

q
e(h-b)+ho+l

r-q
rl-- 1+ -’5-

ef (p2 --1)lrr + Or + 1)oo

1
+--5121)or(Rpo + qo + Vrr( Rpo 3t- qo)2+ I)r( Rpoo 3f_ qoo ],
1(-

ho
eq =--(log (1 + eb)- eb ).

We verify that the functions r, g, f, q are analytic in their arguments for small e.

4. A priori estimates for the linear problem. Consider the problem (x R n)

Uy g(x), y=l,

(4.1) Au=f(x,y), 0<y<l,

u=b(x), y=0,

where f, g, and b are given functions, 2r periodic in each variable xi, 1,. ., n.
LEMMA 4.1. Assume that f Ca(V), g CI+(D). Then (4.1) has a unique 27r

periodic in each xi solution, and

(4.2) lu]+ -<- c(Ifl + Igl,+= + ]b12+=).
Pro,of Existence of solutions follows by elementary Fourier analysis, uniqueness

from the estimate

(4.3) lulo c(Iflo+lglo+lblo),

which easily follows by the maximum principle. It remains to show how one adapts
Schauder’s estimates for our problem (4.1). Redefine f, g, b as functions of compact
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support outside 0 =< xi--< 27r, i= 1,. ., n, and call the extensions f, , b, respectively.
Clearly, this can be done with say Ifl -<-21fl, I1 --< 2lgl, 171 -< 21b[. Let :I(Y), :2(Y)
be C functions on [0, 1], such that :1= 1 near y 1 and sc=0 near y =0, and
:2 1- :. Write u u+ 2u =- u + u2. Multiplying (4.1) by :1 and :, we easily get

Uly g, y=l,
(4.4)

Au=U+2Uy+If, -<y<l,

AU2 U +2Uy + zf, 0 < y <
(4.5)

u=b(x), y=0.

Using usual Schauder’s estimates (see [1, Thm. 7.3]), we get (for arbitrary small e)

lul=+--<c
i=1

and by (4.3) the lemma follows.
Next, in the plane (r, 0) consider the problem (ho log ho 1)

u+u=g(O), r=ho ( const 0),

(4.6) au f(r, 0), 1 < r < ho,

u=b(O), r=l.

Here, g, f, b are given functions 27r periodic in 0.
LEMIA 4.2. Assume b A"/, f A", g A"/, m > 0. Then (4.6) has a unique

solution and

(4.7)

xiPnProof. E ress f En=_of( r) ein g=Ln=-g, =E b,e u=,___ u(r)e o. Substituting these into (4.6) and suppressing the subscript n (i.e.,
writing f for f,, g for g,, etc.) and letting r ex, we get

1
(4.8) Uxx-n2u=e2Xf(eX), U(0)--b,--ooUx(hl)+O’U(hl)--g,
where hi =log ho-0.57. Set F(t)= e’(e’). The solution of (4.8) is

(4.9) u(x) 3’ sinh nx + b cosh nx F( t) sinh n(x- t) dr,
n

where the constant 3’ is determined from

(4.10)
3"A + b ( n sinh nh )+ tr cosh nhho

+ F(t)
1
cosh n(h-t)+trsinh n(hl-t) dt=g.

Here we denoted

(4.11)
n cosh nhl

ho
+ o" sinh nh >- cn enhl.
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Multiplying (4.9) by A, using (4.10) and the standard identities for hyperbolic functions,
we easily derive

au(x) g sinh nx+ b (oo cosh n(hl-X)+O" sinh n(hl-X))
ff [-ooCOShn(h-t) sinhnx+-sinhn(hl-t)sinhnxJdt(4.12) F(t)

1 cr

n

F(t) o sinh nt cosh n (h X) + --n sinh nt sinh n(h x) dr.

Then in view of (4.11) we easily estimate

lu(r)l c + Ibl +- ’ }F(t)l e dt +- IF(t)l e dt

(4.13) Nc I+lbl+-sup I/()1
n 1NrNh

c Ig+lbl+ max If(r)l
n 1NrNh

Differentiating (4.9) and going through the same steps, we estimate

(4.14) I’()lc Igl+nlbl+- max f(r)l
1NrNh0

Combining (4.13) with (4.14), and estimating lu"(r)l from the equation, we conclude
the estimate (4.7) with m 0. The higher estimates are easily proved by induction.

An a priori estimate for (4.1) is given by the following lemma whose proof is
similar to the above.

LMMa 4.3. AssumefeA, geAm+, beAm+, m =integer0. en (4.1) has a
unique 2 periodic in each x solution, and

Ilu II+=+]+z c(llfll + Ilgllm+ + bllm+=).
5. Existence and uniqueness of solutions for Problems I and II.
THEOREM 5.1. For (3.2) assume that b(x)6 C’+(D), and elbl,,+ is sufficiently

small, m=integer_->2, 0<a<1. Then there exists a pair of functions (v,h)
cm+(V) X C’+(D) satisfying (3.2).

Proof Define a map T: (w, k)-> (v, h) from C"+(V) x cm+(D) to itself by
solving

Vy eg(e, Dw, Dk, Db),

Av ef( e, D w, D2k, D2b),

v=b(x), y=0,

and then computing h(x)= v(x, 1). By Lemma 4.1 we easily conclude that the map T
is well defined, takes a ball Iwl,,+ +[kl.,+--< R, with say/R 21bl.,+, into itself, and
is a contraction for elbl.+ sufficiently small.

A similar proof could be given for Problem II. Instead, we give an existence proof
in A" spaces based on Lemma 4.2, which provides a more general approach, as will
be seen in 6.
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THEOREM 5.2. For theproblem (3.7) assume that b( O) Am, and e Ilbll is sufficiently
small, m integer-> 2. Then there exists a pair of functions v, h) A (V) x A D
satisfying (3.6).

Proof. Substituting the first equation in (3.7) into the second we get

1 e

Vr+--ooV=-O0 r(e, h + eg e(e, Or, Oh, Ob ).

Next, we define a map T" (w, k) (v, h) from Am(V) A’(D) to itself by solving

1
vr +--oo v e,(e, Dw, Dk, Db), r= ho,

(5.1) Av ef( e, D2w, D2k, D2b), 1 < r < ho,

v hob+eq(e, b), r= 1,

and then solving for h(0) from

(5.2) v(ho, O)=h+er(e’h)(h=h(e/h-l))
Notice that the map T is well defined, i.e., it takes A’(V) x A"(D) into itself, provided
ellbl],, is sufficiently small. Indeed, in view of the estimate (4.7) of Lemma 4.2, it
suffices to show that A"-(D), f A"-2(V). For this we use the special structure
of f and . Indeed, consider . By Lemma 2.3, log (ho+ eh), Po, qo, 1/(ho+ eh))-
A"-a(D) for e small (if smallness of llbll comes from Ilbll, then work in small
balls), and then by Lemma 2.2, A"-(D). Similarly, f6 Am-)- by Lemma 2.2.

Then one easily sees that map T takes the ball w ll + [[k[l. -< 2[[ b ll, into itself,
and is a contraction.

Remark. A similar argument is valid for Problem I.
Next we prove uniqueness results, using techniques similar to [3] and [4].
THEOREM 5.3. Problem I can have at most one solution (in the class offree surfaces

satisfying interior sphere condition).
Proof. Assume that this is not true, i.e., there are two solutions (u (x, y), h (x))

and (i (x, y), h (x)). By the maximum principle we conclude that 0 <- u <- 1 for b <- y <_- h,
and 0 < u < 1 for b < y < h, and also that h and h are different. Consider first the special
case, when one free surface is above the other, touching at some point, say, h (x) => h (x),
h (Xo) h (Xo). Consider w u i in the domain b -< y =< h. Then Aw 0, w 0 for
y b(x), w >-0 for y h(x) with W(Xo)=0. Hence Xo is a point of minimum for w.
Since h and h have the same normal at Xo, by Hopf’s lemma we have

Ow Ou Oo >-- (Xo) _-- (Xo) -_-- (Xo) o,
On On On

a contradiction.
Turning to the general case, we introduce translation of solution (u, h) downward,

by considering

u,(x, y) u(x, y + -), h,(x) h(x) r, r >- O.

Clearly Au, 0 for b - < y < h r. Choose " ’o so that h, =< h, and h,o(Xo) h(xo)
for some Xo. (If h and h intersect, we translate either of two solutions, if h > h then
translate (u,h).) Let D={xlxoeD and h,o(x)>b(x)}. By periodicity either D=
(-oo, oo) or D is a bounded interval. In the first case consider w i-u, with ti, u
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restricted to b(x) <= y <= ho(X). Then w > 0 on y b(x), w >- 0 on y ho(X), W(Xo) O,
and as before we get contradiction at the point Xo. In the second case we consider the
same w, with t, u restricted to (x, y)= {x D, b(x)<= y<= ho(X)}. Again we get the
same contradiction at x0.

THEOREM 5.4. Problem II can have at most one solution (assuming h(O) satisfying
interior sphere condition).

Proof This time we introduce contraction of the solution by considering ua
u(ar, 0)= u(ax, ay), ha h/a, a> 1. Clearly, Aua =0. By contracting one of the free
surfaces, until it is inside the other touching it at some point Xo, we get the same
contradiction at x0 as in the previous theorem. (Again, if the surfaces intersect, contract
either one; if one is outside the other, contract the outside one. Also, notice that
Otla/Onlh=ha----a <-1, as is clear from (3.5).)

6. General noncoercive problems. We discuss the problem (x R", 0 <= y <_-1)

Uy + a,Du eg(e, Dku, Dkh, Dkb),

(6.1) Au ef(e, D2u, D2h, D2b), 0< y < 1,

Uy + bDu b(x), y O.
I,1_-<1

Here h u(x, 1), g, f, and b are given functions, 27r periodic in each variable xi,

i= 1,. ., n; ce =(al, ", a,, 0), e, a, b are constants, and k, are integers whose
magnitudes are not restricted. We are looking for 27r periodic in each xi solution
u (x, y), assuming e is small.

Solving a problem of type (6.1) was the key ingredient in solving Problems I and
II, as well as in Shinbrot’s proof of existence of water waves in three dimensions. If
the boundary condition at y 1 is coercive, i.e., satisfies the Lopatinski-Schapiro
condition, then one should be able to prove existence based on Schauder’s estimates,
as we did for Problem I. In particular, in Shinbrot’s paper one has the boundary
operators (with u=u(x, y, z))uy-’(uyxx+Uyzz)+Fuxx at y= 1, and uy at y=0, which
are both coercive. Hence, it appears that Schauder’s estimates can be used, considerably
simplifying the proof.

Using A spaces one can treat more general problems, including noncoercive
ones. In particular, we have the following theorem, whose proof is similar to that of
Theorem 5.2.

THEOREM 6.1. Assume the following estimate for the problem (6.1) (with g g(x),
f =f(x,y))

with integer m >-max (2, k). Assume that the functions g and f are analytic in their
arguments and small if either e or b u h are sufficiently small. Then for

b sufficiently small the problem (6.1) has a solution.
Example. In Shinbrot’s water wave model assume that the surface tension r 0,

and the gravity is pointing up, i.e., g and F= U2/g are negative numbers, say
F -f,f>= O. Assuming for simplicity u 0 at y 0, we consider the problem (different
from the one in [10])

Uy-fUxx eg(e, Du, Dh, Db), y 1,

(6.2) Au ef(e, D2u, D2h, D2b), 0< y < 1,

u =0, y =0.
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Here u u(x, y, z), h u(x, 1, z). The boundary condition at y 1 is noncoercive (see
[7]); hence Schauder’s estimates are not valid for (6.2). However, by an argument
similar to that of Lemma 4.2 we can estimate (with g g(x, z), f=f(x, y, z))

and Theorem 6.1 applies, giving existence for (6.2). (We do not know any other way
to prove existence for (6.2).)

Acknowledgments. I wish to thank A. Friedman, P. L. Lions, and S. Stojanovic
for useful comments.
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GLOBAL BIFURCATION AND CONTINUATION IN THE PRESENCE OF
SYMMETRY WITH AN APPLICATION TO SOLID MECHANICS*

TIMOTHY J. HEALEY

Abstract. A group-theoretic approach to global bifurcation and continuation for one-parameter prob-
lems with symmetry is presented. The basic theme is the construction of a reduced problem, having solutions
with specified symmetries, that can be analyzed by global or local techniques. A global analysis of a general
class of reduced problems via well-established continuation techniques shows that symmetry is preserved
on global continua of solutions. The approach is illustrated in the analysis of large post-buckling solutions
of a nonlinearly elastic ring with 0(2) symmetry under uniform hydrostatic pressure, and yields several
new results. Specific symmetries of global bifurcating solution branches are enumerated, which enables a
detailed qualitative analysis.

Key words, symmetry, bifurcation, global, groups, solid mechanics, structures, post-buckling

AMS(MOS) subject classifications. 34, 58, 73

1. Introduction. Let B be a real Banach space, let fl be an open, connected subset
of B x R, and let f:- B be (m => 1)-times continuously Fr6chet ditterentiable. Con-
sider a steady or static bifurcation problem of the form

(1.1) f(x, A) 0.

The goal is to determine the solution set

(1.2) E=-- {(x, A e l)" f(x, A O}.

Bifurcation problems often arise in the physical sciences for systems with symmetry.
Suppose that (1.1) models such a system, characterized by a symmetry group . In
such a case, (1.1) is usually equivariant under a specific representation (cf. Robert
[1983]) T of d on B

(1.3) f(Tgx, A)= Tgf(X,A) Vg

where it is presumed henceforth that Tg() for all g .
It is well known that (1.3) can be used to simplify what is often an intractable

analysis of local bifurcation (cf. Sattinger 1979], Vanderbauwhede 1982], Golubitsky
and Schaeffer [1985]). The purpose of this paper is to demonstrate that equivariance
can also be exploited to considerable advantage in global bifurcation problems. The
general approach is presented in 2, where it is shown that a reduced problem for
(1.1) can be constructed in a straightforward manner. The analysis of a reduced problem
via well-known continuation theorems (cf. Rabinowitz [1973], Alexander and Yorke
[1976]) then shows that symmetry properties are preserved on global continua of
solutions. The procedure is illustrated in 3 in the analysis of a nonlinearly elastic
ring with 0(2) symmetry, and yields several new results. Symmetries of global post-
buckling solution branches are enumerated, which enables a detailed qualitative analy-
sis. In particular, it is shown that all global (primary) bifurcating branches with distinct
symmetries are mutually nonintersecting.

* Received by the editors December 8, 1986; accepted for publication (in revised form) June 18, 1987.
This research was supported in part by National Science Foundation grant DMS-8519918 and Air Force
Office of Scientific Research grant AFOSR-86-0185.

" Department of Theoretical and Applied Mechanics and Center for Applied Mathematics, Cornell
University, Ithaca, New York 14853.
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2. Reduction and continuation. Let Y( be a subgroup (not necessarily proper)
and define

(2.1) Be= {u

which is called the Y(-fixed-point set. It is straightforward to show that Be B is a
linear subspace. Suppose that Be is complemented in B, viz.,

(2.2) B B@A.
It can be shown that (2.2) holds if and only if there exists a continuous projection
P:B-> B with (P) B (cf. Rudin [1973, .16]). If is a compact group, then
P is given explicitly by

(2.3) Px =- f Tx d(g) Ux B,

where is the Haar measure of . In the sequel, the decomposition (2.2) is assumed
to hold.

By virtue of (1.3) and (2.1), it follows that

(2.4) Tgf(U,A)=f(u,A) V(u, A)6 fe,
Thus, f(u,)Bx for all (u, ) lx and f:12e- Be, where x-=( (Bx). This
leads to the following conclusion.

THEOREM 2.1. Define fe Peof[l’e. A point (Uo, Ao) 61/e is a solution of (1.1)
if and only if it is a solution of the -reduced problem
(2.5) fe(u, A) 0.

The solution set of (2.5), denoted by Y,x, is called the Yg-solution set.
Henceforth, if Be is finite-dimensional, then all such (rn => 1)-times continuously

ditterentiable maps fe: fx Bx are considered. If Be is infinite-dimensional, then fx
is assumed to be of the form

(2.6) fx(u, A u cx( u, A ),
where c: fx- Bx is completely continuous.

Recall that a regular solution point (Xo, Ao) of (1.1) is one at which the Fr6chet
derivative Df =- Dlf(xo, Ao): B - B is invertible. If Dlf is not invertible, then (Xo, Ao)
is called a singular point. Regular and singular points of the -reduced problem are
defined analogously and are henceforth referred to as -regular and -singular points,
respectively.

It often happens in applications that at least one solution point of (1.1), say,
(Uo,)to)
Then (Uo, Ao)Zx by Theorem 2.1. If (Uo, Ao) is -regular, then the implicit function
theorem guarantees the existence of a unique, local branch of solutions of (2.5) through
(Uo, Ao). By Theorem 2.1, that branch is a local, -symmetric solution path of (1.1).
Let o denote the connected component of Z containing (Uo, Ao). The following
extension ofthe implicit function theorem shows that symmetry is preserved globally.

EQUIVARIANT CONTINUATION THEOREM 2.2. Let (Uo, Ao) e be Yg-regular. Then
there exists a global, -symmetric solution branch of (1.1) through (Uo, Ao). That is,
there exists a connected subset ,x

_
,e f’),o containing (Uo, Ao) that is characterized by

at least one of the following alternatives:

(ii)
(iii) Ze-{(Uo, Ao)} is connected in B x.
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Proof. In the context of the Yg-reduced problem (2.5), this is precisely a theorem
due to Alexander and Yorke [1976]. The claims hold for (1.1) by virtue of Theorem
2.1. [3

Remark 2.1. This simple but profound result implies that the symmetry of an
Yg-regular point cannot completely "die out" somewhere along E. This has important
applications in the construction of efficient numerical algorithms for global bifurcation
problems (cf. Healey [1988a]). On the other hand, Ec need not coincide with 5.
Rather E___ E, and E\E (if it is nonempty) is the -symmetry-breaking component
of E, which branches from E. Indeed, an -regular point need not be a regular
point of (1.1), i.e., (Uo, Ao) may be an -symmetry-breaking bifurcation point. The
regularity of such a point can be exploited to enable its accurate computation in a
numerical setting (cf. Werner and Spence [1984], Healey [1988a]).

Consider next the problem of bifurcation from a trivial branch of solutions of
(1.1). Assume that

(2.7) f(O, A) 0 V(O, A) 61.

The set Et=({0}xE)f’lfcE is called the trivial solution branch of (1.1), and is
assumed to be homeomorphic to {0} x. A solution pair (0, ko) Et is said to be a

bifurcation point of (1.1) if every neighborhood of (0, ho) contains solution pairs
(u., h,) E with u. 0. Let E denote the connected component of E that contains
(0, ko). Define L(A) Dlf(O, A) and assume that L(ho) B- B is singular, which is
necessary for (0, ko) to be a bifurcation point.

It often happens in applications that some, but not all, of the d symmetry is
broken on a bifurcating branch. Accordingly, suppose that V(L(ho)) By. When d
characterizes highly redundant symmetry (e.g., = 0(3)), then dim V(L(Ao)) is often
quite large (cf. for example, Knightly and Sather 1980], Ihrig and Golubitsky 1984]).
Thus, the analysis oflocal bifurcation at (0, ho) can become intractable (dim V(L(ho)) ->

3 is enough (cf. Iooss and Joseph [1980])). This motivates seeking a reduced problem
that simplifies the analysis of (1.1) near (0, ho).

For any subgroup , it follows from (2.5) and (2.7) that

(2.8) fe(O,

i.e., E is also the trivial solution branch of (2.5). The goal is to determine a subgroup
(or subgroups) that yields a problem having nontrivial solutions in common with those
of (1.1) near (0,)to). A well-known procedure (in local bifurcation theory) for finding
Y( is to seek a null vector, y N(L()to)), such that the isotropy subgroup of at y,

(2.9) =- {g G Tgy y},

is proper. It then follows from Theorem 2.1 that Lx()to)=-Dlfg(O,)to)
[L()to)[ Bg]: Bg Bg is singular. This suggests the following theorem.

EQUIVARIANT BIFURCATION THEOREM 2.3. Suppose that f is C2 and there exists
a null vector y AC(A()to)) that defines a proper isotropy subgroup (cf. (2.9)). Assume
the following:

(EB1) dim (Lg()to)) is odd.

(EB2) [L()to)Jv (Lg()to)) Vv ,N’(Lg()to)).

Then (0,)to) is a bifurcation point of (1.1) such that in every sufficiently small neighborhood
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of (0, Ao), there are nontrivial solutions (u., A.) E. In particular, if dim C(L(Ao))
1, then there exists a unique, local, bifurcating branch of solutions of the form s--
a(s), (s)) ,. Moreover, there exists a connected subset o 0 o\,o containing

(0, Ao) that is characterized by at least one of the following properties:
(i) o is unbounded in B R.
(ii) ’ fq af .
(iii) There exists a pair (0, A,) rOE with A. Ao.

The subseto is called a global, -symmetric, bifurcating branch of (1.1) through (0, Ao).
Proof. In the context of the -reduced problem (2.5), the first claim is Kras-

nosel’skii’s theorem [1965], the second statement holds by a theorem of Crandall and
Rabinowitz [1971], and the third result is due to Rabinowitz [1973]. Conditions (EB1)
and (EB2) insure that the Leray-Schauder degree of u f(u, A) (which is well defined
because of (3.1); cf., for example, Cronin [1964]) changes sign as A passes through
Ao along u 0 (cf. Alexander and Fitzpatrick 1980]). That all claims hold for the full
problem (1.1) is a direct consequence of Theorem 2.1. l-]

Remark 2.2. The claims of Theorem 2.3 pertaining to local bifurcation are well
known and have appeared in various different forms (cf. Cicogna [1981], Vanderbau-
whede 1982], Sattinger 1983], and Golubitsky 1983]). However, in those treatments
the Lyapunov-Schmidt technique (cf., for example, Golubitsky and Schaetter [1985])
is employed before the use of group-theoretic reasoning, thus obviating global con-
clusions.

3. Large post-buckling of a nonlinearly elastic ring with 0(2) symmetry. The
analysis of a planar, nonlinearly elastic, circular ring under hydrostatic pressure (cf.
Fig. 1) is presented in this section as an application of Theorem 2.3. The techniques
of 2 enable a detailed qualitative analysis of global post-buckling solution branches.
The ring is modeled as a nonlinearly elastic rod that is capable of suffering geometrically
exact stretching, shearing and bending. The formulation is due to Antman [1973]. In
that work, global existence theorems were established, and some symmetry-properties
ofsolutions were obtained by phase-plane techniques. Similar results for an unshearable
ring have been obtained by Antman [1970a], [1970b], where the latter work also
includes a local bifurcation analysis from a radially symmetric state. A global bifurca-
tion analysis of a circular arch (which leads to a two-point boundary-value problem
involving the same differential equations as the ring in Antman [1973]) is presented
in Antman and Dunn [1980].

et(s)

er(S)

r(s)
e,(s)

undeformed configuration deformed configuration

FIG. 1. Planar configurations of a ring.

.(s)
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(3.8a)

(3.8b)

(3.8c)

The condition

(3.9)

Let {i, j, k} be a fixed orthonormal basis for E3, Euclidean 3-space. The curve of
centroids of the cross sections of the undeformed ring is taken to coincide with the
unit circle S1c span {i,j}, along which points are identified by arclength s
R(mod 27r) (cf. Fig. 1). Define the unit vectors

(3.1) er(s)= cos (s)i+sin (s)j and e,(s)=-sin (s)i+cos (s)j.

Then {er, e,, k} is an orthonormal frame field for E on S1.
A planar configuration of the ring is described by a mapping

(3.2) R2 s-- (r(s), b(s)) span {i,j} x,
where s e R2 emphasizes the 27r-periodicity of r and 4. The vector r(s) is the position
(measured from the center 0 ofthe ring) ofthe material point on the deformed centroidal
curve that has position vector er(S) on the undeformed centroidal curve. The unit vector

(3.3) el[q(s), s]-= cos [b(s)]e(s) + sin [b(s)]e,(s)

characterizes the deformed orientation of the cross section at s that has undeformed
orientation coincident with e(s). Thus, b(s) is a measure of rotation between the
deformed and undeformed cross section at s. Defining

(3.4) e2[b(s), s]-= -sin [(s)]er(S)-t-cos [dp(s)]et(s),

it follows that {el, e2, k} is also an orthonormal frame field for E on S1.
The strain field of the rod is defined by

(3.5) (r’, b’) on

where )’ denotes differentiation with respect to argument on 2. It is convenient
to express r and r’ as

(3.6) r tie q- r2e2 and r’= lel d- 2e2 on 27r,

and to define

(3.7) sea b’ on

Then by (3.1), (3.6), and (3.7), the strain-displacement relations for the ring are

r- (1 + :3)r2- sol 0,

r + 1 + sCa)rl- 2 0,

I’-- 3 0

r’’e2 sc2>O onl2
is imposed to insure that the local ratio of deformed length to undeformed length of
centroidal curve does not vanish, and that el is not tangent to the deformed centroidal
curve.

The undeformed ring is subjected to a uniform, hydrostatic pressure of intensity
A > 0 per unit (deformed) length of centroidal curve. Let n(s)e span {i, j} denote the
resultant force and m(s)k the resultant couple acting across the deformed cross section
at s. The well-known equilibrium equations for the ring are

(3.10) n’+ m’k+Akxr’+r’xn=0

where "x" denotes the usual right-handed cross product on E3.
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The ring is assumed to be homogeneous and nonlinearly elastic by requiring the
existence of smooth constitutive functions

such that

(3.11)

i= 1,2,3,

2

n(s) E fi(l(S), 2(s), ,3(s))ei[ck(s), s],
i=1

m(s) f3(,(s), 2(s), :3(s)).

The constitutive functions are assumed to satisfy the following physically reasonable
conditions (cf. Antman and Dunn [1980])"

The 3 x 3 Jacobian matrix

(3.12) l-J
is positive-definite on R x (0, oo) x R,

(3.14)
Of2 (0, s 0) af (0, so2 0) 0 Vs%_ (0, ),

(3.15) lim &(0, 2, 0)=-.
2 0

Substitution of (3.11) into (3.10) leads to the following componential form of the
equilibrium equations with respect to {e, e:, k}"

(3.16a) f,(,, 6, 6)]’- (1 + 6) f:(, 6, 3)-6 0,

(3.16b) f2(l, 6, 6)]’+ (1 + 6) f(, 6, 6) + AI= 0,

(3.16c) [t3(,,6,3)]’+,&(,,6,3)-6t,(,,6,3)=O on a2.

The systems (3.8) and (3.16) together with the constraint (3.9) constitute the field
equations for the ring, where r, r2, 6, , i= 1, 2, 3, are each 2-periodic.

It is convenient to express the governing equations in a more compact form. Define
the six-tuple

(3.17) g (r,, r2, &, ,, 6, 3) 6.

Let C denote the Banach space of all continuous, 2-periodic functions from
into 6 with norm

I1 max II(s)ll,
s2

where ]]]1 denotes the Euclidean norm of d e6. Let CC denote the Banach
space of all such mappings that are also continuously differentiable with norm

Define the subset

(3.18) { C" 2> 0 on :} x (0, ).

(3.13a) f,(O, :2, 3) 0 Ve (0, oo), 3 ,
(3.13b) f2(:,, 1, 3)=0 V,, :3[,

(3.13c) f3(:l, :2, O)=0 VI e, (0, oo),
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Consider a mapping " t C2% defined by identifying the real-valued component
functions hi, h2, and h with the left sides of (3.16a), (3.16b), and (3.16c), respectively,
and h4, hs, and h6 with the left sides of (3.8a), (3.8b), and (3.8c), respectively. Then
the field equations are equivalent to

(3.19) (, A) =0.

Since the ring is homogeneous, it follows that the proper orthogonal group SO(2)
is a symmetry group of the ring. However, the material properties of the ring are
assumed to concur with the complete geometric symmetry group 0(2). That is, the
ring posesses through-thickness properties that are taken to be invariant under reflec-
tions as well as rotations in the plane. This places the following further restrictions on
the constitutive functions:

tl(--:l, :2, :3)---- tl(:, s%_, :3),

(3.20) ’(-:1, 2, 3)= fi(l, 2, 3), i= 2, 3,

V(l, 2, 3) ERX (0, OO)XR.

Remark 3.1. The restrictions (3.20) can be justified by viewing the rod as a
constrained, two-dimensional, homogeneous, isotropic elastic body, with the constitu-
tive functions /’i, i-1, 2, 3, defined by appropriate resultants over the cross section
(cf., for example, Antman and Carbone [1977, 8]).

The appropriate representation of 0(2) is defined as follows. Let Tg" CEm-
C2 (m 0, 1) be given by

Tg,](s) _= [ (s+g) Ig2-S0(2),
(3.21)

E(g- s) Vg 0(2)\S0(2),

where E :R66 is defined by E--(r,-r2,-b,-1, 2, :3). It is straightforward to
show that g-- Tg is a representation of 0(2) on C_. By (3.18) and (3.21), it is readily
demonstrated that Tg(CT)

_
for all g .

THEOREM 3.1. The mapping in (3.19) is equivariant under T, i.e.,

h(TgtC, A)= Tgh(c,A) VgE 0(2).

Proof. Since the system (3.8), (3.16) is autonomous, the claim is immediate for
all g SO(2). If g 0(2)\S0(2), it follows from (3.21) that

TgcJ(s) (rl, -r2, -b, -:, s2, s3)(g s),

and

d
ds

[Tgt](s) (-r,, r th : -: -:)(g-s).

Substitution of these expressions into (3.8) and (3.16), while making use of (3.20),
then yields the desired result. [3

Intuitively, it is natural to seek a "trivial" radially symmetric solution (the existence
of which is well known). Nonetheless, it is of interest to demonstrate that Theorem
2.1 leads to the same result by constructing the O(2)-reduced problem. By (2.3) and
(3.21), the projection onto the O(2)-fixed-point set is given by

ag+?-g 
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By (3.17), (3.21), and the 27r-periodicity of , it follows that

JO27r
(s+g) dg=(l, 2 qb, 1, 2 73)ER6,

and

27r
E(g-s) dg-(l, -2 -,-1, 2 3)E[6,

where 1 denotes the average value of rl on , etc. Thus, (3.22) becomes

(3.23) P (, 0, 0, 0, , 3) on.
Note that (3.23) includes a reduction in both independent and dependent variables.
By Theorem 2.1, the substitution of (3.23) into (3.19) identically satisfies (3.16b), (3.16c),
and (3.8a), which is easily verified, and (3.8c) reduces to 3 0. The remaining nonzero
algebraic equations are

(3.24) (0, 2, 0) +A 0, .
By (3.12) and (3.15), it follows that (3.24) has a unique solution 2 () for all

0, where @’[0,) (0, 1] is monotonically decreasing.
To investigate bifurcation from the O(2)-symmetric solution, it is convenient to

bring (3.19) into the form of (2.7). Define

(3.25) (A)=(@(A), 0, 0, 0, @(a), 0) on,
and let (a +, where

(3.26) (x, x, x3, x4, xs, x6) C.
Then set

(3.27) [(, a ((a +, a 0.

In view of (3.18), " - C2, where

(3.28) (c.x> () onax (0, ).

Clearly, (3.27) possesses the trivial solution {0} x (0, ). By (3.21) and (3.25), Tg(A)
(A) for all g 0(2). Then by Theorem 3.1, the mapping in (3.27) is also equivariant

(3.29) ( Tg, A) Tg[(, A) Vg 0(2).

The linearization of (3.27) about the trivial solution 0 is given by

(3.30) L(A) 0,

where L(A) D[(0, A) D((A), A)" C- C.. By (3.8), (3.13), (3.14), (3.16),
(3.19), and (3.24), the system (3.30) is given explicitly by

(3.31a)

(3.31b)

(3.31c)

(3.31d)

(3.31e)

(3.31f)
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where

at,t,(A),. - (0, O(A), 0), i=1,2,3.

A straightforward computation shows that (3.31) has three linearly independent
null solutions for any value of A, viz.,

m(S) (cos (s), -sin (s), 0, 0, 0, 0),

(3.32) 2(s)--(sin (s), cos (s), 0, 0, 0, 0),

3(s) (0, 0, 1, 0, 0, 0,).

Moreover, it is easy to demonstrate that whenever (Vo, Ao) is a solution pair of (3.27),
then so is (vo + Y--1 cii, Ao), for arbitrary constants ci, 1, 2, 3. This is quite reason-
able from a physical point of view, since the ring is free to translate and rotate rigidly
in the plane spanned by and j. It can be shown that any rigid displacement of the
ring has the form 3i=1 Ci(i"

The system (3.31) also possesses nontrivial solution pairs (, A) (v’, A.), (v, A.)
whenever A. satisfies the characteristic equation

(3.33) q(A)= 1+ 1+ + =n2,t?, (/ "t,2 a ’,3(/
where n _>- 2 is an integer. By (3.12), q(0) 1 (cf. Remark 3.2) and q is a strictly positive
function on A >0. As discussed by Antman and Dunn [1980], (3.33) may have no
roots, one root, or many roots, for a given integer n, depending on the behavior of the
function q. Henceforth, it is assumed that q is monotonically increasing on the interval
(0, a], where 2<a <oo. Thus, (3.33) has at least one root An for each integer n
[2, /q(a)]. There are two linearly independent null vectors associated with each root

v(s)-- (a’ cos (ns), a sin (ns), o sin (ns), a sin (ns), a’ cos (ns),

n cos (ns)),
(3.34)

v(s) (-a’ sin (ns), a cos (ns), a cos (ns), a cos (ns), -a’ sin (ns),

-na sin (ns)),

where

al a2--a4
n

._ -q(a.) o

a3-n2t3,3(A.)
a#O,

t,,,(a.) +]
as n’2,2(a.) a4"

Remark 3.2. It is interesting to note that if )tl is a root of (3.33) for n 1 (A =0
is always such a root), then the 27r-periodicity conditions dictate that (3.31) evaluated



GLOBAL BIFURCATION IN THE PRESENCE OF SYMMETRY 833

at h h admits only the trivial solution and the rigid-body solutions (3.32). This
contrasts with results from several previous works on circular rings where strain
formulations were employed without accounting for displacements (cf. Antman 1973],
Tadjbakhsh and Odeh [1967]). Such an analysis is equivalent to considering only
(3.31a), (3.31b), and (3.31c), which admit nontrivial solutions at h ,1 similar to (3.34)
for (x4, xs, x6). This in turn, ostensibly implies the existence of bifurcating solutions
(x4, xs, x6) of least period 2zr to the full nonlinear problem. In the above-cited works,
subtle techniques were required to demonstrate the inadmissibility of such solutions.
In this formulation, the existence of such solutions (bifurcating from the trivial solution)
never arises.

The analysis of bifurcation is complicated for two reasons. The linearized operator
in (3.30) has a three-dimensional kernel for all h (0, c), and it admits two additional
null vectors for all values of h satisfying (3.33). The latter condition is common in
problems with 0(2) symmetry (cf., for example, Vanderbauwhede [1982]). Following
(2.9), consider the null vector z,’ and note that

z,l (s + 2rj/ n) , (s),

F"(rj/ n s) (s), j 1, 2,... n.

By (3.21), it follows that the isotropy subgroup of 0(2) at z, is

D11 {g 0(2): T,’ },

where D11 denotes the dihedral group of order 2n. The "mode shapes" associated with
z, for n 2, 3, 4, 5 are shown schematically in Fig. 2. This motivates constructing the
D11-reduced problem.

Remark 3.3. It is easy to show that any linear combination of the modes
and v(s) (suitably scaled) is equivalent to a change of phase; v(sq-g)--[Tgv](s)

FIG. 2. Schematic bifurcation diagram for/z2. > 0, n 2, 3, 4, 5.
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for some g SO(2). The isotropy subgroup of 0(2) at Tgz,’ is gDng-1 {ghg-l: h D,,},
which is conjugate to Dn. It is shown later in this section that the solutions of a
gDng-l-reduced problem can be generated from the solutions of the D-reduced
problem.

By Theorem 2.1, the D-reduced problem for (3.27) consists of the same mapping
/ restricted to the Dn-fixed-point set. By (2.3), the projection onto that subspace is
given by

1
n [:v(s+2rj/n)+ E:v(2rj/n-s)].(3.35) P,:v

TnEOIEM 3.2. Let C/, denote the space ofall m-times continuously differentiable
functions from 2= into 6 that are 2r/n-periodic. Let Bzrn/n denote the D,-fixed-point
set of C2". Then Bz/, is the subspace ofall u (u, u, u3, u4, us, u6) e C2/, such that
the component functions u (s) are even for 1, 5, 6 and odd for 2, 3, 4, i.e.,

(3.36) B’=/, {u C’,/,: u(-s)= u(s), u(-s)= -u(s), i= 1, 5, 6,j= 2, 3, 4}.

Proof For :ve C’=/,, consider the ith component function of
(u,(s), Uz(S),..., u6(s))e B2/,. By (3.21) and (3.35),

I@ [x(s+2rj/n)+x(2rj/n-s)] fori=l,5,6,
u(s)

[-n=
[xi(s+Zrj/n)-xi(Zrj/n-s)] fori=2,3,4.

Clearly, u(-s) u(s) for i= 1, 5, 6, and u(-s) -u(s), i= 2, 3, 4. Moreover, the
2r/n-periodicity of u follows from the 2r-periodicity of x, j 1, 2, , 6, on N=.

On the other hand, if u B"/, as defined by (3.36), then it is straightforward to
verify that

u(s + Zrj/ n) u(s),
and

E.u(2rj/ n s) u(s), j 1, 2,..., n,

i.e., Tgu u for all g e D,, by virtue of (3.21).
The D,-reduced problem for (3.27) is given by

(3.37) L(u, A)-= h(;(A)+ u, A)=O,
where re," fl,- B=/,, and where

(3.38) 1), {uG B2/n" us> --t(1) on 2,n-} x

The linearization of (3.37) about u =0, denoted

(3.39) L,(a)u O,
where L,(A) D1/,(0,/) 0=- "B2/n B,,/,, is again defined by (3.31). However, the
2r/n-periodicity of u B,/,, n ->_ 2, shows that and (cf. (3.32)) are not solutions
of (3.39). Also, 3 is not a solution, since u3 is odd. Finally, the evenness and oddness
of the various components of u imply that the only nontrivial solution of (3.39) at a
root A, of (3.33) is v’. That is, dim N(L,(A,))= 1, and condition (EB1) of Theorem
2.3 is satisfied.

Define the formal adjoint operator L,*(A of L,(A with respect to the inner product

f2,n’/n (s t13( S as,(3.40) (, v) -- ao
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where g%--Yi= yixi. A straightforward computation shows that L,*(h)g =0 is given
explicitly by

y’a-ys=O, y+y4=0, y=0,

(3.41)
t,l(h )y ’,(h) + h ]Y2 + O(h ){ tT,1 (/) -[- ]Y3 + Y4 0,

t2,2(h )y + ’2,2 h + A ]Yl -k- Y5 0,

7,3(/)y;- hO(h )Yl- O(A )Y5 + Y6 0 on

For each root h,, n >-2, of (3.33), the system (3.41) admits nontrivial solutions

(3.42)
z’*(s)-- (/3’ cos (ns),-/3 sin (ns),/3 sin (ns), 0, 0, 0),

v*(s)-= (/3’ sin (ns),/3 cos (ns), -/3 cos (ns), 0, 0, 0),

where

# =-------- #1,
n’3,3(Xn)

such that (v v;)= o" However, it is easily demonstrated that (2 U) =0 for all
0 n* n0* n*

UeOz=/,v eOz=/,,thedualspaceof 0 o*B=/,. In paaicular, N(L, (h,)) B2
Thus, L(A,) has only v (s) as a null vector, and L,(A,) has a simple zero eigenvalue.
By the alternative theorem (cf., for example, Stakgold [1979]), the transversality
condition (EB2) of Theorem 2.3 then reduces to

(3.43) (, [L;(A.)]’) O.

A lengthy but straightforward computation employing (3.13), (3.24), (3.31), and
(3.33) yields

(3.44)

(v’*, [L’,(A,)]’) -K, { +

where K, > 0 is a constant and ’7,2(A) (02 ’2/OsC)(0, q(h), 0). By (3.12), it follows
that the first three terms inside the brackets on the right side of (3.44) are strictly
positive. However, the last two terms can each be positive, zero, or negative, depending
upon the behavior of the function sc ’(0, sc, 0). There are no (known) natural
hypotheses for the second derivative ’2,22(A). Thus, the right side of (3.44) could
conceivably vanish at a given root h,. In such case, a more refined local analysis is
required (cf. Rabier [1985]), which is beyond the scope of this work. At any rate, if
(3.43) is satisfied, then Theorem 2.3 leads to the following result.

THEOREM 3.3. If (3.43) holds, then there exists a unique, local,,, nontrivial, D,-
symmetric branch of solutions of (3.27) of the form (v, h (,(t), h,(t)) , for all
It[ < e with (k,(0), ,(0)) (0, h,). Moreover, k,(t) tv’; + o(t) as - O.
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If //1 is sufficiently smooth, then a local analysis of (3.37) at (0, A,) shows that
the bifurcation diagram is a "pitchfork,". i.e., /1(t) A/1 + i2nt2 + O(t) as - O. That is,

n*the coefficient of the first-order term vanishes, viz., 1/1 -= (vl D//1(0, A/1)[v, vl])=0,
where 2D,A(O, A/l) ->B=//1 B=/, B2=//1 is the second (Fr6chet) derivative oft;/1 with
respect to its first argument evaluated at (u,A)=(0, A/1). To see this, note that
(3.21), (3.34), and (3.42) lead to

(3.45)
TrlnVl ](S) -Zl (S),

T/,,v, ](s) --l (S) for
7r- so(2).

Successive differentiation of (3.29) with respect to v leads to

(3.46) D/(0, A/l)[ TW, Tgto] TgD/(O, A/1)[v, to],

for all g O(2), v, C=/,. Evaluating (3.46) at g= /n SO(2) and v==v,
and then taking its inner product with T=/,v* yields

(3.47)
(

where (3.47)2 follows from (3.21), (3.40), and (3.42). By viue of Theorem 2.1, it
follows that 2D,L(0, Z,)[,] D/(0, A,)[, w] for all v, B/,. Hence, (3.45)
and (3.47) lead to

It can be shown that 2, is the quotient of-(*, DL(0, A,)[u, u, ]) and the
right side of (3.44), (cf., for example, Golubitsky and Schaeffer [1985]). A schematic
bifurcation diagram for 2, > 0, n 2, 3, 4, 5, is presented in Fig. 2.

To make the conclusions of Theorem 3.3 global via Theorem 2.3, it is sufficient
to demonstrate that (3.37) can be recast into the form (2.6). Referring back to (3.8),
(3.16), (3.19), and (3.27), it follows that (3.37) can be expressed as

(3.48) [M,(, )]’-,(, ) =0,

where , :6 x (0, ) 6 is smooth and M, is a smooth, (6 x 6)-matrix-valued function
on 6 (0, ). m is given explicitly by

(’ ) [I], [0]

where [0] is the 3 x3 zero matrix, [I] is the 3 x3 identity matrix and [at/a](() +u)
is the 3 x 3 Jacobian of the constitutive functions (cf. (3.11)) evaluated at (a, 2, )=
(u4, (A)+u, u6). By (3.12), M,(u, A) is inveible for all (u,A),. Thus, (3.48)
leads to

(3.49)

where

[a/a]-’((x)+u) [o]]"
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Equation (3.49) is equivalent to the integral equation (cf. Krasnosel’skii and Zabreiko
[1984, 28])

(3.50) a(s)=a(27r/n)+ [M,(a(r),A)]-ljn(u(r),A) dr.

The right side of (3.50) defines a mapping c,’O, Bl/n. Moreover, cn is readily
shown to be completely continuous by virtue of the continuity of the integrand and
the Arzel/t-Ascoli Theorem. Thus, (3.50) is of the form (2.6).

Let En denote the solution set of (3.37), and denote the trivial solution by
E, ={0}x(0, 00). The following theorem is a consequence of the final part of
Theorem 2.3.

THEOREM 3.4. Let the hypothesis of Theorem 3.3 hold. Then the Dn-symmetric
bifurcating branch of (3.27) from (0, An) is global. That is, there exists a connected set

n ,n\,t On containing (0, A) that is characterized by at least one of the following
properties:

(i) n is unbounded in C(0, o).
(ii) ’n f’)0f .
(iii) There exists a pair (0, A,) n f’) ,t with A. A.
The Dn symmetry of each global branch , n N fq[2, v/q(a)], does not directly

imply which properties (i)-(iii) of Theorem 3.4 actually characterize ’n. Indeed, by
(2.1), Dn Dpn ’pn -n fOr all n, p N, n _-> 2. In particular, this does not preclude
the possibility that rpn fq rn . However, a further analysis of the reduced problem
(3.50) or equivalently (3.37) shows that this cannot occur.

For any u B/n, n>=2, it follows from the continuity, oddness, and 27r/n-
periodicity of the component function u4 (which represents the shear strain) that
u4(jTr/n) 0,j 1, 2,..., 2n. Let S=/n denote the open set of all u B=/n such that
u4 has exactly 2n simple zeros at s =jTr/n, j 1, 2, , 2n, on 2=. An analysis similar
to that of Rabinowitz 1973, Lemma 2.7], based on the fact that Vn S=/n, shows that
u S/n for all (u, h n Srn, where n 12n is some sufficiently small neighborhood
of (0, An). That is, u4 inherits the nodal properties of the corresponding eigenfunction
locally along srn.

Now the nodal behavior of u4 can change only if u is in the closure of
somewhere along ’n ==>::l at least one number 7. such that u4(7.)= u(7.)=0, i.e.,
u4 has a double zero at s z (cf. Rabinowitz [1973]). Consider the degenerate initial-
value problem (3.37) subject to u4(7.) u(7.) =0. By (3.19), (3.25), and (3.27), this is
equivalent to finding a solution of (3.8) and (3.16) of the form (rl, r, b, , :, :3)=
(ff(A)+u, u, u3, u4, (A)+us, u6), where un, subject to the same degenerate
initial conditions. The evaluation of (3.16) and (3.8) at s=7., while making use of
(3.13a), leads to

(3.16a)"

(3.16b)"

(3.16c)"

(3.8a)"

(3.8b)"

(1 -- U6(T)) "2(/ 7.) --/ [/(/) -]" U5(7.)] 0

’,(;, )u()+ ,(;t, )u;() 0,

u(7.) [1 - u6(7.)] u2(7.),

u((r) =-[1 -] /,/6(7")] Ill (7.) --/,/5(7.) I]t(, u6(7.),

(3.8c)" u(7") ---/,/6(7"),
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where

"2(/ "/’) __---- t2(0 I(/)-U5(7") U6("/’))

/.j(/, ’)j (0, I(/)-U5(’/’), //6(7")).

From (3.12), it follows that (3.16b)" and (3.16c)" have the unique solution u(r)
u(r)=0. By (3.8c)", u6(’r)=/=::>u3(7")--0, in which case (3,16a)" has the unique
solution us(r) 0, by virtue of (3.24). Thus (rl, r2, :1, so2, 3)=
((.),0, U3(r),0,(,),0 is a critical point of the system (3.8) and (3.16),=
(0, 0, u3(r), 0, 0, 0) is a critical point of (3.37). Moreover, u B2/nu3 is odd
U3(r) =0. Thus, u=0 is the unique solution of (3.37) subject to the degenerate initial
conditions. However, this implies that u4 can change its nodal properties along ’n only
at the trivial solution branch, i.e., branches with distinct symmetries do not intersect.
This leads to the following strengthened version of Theorem 3.4.

THEOREM 3.5. Let the hypothesis ofTheorem 3.3 hold. Then in addition to the claims
of Theorem 3.4, it follows that , -{(0, A,)} c S2.rr/n X (0, 00). In particular, SI/,
S=/,, for m n n f’) ,, (. Thus, n is characterized by property (iii) of Theorem
3.4 only/fA, and An are two distinct roots of (3.33) corresponding to the same integer n >- 2.

A particular case of interest is when q: (0, c) --) (0, ) (cf. (3.33)) is monotonically
increasing with q--)c as A --) c, in which case (3.33) has exactly one root An for each
integer n _-> 2. Then by Theorem 3.5, ’n is either unbounded or ’, f’l 0 . By (3.28),
the latter condition is characterized by the existence of a solution point (u,
such that s u5 + q(A 0 somewhere on2 and/or A o 0. With appropriate growth
conditions on the constitutive functions (for which there is little or no physical basis),
the possibility of violating the unilateral constraint (3.9) can be eliminated by the
existence theorems of Antman [1973].

To conclude the analysis of the ring, note that if (Xo, Ao) is a solution point of
(3.27), then so is (Tgo, Ao) for all g O(2), by virtue of (3.29). In particular, if
(O,h,)(Uo, ho),, then {(Tguo, ho):O<--g<27r/n, gSO(2)} is a one-parameter
family or an orbit of distinct solutions of (3.27). By (3.21), [Tguo](S)= Uo(s+g) for all
g SO(2), which has the physical interpretation of a clockwise rotation of the buckled
shape corresponding to Uo ’n (cf. Fig. 2) through the angle g. That is, Uo and Tguo
differ by only a change of phase. Now Tguo is an element of the (gDng-1)-fixed-point
set (cf. Remark 3.3), i.e., Th[ Tguo] Tguo for all h gDng-1. Consequently,

r.--((ru, ): (u, A 6 ,,, O<- g < 2.n/ n, g 6 SO(2)}

is a global, connected "sheet" of bifurcating solutions from (0, An), with each "slice"

Tv.n =- { Tgu, X ): (u, A srn } = F being a global bifurcating branch of solutions of the
(gD,g-1)-reduced problem. Finally, it follows from (3.21) and (3.28) that
and (u, A) 012:=>( Tgu, X 0’, for all g O(2), u C=/,,. Thus, if ’, is unbounded
and/or st, f3 011 , then Tg,, is unbounded and/or Tg’n fq 012 , respectively.

4. Concluding remarks. The analysis of the ring problem is noteworthy for several
reasons. First, many results are new and complement the general existence theorems
of Antman 1973]. In that work symmetry properties of solutions that agree with those
obtained here were deduced by clever phase-plane arguments. However, the results of
this work are sharper. Symmetries of specific global solution branches are enumerated,
and it is shown that primary bifurcating branches with distinct symmetries are mutually
disjoint. Further, in contrast to phase-plane methods, the systematic techniques of 2
are applicable to a broad class of equivariant operators.
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The ring problem demonstrates other advantages in analyzing a reduced problem
that are not apparent in the abstract development of 2. The Dn-reduced problem is
designed to eliminate the troublesome analysis of bifurcation that is associated with
a two-dimensional null space in the presence of 0(2) symmetry (cf. (3.34)). However,
the Dn-reduced problem also eliminates the rigid-body solutions (cf. (3.32)), thus
yielding a standard bifurcation problem with a one-dimensional kernel.

Of more importance is the fact that the D-reduced problem admits a detailed
qualitative analysis. The technique of identifying nodal properties of a solution along
global bifurcating branches was devised by Crandall and Rabinowitz [1970] for
nonlinear Sturm-Liouville problems. Since that time, there have been numerous appli-
cations of the method, mostly due to Antman and his co-workers, to more general
two-point boundary-value problems. The application of such techniques to the full
ring equations and to problems with 0(2) symmetry, in general, is not clear. However,
the D-reduced problem fixes the indeterminate phase and admits only solutions with
shear strains (in particular) that are odd with period 2r/n. Consequently, it was
possible to show that the nodal properties of the shear strain on R2 are inherited
from the corresponding eigenfunction of the linearized problem and are preserved on
global bifurcating branches. That the shear strain plays a crucial role is hardly surprising
in view of the work of Antman and Dunn [1980] on circular arches.

It is interesting to note that if the symmetry group of a ring is SO(2), but not
O(2), then the subgroups are the cyclic groups C. It can be shown that the state
variable of the C-reduced problem is an element of C/,,. In particular, the various
component functions do not possess the evenness and oddness that play a crucial role
in the detailed qualitative analysis of an O(2)-symmetric ring.

Finally, it should be pointed out that the construction of a reduced problem
presented in 2 also holds for multi-parameter problems. Moreover, it can be easily
extended to more general classes of operator equations (cf. Healey [1988b]). Thus, it
is clear that the analysis of reduced problems by other global continuation theorems,
e.g., Alexander and Antman [1981], [1983] and Fitzpatrick and Pejsachowicz [1986],
leads to obvious generalizations of Theorems 2.2 and 2.3.
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Abstract. The theorems on weak and strong ergodicity for inhomogeneous products of nonnegative
matrices are extended to inhomogeneous iterations of nonlinear positive operators on Euclidean space. In
particular some concave version of the Coale-Lopez theorem is presented and applied to a density-dependent
Leslie model. The results are obtained, via Hilbert’s projective pseudometric, from general theorems on
inhomogeneous iterations of operators mapping a metric space into itself.
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1. Introduction. Consider a discrete dynamical system given by an operator f
mapping the state space into itself. For the dynamical behaviour of the system of
particular interest are asymptotic properties of the iterates fn if n-. If, however,
the system itself changes in the course of time with f as "law of motion" at, say, time
t, then one will become interested in asymptotic properties of the inhomogeneous
iterationsfn, f-i fl if n -. This kind ofproblem arises in mathematical biology
and mathematical economics where, e.g., the principle governing the growth of a
population or the choice of a technology itself depends on time (cf. [4], [7], [8], [13],
[14]). For the case of linear operators in finite dimensions, inhomogeneous iterations
become inhomogeneous products AA_ A of matrices, the asymptotic properties
of which have been investigated for a long time in the theory of Markov chains and
the theory of nonnegative matrices, respectively (cf. [14]). Since absolute magnitudes
tend thereby to grow exponentially, one considers relative magnitudes as exemplified
by x-AnAn_... Ax/IIA,A_... Axll, x being a starting vector and I1" some
vector space norm. There are two major stability results here, one on so-called strong
ergodicity, meaning convergence of x for arbitrary starting vectors to the same limit
and the other one on so-called weak ergodicity, meaning convergence of x- yn to 0
for any two starting vectors x, y, and y starting with y. These results have important
applications, in particular to population dynamics, where the second result is known
also as the Coale-Lopez theorem (cf. [4], [8], [13], [14]).

As in other fields too, linearity is a strong idealization concerning applications
and on behalf of the latter results on nonlinear operators, e.g., concave ones, are
requested. We present in 3 as the main results of this paper theorems on weak and
strong ergodicity for positive nonlinear operators in finite dimensions that contain the
well-known theorems on nonnegative matrices as special cases. In particular, a concave
version of the Coale-Lopez theorem is presented. Section 4 provides some concrete
classes of nonlinear examples for these results by developing a density- and time-
dependent version of the Leslie model of population dynamics.

To prove the theorems of 3 we translate the order-theoretic framework of positive
operators into a metric framework and prove in 2 the corresponding theorems.
The metric used is Hilbert’s projective pseudometric which was first introduced by

* Received by the editors September 22, 1986" accepted for publication (in revised form) August 4, 1987.
t University of Kagawa, Takamatsu, Kagawa 760, Japan.
University of Bremen, 2800 Bremen 33, Federal Republic of Germany.
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Birkhoff [1], [2] into functional analysis. He used it to extend Jentzsch’s theorem on
linear integral operators to abstract linear operators by applying Banach’s contraction
mapping principle with respect to this metric (cf. also [10], [11]). Hilbert’s metric is
applied to inhomogeneous products of matrices in [8] and in [14, 2nd ed.] (cf. also
[4]). In extending Birkhoff’s theorem to nonlinear operators, Hilbert’s metric is used
in [11] within an infinite-dimensional nonlinear context (cf. also [12] for the finite-
dimensional case). The present paper applies Hilbert’s metric to inhomogeneous
iterations of nonlinear operators in finite dimensions. (A direct approach to
inhomogeneous iterations in finite dimensions that does not involve Hilbert’s metric,
but that is by no means more simple, can be found for matrices in [14, 1st ed.] and
for nonlinear operators, in [6].) In the case of homogeneous iterations usually one of
the many variations of the contraction mapping principle is applied with respect to
Hilbert’s metric. To treat inhomogeneous iterations, however, something different is
needed. Although there is an enormous literature on the contraction mapping principle,
as surveyed, e.g., in [3], [5], and [10], there seems to be none handling the composition
of several different contractions. Hence in 2 we give a systematic account of
inhomogeneous iterations within the metric framework. Although in the present paper
the material of 2 is used in 3 only for the finite-dimensional case, it may also be
applied to infinite dimensions.

2. Inhomogeneous iterations of operators mapping a metric space into itself. An
operator f" X- X on a metric space X with metric d is said to be nonexpansive if
d(f(x),f(y)) <= d(x, y) for all x, y X; it is said contractive on Y, for Y___ X, if

d (f(x), f(y)) < d (x, y) for all x, y Y with x y.

We call a sequence (f,), of operators f,:X X an (asymptotically) contractive
sequence on Y for Y_c_ X, if there exists a continuous mapping c: Y x YR such that
the following two conditions are satisfied:

(i) c(x, y) < d(x, y) for all x, y Y with x y;
(ii) To every e>0 there exists a N(e) such that d(f,(x),f(y))<=c(x,y)+e

for all n _-> N(e), all x, y Y.
For a given r >_-1 and a given sequence (f,), of operators on X we will consider

also the sequence of lumped operators (Fm)m defined by

(where stands for the composition of mappings).
In what follows we are concerned with the asymptotic behaviour ofinhomogeneous

iterations, which means the behaviour off, f2" fl(x) for n - o where x X and
(f,), is a sequence of operators on X. In the special case of (homogeneous) iteration
the underlying sequence is simply (f,f...) for some operator f on X. This is a
contractive sequence precisely when f is a contractive operator, and the sequence of
lumped operators in this case is (fr, fr,... ).

The following theorem provides conditions under which inhomogeneous iterations
come close together irrespective of the starting point. This does not necessarily mean
that the iterations itself do converge. (In the next section we will see that the former
is related to so-called weak ergodicity and the latter to strong ergodicity.)

THEOREM 1. Let (f.). be a sequence of nonexpansive operators on the metric space
(X, d) such that for some r >-_ 1 the sequence (F.,)m of lumped operators is contractive on
Y and satisfies F.,(X) Y for some compact subset Y of X and almost all m. Then
lim._ d(x., yn)=O for any two sequences defined by X.+l=f.(x.) and y.+l=f.(y.)
with arbitrary starting points xl, y X.
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Proof (1) Consider first a sequence (g")" of nonexpansive operators, contractive
on Y and satisfying g"(X)c_ y for some compact Y___ X and almost all m. Let
X"+l g"(Xm), Y"+I g"(Y") for m N and x, y X arbitrary. Since eventually
(x", Ym) Y X Y and Y is compact, there exists a subsequence (Xk("), Yk(m))" converg-
ing to some (x*, y*) Y x Y. By the nonexpansiveness of gm

d(x"+l, Y,,+I) d(gm(X"), g"(y")) <-__ d(x", Ym),
and hence lim"_. d(x", y") d(x*, y*).

The sequence (gk("))" is also contractive and according to the definition there
exists a function c and to every e > 0 an M(e) such that

d (Xk(m)+l Yk(")+l)= d (gk(")(Xk(")) gk(")(Yk("))) <- C(Xk("), Yk(")+ e

for all m >= M(e). Letting m oe from this we obtain d(x*, y*) <= c(x*, y*)+ e because
of d(x*, y*) <= d(x", y") and the continuity of c. Since e > 0 was arbitrary d(x*, y*) <=
c(x*, y*) which together with c(x, y) < d (x, y) for x y and x, y e Y yields x* y*.
Thus finally lim"_. d (x", y") 0.

(2) Suppose now (fn), is a sequence as in the theorem and put g" F(m-l)r+.
Being a composition of nonexpansive mappings, g" is nonexpansive. Step (1) therefore
yields lim"_.oo d (9", 37,,) 0 for sequences defined by 9"+ g" (’m), tim+ gm (fi"),
)l Xl, 371 y. By the definition of lumped operators

and hence 9"+ X"r+, fi"+l Y"r+l" For any natural number n there exist nonnegative
integers re(n) and such that n=m(n)r+i with 0_-<i<r. Since xn+=
f," f,-i f,-i+(x,-i+) and the f,’s are nonexpansive it follows that

d(Xn+l, Yn+l) -< d(x"(n)r+, Y"(n)r+) d("(n)+,
Thus lim,_. d (xn, y,) 0. [-1

Remark. The above proof shows that Theorem l’s conclusion remains valid if
instead of the F"’s the operators gm f("-l)r+l are considered with gm(X) c__ Y for
some compact Yc_ X and almost all m and such that the sequence (g")" contains a
contractive subsequence on Y.

Now we are looking for conditions ensuring the convergence ofthe inhomogeneous
iterations itself to a common limit for arbitrary starting points. Obviously this is stronger
than the convergence statement made in Theorem and therefore we have to add
some assumptions.

THEOREM 2. Let (f,), and (Fm) be sequences of operators as in Theorem 1.
Suppose in addition for the lumped operators F" uniform convergence on the metric space
to some operator F. This assumption is particularlyfulfilled in case the operatorsfn converge
uniformly to some f Then for arbitrary starting points Xl X the sequence defined by
xn+ f, (x,) converges to the unique fixed point of F, or f, respectively.

Proof (1) Consider first a sequence (g")" of nonexpansive operators, contractive
on Y and satisfying g"(X)_ Y for some compact Y_ X and almost all m. Assume
g" converges uniformly on (X, d) to some operator g, i.e., to e > 0 there exists N(e)
such that d(g"(x), g(x)) <= e for all m _-> Nl(e) and all x X. Since (g")" is contractive
on Y there exists a function c and to e > 0 there exists N2(e) such that

d(gm(x),g"(y))<-c(x,y)+e for all m>-N2(e) and all x,y Y.

Therefore

d(g(x), g(y))<- d(g(x), g"(x)) + d(g"(x), gin(Y))+ d(g"(y), g(y))

<--c(x,y)+3e form>=N(e),m>-N(e).
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This yields d(g(x),g(y))<-c(x, y)<d(x, y) for xy, x, y Y, i.e., g is contractive
on Y.

Let now x X be an arbitrary starting point, fixed in what follows. We want to
show that the set A of all limit points of the set {x,,}, where x,,/l g,,(x,,), consists
precisely of the unique fixed point of g. Since (Xm)m is eventually contained in the
compact set Y, A _.c y and A . Pick some x A. Then there is a subsequence (x())
of (x.). converging to x and we may assume that x(.)_ e Y for all n. (x(.)_). contains
a subsequence (x(.)_). converging to some y e Y. Obviously

d (x, g(y) <- d (x, xt,(,,)) + d (gt,(,,)_(xt,(,,)_), g(xt,(,,)_) + d (g(xt,(.)_), g(y

and taking into account that (x(.)). converges to x, (g,.),. converges uniformly to g
and that g is contractive on Y we obtain d(x, g(y))=0, i.e., x g(y). Because of y A
by the same argument we can find Yz e A such that y-= g(Y2). By iteration we obtain
to every n N a y. A such that x g"(y,,). Since y. A Y, (y.). contains a sub-
sequence (Yh(.)). converging to some y*e Y. Because of g(Y) c_c_ Y, g is contractive
also on the metric space (Y, d) and hence by a well-known version of Banach’s
contraction mapping principle (g"(y*)). converges to the unique fixed point x*
of g. From d(x, x*) <- d(gh(")(Yh(n)), gh(n)(y,))+ d(gh(n)(y,, X*) we therefore obtain
d(x,x*)=O, i.e., x= x*. This proves A {x*}, i.e., the convergence of the sequence
(Xm)m, defined by x,,+l g,,,(Xm) with arbitrary starting point, to the unique fixed point
of g.

(2) Let for arbitrary x e X (x,), be defined by x,+ =f,(x,). We fix with 0<_- < r
and define g,, F(m-)r++. By the assumptions made on the lumped operators Fm we
may apply step (1) to the sequence (g,,),,. Therefore the sequence defined by ),,+
g,,(m), X+ converges to the unique fixed point x* of g F.

By the definition of lumped operators

gm" gm-1 gl -’-fret+i" fmr+i-1 f/+l,

and hence m+l Xm++. Therefore for any fixed 0 <- < r (Xmr+i+l)m converges to the
unique fixed point x* of F. Since any natural n can be written as n mr+ with
0_-< < r it follows that (x,), converges to x*. This proves the theorem in case the
lumped operators converge uniformly to some F.

(3) Let (f,), be an arbitrary sequence of operators on a metric space X converging
uniformly on X to some uniformly continuous operator f We first show that to every
e > 0 and to every natural k there exists an N(e, k) such that

(*) d(f’(x),f,,, "f,, f,,(x))<-e for n>-N(e,k) and all xeX.

By assumption, for e > 0 given there exist 6(e)> 0 and N(e) such that

d(f(x),f.(y)) <-_ d(f(x),f(y))+ d(f(y),f.(y)) <-_ e/2 + e/2 <= e,

provided d(x,y)<-3(e) and n>-N(e).
Hence, (.) holds for k 1 with N(e, 1)= N(e). Suppose, (.) holds for some k_-> 1.

Then

d(f’(x),f. f.+(x))-<(e) for all n2,-" ",n,+,>-N(8(e),k).

Putting N(e, k+ 1) max {N(e), N(6(e), k)}, we obtain

d(ftc+l(x),f, fn2 f.+,(x)) d(f(f’(x)),f.,(f Lk+l(X))) e

for n, n_,..., n,+ >-N(e, k+ 1). This proves (.) to hold for all k.
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Now, let (fn)n as in Theorem 2 and Theorem 1, respectively, and suppose uniform
convergence to some operator f. Since every fn is nonexpansive, f must be uniformly
continuous. Thus (.) applies and yields for e >0 given d(fr(x), F,(x))<= e for all
m >= N(e) and all xX. Therefore (F,,)m converges uniformly on X to F=f. Step
(2) then yields convergence of the sequence defined by x,/l =f,(x,), xiX, to the
unique fixed point x* of F. By nonexpansiveness of f, and uniform convergence to f,
from

d (f(x*), x*) <- d (f(x*),f(x,)) + d (f(x,),f(x,)) + d (x,+, x*)

it follows that f(x*) x*.
Remark. Theorem 2 remains valid, if instead of the whole sequence (F,), only

some subsequence is required to be contractive on Y. The beginning of step (1) in the
proof, when applied to this subsequence yields that F is contractive on Y. But then
(F,,), is contractive on Y too. For, it is true in general that a sequence of operators
h,. converging uniformly to some contractive h must be contractive (with c(x, y)=
d(h(x),h(y))).

From Theorem 2 we may derive the following criterion which is cast more directly
in terms of the given operators.

THEOREM 3. For any sequence (fn)n of nonexpansive operators on the metric space
X the sequence defined by x+ =f,(x) converges for arbitrary x X to the same limit
point, provided the following condition is satisfied" For some r >-1 the sequence (F,)m
of lumped operators converges uniformly on X to some operator Ffor which there exists
an open and relatively compact subset U ofX such that F(X)_ U and F is contractive
on the closure U.

This condition is particularly satisfied if (f,), converges uniformly on X to some f
for which f(X) U and fr is contractive on U for some r >-1, U being an open and
relatively compact subset of X.

Proof. To derive the above criterion from Theorem 2 we only have to show that
(Fm), is contractive on Y and for almost all m Fro(X) Y for some compact subset
Y of X. Putting Y U F is contractive on Y and hence (cf. the remark following the
proof of Theorem 2) the sequence (F,), is contractive on Y. It remains to show that
F,,(X)_ Y for almost all m. To every xX there exists some e(x)>0 such that
B(F(x), e(x))_ U, B(F(x), e(x)) being the open ball with center F(x) and radius
e(x). Obviously the closure F(X) is contained in [..Jxx B(F(x), 1/2e(x)) and there is a
finite cover, F(X) [_.Jx B(F(x), 1/2e(x)) for some finite set " X, because F(X) is
contained in the compact set /3. Let e be the smallest of the numbers 1/2e(x), x f.
By uniform convergence of the lumped operators there exists N(e) such that
d(Fm(x), F(x)) <= e for all m >= N(e) and all x X. For x X there exists some : X
such that F(x) B(F(), 1/2e()) and therefore

d(F,,(x),F(;))<=d(F,,(x), F(x))+d(F(x), F(;)) <’--e(;)+ 1/2e (;)=e (;)

for all m=> N(e). Hence F(x)B(F(), e()) U for all xX, all m>-N(e). Thus
F, (X)

_
Y for almost all m.

Remark. In the situation of Theorem 3 the meaning of being contractive for the
sequence of lumped operators is that some iterate of the limit function of the original
sequence is contractive. More precisely, let (f,) be a sequence of nonexpansive
operators converging uniformly on a metric space to some operator f. Then for any
r -> 1, the sequence (F), of lumped operators is contractive if and only if f is
contractive. This is immediate by parts (1) and (3) in the proof of Theorem 2 and the
remark thereafter.
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3. Inhomogeneous iterations of nonlinear positive operators on Euclidean space. The
results of the previous section we shall now apply to obtain the theorems of weak and
strong ergodicity for inhomogeneous iterations of nonlinear positive operators on
Euclidean space. As in the case of linear operators, these theorems have applications
in mathematical biology. We shall obtain a concave version ofthe Coale-Lopez theorem
of population dynamics as a corollary, which then is applied in the next section to a
density-dependent Leslie model.

Let E denote the k-dimensional Euclidean space with typical element x=
(Xl, Xk) X E . For x, y E E we write x -< y if xi -< yi for all i; we write x < y if

x <y for all i. E/ denotes the positive cone E/ {x E[x >= 0}. By a scale we mean
a continuous functional p" E/I/ with p(x)=0 only for x =0 and such that p is
positively homogeneous, i.e., p(hx)= hp(x) for x E/, h +, and p is monotonic,
i.e., p(x)<=p(y) for 0=< x=< y. Obviously every monotonic norm is a scale, but there
are others, e.g., maxima or minima of these norms. In what follows we fix on E/ an
arbitrary scale p and we denote its unit level set by X, X -{x E+lp(x)= 1}. This set
X when equipped with a metric defined below will serve as the metric space underlying
the previous section. As for the operators we shall employ various properties in the
sequel. An operator T" E+ E+ is

proper if Tx 0 is equivalent to x 0;
subhomogeneous if for x, y E X, 0 -< A-<_ 1, Ax-<_ y implies A Tx <= Ty;
ray-preserving if for every x X and A > 0 there exists some A’> 0 such that

T(Ax)= A’Tx;
ascending (for p; cf. [11]) if there exists a continuous mapping q of the unit

interval [0, 1] into itself with A < o(A) for 0< A < 1 and such that for any A e [0, 1]
and any x, y e X, Ax _-< y implies o(A Tx <- Ty;

pointwise bounded (for p) if for every x e X there exist u(x), v(x) E/, u(x) > O,
such that u(x) <= Tx <= v(x).

A sequence Tn)n of operators T" E/ - E/ is uniformly ascending, if all operators
are ascending with the same o, i.e., Ax-< y implies o(A)Tx <- T,y for all n. Similarly
a sequence is uniformly pointwise bounded if u(x)<= Tx <= v(x) for all n.

On the unit level set X of the scale we now consider Hilbert’s projective
pseudometric, or Hilbert’s metric for short (cf. [1], [2], [4], [8], [10], [11], [12],
[14]). For x,yE+\{O} let A(x,y)=sup{A+lAx<-y} and let Ix(x,y)=
-log [A (x, y) A (y, x)]. It is easily verified that Ix is a metric on X except that Ix may
take on the value +c. The following lemma translates properties of positive operators
into properties of operators acting on the metric space (X, ).

LEMMA 1. For an operator T" E/ E/ which is proper let T" X X, Tx Tx/p(Tx)
for xeX.

(i) T subhomogeneous " nonexpansive (.on..(X, Ix )).
(ii) S proper and ray-pre.servjng =:> S. T S. T.
(iii) T ascendingIx(Tx, Ty) <- c(x, y) for all x, y X. Thereby c(x, y)

-log [o(A(x, y)). o(A(y, x))] (o as in the definition of "ascending") is continuous on
{(x, y) E X x X Ix > 0, y > 0} with respect to Euclidean topology. Furthermore, c(x, y) <=
Ix(x, y) for all x, y X and c(x, y) < Ix(x, y) if x y and Ix(x, y) < +.

(iv) T pointwise bounded and subhomogeneous There exists a, b X, a <- x <-_ b
for all x X. If (Tn) is uniformly pointwise bounded, then the bounds a, b are independent
ofn.

Proof. (i) Since T is subhomogeneous it follows that A(Tx, Ty)>-
(p(.Tx)/.p(Ty))A(x,y) for~all x,yX. Hence by the definition of Hilbert’s metric
Ix Tx, Ty) <= Ix (x, y), i.e., T is nonexpansive on (X, Ix ).
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(ii) With S, T proper, S. T is proper too. Since S is ray-preserving, for a given
xX there exists ’>0 such that S(Tx/p(Tx))=h’S(Tx). Hence

S(Tx) A’S. T(x) S. T(x) =---(x).S( rx) =p(S(x)) -p(A’S. r(x)) -p(S. r(x))

(iii) Applying p to hx<=y it follows that h(x,y)[0, 1] for x,yX. Since
T is ascending it follows that #(A(x,y))Tx<--Ty, and hence A(x,’y)=>
(p( rx)/p( Ty))p(h (x, y)).

Interchanging the roles of x and y the definition of Ix yields Ix(x, y)<= c(x, y)
with c(x,y) as stated in the assertion. Suppose x,yX, x#y, and Ix (x, y) < +oo.
Because of the latter, 0 < A (x, y) and 0 < (y, x). A (x, y)-<_ 1 and A (y, x)_<-1, because
of x, y X, and equality in both cases would imply x _<- y and y =< x, i.e., x y. Without
restriction we may assume A(x,y)<l. Therefore by the properties of p
A (x, y). , (y, x) < p(h (x, y)). p(h (y, x)), implying c(x, y) < Ix(x, y). From this
c(x, y) <= Ix(x, y) for x, y X. Finally, c(x, y) depends continuously on x > 0, y > 0 since
by an easy calculation A(x, y) =min {yi/xili {1,. ., k}}.

(iv) We shall show u<= Tx<=v with u, vE+, u>0. Then p(u)<=p(Tx)<=p(v),
and (iv) follows by setting a u/p(v), b-v/p(u). Let T be subhomogeneous and
u(x) <= Tx <= v(x) for x X, u(x), v(x) E+, u(x) > 0. Denote by ei, 1,. ., k, the
vector in E =Rk having 1 in component and O’s otherwise and let e- el +"" + ek.
Define u (minip(ei)/p(e)) mini u(ei/p(ei)), where mini u(ei/p(ei)) is a vector the jth
component of which is obtained by taking the minimum over of the jth component
of u(ei/p(ei)). Define v=(p(e)/minip(ei))v(e/p(e)). Obviously, u, v E+ and u>0.
To see u <= Tx<= v, let x X. If xi denotes the ith component of x, then xiei<=x<=
(maxixi)e and by applying p xip(ei)<=p(x) l<=(maxixi)p(e) and hence 1/p(e)<=
maxixi < 1/minip(ei). Since T is subhomogeneous, from (minp(ei)/p(e))x<= e/p(e)
it follows that (minip(e)/p(e))Tx<-T(e/p(e))<=v(e/p(e)). According to the
definition of v, therefore, Tx<=v. Furthermore, from xip(e)(e/p(ei))<=x sub-
homogeneity of T yields xip(ei) T(e/p(ei)) <= Tx. From the definition of u it follows that

<= xip( ei) T <= Tx.P(e)xiu<--xip(ei)u (el) p(ei)

Hence (maxixi)p(e)u<-Tx and u<=Tx because of (maxixi)p(e)>=l. Finally, the
independence statement holds by construction of a and b. l-I

To apply the results of the previous section, we need the following comparison
of Hilbert’s metric and the maximum metric Ix- y[ maxi ]xi- y,I as defined on Rk. (xi
the ith component of x.)

LEMMA 2. For any x, y X

(min x,)[1 exp (-1/2Ix(x, y))]-< [x-yl <--max {x,, yi}(1 exp (-Ix(x, y))).

Proof To see the first inequality, let r mini x. If r -< Ix Yl, then the first inequality
holds trivially. Suppose r>lx-yl. Obviously r(x-y)<-Ix-ylx, and hence (1-
(Ix- yl/r))x<= y. Thus A(x, y)>= 1-(Ix- yl/r) and A(x, y) A(y, x)>-_ (1-(lx- yl/r))2.
Because of A(x, y). A(y, x)=exp (-Ix(x, y)) this proves the first inequality. For the
second inequality observe that x y <- (1 A (x, y))x <- (1 A (x, y)A (y, x))x and there-
fore xi Yi <- (1 A (x, y)A (y, x)) xi. By interchanging the roles of x and y and taking
the maximum over the second inequality is obtained. V1

Remark. The proof shows that the first inequality is true for any x, y e E/\{0}.
Our first application is concerned with weak ergodicity, a concept which originally

stems from the theory of Markov chains (cf. [4], [8], [13], [14]). More generally, there
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holds weak ergodicity (relative to some fixed scale p) for a sequence (T,), of operators
k kon R/, T, .Rk+/, whenever for arbitrary nonzero starting points xl, yl k/ and

xn, yn defined by x, T,_I T2" T(xl)/p(Tn_ T2T(x)), y, analogously
with Yl instead ofx, the sequence x, yn tends to 0 for n 00 in the Euclidean topology.

THEOREM 4 (Weak ergodicity for nonlinear operators). Let Tn), be a sequence of
k that are proper, subhomogeneous, and ray-preserving. Suppose there isoperators on +

some r >- 1 such that the sequence of lumped operators (S,,),, defined by S,.
T,,+r-1 T,,+I T,. is uniformly ascending and uniformly pointwise bounded. Then
there holds weak ergodicity for the sequence (T,),.

Proof The theorem will be a con.sequ.ence ofTheorem 1. Let X {x + Ip(x) 1}
and put f, ,. By Lemma l(ii) S,, T,,+r- ,,+1" ,, =f,,+r- f,,+
f,, F,., Fm being a lumped operator for (f,),. Since (S,,),, is assumed to be uniformly
ascending, each S,, has to be subhomogeneous. Hence by the assumption of uniform
pointwise boundedness from Lemma (iv) the existence of a, b k+ a > 0 follows such
that Fm(X) Y for Y {x X a <= x -< b}. Because of a > 0, the first inequality
of Lemma 2 yields s=sup{tx(x,y)lx, yY}<+oo. Truncating /x as d(x,y)=
min (/z(x, y), s) for x, y X we obtain the metric space (X, d). Since Y is compact in
the Euclidean topology (p was assumed to be continuous) according to Lemma 2, Y
is compact also in (X, d). f, is nonexpansive on (X, d) because of Lemma l(i).
Furthermore, by Lemma l(iii) tz(F,,(x), F,,(y)) <- c(x, y) for all x, y X and c(x, y) <
d(x,y) for all xy with/x(x, y)< +oo where c(x,y)=-log[q(A(x,y)). p(A(y, x))].
Thus we obtain for all x, y Y d(F,,(x), F,,(y))<= c(x, y) and c(x, y)< d(x, y) pro-
vided x y. That is, (F,,),, is contractive on Y and we may apply Theorem 1. By this
theorem together with Lemma 2 x,- y,- 0 in the Euclidean topology, whereby

Xn =fn--1 f2" fl(Xl)
Tn_ T2. T1 (Xl)

p(T-l T:. T,(Xl))’
and Yn analogously. The starting points xl, y are arbitrary in X, but since the T are
ray-preserving we may allow for arbitrary nonzero starting points in all of k+. [3

An interesting special case of the theorem is obtained if concave operators are
k is concave whenever T(hx+(1-h)y) >considered. An operator T’Rk+/

hTx+(1-h)Ty for any x,yk+ and any [0, 1].
COROLLARY (Concave version of the Coale-Lopez theorem). Consider a scale

kinduced on / by a vector space norm. There holds weak ergodicity for every sequence
(T,)n ofproper, ray-preserving and concave operators on gk+ provided some sequence of
lumped operators Sm= T,,+r- T,,+I Tm is uniformly pointwise bounded.

Proof To obtain the corollary from Theorem 4 we show that T, is subhomogeneous
and that (S,,),, is ascending. Consider a concave operator T on Rk+ and let hx-< y for
x,yX and 0-<h <1. For z=y-Ax, z>=O and y=Ax+(1-h)(z/(1-h)). Concavity
implies Ty>-hTx+(1-h)T(z/(1-h)). In particular Ty>-hTx which by approxima-
tion is seen to be true also for h 1. Hence each T, is subhomogeneous. Suppose now

kfor all x X and some u, v + u > O, u <= Tx <= v. By subhomogeneity of T

T
1- 1- p(z) =1-

and therefore Ty>-hTx+p(z)T(z/p(z)). Since p is induced by a norm, p(y)=
p(Ax+z)<-Ap(x)+p(z) and hence p(z) >- 1-h. Furthermore, there is a real number
0<s_<-I such that sv<-u and therefore sTx<-sv<=u<=T(z/p(z)). Thus we obtain
Ty>-hTx+(1-h)sTx=cp(h)Tx, with q(h)=h+(1-h)s. This formula is true by
approximation also for h 1. Being a composite of concave operators S,, is concave
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too and by the uniform pointwise b andedness there exist u, v Rk+, u > 0, such that
u <= SmX <- v for all x X and all m. Putting T S,, we conclude that Ax =< y for x, y X
and A [0, 1] implies q()t)S,,x<-S,,(y) for all m, whereby q(A)=)t +(1-A)s. This
shows that (S,,),, is ascending.

The weak ergodicity theorem or Coale-Lopez theorem referred to in the literature
(cf. [4], [8], [13], [14]) is contained in the above corollary as the special case of linear
operators Tn. In that special case weak ergodicity holds provided the Tn are proper
and (S,,),, is uniformly pointwise bounded. For example, this is guaranteed if all Sm
are strictly positive (for some r => 1) and all the possible entries (all the possible nonzero
entries) of the matrices T, for n 1, 2,. ., are bounded from above (bounded from
below by some positive constant) (cf. [8], [14]; in [8] weak ergodicity is not with
respect to the Euclidean topology but with respect to the topology belonging to Hilbert’s
metric).

The concept of strong ergodicity also stems from the theory of Markov chains.
Generalizing, we say there holds strong ergodicity (relative to some fixed scale p) for

ka sequence (T,), of operators on Rk/, when for arbitrary nonzero starting points x
the sequence defined by

rn_ r2. rl (Xl)
p(T._ T2" rl (Xl))

converges in the Euclidean topology to the same limit point x*.
THEOREM 5 (Strong ergodicity for nonlinear operators). Let (T,), and (S,,),, be

ksequences of operators on + as in Theorem 4. Suppose in addition for the lumped
operators Sm uniform convergence on X {x k+ [p(x) } equipped with the Euclidean

k Then there holds strong ergodicity for the sequencemetric to some operator 5; on +.
(T,)n and the limit point.x* is the.unique eigenvector of S in X.

Proof. Putting f, T, F,, S, the assumptions of Theorem 1 are satisfied accord-
ing to the pr.oof of Theorem 4. To apply Theorem 2 we show uniform convergence of
F,, to F S On the metric space (X, d) with d (x, y) min ( (x, y), s) being the
truncated Hilbert metric (as in the proof of Theorem 4). Since by assumption
is uniformly pointwise bounded it follows that S,nX--> U > 0 for all m, all x X (as in
the proof of part (iv) of Lemma 1). In particular 5;x >-u > 0 for all x X and F S
is well defined on X. Because of Lemma 2 (and the remark thereafter) and because
of tz(S,,x, Sx) tz(F,,(x), F(x)) for x X the uniform convergence of S,. to 5; for the
Euclidean metric implies uniform convergence of Fm to F for the metric d. Theorem
2 yields convergence with respect to d of

Xn =fn--1 f2" fl(Xl)
rn_ T2, T1 (Xl)

p(T,_ T. T(x))’ x e X,

to the unique fixed point x* of F in X. By Lemma 2 convergence is also with respect
to Euclidean topology. Obviously fixed points of F in X correspond in a unique
manner to eigenvectors of 5; in X. Because the Tn are ray-preserving, x X may be

k This proves strong ergodicity of (T,replaced by any nonzero xl R+.
As for weak ergodicity we may specialize to concave operators.
COROLLARY (Strong ergodicityfor concave operators). Consider a scale induced on

k+ by a vector space norm. There holds strong ergodicity for every sequence (T,), of
k provided some sequence of lumpedproper, ray-preserving, and concave operators on +

operators (S,.)n is uniformly pointwise bounded and converges uniformly on X
{x k+ P (X) 1 } equipped with the Euclidean metric to some operator S on k+.
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Prooy (Tn)n, (Sm) satisfy the assumptions of Theorem 4, according to the
proof of the corollary following Theorem 4. Hence the above corollary is implied by
Theorem 5.

Using Theorem 3 of the previous section, we may obtain sufficient conditions for
strong ergodicity without referring to lumped operators. For this from matrix theory

k is primitive (for p) if therewe borrow the following notion. An operator T’Rk+- R/
exists r--> 1 such that for any

x,yX={x+lp(x)=l} and AR+ Ax<=y, Axy impliesthatATrx<Try.

kTHEOREM 6. Let Tn’R+-> +, n 1, 2, , be proper, subhomogeneous, and ray-
preserving operators that converge, uniformly on the intersection with the unit sphere of
some monotonic norm I[" [I, to an operator T on +. Suppose the operator T is proper
ray-preserving, continuous, and primitive (for [[. II). Then there holds strong ergodicity
for Tn), with scale II" and the limit point x* is the unique normalized eigenvector of T.

Proof X {x k/lll ll- 1} equipped with e(x, y)= [l-yll is a compact metric
space on which (T,) converges uniformly to an operator T which must be uniformly
continuous. Formula (.) of step (3) in the proof of Theorem 2 then yields that on
(X, e) the sequence of lumped operators S,, T,,+r_ T,,+I T,, converges uni-

form.ly to T (r as in the definition of primitivity). Take ]1" as scale and put fn
f T. From Lemma 1 for the lumped operators F,, to (f,), F,, ,, and F ,r ,r__
f. Since T is primitive, T is in particular pointwise bounded and subhomogeneous

k(using continuity of T). Hence by Lemma l(iv)there exist a, be X= {x +] Ilxll- 1,
a > 0 such that a <=fr(x)<--b. From Lemma 2 (and the remark thereafter) it follows
that on X F, converges uniformly to F with respect to Hilbert’s metric IX. We shall
apply Theorem 3 for U {y X]a < y < 2b}. Obviously, U is relatively open in X
for the Euclidean topology and the closure / {y X[ la =y=< < 2b} is compact. For
d(x,y)=min(ix(x,y),s), s=sup{ix(x,y)lx, y }<+o from Lemma 2 it follows
that U is open in (X, d), the closure of U in this space equals U and U is compact
in (X, d). Furthermore F(X)c__ U. Finally, from the primitivity of T it follows (as for
part (iii) of Lemma 1) that IX(F(x), F(y)) < ix(x, y) for x, y U. Hence F is contractive
on U for d.

Thus Theorem 3 yields the convergence relative to d of the sequence defined by
x,/ =f(x,), xl X, to some x* X. Also, x* is the unique fixed point of F in X.
Primitivity of T implies x*= Trx*/IIT x*II >0. By Lemma 2 (x,), converges to x* in

k is allowedthe Euclidean topology. Since the T, are ray-preserving, any nonzero Xl R/
to be a starting point. Thus (T,), is strongly ergodic. Concerning the assertion on x*
in the theorem, it suffices to show x* to be an eigenvector of T. Since x*> 0, there
exists 0<A sufficiently small with aT-x*/llT-x*ll<=x*. Being the limit of sub-
homogeneous operators, T is subhomogeneous and therefore A T( Tr-x*/l] Tr-x*ll)<=
Tx*. Since T is ray-preserving it follows that ixTx*<= Tx* for some ix > 0 and hence
Tx*> O. Because of T,x, -> Tx* in the Euclidean topology by Lemma 2 it follows that
f,(x,)-->f(x*) for d. Butf, (x,) x,+ --> x*, and hencef(x*) x*, i.e., x* is an eigenvec-
tor of T.

As a simple special case the theorem on strong ergodicity for nonnegative matrices
(cf. [14]) follows directly from Theorem 6. For T, linear the only assumptions placed
on Tn by Theorem 6 are properness (e.g., fulfilled if there is no column of zeros) and
pointwise convergence of T, to an operator T some power ofwhich is strictly increasing.

4. Example: A density- and time-dependent Leslie model. Consider a population
of female individuals at discrete points of time. The growth of the population is
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dependent upon birth and death which are, among others, age-specific. Hence the
population is divided into a finite number of age groups, say 1, 2,. ., k. Denote by
Xi(t) the number of individuals in age group i{1,..., k} at time t{1,2,... } and
let X X1 , Xk (t)) be the population vector at time t. The total population at
time is given by Ilx(t)ll, where II" is the norm on Rk defined by Ilxll-  lx, I. The
vector x(t)-x(t)/llx(t)]] is called the age structure at time t. The birth rate in age
group is denoted by bi(t, X(t)) and may depend on time and the population vector.
The survival rate in age group i, denoted by si(t, X(t)), specifies the proportion of Xi(t)
surviving to be in age group + 1 at time + 1. The survival rate Sk(’, for the oldest
group therefore is 0. It is assumed that all the other survival rates and the birth rates
are strictly positive. Thus we arrive at the following model:

k

Xl(t+ 1)= b,(t, X( t))X( t),
i=1

X+l(t+l)=si(t,X(t))Xi(t) fori=l,. .,k-1.

Or, equivalently,

X(t+l)=T(t)X(t) where T(t)’Rk+ _k+
is given by

T(t)x=L(t,x)x=

b,(t,x)

0

0

bk(t, Xl

0 ix,
s_,(t,x)

This is a generalized Leslie model where birth rates and survival rates are allowed to
depend on time and on density X(t). In the original Leslie model (cf. [4], [8], [13],
[14]) birth rates and survival rates are assumed to be constant, and hence the Leslie
matrix L(t, x) is constant, L(t, x) L for all and x. Since L turns out to be a primitive
matrix this case is already covered by a theorem on matrices due to Perron which
implies that the age structure x(t) converges to an equilibrium x* (cf. [12], [14]).

The case that L(t, x) is time-dependent only, L(t, x)= L(t), is covered by the
(linear) Coale-Lopez theorem which yields weak ergodicity of the age structure x(t)
(cf. [4], [8], [13], [14]). However, if L(t, x) also depends on x and therefore T(t)
becomes a nonlinear operator, a lot of things may happen. So it is shown in [9] for
the very simple model given by k 2, hi(t, x) b exp [-a(xl + x2)], sl(t, x) constant,
that chaotic dynamics occurs for certain choices of the parameters b, b2, a.

Being interested in weak ergodicity also for the nonlinear case we therefore have
to make some assumptions which constitute our concave Leslie model.

The concave Leslie model is based on the following assumptions.
k for all i, t.(1) The functions x bi( t, X)Xi, X -> Si( t, X)Xi are concave on +

(2) b,(t, Ax)/b,(t, x) s2(t, Ax)/s2(t, x) for all A > 0 and all i, j, x.
(3) There exist functions c(. ), d(. )" k+\{0}- +\{0} with c(" not increasing,

d(.) not decreasing with respect to "_-<" such that

c(x) <- bi(t, x), si(t, x) and bi(t, x)xi, si(t, x)xi <-_ d(x)

for all i, and x.
We show that the concave Leslie model satisfies the assumptions of the concave

version of the Coale-Lopez theorem presented in the last section. Assumption (1)
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obviously implies that all the operators T(t)= L(t, x)x are concave. The assumption
itself means that the number of births or survivals contributed by a particular age
group decreases by "population pressure" with the density in that group. Assumption
(2) implies L(t, hx)= tzL(t, x) for some /z, which may depend on A, t, x and hence
every T(t) is ray-preserving. By this assumption a certain "homogeneity" of the vitality
rates with respect to changes in total population is required. The assumption is met,
e.g., if all vitality rates are homogeneous of the same degree with respect to total
population. The assumption (3) requiring uniform upper and lower bounds for the
vitality rates implies obviously that the T(t) are proper and yields the existence of a
uniformly pointwise bounded sequence of inhomogeneous iterates as shown by the
following lemma.

k whereLEMMA 3. By assumption (3) there existfor every x Rk+\{0} u(x), v(x)6R+
u (x) > 0 such that

u(x)<-T(m+k-1) T(m+l). T(m)x<-v(x) forallml.
Proof By (3) T(t)x<-_ w(x) for all t, where w(x)=(kd(x), d(x),..., d(x)) and

w(.) is not decreasing with respect to "_-<." Hence T( t) T(s)x <-_ w(T(s)x) < w. w(x).
Byiteration, if S(m)= T(m+k-1) T(m+ 1). T(m),S(m)x <- w w(x).
Choose v(x)= wk(x) W W(X). Furthermore by (3) L(t, x) >- c(x)L, where

Hence T(t)x L(t, x)x >- c(x)Lx for all t. It follows, by using T(s)x <-_ w(x), that

T( t) T(s)x >-_ c( T(s)x)LT(s)x >- c( T(s)x)c(x)L2x >- c(w(x))c(x)L2x.
Therefore by iteration for S(k) defined above

S(m)x >-_ c(w-(x)) c(w-(x)) c(w(x))c(x)I?x.
Choose as u(x) the right-hand side of this inequality. It is easily checked that the
matrix Lk is strictly positive. Hence u(x) > O. D

Due to the lemma we can apply the concave version of the Coale-Lopez theorem
(corollary to Theorem 4) which yields that weak ergodicity holds in the above concave
Leslie model. A simple example of a concave Leslie model is the following one that
contains the linear time-dependent Leslie model as a special case. Let for k arbitrary
and i{1,.-.,k}, t{1,2,...},

bi( t, x) bi( t)x7 -1, si( t, x) si( t)x7 -1,
where 0< a _-< 1 and C bi(t), si(t) C2 for all i, all with certain positive constants

c. Assumptions (1) and (2) for a concave Leslie model are obviously satisfied. Assump-
tion (3) is fulfilled by choosing the following functions"

a-1 d (X) C2 Z X? for x k+\{0}.(X)= Cl minxi

The linear Leslie model is obviously contained for a 1. For a < 1, e.g., a ,
the operator T(t) is neither positive homogeneous nor additive. Nevertheless, as for
the linear case, weak ergodicity holds for this simple nonlinear example.
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The example may serve also to illustrate the general Theorem 6 on strong ergodicity.
For this suppose that for all i, bi(t) and si(t) tend to b > 0 and s > 0, respectively, as
t-. If

bl(t) bk t)
Sl(t)

L(t)= 0 L=

0 s_(t)

X1

X
X2

Xk

0 Sk_

kthen T(t)x=L(t)x and T(t) converges uniformly on X={xc+l[x[[ 1} to the
operator T given by Tx Lx. Obviously, T(t) and T are proper and T is continuous
on X. T(t) is also ray-preserving and subhomogeneous because of

T(t)(Ax) L(t)(Ax) AL(t)x AT(t)x.

The same applies to T. To see primitivity let hx <_-y, hx y for x, y c X. Successive
application of L yields, using the monotonicity of x--x, that Tk(hx)< Tky. Hence
hTkx<=h’"Tkx Tk(hx)< Tky, and T is primitive. Thus Theorem 6 supplies strong
ergodicity for this little nonlinear example, a result that still contains the corresponding
result for the linear case.
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ANALYSIS OF LARGE DEFORMATION OF A HEAVY CANTILEVER*
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Abstract. In this paper a mathematical model is discussed describing the deformation of a cantilever
by its own weight. We assume that a cantilever of uniform cross-section and density is held fixed at an angle
a at one end and is free at the other end. The shape of the cantilever depends heavily on a and a
nondimensional parameter K which represents the relative importance of density and length to that of
flexural rigidity. We analyze the bifurcation phenomena for the vertical case, a 7r. Several numerical results
are presented and discussed.

Key words, bifurcation, Sturm comparison, nonlinear eigenvalue problem, nonlinear oscillation
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1. Introduction. The deformation of a cantilever by its own weight is of interest
both practically due to its engineering significance and theoretically due to its inherent
nonlinearity. We assume that a cantilever of uniform cross-section and density is held
fixed at an angle a at one end and is free at the other end. If the cantilever is thin
enough then its deformed shape can be described by the elastica theory. Using this
approximation and small deflections, Euler first investigated the stability of a vertical
cantilever (column) under its own weight [3]. Euler’s stability problem was later
corrected by Greenhill [4] who obtained the minimum unstable height for a column
of given density and rigidity. The large deformation of a heavy elastica was first
numerically integrated by Bickeley [1] who found only one of the solutions of the
originally horizontal cantilever. Later, Wang [8] used the perturbation method on the
elastica equations for a small and large parameter K, where K is a nondimensional
parameter which represents the relative importance of density and length to that of
flexural rigidity. In [8] Wang also studied the bifurcation phenomena numerically as
the parameters K, a change.

In this paper we first give the uniqueness results for the solutions of the elastica
equation. We then give the complete bifurcation results for the vertical case, a r, in
the spirit of [6], [7]. From these analytic results we improve the numerical results in
[8] and give the reliable numerical computation results.

2. Formulation. We assume a cantilever of uniform density/9 and total length L,
is held fixed at an angle a at one end, say, the origin, and is free at the other end. Let
us consider a small segment of the cantilever. A moment balance gives (see Fig. 1)

(2.1) m p(L- s’) sin 0 ds’= rn + dm,

where m m(s’) is the local moment, s’ is the arc length from the origin, and 0 O(s’)
is the local angle of inclination. According to Euler, the local moment is proportional
to the curvature dO/ds’, i.e.,

dO
(2.2) m -EI

ds"
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p(L- S’)

FIG.

where EI is the flexural rigidity of the material. From (2.1), (2.2), we obtain

d2O
(2.3) E1 p(L- s’) sin 0,

and the boundary conditions are

dO
(2.4) O(0) cz, ds---;(L)=O.
Let s s’/L and then (2.3), (2.4) become

d2O K3(1-s) sin 0, K >0, 0<=s<= 1,
ds

(2.5)
o(0) , o’(1) 0, - < < r.

The important parameter K (pL3/EI)/3 represents the relative importance of density
and length to that of flexural rigidity.

The main concern of this paper is to determine the multiplicities of solutions of
(2.5) provided that K > 0, -r -< a <= ,r are given.

First of all, we shall reformulate our problem (2.5). Let

(s)= O(1-s), 0-<_s-<_l.

Then (2.5) becomes

(P)
-K3ssintk, 0<s<l, K>0,

ds2

,’(0)=0, @(1) a, -zr <= a <=
Since (s), 0=<s-< 1, is a solution of (P),, if and only if -,(s) is a solution of (P)_.
Hence we only consider the problem with 0 -< a-< 7r. We may also reduce the problem
(P), 0_-< a -< 7r, by the following scaling:

Then (s) satisfies

(2.6)

W(s) l,(s/ K).

d2xI
s sin (s), O<-s<-K,

ds2

’(0) =0, W(K)= a, O< a <
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3. Uniqueness of solutions of (P), 0-< tz-<r. In this section, we present some
results concerning the uniqueness of solutions of boundary value problem

d:q
-K3ssinO, 0-<_s_-<1, K>0,

ds
(P)o

p’(0) =0, p(1) a, 0 -< a _-< zr.

LnMMA 3.1. The problem (P)o has a unique solution, namely,

(s)--0, 0_<-s_-<1 for any K >O.

Proof. Obviously ,(s)- 0 is a solution of (P)o. Multiplying the equation in (P)o
by d/ds and integrating the resulting equation from 0 to 1, we obtain

zl K3[fo ]2(4,’(1))2 cos$(s) ds-1 >=0.

However,

cos $(s) 1 _-<0.ds-

Hence we have ’(1)=0. Since $(1)=0, $’(1)=0, the conclusion $(s)-=0 follows
directly from the uniqueness of solutions of ordinary differential equations, l-!

The existence of solution of problem (P), follows directly from the results in [2]
since the right-hand side of (P), K3s sin $, is a bounded function for 0=<s=< 1.

We now present a result concerning the uniqueness of solution of (P).
LEMMA 3.2. If K3</, then (P) has a unique solution for every a [0, 7r].
Proof Let q(s) be a solution of (P) then

,(s) g3 sin O()G(s, ) d,

where

G(s, :)= 1-max (s, :).
Let l(s), 2(s) be solutions of (P). Then

[,l(S)- 4,2(s)1 =< G(s, s)sl,(s)- ,u(s)l d:

<= K a2(s,) d 11 1-
or

since

O(s,)das =--.
45

If K6/45 < 1 or K <v/ then we must have
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4. The multiplicities of the solutions of (P), for a r. In this section we shall
present the analytic results for the vertical case, a 7r. The analytic results for this
special case will help us to understand the bifurcation phenomena for the general
problem (P). In the rest of this section, we shall restrict our attention to the vertical
case, c

d2 K3ssin, p’(0)=0, ,(1)=Tr.(4.1)
ds

Let s=x, v(x)=q,(x/K)-Tr. Then (4.1) takes the form

v"(x)+ x sin v =0, ’= d/dx,
(4.2)

v’(0) =0, v() =0.

We shall study the boundary value problem (4.2) by the shooting method and consider
the following initial value problem

v"(x)+x sin v=0,

(4.3) v’(0) =0,

v(O)=a, aR.

We denote the solution of (4.3) by v(x, a). From the uniqueness of solutions of ordinary
differential equations, it follows that

v(x, 2rr+ a) 27r+ v(x, a),

(4.4)
v(x, 27r- a) 27r- v(x, a),

v(x, a):-v(x,-a),

v(x, o)= o, v(x,

From (4.4), we shall consider v(x, a) only for 0< a <
LEMMA 4.1. Let 0 < a < 7r. Then
(i) -7r/2< v(x, a)< rr/2 for 0<a < 7r/2, x=>0.
(ii) -Tr < v(x, a) < 7r for 7r/2 <- a < m x >- O.
(iii) v(x, a) is oscillatory over [0, ) for all 0< a <
Proof Multiplying (4.3) by v’(x) and integrating the resulting equation from 0 to

x, we obtain

(4.5)
2
(v’(x)) x cos v(x) cos v() dsC_->0.

If 0 < a < 7r/2, then cos a cos v(0) > 0. We claim that cos v(x) > 0 for all x >- 0.
If not, then there exists Xo> 0 such that cos v(x) > 0 for all 0=< x < Xo and cos V(Xo) =0.
Then this contradicts (4.5) with x Xo and we complete the proof for (i).

If 7r/2_-< a < 7r, then cos a cos v(0) (-1, 0]. We claim that cos v(x) -1 for all
x->0. If not, then there exists Xo>0 such that cos V(Xo)=-I and cos v(x)> 1 for
0=<x <Xo. Again from (4.5) we obtain a contradiction. Hence -Tr< v(x, a)< 7r for all
x-> 0 and we established (ii).

We next show that v(x, a) is oscillatory over [0, c) for any 0< a < 7r. Let

1 (v’(x))
V(x) ( -cos v(x))+-

2 x
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It is easy to verify that

Then we have

V’(x)

1-cos v(x)<= V(x)-< V(0)= 1-cos a.

Since -r < v(x) < 7r, we then have Io(x)l_-< a for all x => 0. We rewrite the equation in
(4.3) as

(sin v(x)(4.6) v"(x) + x
\ i ] v(x) O.

Let 0< <mino__<v__<a (sin v/v). Using Sturm’s comparison theorem [5], we compare
(4.6) with

(4.7) v"+ v 0,

which is oscillatory over [0, c). Thus we complete the proof for (iii). [3

Next we introduce the following notation:

dv
A(x, a)=aa (x, a), b(x) A(x, 0).

Differentiating (4.3) with respect to a yields

(4.8) a"(x)+x(cos v(x, a))a(x)=0, a(0)= 1, a’(0)=0.
Setting a 0 in (4.8) yields

(4.9) "(x) + xck(x) O, (0) 1, ok’(O) O.

The equation in (4.9) is the well-known Airy equation which is oscillatory over [0, oo).
Let A,, 3’, be the nth zero of 4(x) and b’(x), respectively, for n 1, 2,- .. We note
that

h-1.98635, h23.82557, h35.29566,.
(4.10)

A4=6.58432, etc. (See Fig. 2.)

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

FIG. 2
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From Lemma 4.1(iii), v(x, a) is oscillatory over [0, ) for any 0< a < r. Let y,(a),
z,,(a) be the nth zero of v(x, a) and v’(x, a), respectively, for n 1, 2,. ., 0< a <
(See Fig. 3.)

LEMMA 4.2.
(i) lim a-,o y, (a) h,, lim a-,O Zn (a) y, for n 1, 2,. .,
(ii) lima-,,- y,(a) +oo for n 1, 2,. ..
Proof The proof of (i) follows directly from the following identities [6]:

v(x,a) v(x,a)-v(x,O)
lim lim
a-.o a a_.o a

lim -7-(x, a),
aa

d/)
-(x,0)= 6(x),
da

and

v’(x,a) v’(x,a)-v’(x,O)
lim lim
a-,o a a-.0 a

d
lim --;-(v’(x,

aa O<ta<a

,ix
v(x, o) 4)’(x)

since v(x, "rr) "n" and v(x, a) are oscillatory over [0, o) for 0 < a < or. From continuous
dependence on initial values, we obtain lima-,- Yl (a) + and hence lima-,- y, (a)
+c for n 1, 2,- .. Thus we complete the proof for (ii). 1-1

In addition to the properties (i), (ii) in Lemma 4.2., we shall show that y,,(a) satisfies

(4.11) dY">O
da

1.6

1.2

for alln=l,2,...and0<a<Tr.

2 4 6 8 IO
FIG. 3
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Assume that (4.11) holds; then we may plot the following graphs for yn (a), n 1,2, .
(See Fig. 4.) Then we conclude from (4.2) and (4.4) that

If 0 < K < A] then (4.2) has the unique solution v(x) O.
If A] < K < A2 then (4.2) has three distinct solutions.
If An < K < hn+ then (4.2) has 2n + 1 distinct solutions.

Since

(4.12) v(yn(a), a) =0, 0< a <
differentiating (4.12) with respect to a yields

dyn dv
v’(yn(a), a)--a+a (yn(a), a)=0,

or

(4.13)

We now state our main result.
THEOREM 1. Let 0 < a <

dyn A(yn(a),a)
da y’(yn(a), a)"

(i) The solution v(x, a) of (4.3) has an infinite number of isolated zeros y,(a),
Yl < Y2 <" "< Yn andy o as n - o; likewise v’(x, a) has an infinite number ofisolated
zeros, z,(a), 0 z] < z2 <" < zn, interlacing the yn; furthermore

lim yn(a)=An, lim zn(a)=
a0 a0

and

lim yn(a) oo for n 1, 2,.

(ii) Yn (a) is a differentiable function of a and

dY">o for n= l,2,.
da

We have shown part (i) in the above lemmas. The proof of (ii) follows directly
from (4.13) and Lemma 4.3 below.

0,0

A-AXIS
FtG. 4
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LEMMA 4.3. Let 0 < a < 7r. Then A(x, a) has an infinite number of isolated zeros
a), 0 < a <. < a,. A’(x, a) satisfies the following:
(i) If 0<a< 7r/2, then A’(x, a) has an infinite number of isolated zeros ft,(a),

fll < fiE <" "< ft,. Furthermore fl Zl 0 < Yl < 1 < z2 < fl_ < y < a: <. < y, <
z,+ < fl,+ < y,+. (See Fig. 5.)
(ii) If 7r/2<-a< Tr then A’(x, a) has an infinite number of isolated zeros ft,(a),

flo < fll <" "< ft,. Furthermore flo z 0 < fll < Yl < tl < z2 < fl <.y: <" < y, <
z,+ </3,+1 < y,+. (See Fig. 6.)
Before we prove Lemma 4.3 we consider (4.3) and (4.8). Let

(A) v"+ x sin v 0, v(0) a, v’(0) 0,

(B) A"+ x(cos v)A 0, A(0) 1, A’(0) 0.

7r/2

1.0

A

Z --B--0

FIG. 5

rrL V(X; A)

--n-12

FIG. 6
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In addition to (A) and (B), we form the following equations satisfied by A’ and
(x 3y,)v’, respectively"

(C) (A’)"+ x cos vA’= A(xv’ sin v--cos v),

(D) 3"+ x cos v -3(x y,) sin v.

Multiplying (A) by A and multiplying (B) by v, subtracting the resulting equations
from each other and integrating the final expression from a to/3, we obtain

I (sinv)(a) (v’a- va’)l xAv cos v- ax.

Multiplying (A) by A’ and multiplying (C) by v, subtracting the resulting equations
from each other and integrating the final expression from a to/3, we obtain

(b) (v’A’-vA")I {-xA’ sin v+ xA’v cos v+ Av(cos v- xv’ sin v)} dx.

Multiplying (D) by A and multiplying (B) by v, subtracting the resulting equation from
each other and integrating the final expression from c to t, we obtain

(c) (’A- A’)I 3(x -y)A sin v dx.

Finally we observe that, since v’(0) 0, v(0) a, A(0) 1, A’(0)

sg v (-1)" fory,<x<y+l,

sg v’ (- 1)" for

sg A= (-1)" for

sgA’=(-1)" for/3,<x<fl+l.

ProofofLemma 4.3. We shall prove the lemma by induction. We assume the truth
of the statement up to a,,, for m 1.

If r/2 -< a < 7r, then we claim that fl <Yl. If not,/31 => y, then A’(x)>0 for all
O<=x<=y. We specialize (a, fl) in (b) to (0, yl). Then we obtain

v’A’- vA"I, (vA’x cos v xA’ sin v + Av cos v) dx

(4.14)
+ xAv(-v’ sin v) dx.

Since

xAv(-v’ sin v) dx=xAvcos vl’- cos v(xA’v+xAv’+Av) dx

and v’(0) 0, A"(0) 0, v(y,) 0. Then (4.14) becomes

)’(yl)A’(yl) --X’ sin v &- xv’ cos v &

(4.15)
sin v dx.

This is a desired contradiction for V’(yl) < 0, ’(y) > 0 and (x) > 0, sin v(x) > 0 for
0NX<yl.



DEFORMATION OF HEAVY ELASTICA 863

We shall now show that al > Yl for 0< a < 7r. If not, then there exists
such that A(a*) =0, A’(a*)<0 and A(x)>0 for 0_-<x<a *. We specialize (a,/3) in
(a) to (0, a*). Then we have

(4.16) -V(*)A’(*) xAv cos v- dx.

Since cos v-<sin v/v for -r<v< r and A(x)>0, v(x)>0 for 0=<x<a*, it follows
that the right-hand side of (4.16) is negative. However, the left-hand side of (4.16) is
positive. This leads to a contradiction.

We now want to complete the induction. For 0< a < 7r, we want to show the
following:

(i) y" < Ol < Zm+ By induction hypothesis Ym < Olm" We want to show that
a,, < Zm+l. For a =0, it is obvious that a"(0)= h". From Lemma 4.2, we have

lim z"+l(a)= 7,,+1 >
a0

By continuous dependence on parameter a, we have that am(a < z"+l(a) for a > 0
sufficiently small. We claim that a" (a) < z"/l(a) for all 0 < a < 7r. If not, there exists
a*(0, Tr) such that a"(a*)=z"/l(a*). We now specialize (a,/3) in (c) to
(z"(a*), z"/l(a*)) and n m. Then we obtain

Zm+l
(4.17) 3’A- A’lZz:/= 3(x-y")(-sin v(x))A(x) dx

since 3(z"+1) 3(Zm)=0, z"+l=a,,, ’(z")=(z"-3y")v"(z"). Then (4.17) becomes

Zm+l
(4.18) O=(z"-3y,,)v"(z")A(z")+ 3(x-y")(-sin v(x))A(x) dx.

It is easy to verify that the right-hand side of (4.18) is positive. Then this is a desired
contradiction. Hence, we have a,, (a) < z"+ (a) for all 0 < a <

(ii) z"+l < fl,,+l < y"+ < a,,+. First we show that z,,+l </3,,+1. If not, then a" <
/3,,+1-< z"+l. We specialize (a, fl) in (a) to (a,,,/3,,+1). Then we obtain

fm+, ( sin )(4.19) V’(flm+l)A(flm+l)+ V(am)A’(am) xAo cos v -----v dx.

It is easy to verify that the left-hand side of (4.19) is positive while the right-hand side
is negative. This is a contradiction.

Next we show that/3,,+1 < Ym+l. If not, then fl"+l => Y"+I. We specialize (c,/3) in
(b) to (Zm+l, Ym+l)- Following similar arguments in the case fll < Yl, we deduce that

Ym+l
v’(y"+l)A’(ym+l)=Zm+lA(Zm+l)sin V(Zm+I)+ Asin vdx.

Zm+

It is easy to verify v’(y"+l)A’(y"+)<--O, z"+lA(z"+l) sin v(z"+l)O, and
JYm/ A sin v dx O. Thus wc obtain a contradiction.

Finally, we want to show that Y"+I a"+l. If not, then Y"+I --> a"+l. Wc specialize
(t, fl) in (a) to (fl"+l, a"+l). Then we have

(4.20) -[Vt(m+l)m(m+l)""l)(Olm+l)mt(ogm+l)] xml.) COS/)- dx.
a/3,,,+

It is easy to verify that the left-hand side of (4.20) is positive while the right-hand side
is negative. This is a contradiction.
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5. Numerical studies for a # r and discussions. In this section, we present our
numerical studies for the multiplicities of the solutions of the problem (P),, 0 <
The analytic results in 4 shall confirm that our numerical results are reliable.

Consider our bifurcation problem

K2s sin , K > 0,
ds

and its scaled form

,’(0)--0, ,(1) ce, 0< ce < 7r

(2.6)
d2
ds2 s sin , ’(0)=0, (K)=c.

Let (s, a) be the solution of the following initial value problem"

d2xis,
(5.1)

ds2 s sin xI,, xI*’(O) =0, xI*(O) a.

It is easy to verify the following relations:

(5.2) (s, a + 27r) (s, a) + 27r,

(5.3) (s, 27r- a) 2r-(s, a).

For any K > 0, we consider the map

a-->(K,a), 0=< a =<27r.

Since 0 < a < 7r, from (5.3) we only need to compute numerically for 0 < a < 7r. In the
following, we used the ODE Solver DGEAR of the IMSL Library to compute the
function, a xp (K, a), 0 < a < 7r, for various K.

In Fig. 7, the parameter K satisfies 0 < K 1.0 < A1 1.98635 and the graph a

(K, a) intersects a 7r at only one point. We conjecture thatfor 0 < K < At the problem
(P), has a unique solution for every c E (0, 7r). In Fig. 8, the parameter K satisfies

6-

5-

4-

2

0
0 2

FIG. 7
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0 ,I I
0 2 7r 4 5 27r 7

FIG. 8

hi < K 3.0< h2 3.82557 and the graph a (K, a) intersects a zr at three distinct
points. It shows that if hi < K < h2, then the problem (P), has at most three distinct
solutions. In Fig. 9, the parameter K satisfies A2 < K 4.5 < A3 5.29566 and the graph
a (K, a) intersects a zr at five distinct points. It shows that if h: < K < h3, then
the problem (P), has at most five distinct solutions. We conjecture thatfor h, < K < h,+
the problem (P), has 1, 3, , 2n + 1 solutions for various a.

Acknowledgments. We thank Professor C. Y. Wang of Michigan State University
for suggesting this problem to us and for stimulating discussions. The authors also
thank a referee for his comments.
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ON THE UNIQUENESS OF A LIMIT CYCLE FOR
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Abstract. The uniqueness of a limit cycle for a predator-prey system is proved in this paper. The method
used is an improvement of the method used earlier by Cheng.
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1. Introduction. Stability analysis for a nontrivial periodic solution of ordinary
differential equations is very rare and difficult to obtain even in a two-dimensional
system. One well-known example is the Lienard equation, in particular, the Van der
Pol equation. See Hartman 16] and Hirsch and Smale [7] for details. For biological
predator-prey systems, Hsu, Hubbell, and Waltman [8], [9] considered the following
competing-predators system:

(t)=rS(t)(l__)_()(Xa_l!t)S(_t_) (X(t)S(t)
+S(t) ] -()\ --z--i-t3 ]’

alWS(t) -D1

( m2S( t) )2(t)=X2(t) a2+S(t)-D
S(0)=So>0, X,(0)=Xio>0, i=1,2,

where Xi(t) is the population of the ith predator at time t; $(t) is the population of
the prey at time t; mi is the maximum growth rate of the ith predator; Di is the death
rate of the ith predator; y is the yield factor of the ith predator feeding on the prey;
and ai is the half-saturation constant of the ith predator, which is the prey density at
which the functional response of the predator is half maximal. The parameters r and
K are the intrinsic rate of increase and the carrying capacity for the prey population,
respectively. Hsu, Hubbell, and Waltman analyzed solutions of this system and found
that the behavior of solutions depends mainly on the two-dimensional system:

(2)

(t) rS(t)(l _S____)) _()(x(t)S(t)]
mS(t) )(t)=x(t) -Doa+S(t)

s(0) So> 0, x(0) Xo> 0,
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where r, K, m, y, a, and Do are positive constants. They analyzed system (2) and found
that if h < (K-a)/2, where h a/(b-1) and b re then the unique interior
equilibrium point (h, x*) is unstable. They conjectured that the system (2) has a unique
stable limit cycle in this case. This conjecture was answered affirmatively by Cheng in
[2]. In these examples, symmetric properties are an important ingredient of the proof.
The Van der Pol equations are

9 y (X3 X),
(3)

The isocline 2 =0, i.e., the curve y x3- x, is symmetric with respect to the origin.
This fact is important in the analysis of (3). For the system (2), the isocline =0 is
the curve

(4) x r(y/m)(1 SK)(a + S).

This curve is part of a parabola and hence is also symmetric with respect to the line
S (K-a)/2. The proof of Cheng [2] uses this symmetry property in an essential
way. From the point of view of perturbation theory, there is no reason to believe that
some symmetry properties are indispensable for a stable limit cycle. In this respect, if
we can devise a proof that is valid for a more general "nonsymmetric" system, even
if it is only a slight generalization, we will feel comfortable with it.

The purpose of this paper is to improve our method used in [2] to prove the
uniqueness of a limit cycle for a more general predator-prey system without the
symmetry properties of the isocline. At the end of our proof, we also close a gap in
the original proof given in [2].

2. The equations and statements of the main result. We will consider the following
predator-prey system:

:- x(f(x)- y),

(5) f y(g(x)- h ),

x(0) Xo > 0, y(0) Yo > 0, A > 0.

Note that if g(x)=x and f(x)=(1-x/K)(a+x), then the system (5) is essentially
equivalent to the system (2) up to some irrelevant constants. Our general assumptions
about f(x) and g(x) are:

(i) ge C([0, co)), g(0) =0, g’(x)>0 for all x=>0.
(ii) fe C([0, co)), f(0) =>0, and there exists K>0 such that f(K) =0 and (x-

K)f(x)<O for x K. There exists an a, 0<a<K, such that f’(x)>0 for 0<x<a,
f’(a) =0 and f’(x) <0 for a<x.

(iii) g(x*)= ,, y* =f(x*), and 0 < x* < a.
(iv) (d/dx)(xf’(x))/(g(x)-A))<O for x <x* and x> )*, where )* =f- of(x*)

and f fl(o,,,), f=fl(,.).
The phase plane of (5) under assumptions (i)-(iv) is roughly as shown in Fig. 1.

We consider only the case x* < a. In the case a < x* < K, the equilibrium point (x*, y*)
is locally asymptotically stable. We refer to Cheng, Hsu, and Lin [3] for global stability
analysis.

Note that if

g(x)=x,

f(x)=F(x)+eH(x),
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<0
<0

>0

x*

FIG.

then g and f satisfy assumptions (i)-(iv) if e > 0 is sufficiently small where

F(x)-(1-x)(b+x)

and H(x) is a C function satisfying

H’(x)>-O for 0<x< a,

1-b
H’(x) <= O fora<x,a-

2

In fact,

-,
x\ x-h / (x_h)_{[2(x-A +2A(a-t)]-e[(x-A)xH"(x)-AH’(x)]}.

Thus if (a ,t is reasonably large, we can allow e to be reasonably large and the isocline

y=F(x)+eH(x)

can be quite unsymmetric with respect to the line x a.
Our main result follows.
THEOREM 1. Under the assumptions (i)-(iv), (5) posseses a unique limit cycle which

is globally stable.

3. Proof of Theorem 1. We need some lemmas.
LEMMA 1. The solutions x(t), y(t) of (5) are positive and bounded.
LEMMA 2. The unique interior equilibrium point (x*, y*) of (5) is a source.
LEMMA 3. Let F be a nontrivial closed orbit of (2). Then

F c {(x, y): 0 < x < K, 0 < y}.
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Let L, R, H, and J be the leftmost, rightmost, highest, and lowest points of F, respectively.
Then

L {(x, y)" 0 < x < x*, y =f(x)},

R e {(x, y): x* < x < K, y =f(x)},

Ue{(x,y)’x=x*,y>y*},

J {(x, y)" x x*, 0 < y < y*}.

The proof of Lemma 1 is given in Albrecht et al. [1]. Lemma 2 follows from a
straightforward calculation and Lemma 3 is easy enough. Hence we omit all the proofs
of these lemmas.

Before we state and prove our next lemma, we define a transformation T from
(0, a) x (0, m) to (a, K) x (0, m),

(6)
T(x, y)=--- Tl(X, y), T2(x, y))

(f-i ofl(x),y),

where fl and f2 are the restriction of f on (0, a) and (a,K), respectively. From
assumption (ii), it is easy to see that T is a one-to-one transformation.

Now, we can state our main lemmas.
LEMMA 4. Let F be a nontrivial closed orbit of (5). F meets the vertical line x a

at points A and B with y-coordinates YB > YA. (See Fig. 2.) Let the image of arc BHLJA
of F under the transformation T be. Then arc -7, intersects arc of
F at exactly two points P (xl, Yl) and Q (x2, Y2) with Yl >f(xl) and y: <f(x).

P’ _f

H
H’

a 2* K

FIG. 2
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Furthermore, let P’= (x, y)= T-(P) and Q’= (x_, y)= T-(Q). Then

(7) 0>
xf(x) >_ xf’(x)
g(x)-A g(x)-A’

(8) 0>
xf(x.) >-_ x2f’2(x2)
g(x) A g(x)- A

Proof. Consider the function

g(s)
(9) V(x, y) I d.

Then

(10)
dV(x(t),y(t))

dt
[g(x(t)) A ][f(x(t)) y( t)].

Let the period of F be -. We have

dV(x(t), y(t))
(11) Jo dt

On the other hand, we have

(12)

dt =0.

dV(x( t), y( t))
dt

at= [g(x( t)) A ][f(x( t)) y( t)] dt

v (f(x)- y) dy.
Y

Let 1) be the interior of the domain bounded by arc BHLJA and line x a and
lI2 be the interior of the domain bounded by arc BRA and the line x a. Also, let
’--’1 [’-J ’2 and l’l T(I). From the definition of T it is easy to see arc lies
above F and arc J’A lies below F. Hence either

(13) BH’L’J’Affltl2=(empty) and lI2cl)

or

S =- BH’L’J’A f’) ’2 # "
We now show that the assumption ’2 CS " leads to a contradiction. From (11) and
(12), we have

(14)

dV(x(t), y(t))
0=

dt
dt

r l
[f(x) y] dy

Y

I faf’(X) dx dy (Green’s theorem)
Y

=f(a f’(x---) dxdy+ f la f’(X)
dxdy

Y Y

f fa f(x----2) dxdy+ II f(x)dx dy.
Y Y
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Now let T" fa lI be the transformation defined in (6). Let

Then

Hence (x, y)= T-l(u, v) and

(15)

The Jacobian of T-1 is

O(x,y)
(u, v)

T(x,y)=(u,v).

u =ffa ofl(x)

X =f?l of(u)

y--v.

(f-a)’(f(u))" f(u) 0
0 1

(16)
(f-a),(fi(u)), f;_(u).

But since f(u) < 0 and (f[-1)’(f2(u)) > 0, we have

O(x,,,,,,y)(17)
O(u, v)

=-(f?’)’(f2(u)) f(u).

Hence, we have from (17)

(18)

But

(19)

IIll f(x---)dxdy= f ffft f’(f?lof2(u))
y v

[-(f?l)’(f2(u))’f’(u) dudv

=--ffa f;(f(lA(u))’(f?l)’(f2(u))’f(tt)

d
f;(f?l oA(u)) (f?l),(f2(u))=_z(f of-l(z))

du dr.

From (18) and (19), we obtain

f la f(x----) dx dy I fa f(u)

(20)
y v

=-fro, f(x)y
Combining (13), (14), and (20), finally we have

f dV(x( t), y( t))
dt0 o dt

=Ira f(x----) dxdy+ Ifa f_(x)

(21) :-IIa ’(Xdxdy+Iffa ,(x,
Y Y

> 0 (recall thatf(x) < 0).
This is a contradiction. Hence S BH’L’J’A .

z=f2(u)

du dv

dx dy (identify u x, v y).
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Let S denote the closure of S and let P (Xl, Yl) and Q (x2, Y2) be the "highest"
and "lowest" points of S, respectively. Then, P is the highest point and Q is the lowest
point where arc BH’L’J’A enters the region ’2 from the outside of f2. It is easy to
see that yl> y2. First,we assume that y>f(xl). Let (dy/dx) and (dy/dx)p be the
slopes of arcs BH’L’J A and at point P, respectively. Since arc enters

12 from the outside of 122 at point P, we have

But we have

(23)
dy) y(g(xl) h

e--xl(f(xl)--yl)
Y(g(Xl)--A)
Xl(f2(Xl)--Yl)’

and

(24)

P (u,o)=(Xl,y1)

__( )d(ff ofl(x))(x,y)=(x{,y[)=T-’(x,,y,)

y(g(x)-A)
(f-l)’(f(x)) fi(xl) xi (fl(xl)-Yl)"

Since

(25) fl (xl) =fl(f-’ f2(Xl) =f2(xl),

(26) Yl =Y,

and

(27)
(f;)’(A(x;))" f.(f; fl(xl)) (f;)’(fl(xl))" f(x)

--’1.

We have from (24), (25), (26), and (27)

(28) dy) yi(g(xl)- A
x p=Xi(f2(Xl)-- yl) (1/f(xl))

Thus from (22), (23), and (29) we obtain

(29) 0>
yl(g(xl) A)

>
y(g(xl) A)

x(f2(xl)-Yl)-Xl "f/(xl)" (fE(Xl)-Yl) (1/f(xl))

Finally we get

(30) O>
xlf;(xl)

>
Xlf(x1)

g(xl)- A g(Xl)- A
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Now the arc PR satisfies the following differential equations"

(dy) _y(g(x)-h)(31) xx x(f2(x) y)

and the arc PL’ satisfies

h- (,,)=(,y)

y’(g(x’)-A)
(32) (f;1)’(f(x’)). f[(x’), x" (f(x’)-y’)

y(g(x’)-A)
x’(f2(x) y) (1/f6(x)) f(x’)

as in (24)-(28).
From (31) and (32) we have

dy) _g(x)-h yf(x)
(33) ’- xf(x) "f2(x)- y

dy) _g(x’)-A yfz(x)
(34) -x ’- x’f;(x’) "f2(x)- y"

__<g(x)-A
xf(x)

g(x’) A yf(x)

From the assumption (iv) and (30), we have

g(x’) A g(x) A g(xl) A
(35) ,f< --_<

x (x’) x;f;(x) Xlf(x1)
for all x < x (hence x’ < x).

Hence we have

g(x)- A yf(x)
xf2(x) f2(x) y

for all x < x.
From a well-known comparison theorem we get

x’f;(x’) f2(x) y

(36) y(x)’F > y(x)pL for x < x < XL,,

where xv is the x-coordinate of L’.
This proves that if y >f(x), then the arc BH’L’ intersects the arc BR only at the

point P.
Now ass_____._.._ume thaty<f(x2). Let (dy/dx)’0 and (dy/dx)0 be the slopes of

arcs BH’L’J’A and BRA at the point Q (x, y), respectively. Then since y <f(x),
it is obvious that

(37, 0<(d) _-<(xY)
Q Q

By arguments similar to those in (23)-(28), we have

(dy) =y2(g(x2)-A)
Q x2(f2(x2)--Y2)

(38)
g(x2)- A YEfz(x2)
x2f(x2) f2(x2) y2

(dy)’ =g(x_)-A yEf(x2)
(39)

xf(x_) "f(x)- y"
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Hence from (37), (38), and (39) we obtain

x2f(x2)
(40) 0 >

x_f,(x2) >_

g(x) A g(x2) A

By arguments similar to those in (31)-(36), we can prove that if y2<f(x2), then the
arcL intersects the arc only at the point___Q. From the above conclusion, P
cannot be one of the intersection points of arcs L’J’A and RA. Hence we conclude that

(41) y >f(x,), y2 <f(x2)

and P and Q are the only intersection points of arcs BH’L’J’A and BRA. Hence (30)
and (40) hold. This completes the proof of the lemma. [3

LEMMA 5. Let F be a nontrivial closed orbit of (5) as described in Lemma 4. Define
h(x, y) x(f(x) y), k(x, y) y(g(x) A ).

Then

(42) r DiV (h, k) dt i (Oh(x’ Y) +Ok(x’ Y---2)) dt < O.
Ox Oy

Proof. From the definitions of h and k, we have

ok(x, y)
(43) Oh(x,y)+

Ox Oy
(f(x) -y) + (g(x) A + xf’(x).

But since F is a closed orbit, we have

and

Thus

[f(x)- y] dt r dt 0
X

[g(x) A dt ; dt= O.

(44) r DiV h, k) dt r Xf’(x) dt.

We divide the integration along F into integration along several arcs, that is, we let

Consider the integration along Q’A first. The arc Q’A of F can be parametrized by
(x, y(x)), where x_-< x -<_ a. Hence

f f
(46)

A
X(t)f’(x(t)) dt jxsf(x:(x) dx

f’ fI(x)
sf,(x)-y,(x)

dx.

Now let

u f;l fl(X), x e [x’, a]
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or

x=f? of2(u), ue[a, x2].
Then

(47)

(48)

dx= I,, f(f?l f).(u)) (f?l)’(f(u)) f(u)

x2f2(u) yl(f-1f2(u))

I f(x)
dx.XfE(x y(f f(x))

du

We parametrize the arc AQ of F by (x, y2(x)), where x E [a, x2]. Then

Ia( Ia<2 f’(x)
x( t)f’(x( t)) at=

f(x) y2(x)

=Io f;(x)’%

f(x)- y2(x)
dx.

Combining (47) and (48), we obtain

(IX+ fA<)(x(t)f’(x(t))) dt

f f(x)[y(x)-yl(f-1 of(x))] dx

But for x E (a, x2), we have

f(x) < O, y2(x)-yl(f( f2(x)) > 0,

fz(x) y2(x) > O, f2(x) y,(f?l f2(x) > 0.

Hence

(49)

(5O)

=I’ fl(x) y3(x)

Let x=f[ off(u) or u =f-i off(x). Then from (50)

x(t)f’(x(t))) dt

(IQ,A+ IA<) (x(t)f’(x(t))) dt < O"

Next we parametrize arc BP’ of F by (x, y3(x)) and arc PB by (x, y4(x)). Then

f’(x)
(x( t)f’(x( t))) dt

f(x) y3(x)

(51)

fl(f?’ oA(u)) (f?’)’(A(u))f(u)

=Io f;_(u)x’f2(u) y3(f-lo f(u))

=I. f(x)Xl

f2(X y3(’----fTio f(x))

du

du
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Now from the parametrization of arc PB, we have

(52)
fen Ix" f’(x)

(x( t)f’(x( t))) dt
f(x) y4(x)

Ia f(X)x’f2(x)--y4(x)
Combining (51) and (52) we obtain

(53)

(j+ I,)(x(t)f’(x(t))) dt

--Ja f(x)[y3(f?l f2(x))--y4(x)]
dx

0.

> x, i.e x2 > (The case x < x can be treated inNow let us assume that xl =Xl.

Ll={(x,y).x=x <
1, Y.<=Y=Y},

L {(x, y)" y y, x2 x

We parametrize the arc P’LQ’ by (hl(y),y) and let the domain bounded by the
arc P’LQ’, L and L1 be denoted by D1. Then we have

(54)

(x(t)f’(x(t)))dt

f xf’(x)
p-=, y[g(x)- A x=hl(y)

xf’(x)--(IO,-t-I2-t-I,)(y[g(x)__A]’) dy

y[g(x)

I tfD 1 d (_-"_-’f#(5).)Iyxf’(x)-f\g(x)-A dxdy-
el y[g(x) A ]

xf;(xl)
y[g(x)- A]

dy (by assumption (iv)).

Now we can consider the integration along the arc QRP. Let LI TL, L TL and
let D be the domain bounded by the arc QRP of F, L, and L;. Then

(55)

pgP 4 . y[g(x)

Li _;_ y[g(x) A]
dy

1 d xf’(x)
dx dy +o2-fx g(x)- A y[g(xl)- A

ll Xlf2(Xl)
< dy.

y[g(xl)- A

the same manner.) Let
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Combining (54) and (55), we have

+ (xf’(x)) dt <
g(xl)-A g(xi)-A --f

(56)
<0 (by (7)).

Combining (49), (53), and (56), we have

(57) v Div (h, k) dt:(v xf’(x) d, <0.

This completes the proof of this lemma. []

Now we are in a position to prove Theorem 1.

Proof of Theorem 1. From Lemma 1, the solutions are positive and bounded.
From Lemma 2, the equilibrium point (x*, y*) is a source. Hence there exists a closed
orbit. But from Lemmas 3, 4, and 5, each closed orbit must be stable. But two adjacent
periodic orbits cannot be positively stable on the sides facing each other (Coddington
and Levinson [4, Thm. 3.4, p. 397]). Hence the closed orbit is a unique limit cycle. It
is easy to see that this limit cycle is also globally stable, that is, nonequilibrium solutions
will tend to this cycle eventually. This completes the proof of Theorem 1. []

Remark. In the proof of Lemma 5, we introduce the line segments L and L. In
the original proof of Cheng [2], we use the line segment P’Q’ instead. Hadeler pointed
out to us that P’Q’ may intersect the orbit F [5]. This is the gap (in [2]) mentioned
in the Introduction.

Acknowledgments. K.-S. Cheng thanks K. P. Hadeler for pointing out the gap
referred to in the above remark. Both authors express thanks to Paul Waltman and
Sze-Bi Hsu for their constant interest in this problem and their kind encouragement.
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A DIRECT LYAPUNOV APPROACH
TO VOLTERRA INTEGRODIFFERENTIAL EQUATIONS*

OLOF J. STAFFANSt

Abstract. We propose a different approach to the Lyapunov theory for Volterra integrodifferential
equations. Instead of using Lyapunov functionals we use Lyapunov functions, which typically are the norm
of the solution raised to some power. Our Lyapunov functions are not decreasing along solutions, so we
use separate estimates to bound them from above. Our approach is direct and straightforward, and it appears
to be applicable to most of the results that have been proved earlier by means of Lyapunov functionals.

Key words. Lyapunov, Volterra equation
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1. Introduction. An important ingredient in the stability theory for ordinary
differential equations (ODEs) is Lyapunov’s method. Theoretically this method is very
appealing, and there are applications where it is natural to use it.

For the convenience of the reader, let us give a short description of Lyapunov’s
method for the autonomous ordinary differential equation

(1.1) x’(t)=f(x(t)), t>-O, x(O)=xo.

We denote the solution of (1.1) with initial condition x(0)= : by x(t, ) (assuming
that a unique solution exists for each :), and define

1
()=limsup-[V(x(h, :))- V(:)].

h-0+

Clearly, under sufficient differentiability assumptions, we have (/()=(V’(),f()),
where V’ represents the gradient of V.

The following result is found in [28, Thm. 1.1, p. 293].
PROPOSITION 1.1. If there is a positive definite function V on ll with "’_-<0, then

the solution x--0 of (1.1) is stable. If, in addition, - is positive definite on 1, then the
solution x 0 is asymptotically stable.

The function V above is called a Lyapunov function for (1.1) on
A companion result also exists, which says that if I? is positive definite, then the

zero solution is unstable (to prove this it suffices to observe that by Proposition 1.1,
the equation is asymptotically stable in the backwards time direction). Actually, it is
possible to prove instability under somewhat weaker assumptions; see [28, Thm. 1.2,
p. 294].

Numerous attempts have veen made to obtain similar results for integral and
functional equations. The formal theory presents no difficulties. However, it is-a quite
difficult task to find a Lyapunov function for a given ordinary differential equation,
and it is virtually impossible to find a Lyapunov function or functional for a Volterra
integral or a functional equation. There are some simple exceptions to this general
rule, and we shall discuss these exceptions below.

The key requirement in Proposition 1.1 is that V is nonincreasing along solutions.
In practice this requirement is so difficult to satisfy that to many ordinary differential

* Received by the editors February 5, 1987’ accepted for publication June 4, 1987.
t Institute of Mathematics, Helsinki University of Technology, SF-02150 Espoo 15, Finland.
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equations we cannot apply Lyapunov theory unless we know in advance that the zero
solution is asymptotically stable. Of course, if we know in advance that the zero solution
is asymptotically stable, then there is no need to apply Lyapunov theory.

The situation becomes even worse when we replace the ordinary differential
equation with an integral equation. If we want to have a Lyapunov function V which
is nonincreasing along the solutions of the equation, then, due to the way in which
solutions of integral equations behave, we are forced to let V depend not only on the
present value x(t) of x, but also on past values x(s) with s _-< t. In other words, we use
Lyapunov functionals instead of Lyapunov functions. This makes it more difficult to
specify what we mean by the second requirement in Proposition 1.1, i.e., the requirement
that V should be positive definite.

During the last eight years, Burton, Huang, and Mahfoud have developed a
Lyapunov theory, which primarily seems to apply to Volterra integrodifferential
equations that have a dominant ODE part, or more generally, equations that can be
transformed into equations with a dominant ODE part (see [2]-[17]). They use
Lyapunov functionals, which are (most of the time) nonincreasing or strictly decreasing
along solutions. The purpose of this work is to show that we can obtain the same
results by using Lyapunov functions, which are allowed to increase as well as decrease,
but stay bounded from above and below. Our approach applies to the same general
class of equations, and it has two advantages:

(1) It is easy to construct the Lyapunov function. More specifically, we use the
same Lyapunov function for the integrodifferential equation as we do for the corre-
sponding unperturbed ordinary differential equation.

(2) The estimates that we need to compensate for the fact that our Lyapunov
function is allowed to increase as well as decrease are simple, most of the time
completely trivial (one uses the variation of constants formula, or a comparison
theorem, or integration by parts).

The reader may object to the fact that most of the examples that we discuss below
are fairly simple, and that they may be regarded as small perturbations of ordinary
differential equations. This is true. However, apart from a number of well-known results
for equations with kernels of positive type, these are the only ones that fall within the
scope of this note, because they are the only ones that we know about to which the
Lyapunov theory has been successfully applied. In addition, as several examples given
in [16] and [17] show, this class of equations is larger than what we, at first sight,
might expect.

The technique that we use is a variant of the so-called energy technique. This
means that we obtain most of our basic estimates (i.e., those that we call Ll-estimates
and L2-estimates) by taking the inner product of the equation and some function, and
integrating.

To keep this paper at a reasonable length, we restrict ourselves to linear Volterra
integrodifferential equations, but the argument that we present can be applied to more
general equations as well, e.g., to some nonlinear Volterra equations, and to nonlinear
functional differential equations. For the same reason we, moreover, restrict ourselves
to the case where we want to prove stability. However, it should not be too difficult
for readers to convince themselves that the same type of argument can be applied
when they want to prove instability.

2. The reduction to the scalar case. Below we show how one may reduce a system
of equations to a scalar integrodifferential equation or inequality, or equivalently, how
to construct Lyapunov functions for a system of integrodifferential equations. (The
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Lyapunov function that we use is a natural Lyapunov function for the ordinary
differential equation, which is the dominant part of the integroditterential equation.)

Let us look at the equation

(2.1) x’(t)+Ax(t)= C(t,s)x(s) ds+f(t), t>=to, X(to)=Xo.
to

Here x and f take their values in R", A is an n x n matrix with real entries, C(t, s) is
a matrix-valued function, and to is a real number.

The basic assumption in this equation is that the ordinary differential equation

(2.2) x’(t) + Ax(t) =f(t), => to, X(to) Xo,

is asymptotically stable. This means that it is possible to find a unique symmetric,
positive definite matrix B such that

ATB+BA=I
(see [10, Thm. 5.11, p. 124]). Let a be the smallest eigenvalue and /3 the largest
eigenvalue of this matrix (an equivalent definition is/3 IIBII and a IIB-’ll-’, where
I1" is the matrix norm corresponding to the Euclidean norm in R"). Then 0 < a-</3,
and for all x R",

a(x, x) <= (x, Bx) <= fl(x, x); (Bx, Bx) <= fl(x, Bx),

where (.,.) is the Euclidean inner product.
In the sequel we denote the Euclidean norm in R by I’], and denote the

corresponding matrix norm by ]]. ]]. We let l" Is be the norm induced by the inner
product (x, y)s (x, By), i.e., ]x]s ]x/- xl. The corresponding matrix norm is denoted
by ]]. IIs-These norms satisfy

I" I--< I I’1, I1" II--< !1" II.
In our L and L estimates we use the Lyapunov function

z(t) Ix(t)[, [to, c).

This function is locally absolutely continuous, and its derivative z’(t) satisfies (for
almost all => to)

(2.3) z’(t)-[x(t)l --lx(t) + (x(t),BC(t,s)x(s))ds+(x(t),Bf(t)).
to

It is natural to do one of two things: Either replace the only remaining Ix(t)[ by [x(t)ls,
or replace [x(t)[ by [x(t)l. The first alternative leads to the inequality

(2.4) z’(t)+-g-g z(t)<= IIC(t, s)ll(s) ds+[f(t)ls, >= to,
to

and the second alternative leads to the inequality

(2.5) z’(t)+,--oo lx(t)l<= Ilv c(t,s)]]lx(s)l ds+lf(t)l, t>--to.
to

The first of these two equations has the advantage that it contains only one function
z(t) as opposed to the two functions z(t) and Ix(t)[ in (2.5), but as we shall see below,
also the latter equation can be exploited. Note, in particular, that the smallest eigenvalue
a of B does not enter in the expressions above (unless we estimate [[C(t, s)[[B by
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Equation (2.1) is a perturbation of a time-independent ordinary differential
equation. In a similar way we can perturb a time-dependent differential equation to get

(2.6) x’(t)+A(t)x(t)= C(t,s)x(s) ds+f(t), t>-to, X(to)-Xo.
to

The setting is the same as before, except that we let A Lo([ to, o); R). We suppose
that it is possible to find a positive definite matrix B such that the matrix

R(t) AT(t)B + BA(t)

is positive definite for almost all => to. Define a and fl as before, and define

p(t) fl inf
(x, R(t)x)

Ixl 
q(t)=v/- inf

(x,R(t)x>

(here /3 and x/ are scaling factors which make p(t)=q(t)= 1 if R(t)=I). (The
constant p(t) could also have been defined as the smallest eigenvalue of the matrix
flx/-R(t)(x/-)-.) It is not difficult to check that

p(t) >-- q(t) >-- /al p(t).

In this case (2.3) becomes

(2.7) z’(t)-lx(t)l -(x(t), R(t)x(t))+ (x(t)C(t, s), Bx(s)) ds+(x(t), Bf(t))
to

and the inequalities (2.4) and (2.5) become

p(t)
z(t) < [[C(t, s)l[,z(s) ds+lf(t)l(2.8) z’( t) +-=-y- t>-_to,

and

(2.9) z’(t)+[x(t)[ II-c(t,s)lllx(s)l ds+[f(t)[, >- to.

Observe that there is nothing that prevents us from choosing B I. Likewise, there is
nothing that prevents us from applying this approach to the time-independent case.
If we in the time-independent case choose B I, then R Ar +A, a =/3 1, and
p(t) q(t) is the smallest eigenvalue of AT+A (which is required to be positive, if
we are to choose B this way).

It is possible to use a time-dependent transformation matrix B(t) as well. In this
case the Lyapunov function z is

z(t)=(X(t), B(t)x(t))1/2,

and we redefine R to be

R( t) AT t)B( t) + B( t)A( t) B’( t).

We leave the details to the reader (cf. [35, {} 6.5, 6.6, pp. 114-127]).
In the scalar case we throughout choose B =/, a fl 1 and p(t) q(t) 2A(t).

3. Some Ll-estimates. Let us first develop the most elementary estimate for (2.8)
and (2.9) (the same estimate is of course valid for (2.4) and (2.5) if one replaces p(t)
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and q(t) by one). To get this estimate we integrate (2.8) and (2.9) over [to, T], and
change the order of integration. This leads to the inequalities

) i(3.1) z(T)+ [[C(t,s)l],dt z(s) ds<=z(to)+ If(t)l, dt, T>=to,
tO 0

and

(3.2)
z(T)+ \- IIr-C(t,s)ll dt Ix(s)[ ds

to

=< Z(to) + [f(t)lBdt, T>= to.
to

From these inequalities we get by direct inspection the first part of the following
theorem.

THEOREM 3.1. (i) Iff Ll([to, co); R’), and J IIC(t, s)ll,dt<-p(s)/2fl for almost
all s >- to, or IIx/- C( t, s)ll dt <= q(s)/24- for almost all s >= to, then the solution x of
(2.6) is bounded. More precisely, Ix(t)lB <- IXolB + tto If(s)ln ds for all >- to.

(ii) Let fL([to, CC);R’), and assume that for some constant e(0,1/2),
IIC(t, s)llndt<-(p(s)/Efl)- e(1 +p(s)) for almost all s > to, or II,/ c(t, s)ll dt<=

(q(s)/2Vr-)- e(1 +p(s)) for almost all s > to. Then the function z(. )=Ix( )In satisfies
t ((1 /p(t))z(t)/lz’(t)l) dt <. In particular, x(t)->O as t->c.

(iii) In addition to (ii), suppose that IIA(s)ll--< M(1 +p(s)) for some constant M
and almost all s >- to. Then x’ L([ to, (x:)); R’).

Note, in particular, that in the case where A is unbounded we do not have to
assume that ess sups_to C(t, s)l dt < c. In this respect Theorem 3.1 and some of
the other theorems below seem to be new.

The second and third conclusions can be simplified slightly in the autonomous
case (2.1). Then the additional assumption in (iii) is automatically satisfied, and the
conditions [.[IC(t,s)lldt<-(p(s)/2[3)-e(l+p(s)) and llv/-C(t,s)l[ dt <-

(q(s)/2x/-fi)-e(l/p(s) can be written as [.llC(t,s)llBdt<=(1/2/3)-e and

114- c( t, s)ll dt <-_ (1/2x/-) e.
The additional assumption in (iii) is automatically satisfied in the scalar time-

dependent case as well.
Proof As we already observed above, the first of the two claims follows from a

direct inspection of (3.1) and (3.2). Likewise, it is a direct consequence of (3.1) and
(3.2) that under the extra assumption we have to (l+p(t))z(t)dt<oc. This implies
that the last two terms on the right-hand side of (2.7) are integrable (estimate these
terms in the same say as in (2.8)). Since z is bounded (from below), and the first term
on the right-hand side of (2.7) is nonpositive, also this term must be integrable. This
proves that z’ is integrable. That x’ itself is integrable under the additional assumption
made in (iii) follows directly from (2.6). l-]

Some scalar nonlinear convolution versions of this result are given in [33, Thm.
1, p. 458] and [34, Thm. 1, p. 340], and some nonlinear nonconvolution versions are
given in 19]-[21 ].

Theorem 3.1 contains and extends the claims about stability and asymptotic
stability made in [2, Thm. 1, p. 102], [2, Thm. 2, p. 104], [3, Thm. 1, p. 42], and [3,
Thm. 2, p. 43]. (We shall return below to the question of uniform stability and uniform
asymptotic stability.)

There is another equally obvious estimate which can be applied to (2.8) and (2.9).
Instead of just integrating (2.8) we introduce a scalar function r/ (which need not be
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positive), and add and subtract the term r/(t) z(t) from (2.8). Then we multiply the
equation by exp(.ttorl(v) dv), integrate over [to, T], and finally divide by
exp ( l(V) dr) This leads to the inequality

z(T)/ -()- exp (u) du IIC(t,s)lldt
to

(3.3) xexp n(v) dv z(s) ds

NZ(to) exp n(v) dv + exp n(v) dv [f(t)ldt T to.

The same manipulations applied to (2.9), with 0, lead to the inequality

z(T)+ -n(s)- exp () d [C(t,s)ll dt
to

(3.4) x exp

Z(to) exp ,(r) dr + exp n(v) dr ]f(t)ldg Tto.

This very last estimate gives us the following theorem.
THEOREM 3.2. If

exp (v) d IIC(,sll d2-(s
for some function 0 and almost all s to, then the solution x of (2.6) satisfies

]x(t)]lXo] exp n(v) dv + exp n(v) dr [f(s)]ds

for all to. In particular, ff the right-hand side of this inequality is bounded, then so is

x, and ff it tends to zero as , then so does x.
The proof is obvious.
A scalar nonlinear version of this result is given in [20, Cor. 2.4, pp. 328-329].
Theorem 3.2 extends [2, Thm. 3, p. 106], [3, Thm. 4, p. 45], [6, Cor. 1.3, p. 173],

[6, Thm. 3, p. 180], and [8, Thm. 3, p. 278]. In these theorems Buon uses various
conditions, some of which do not directly seem to be related to the assumption of
Theorem 3.2. However, they are all special cases of Theorem 3.2. For example, in
formula (2.5.21) of [10, p. 44], it is assumed ihat

(3.5)

where h is nonnegative. If we choose (t)= eh (t) for some small positive e, then it
is easy to show (integrate by paros) that

I-

cery, tis mea.s tt
(l-)(q(s)/2#-A(s)) for almost all Sto, then Theorem 3.2 applies (recall that
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A result similar to Theorem 3.2 is true for the inequality (3.3) as well, but we
leave the formulation of that result to the reader.

Another possible use of (3.3) is the following: Let us introduce the notation

[z[_ max [0,-z], zR,
and, let us define h by

h sup -r/(s)- exp rl(v) dv Ilc(t. s)ll.dt
T--> to

(3.6)
x exp r (v) dv ds.

If we suppose that z( T) maxst to, rlz(s), then clearly (3.3) implies that

(I )I(1 A)z(T) <_- Z(to) exp q(v) dv + exp 7(v) dv If(t)l, dt.

This proves the following theorem.
THEOREM 3.3. Suppose that the constant h defined in (3.6) satisfies h < 1, that

inf r (v) dv > -oo,
=> to

and that

sup exp r/(v) dv [f(s)ls ds<
=>

Then the solution x of (2.6) is bounded.
This theorem extends [11, Prop., p. 247].
One particular case where Theorem 3.3 can be applied is the following. We

integrate by parts to get

exp vl(v) dv [Ic(t.s)ll.dt- liC(t.s)ll.dt

+ v(t) exp V(v) dv IlC(u,s)ll.dudt.

Thus, if we assume that [IC(t,s)l[ndt(p(s)/2)-(s), and that 0, then we
can estimate the constant h in (3.6) by

h v(t) exp V(v) dv [[C(u,s)li.dudtds

v(t)exp v(v) dv [[C(u.s)[[.dudsdt

U v(t) exp- V(v) dv dtsup [[C(u.s)[[,duds

sup IIC(u,s)llduds.

Thus, if we define p by

(3.7) O=sup

then A =< p.
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The argument above, combined with Theorem 3.3, proves the following theorem.
TIEOREM 3.4. Suppose that IIC(t, s)l]adtp(s)/2fl-l(s) for some function

) >-_0 and almost all s >-to. In addition, suppose that the constant p defined in (3.7)
satisfies p 1, and that sup Jt exp (-J (v) d)lf(s)lads . en the solution x
of (2.6) is bounded.

Theorem 3.4 extends [3, Thm. 3, p. 44], [6, Cor. 1.1, p. 171], [6, Cor. 1.2, p. 172],
[7, Prop. 2, p. 64], and [7, Prop. 3, p. 66]. (In these results, (t) is a small constant.)

4. Some L-estimates. Our L-estimatcs are based on the following lemma.
LEMMA 4.1. Let z be real-valued and locally absolutely continuous, and define the

set E by E (t [to, )] z(t)= maxt.t}. en thefunction tsupto.z(s is locally
absolutely continuous, and its derivative is almost everywhere equal to X(t)z’(t). In
particular, if z’(t) f(t) for almost all E, then z(t) Z(to) +o X(s)f(s) ds for all
tto.

The easy proof of this lemma is left to the reader.
When we apply Lemma 4.1 to the inequality (2.8) we get the following result.
THEOREM 4.2. (i) Iff L([to, ); R), and o C(t, s)[]adsp(t)/2fl for almost

all tto, then the solution x of (2.6) is bounded. More precisely, [x(t)]
o [f(s) ds for all to.

(ii) If esssup,o(l+p(s))-[f(s)]a(, and ,ollC(t,s)lldsp(t)/2-
e(l+p(t)) for some constant e(O, 1/2fl) and almost all tto, then the function
z(. )=]x(. )[ satisfies z(t) max (Xo], (l/e) ess supto.(1 +p(s))-lf(s)l} for all
t to, and ess suptt (1 +p(t))-lz’(t)l(.

(iii) In addition to (ii), suppose that IIA()ll M(1 +p(s)) for some constant M
and almost all s to. en ess supt (1 +p(t))-]x’(t)] (.

The proof is left to the reader (note that in (ii) the derivative will be nonpositive
on E as soon as z has exceeded the given bound).

Theorem 4.2 generalizes [22, Thm. 4, p. 149].
By applying Lemma 4.1 to the function exp (o (v) dv)z(t) rather than to z itself

we get the following analogue of Theorem 3.2.
THEOREM 4.3. If

exp n(v) dv lie(t, s),,ds t)

for almost all to, then the solution x of (2.6) satisfies

Ix(t)l, UlXo[. xp v(v) dv + exp v(v) dv [f(s)l.ds
to

for all to. In particular, if the right-hand side of this inequality is bounded, then so is
x, and if it tends to zero as , then so does x.

The easy proof is leh to the reader.
Theorem 4.3 is closely related to [27, Thm. 3.1, p. 1398].
Extensive work has been done on the question of whether the function x in

Theorem 4.2 tends to a limit at infinity. See [1, Thm. 4.2, p. 242], [25, Thin. 5.3, p.
264], [26, Cot. 1, p. 100], and [26, Thm. 3.1, p. 108].

5. L2-estimutes and kernels of ositive e. To get an L2-estimat rather than an
L-estimat or an L-estimat we use the Lyapunov function w(t)= z2(t) instead of
the function z(t). From (2.7) we get

(5.1) z(t)z’() =-(x(t), R(t)x(t))+ (x(), BC(t, s)x(s)) ds+(x(t), B()),



A DIRECT LYAPUNOV APPROACH 887

and (3.1) and (3.2) are replaced by

1 f T

Z
2-z2(T)+ (t) dt- z(t)llc(t,s)llBZ(S dsdt

tO to
(5.2) - z2(to) + z(t)If( t)l at, T >- to,

2 ,o

and

(5.3)

where

lz:(T)+ --- [x(t)l: dt- Ix(t)lllBC(t,s)lllx(s)ldsdt
to to to

l f,r-<-- z2(to) + z(t)lf(t)ldt, T> to,
2

<x,R(t)x)
r(t)= inf

xo Ixl =
is the smallest eigenvalue of the matrix R(t). The double integral in (5.2) can be
estimated in the following way: As the geometric mean is no larger than the arithmetic
mean, we get for all K > 0,

z(t)llC(t,s)ll,z(s) dsdt<= Ilc(t,s)ll, -gz2(t)+-gSf.. z2(s) dsdt
to to to to(5.4) r

to to

/2 IIc(v, t)llndv z2(t) dr.

This is the key estimate in the remainder of this section.
Applying (5.4) to (5.2) and (5.3) we get the following result.
THEOREM 5.1. (i) Iff6 L([to, 03); R"), and there is some c >0 such that

’ IIC(t,u)lldu/7 lie(v, t)lldv <p(t)
2 ,o =2/3

for almost > to, or

’ linG(t, u)ll du+
1 r(t)

to 2r
linG(v, t)ll do _-<--

for almost all > to, then the solution x of (2.6) is bounded. More precisely, Ix( t)la <--
{Xol + 5,o If(s)la ds for all t-- to.

(ii) If ,o’ (1 +p(t))-lf(t)12 dt < 03, and there are constants >0 ande 6 (0, 1/2/3)
such that

’ IIc(t, u)ll.du+ IIC(v, t)ll,dv <p(t) e(l+p(t))
2 ,o =2fl

for almost all > to, or- line(t, u)]l du+--- linG(v, t)l] dv<-----e(1 +p(t))
tO

for almost all t>to, then the function w(.):lx(.)l satisfies to((l+p(t))w(t)+
[w’(t)l) dt < 03. In particular, x(t) --> 0 as --> 03.
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(iii) In addition to (ii), suppose that A(s)]] <= M(1 +p(s)) for some constant M
and almost all s >- to. Then t (1 +p(t))-l[x’(t)l

Proof It follows from (5.2), (5.3), and (5.4) (and from the analogue of (5.4) for
(5.3)) that in part (i) of the theorem,

1 z2(T) < z2(to) + z(t)lf(t)l dt, T > to.(5.5) = ,o

Using, e.g., [36, Thm. 6.1, p. 121] we find that z is dominated by the solution y of the
equation

1 y(T)= z2(to) + y(t)lf(t)lndt T>= to.
to

However, this is an ordinary differential equation, which can be solved explicitly to
give the estimate in part (i).

In part (ii) of the theorem, instead of (5.5), we get from the same formulas as
before (if necessary, decrease the value of e, and replace Ix(t)[ by z(t))

I T 1- (r)+ (l+p(t))(t)dt<--(to)+ z(t)lf(t)ldt, r>-to.2 ,o 2

This together with H61dcr’s inequality gives the conclusion that
oo. To prove the claim about the derivative one argues in the same way as in the proof
of Theorem 3.1.

To prove (iii) one uses (2.6), observes that for some constant M > 0,

ess sup (1 +p(t))

ess sup (1 +p(s))
so

and uses H61der’s inequality and a change of the order of integration to get

(1 +p(t)) -1 C(t, )ll(s) d dt
to to

--< (1 +P(t))-1 Ilc(t,s)llds Ilc(t,s)llz2(s) dsdt
to to to

M [IC(t,s)l]dtz(s) ds
to

M
o

Theorem 5.1 contains the linear versions of the stability claims in [5, Thm. 1, p.
92], [5, Thin. 5, p. 100], [16, Thin. 3, p. 148], [16, Cor. 1, p. 149], and [.16, Thm. 8, p.
156]. (The nonlinear versions given in [5] can be proved in a similar way.)

It is customary to make the following definition.
DEFINITION 5.2. A linear mapping F which takes the R-valued function x into

the -valued function F(x)(t) is of positive type with respect to the inner product
{.,. ) on the interval [6, m) if it is true for all continuous x and all T> 0 that

(x(, (x(e 0.

Clearly, Theorem 5.1 is a special case of the following result (the proof remains
the same).
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THEOREM 5.3. (i) Iff LI([ to, ); Rn), and if the mapping which takes x into the
function A(t)x(t) tto C t, s)x(s) ds is ofpositive type with respect to the inner product
(’," B on [to, ), then the solution x of (2.6) is bounded. More precisely, Ix( t)l <-IXol 4-

o f(s)l ds for all to.
(ii) If (1 +p(t))-lf(t)[ dt, and there is a constant e (0, 1/2fl) such that

the mapping that takes x into the function A(t)x(t)-o C(t, s)x(s) ds-e(1 +p(t))x(t)
is ofpositive type with respect to the inner product (.,. on [to, ), then the solution x
of (2.6) is bounded and satisfies ,(l+p(t))]x(t)dt. I in addition,

IIc(t, u)lldu+ IIC(v, t)ldv( +p(t)) for some constant M)O and almost
all t to, then the derivative of the function ]]x(t)]] is integrable. In particular, in this
case x(t)O as t.

(iii) In addition to (ii), suppose that IIA()ll M(lp(s)) for some constant M
and almost all s to. en , (1 + p(t))-[x’(t)] dt .

Scalar convolution versions of this result are given in [41, p. 83] and [43, Cor.
3.2, p. 132]. Some other results which fall within the scope of this theorem are [4,
Thm. 3, p. 397], [5, Thm. 3, p. 97], and [5, Thm. 7, p. 103].

(Two of the theorems in [5], i.e., Theorem 2 on p. 94 and Theorem 6 on p. 102,
can be proved with standard energy technique for second-order ordinary differential
equations. It is easy to show that, under the assumptions in [5], the equations discussed
in these two theorems are integrated versions of the damped nonlinear oscillator
equation

x"(t)-A(t)x’(t)+C(t, t)E(x(t))=O,

with initial condition x’(0)= 0.)
For additional results on scalar nonconvolution kernels of positive type, see [23]

and the references mentioned there.
By adding and subtracting a term (t)zZ(t) from (5.1), multiplying the equation

by exp (2 o (v) de), and finally integrating, we can prove the following analogue of
Theorems 3.2 and 4.3.

THEOREM 5.4. If the mapping that takes x into the function

A(t)x(t)- exp n(v) dv C(t, s)x(s) ds
to

is ofpositive type with respect to the inner product (.,. on [to, ), then the solution x
of (2.6) satisfies

Ix(t)l  lXol exp w()dv + exp (v) dv If(s)l ds
to to

for all to. In particular, if the right-hand side of this inequality is bounded, then so is

x, and if it tends to zero as , then so does x.
This result seems to be new.
Note, in paicular, that if the size hypothesis on C in pa (i) of Theorem 5.1

holds with C(t, s) replaced by exp ( (v) dv)C(t, s), then Theorem 5.4 applies.

6. Perturbations of the derivative. So far, in our study of peurbed versions of
the ordinary differential equation

(6.1) x’(t) + A(t)x(t) =f(t), to,

we have only permitted peurbations that can be dominated by the term A(t)x(t)
(Theorems 3.3 and 3.4 were exceptions; there we needed the term x’(t) as well). Next
we want to allow peurbations that are dominated by the term x’(t). More precisely,
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we study equations of the type- x(t)+ G(t, s)x(s) ds+g(t) +A()x(t)= C(t, s)x(s) ds+f(t),
to to

(6.2)
t->to, X(to)=Xo.

If G and g are sufficiently ditterentiable, then one can carry out the differentiations
to get an equation which is of the form (2.6), with A(t) replaced by A(t)+ G(t, t),
C(t,s) replaced by C(t,s)-(O/Ot)G(t,s) and f(t) replaced by f( t)- g’( t). In par-
ticular, if A(t) + G(t, t) 0, then the equation which one gets in this way has no leading
ODE term. Therefore, we should not regard (6.2) as a perturbation of the equation

(6.3) x’(t)+(A(t)/G(t, t))x(t)--f(t), >- to.
Instead, it should be regarded as a perturbation of (6.1).

References [16] and [17] contain several nice examples on equations of the type
(2.6), which can be rewritten in the form (6.2) in such a way that (6.2) becomes a
small perturbation of (6.1).

Equations ofthe type (6.2) are a special subclass ofthe so-called neutral functional
differential equations, and the operator which maps x into the function t-->

x( t) + to G( t, s)x(s) ds + g( t) is usually called the D-operator. Under the assumptions
which we use below, both the D-operator and the unperturbed equation (6.1) will be
asymptotically stable. (For a further discussion on a neutral functional differential
equation with a stable D-operator, see [44].)

There are at least two different ways to approach (6.2). One possibility is to first
use the variation of constants formula for (6.1), and then apply the contraction mapping
principle. We shall return to this approach in the next section. The other possibility,
the one we present now, is to use L2-estimates in th spirit of the preceding section.

Earlier, when we developed our L2-estimates for (2.6), we simply took the B-inner
product of the equation with x(t), and integrated. This time, the natural thing to do
is to take the B-inner product of (6.2) with x(t) / io G(t, s)x(s) ds / g(t), and integrate.
This leads to the identity (we have collected all the quadratic terms in x to the left-hand
side and all the affine terms to the right-hand side, and R(t) has the same meaning
as before)

1
x(T)+ G(T,s)x(s)ds+g(T) +- (x(t),R(t)x(t))dt

+ (x(t),(A(t)G(t,s)-C(t,s))x(s))dsd

(G(t, s)x(s), BC(t, v)x(v)) dv ds dt
to to to

(6.4) IXo + g(to)l + (f(t), Bg(t)) dt
to

+ (Bf(t)-Ar(t)Bg(t),x(t)} dt
o

+ (f(t), BG(t, s)x(s)) ds at
lO tO

to to

Generally speaking, in this formula we can use the first two terms to dominate all the
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rest. Most of the remaining perturbation terms are of a familiar nature; the only
exception is the last term on the left-hand side (which can easily be estimated with
H61der’s inequality).

We shall make no attempt to prove a general result based on (6.4), with all the
terms present. There are simply too many different possible estimates. For example,
in the last two terms, we may allow G and C to be "large" at infinity, if we instead
require f and g to be "small," and vice versa (these terms can be estimated in a way
similar to the one that we used at the end of the proof of Theorem 5.1). To prove [17,
Thm. 1, p. 492] and [17, Thm. 5, p. 503] we drop the two functions f and g (after
which the right-hand side of (6.4) is a constant), and estimate the last term on the
left-hand sidle in the same way as Burton and Mahfoud do on the bottom of p. 491 in
[17]. Here we shall only prove a result that applies to the equation which one gets by
dropping the functions C and f on the right-hand side of (6.2), i.e., we look at the
equation

(6.5) - x(t)+ G(t,s)x(s) ds+g(t) +A(t)x(t)=O, t>=to, X(to)=Xo.
to

If we drop the corresponding terms in (6.4), and make the standard estimates, then
we get

(6.6)

and

2 I T p z2x(T)+ G(T, s)x(s) ds+g(T) + 2---- (t) dt
B

z(t)llB-A(t)Ba(t,s)llz(s) dsdt
to to

<1 I T

---lxo+g(to)l+ Ie(t)Bg(t)llx(t)l dt, T>= to,
to

x(T)+ G(T, s)x(s) ds+g(T) + Ix(t)l dt

(6.7) Ix(t)ll[AT(t)BG(t,s)lllx(s)l dsdt
to to

<=-Ixo+g(to)l+ [m(t)Bg(t)llx(t)l dt, T > to.
to

These estimates combined with (5.4) gives us the following theorem.
THEOREM 6.1. (i) If ’o (l+p(t))-lAT(t)Bg(t)l dt<o, and there are constants

> 0 and e (0, 1/2fl) such that

1
IIB-’Ar(v)BG(v, t)ll.dvIIB-’A(t)BG(t,u)lldu+2

<--P(t--)-e(1 +p(t))
2

for almost all > to, or

t
IIA(t)BG(t, u)ll du/ IIA(v)BG(v, t)ll dv

2 to

r(t)
<---e(l+p(t))

2

for almost all t> to, then the solution x of (6.5) satisfies to (1 +p(t))lx(t)l2 dt <c.
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(ii) In addition to (i), suppose that I (1 +p(t))-llg’(t)[2 at <o, and that for some
constant M and almost all >- to and s >-_ to,

IIA(t) / G(t, t)ll--< M(1 +p(t)),

I’t]ltG(t,s)llds<-M(l/p(t)),
to

dt<-M(l+p(s))

Then to (Iw’( t)l / (1 / p(t))-lx’(t)l2 dt <, where w( Ix(. )12. In particular, x( t) --> 0
as t--> o.

The proof is essentially the same as the proof of parts (ii) and (iii) of Theorem 5.1.
Theorem 6.1 contains the linear versions of the stability claims in 16, Thm. 4, p.

150], [16, Thm. 14, p. 164], [16, Thm. 15, p. 166], and [16, Thm. 16, p. 167]. (The
nonlinear versions are proved in an analogous way.)

7. The variation of constants formula. It is not possible to discuss equations (2.1),
(2.6), and (6.2) without mentioning the most obvious approach to a stability theory
for these equations, namely the use of the variation of constants formula. If we let
Z(t, s) denote the fundamental matrix solution of the equation x’(t) + A(t)x(t) O,
i.e., the solution of the equations

0
Z( t, s) + A( t)Z( t, s) O, to<- S <- <,

Ot

--Z(t,s)-Z(t,s)A(s)=O, to<-S<-t<o,
Os

Z(t, t)= I, t>- to;

then we can multiply the equation

x(+ a(,sx(sds+g( +(x(= C(,sx(ss+f(t,
dt to

(6.)
t_>--to, X(to)=Xo,

by Z(T, t), integrate over to, T], and finally integrate the term with the derivative on
the left-hand side by parts to get the variation of constants formula

x(r)=(xo+g(to))Z(r, o) -g(r)+ z(r, t)(f(t)+A(t)g(t)) dt
o

G(r,s)x(s)ds
o

+ /(r, ) (C(t,s)+A()G(,s))x(s)dsdt.
to to

For notational convenience, let 3 denote one of the spaces LP([to, ); Rn), 1-<_p-<_,
BUC([ to, ); Rn) (the space of bounded uniformly continuous functions on to, )),
or BCo([to, ); Rn) (the space of continuous functions tending to zero at infinity).
Clearly, if all the operators (x)(t)= ttoZ(t, s)x(s) ds, (x)(t)= tto G(t, s)x(s) ds, and
Y(x)(t):t,o (C(t, s) + A( t)G( t, s))x(s) ds are continuous from 3 into itself, iff and
g belong to 3, and if the norm of the operators and are small enough, then we
can use the contraction mapping principle to show that the solution of (6.2) belongs
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to . It is even possible to let d, , g, and f depend on x, as long as the dependence
is so weak that the contraction mapping principle is applicable.

The approach described above is a minor modification of the approach used in
[4]. Arguing as above one can remove the assumption in [4] that A(t) commutes with
Z(t,s).

The following result is useful when one wants to show that the operators , ,
and map some LP-space into itself.

LEMMA 7.1. Let R Loc([ to, c) x [to, o); Rnn), and denote the operator which
maps x into the function t--ttoR(t, s)x(s) ds by . Then the following claims are true"

(i) maps L([to, C);Rn) continuously into itself if and only if
ess supt__>,o o IIR(t, s)ll as <.

(ii) maps L([to, C);R") continuously into itself if and only if
ess sups_>_,o S IIR(t, s)ll dt<-o.

(iii) If maps both LI([ to, c); R) and L([ to, ); R") continuously into them-
selves, then maps all intermediate spaces LP([ to, c); R), 1 < p <, continuously into
themselves.

All of these results are well known. No necessary and sufficient condition is known
in the intermediate cases <p < (except for convolution kernels in the space L2,
which are continuous if and only if their distribution Fourier transforms are bounded).
Additional admissibility results of this type are discussed in [18].

In particular, if there is some function yL([to,),R) such that IIR(t,s)ll <-

y(t-s), i.e., if R is dominated by a scalar L convolution kernel, the maps all the
the spaces LP([to, o); Rn), 1 _-<p-<_, continuously into themselves.

Instead of using the variation of constants formula for the equation x’(t)+
A(t)x(t)-O one can use the variation of constants formula for (2.6). We let R(t, s)
be the differential resolvent of (2.6), i.e., the solution of the equations

O--R(t,s)+A(t)R(t,s)= C(t,u)R(u,s)du to<=S<--t<,
ot

O--R(t,s)-R(t,s)A(s)=- R(t, u)C(u,s) du, to<=S<=t<o,(7.1t
Os

R(t, t)=/, t=> to,

If we multiply (6.2) by R(T, t), integrate over [to, T], and finally integrate the term
with the derivative on the left-hand side by parts, then we get

x( T) (xo+ g( to) R T, to) g( T)

(7.2)
+ R(T, t)(f(t)+A(t)g(t)) at- R(T, t) C(t,s)g(s) dsdt

ft
T

ft
T

ftG( T, s)x(s) ds + R( T, t)a(t) G(t, s)x(s) ds dt

R(T, t) C(t, u) G(u,s)x(s) dsdudt.
to to to

This equation has a form that makes it possible to apply the contraction mapping
principle under suitable smallness assumptions on G. In addition, one may let g, f
and G depend on f (cf. [24]). We leave the exact formulation to the reader.

One point that ought to be made is that Theorems 3.1, 3.2, 3.3, 3.4, 4.2, 4.3, 5.1,
5.3, and 5.4 give sufficient conditions under which the differential resolvent maps
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various spaces 3 continuously into themselves (to see this, take Xo g G 0 in (7.2)).
Thus, they enable us to use the contraction mapping principle to study perturbations.

In the case where A is periodic with period T, and C satisfies C (t + T, s + T)=
C(t,s) for almost all s and t, then R(t,s) can be defined for -oo<s=<t<o,
and, because of the fact that (under very weak conditions) the solution of (7.1) is
unique, R automatically satisfies R(t+ T, s+ T)= R(t, s) for almost all s and t. If,
in addition, ess supo__<,__<- ’_ (ll c(t, s)ll/llR(t, s)ll) ds<o , or equivalently,
ess sup,__>o o (ll c(t, s)ll / IIR(t, s)ll) ds <, then it is not difficult to show (use Fubini’s
theorem and the resolvent equations (7.1)) that for each bounded periodic function f
the equation

(7.3) x’(t)+A(t)=I C(t,s)x(s)ds+f(t), -o< <,

has a unique bounded periodic solution, namely

x( t) IJ R( t, s)f(s) ds, -<t<.

This means that under periodicity assumptions on A and C, if we can show that the
solutions of (2.6) are bounded for bounded f, then we automatically get a periodicity
result for (7.3). In the convolution case we may alternatively show that for each
integrable f the solution of (2.6) is integrable, because this together with Lemma 7.1
will imply that solutions are bounded for bounded f (cf. the discussion of convolution
equations given below).

8. Uniform stability and uniform asymptotic stability. When we formulate a stabil-
ity result for a time dependent ordinary differential equation of the type

(8.1) x’(t)+A(t)x(t)=O, t>=to, X(to)=Xo,

we distinguish between the notions of stability, asymptotic stability, uniform stability,
and uniform asymptotic stability. Stability at a point to means that there is a constant
K (to), such that [x(t)l-<- K (to)lx(to)[ for >- to. The stability is uniform in an interval
J [/3, o), or in the interval J (-, ), ifthe constant K (to) can be made independent
of to s J. The equation is asymptotically stable at to, if there is a bounded function %0,
defined on R+ and tending to zero at infinity, such that Ix(t)l <= %o(t-to)iX(to)l for
t-> to. Finally, it is uniformly asymptotically stable on an interval J if the function y
can be made independent of to J.

In the special case where C-= 0 and f-= 0 in (2.6), it is obvious that the estimates
that we have given above imply, under appropriate assumptions on the functions p
and q, that (8.1) is stable, uniformly stable, or asymptotically stable on R. A slightly
less obvious fact is that they also can be used to prove uniform asymptotic stability
on R. For example, from Theorem 3.1(ii) it is easy to get a bound of the form

Mix(to)l, for some constant M. Suppose that we have already proved that
the equation is uniformly stable, i.e., suppose that Ix(t)l-<-KIx(to)l for some K and
all => to. Fix some e > 0, and define T(e) KM/e. Then, because of the upper bound
that we have on Ilxll there must be at least one point tl in the interval to,to + T(e )]
where Ix(t)l--< elX(to)l/g. But this, together with the uniform stability, implies that
Ix(t)l<-_elx(to)l for t>=t. In particular, Ix(t)l<=elX(to)l for t>=to + T(e). As T(e) is
independent of to, this proves that the equation is uniformly asymptotically stable.
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Maybe the main reason for why the property of being uniformly asymptotically
stable is such an attractive one for an ordinary differential equation is the fact that
uniform asymptotic stability implies exponential asymptotic stability, i.e., the function
y which we used above in the definition of uniform asymptotic stability can always
be chosen so that it decays exponentially. (To see this, observe that if 3’(T)-< 1/2 for
some T, then we can replace y(t) by 1/2y(t-T) for t[T, 2T], by y(t-2T) for
t [2T, 3T], etc.) This means that the fundamental solution Z of (8.1) satisfies
IIz(t, s)ll -<- Me-(’-s) for some positive constants M and e. Therefore, the operator
defined in 7 maps all LP-spaces, 1 <-p __<o, into themselves. As we saw in 7, this
property is extremely useful when one wants to prove perturbation results.

When we discuss the integral equation (2.6), we may very well interpret the notions
of stability and asymptotic stability to mean exactly the type of results which we have
given above. The notions of "uniform stability" and "uniform asymptotic stability"
are much less clear. One interpretation of uniform stability would be to simply require
the bounds that we get on x to be uniform in to. Clearly, such bounds follow immediately
from our theorems.

Burton’s interpretation of the notions uniform stability and uniform asymptotic
stability is the following: He takes f= 0, replaces the lower bound to in the integral
in (2.6) by zero, and specifies a bounded initial function o on the interval [0, to]. The
equation is supposed to hold for => to, and the solution is required to have the same
type of uniform behavior as in the ODE case with J [to, o), but ]X(to)[ is replaced
by supo__< s_< ,o I(s)l.

To achieve a slightly greater generality, let us replace the interval [0, to] by the
interval (-, to], and specify an initial function on this interval. In other words, let
us look at the initial value problem

x’(t)+A(t)x(t)= fo C(t,s)x(s) ds, t>-to,

(8.2)
x( t) o( t), t<-_to.

(Clearly, we can consider (6.2) in a similar setting, but we leave this to the reader.)
Let us follow Burton, and specify a bounded initial function (as opposed to an initial
function in some LP-space or weighted LP-space). This equation is of the type (2.6),
with f replaced by

(8.3) f,.(t) f t C(t,s)o(s)ds,

and Xo replaced by O(to). As

(8.4) ,f.,(t)l<=(f llC(t, s)ll ds) sup lo(s),,

and as the bounds that we have obtained on supt__>to [x(t)[ throughout can be written
as a constant times the maximum of [Xo[ and the appropriate LP-norm off, this means
that it is very easy to get results on uniform stability in Burton’s sense. The only thing
that we have to do is to impose conditions on C that imply that the function t-->
’_o IIc(/, s)ll ds has a uniformly bounded LP-norm in the right LP-space, so that the
appropriate theorem applies. In particular, if we want to apply one of the results where
fe LI([ to, o); Rn), then it suffices to require that

(8.5) sup c(t, s)ll as at < o.
tour
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This is a very common condition (with the lower bound - replaced by 0) for uniform
stability in [2]-[16]. The analogous condition for Theorem 5.1(ii) is

(8.6) sup (1 +p(t))-1 IIc(t,s)ll ds dt<oo.
R

For Theorem 4.2(ii) no special new condition is needed, because

(l+p(t))-11 IlC(t, s)[[ ds<-(l +p(t))-l I Ilc(t, s)ll ds

for t>:to
The comments made above, together with Theorems 3.1(i), 4.2(i), 4.2(ii), 5.1(i),

and 5.1(ii) prove the following theorem on uniform asymptotic stability in Burton’s
sense.

THEOREM 8.1. Each of the following conditions imply that (8.2) is uniformly stable:
(i) Condition (8.5) holds, and lie(t, s)llndt<--p(s)/2 for almost all s R, or

s II,/ c(t, s)ll dt <-_ q(s)/2x/-fi for almost all s R.
(ii) Condition (8.5) holds, and there is some t > 0 such that

lie(t, u)lldu/-- lie(v, t)lldv <-p(t)
2/3

for almost all R, or- liNG(t, u)l[ du+- liNG(v, t)ll dv<---
for almost all R.

(iii) Condition (8.5) holds, and t_o lie(t, s)llds<-p(t)/213 for almost all R.
(iv) Condition (8.6) holds, and there are constants K > 0 and e (0, 1/2/3) such that

lie(t, u)ndu+-g lie(v, t)lld <p(t)-e(l+p(t))

for almost all R, or- liNe(t, u)ll duh--- IIBC(v, t)ll dv<=--e(1 +p(t))

for almost all R.
(v) ’_ IIc(t, s)llndS<lp(t)/21J-e(l /p(t)) for some constant e(0, 1/2fl) and

almost all R.
We leave it to the reader to formulate similar results based on the remaining

theorems in 3-6.
The question of uniform asymptotic stability is more delicate, and concrete results

on uniform asymptotic stability are scarce in [2]-[17] (here the word "concrete" refers
to results that have been applied to (2.6) or (6.2)). Moreover, it is not clear to what
extent this property implies that the operator induced by the resolvent R (cf. 7)
maps various spaces of functions into themselves, as it does for ordinary differential
equations. The convolution case in an exception; see 8.

The main result in [10] on the uniform asymptotic stability of (2.6) (in the case
when (2.6) is not a convolution equation) seems to be [10, Thm. 2.5.1(d), p. 39]. That
theorem is closely related to our Theorem 3.1, so it is to be expected that one should
be able to prove a version of Theorem 3.1 where one has a uniform rate of convergence
to zero. This is indeed the case.
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First, let us prove an auxiliary lemma.
LEMMA 8.2. Let x L([ to, c); Rn), and x’ L([ to, c); Rn). For each e > 0, define

S( e 211x t’(,o)/ e and N(e) 2 I[x’[[ L,(o,)/e + 1. Then,for every T >- S( e ), the interval
[to, to+ N(e) T] contains at least one subinterval of length T on which Ix(t)[ <_- e.

The proof given below has been adopted from [10, pp. 40-41].
Proof. Clearly, each interval of length T contains at least one point t where

Ix(t)l <- 1/2e (otherwise the Ll-norm of x over this interval is too big). If it also contains
a point t2 where [x(t2) E, then the integral of Ix’] over this interval is at least 1/2e.
Because of the bound that we have on the L-norm of x’, there can be at most
2/e IIx’ll (,, (rounded upwards to the nearest integer) intervals of this type, containing
points of both the types tl and t2. From this the conclusion follows. D

Suppose that (8.5) holds, and that the assumption on C in Theorem 3.1(ii) is
satisfied, with a constant e independent of to. Let x be the solution of (8.2). Then,
from Theorem 3.1(ii) we get a bound of the form

(8.7) sup Ix(t)l +
t

where the constant M is independent of to and q. But (8.4) and (8.5) imply that

(8.8) IIf,o.ll ’(,o.) g sup I(s)l,
s<_-

where K is the supremum on the left-hand side of (8.5). Therefore,

(8.9) sup Ix(t) + Ilxll C,,o,)+ IIx’ll ,’<,o,) M(1 + K) sup p (s) I.
=>

By (8.9) and Lemma 8.2 (with e replaced by eM(1 + K) sups__<to I(s)l), for every e >0
and every T_-> 2/e, we can within the interval [to, to+ (2/e + 1)T] find a subinterval
of length T on which Ix(t)l<-eM(1 + K)sup<__,o I(s) I. If we want this fact to imply
that (8.2) is uniformly asymptotically stable, then we need the following property of
the function fo,:
(8.10) There exists a constant K and a function V(e) such that for all e > 0, all

toeR, and all bounded q, it is true that Ilf,o,llL,,o,) -<

K(sup,o_V()<==,o[,p(s)l/ e sup=<,o_V()l,c(s)l).
When this property is satisfied, we get uniform asymptotic stability by the following
argument: Fix some e > 0. Define T =max {2/e, V(e)}. Let tl be the right end point
of the interval referred to above where Ix(t)l_< eM(1 + K)sups__<to I(s)l. Then fi-to_-<

(2/e + 1) T (so we get an upper bound on t to that depends on e, but is independent
of to and ). For t[to, tl] define (t)=x(t). Then sup_,,_()l(s)ll _<

M(I+K) sup=,ol(s) and supt,_v)<=s<=t, lq(s)l<-_eM(1 +g) sup,=l(s)l. There-
fore, by (8.10), we have IIf,. IIc<,,.)_-< 2MK(1 / K)SUps,o I(s)l. However, by (8.7),
this means that for t=> t, we have Ix(t)l_-< eM2(1 + K)(2+ K)sup.,__<, I(s)l. Thus, the
solution tends to zero with a convergence rate that is independent of to. (The reader
who prefers to end up with a clean result should divide e by M(1 + K)(2 + K) at the
beginning.)

It only remains to transfer (8.10) into an assumption on C. By (8.3),

IL,}<= lie(t, s)ll ds sup ](s)
sto- V(e)

lie(t, s)l[ ds) sup
to- V(e)<=s<---to
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and therefore, it suffices to assume, in addition to (8.5), that

(8.11 lim sup C t, s)[] ds dt O.
Tcx3 tour to

(This is the same condition which Burton uses in [10, Thm. 2.5.1(d)]. It says that the
kernel "forgets" old values of the function with a uniform rate in a certain sense.)

The argument above proves the following theorem.
THEOREM 8.3. Let (8.5) and (8.11) hold. In addition, suppose thatfor some constant

e (0, 1/2/3), it is true that C(t, s)llBdt<--p(s)/2fl e(1 +p(s)) for almost all s R,
or that IIx/-C(t,s)l dt<-_q(s)/2x/-e(l+p(s)) for almost all sR. Then (8.2) is
uniformly asymptotically stable on R.

The same argument, but with Theorem 3.1(ii) replaced by Theorem 5.1(ii), gives
the following result.

THEOREM 8.4. Suppose that there are constants K >0 and e (0, 1/2/3) such that

-2 [IC(t, u)llBdu+-- lie(v, t)[[BdV--_<--e(l
2 2fl

for almost all R, or

IIBC(t, u)ll du +1 <
r(t)

2
lIBC(v’ t)ll dv=---- e(1 +p(t))

for almost all R. In addition, suppose that (8.6) holds, and that

(8.12) lim sup (1 +p(t))-’ IIc(t, s)ll ds dt=O.
T- tour

Then (8.2) is uniformly asymptotically stable on R.
(To prove this theorem, argue as in the proof of Theorem 8.3, but apply Lemma

8.2 to the function Ixl 2 instead of to the function x.)
This result seems to be new.
The analogue of (8.11) and (8.12) for Theorem 4.2(ii) would be

lim sup ess sup (1 +p(t)) -I lie(t, s)ll ds-O.
T- tour t>-to

However, this condition is not enough for uniform asymptotic stability, because Lemma
8.2 no longer applies. It is an interesting open problem, under what conditions one
gets uniform asymptotic stability in Theorem 4.2.

9. Convolution equations. In our preceding discussions we have ignored all the
available Lyapunov results for convolution equations. The convolution versions of
(2.6) and (7.1) are

(9.1) x’(t)+Ax(t)= C(t-s)x(s) ds+f(t), t>=O, x(0)=Xo

and

R’(t)+A(t)R(t)= C(t-s)R(s) du,

(9.2) R’(t)+ R(t)A(t)= R(t-s)C(s) du, t>=O,

R(O) I.
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For linear convolution equations all significant stability properties can be related to
one of the three conditions:

(1) The differential resolvent R is bounded;
(2) The differential resolvent R tend to zero at infinity;
(3) The ditterential resolvent R is integrable.

Especially the third condition is of fundamental importance; it is equivalent both to
uniform stability and to uniform asymptotic stability. A necessary and sufficient
condition is known for R to be integrable in the case where C e L(R/; R"") The
Laplace transform of C must satsify det (z! + A- ;(z)) 0 for 9z -> 0 (see [24,
Thm. 3.5, p. 558] for the scalar case). The same Laplace transform condition is necessary
and sufficient for the integrability of the differential resolvent also, e.g., in the cases
where t(0)= lim,_. o C(s)ds exists, and o IIJ’o C(s)as-c(0)ll at < oo, and where
C is of bounded variation and C() is invertible (this follows from [30, Prop. 2.3, p.
755]). A similar result is true for the convolution version of (6.2), namely

(9.3)

t) + G(t s)x(s) ds + g(t) + Ax(t) C(t- s)x(s) ds +f(t),

>--O, x(O)= xo.

These results are quite powerful, and they supersede the Lyapunov theory for these
classes of equations in the sense that in all the cases where one has used Lyapunov
methods to prove uniform stability or uniform asymptotic stability, it is possible to
check that the Laplace transform condition is satisfied. This applies, in particular, to
[4, Cor., p. 396], [8, Thm. 6, p. 284], [11, Prop., p. 242], [16, Thm. 1, p. 145], [16,
Thm. 2, p. 146], [16, Thm. 3’, p. 152], [16, Thm. 4’, p. 152], [16, Thm. 5, p. 153], [16,
Cor. 3, p. 158], [16, Thm. 10, p. 159], [16, Thm. 11, p. 161], [16, Thm. 12, p. 162], [17,
Thm. 4, p. 498], and [17, Thm. 9, p. 511].

(To show that the Laplace transform condition is satisfied in the convolution
versions of Theorems 3.1(ii), 4.2(ii), 5.1(ii), and 5.3(ii), we can use the following simple
observation: Define A(z)=zI+A-C(z). If detA(zo)=0 for some Zo with ,tZo->0,
then there is some nonzero we C" for which A(zo)W 0; hence (w, BA(zo)w)=O. Thus,
to prove that det A(z) 0 for z => 0, it certainly suffices to show that for all nonzero
w e R, we have 91(w, BA(z)w) > 0 for 91z -> 0. If we denote ATB + BA by R, then this
is equivalent to showing that wl2z + 1/2(w, Rw) > 9](w, B(z) w) for all nonzero w e C"
and all z e C with 9]z->0. In particular, it suffices to show that Iw[9]z +1/2(w, Rw)>
o I(w, BC(t)w)[ dr, because ,9t(w, BC(z)w)<=[(w, B;(z)w)[<=o [(w, BC(t)w)[ dt for
such w and z.)

Results on specific decay rates of linear convolution equations are available
through Laplace transform methods as well, see e.g. [30] and [37, Thm. 3, p. 318]
(some special cases of this theorem were proved independently in 14, Thm. 4, p. 660]
and [14, Thm. 5, p. 661]).

Another class of equations which we have ignored above is the class of nonlinear
equations of the type

(9.4) x’(t)+AG(x(t))= C(t-s)G(x(s)) ds+f(t), t>-O, x(0)=Xo,

with a kernel of positive type. The traditional approach is to study these equations by
means of Lyapunov methods (see Levin’s classical papers [31] and [32]), but for this
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class of equations the Lyapunov method has been superseded by the energy method
(see, e.g., [38], [39], and [40]).

The question of specific decay rates for solutions of a scalar version of (9.4) have
been studied in [42]. The proofs given there are based on an L2-technique. Similar
results are proved in 14] with a Lyapunov technique.
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Abstract. In this paper we calculate the Riemann function of Darboux’s Harmonic equation (H). The
Riemann function of (H) admits an action of a certain finite group, which permits us to reduce (H) to the
system of Appell’s F4. Then, by using Takano’s integral representation for F,, we solve a connection problem
to find a representation of R in terms of the Appell’s hypergeometric function. We also discuss the symmetry
algebras for classical and typical hyperbolic partial differential equations.
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1. Introduction. In general, the solution space of a linear partial differential
equation is not finite-dimensional. However, it can have a "fundamental solution"
represented in terms of a solution of an ordinary differential equation or a system of
partial differential equations with finite-dimensional solution space. In a sense, such
a partial differential equation may be considered as one of good nature.

A few examples are the Euler-Poisson-Darboux (EPD), Confluent Euler-Poisson-
Darboux (CEPD) and Telegraphic (TEL) equations:

(EPD) {(x y)(O:/OxOy) + a(O/Ox) b(O/Oy)}u O,

(CEPD) {x(O2/OxOy) + (O/Ox) b(O/Oy)}u O,

(TEL) {(O:/OxOy)-l}u=O,

where a and b are complex numbers. In a special case where a b 0, (EPD) reduces
to the Wave equation (W). Equation (CEPD) is obtained from (EPD) by a confluent
procedure, and (TEL) from (CEPD). It is known as Appell’s theorem (Darboux [2],
Miller [7]) that the Lie group SL2(C) acts on the solution space of (EPD) by

U(X,y).(yX+6),,(yy+6)bu(aX+fl ay+) (ayX + 6 yy+ y

By using this fact, we can show that a fundamental solution (the Riemann function)
of (EPD) can be represented in terms of the Gauss’ hypergeometric function (see
Darboux [2], and, in a special case where a b, see Iwanami Sfigaku Ziten [4]). Then,
by a confluence, the Riemann functions of(CEPD) and (TEL) turn out to be represented
in terms of the confluent hypergeometric function and the Bessel function, respectively.
We note that (CEPD) and (TEL) also admit actions of certain Lie groups, which are
alternatively used for a determination of their Riemann functions. These examples
show that a situation in which a Lie group (or a Lie algebra) acts on the solution space
of a differential equation is very important.

We consider a partial differential equation of the form

(1) Du {a(oE/oxOy) + b(O/Ox) + c(O/Oy) + d}u O,

a, b, c, d: functions of x and y,

* Received by the editors February 17, 1987; accepted for publication (in revised form) July 21, 1987.

" Department of Mathematics, Faculty of Science, University of Tokyo, Hong6, Tokyo 113, Japan.
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which contains the above examples as special cases. For the reason mentioned above,
the symmetry algebra of (1) (see Miller [6], [7]) may give us some information about
its Riemann function. If (1) contains parameters, then the parameter changing symmetry
algebra (Miller [7]) may also be useful. In fact, we will prove (Theorem 1) that, if the
dimension of the reduced symmetry algebra (see 2 for definition) is bigger than one,
then (1) is essentially equivalent to either (EPD), (CEPD), or (TEL). Hence the former
algebra is useless for all equations except for the above three examples.

In this paper, we shall consider another example

{ 02 a(a-1) b(b-1)}(H) L(x.y)u= OxOy (x--y)2 (x+y)2 u=0, a,bC,

which is called dquations harmoniques by Darboux [2]. The symmetry algebra of (H)
is trivial and not very useful, but its parameter changing symmetry algebra becomes
s/4(C), ( 2), which will reveal a relation between the Riemann function of (H) and
Appell’s F4. In this paper, however, we take another approach. We find that a finite
group isomorphic to Z2 7/2 x Z2 acting on its Riemann function permits us to reduce
(H) to Appell’s system (F4) ( 4-6). Then, by using an integral representation for F4
obtained by Takano [10], we solve a connection problem to find a representation of
the Riemann function in terms of Appell’s hypergeometric function F4 ( 7-10). A
final result is given in Theorem 20 ( 11).

We note that (H) arises from the complex wave equation ttt--AaV =0 in four-
dimensional space time, which has sl(C)-symmetry, by separating two angular coordin-
ates. The parameters a and b of (H) are simply separation constants. Hence we can
also examine (H) from the point of view of Kalnins and Miller [8].

Recall that the Riemann function R(x, y; , 7) of (H) is a function offour variables
satisfying the condition

(2)

(3)

LR- 0 (as a function of x and y),

(x sr)(y ,/) 0 implies R 1.

In this paper, we use the notation 0x =O/Ox, x x(O/Ox), etc.

2. Symmetry algebra. Following Miller [6], we define the symmetry algebra of
(1) by a Lie algebra of operators S of the form

s= a+a,+, q, b, k: functions of x and y,

[D, S]-=O (mod D).

The Lie algebra contains a trivial ideal C. We call the quotient algebra /C the
reduced symmetry algebra and denote it by . If (1) has polynomial coefficients, then,
from a practical point of view, it is convenient to restrict symmetry operators S to
those for which , d and are polynomials. Thus we define the (reduced) polynomial
symmetry algebra e (d) in a similar manner. For the above examples, the
symmetry algebras are given, respectively, by (Miller [7], Okamoto [9])

where

(EPD)

6eoe= {H, X, Y, 1} (generators),

H -2a 2ay a b, [X, Y] H,
X -ax- ay, H, X] 2X,
Y= xSx + yay + bx + ay, H, Y]=-2Y,

,e= sl2(C)(R)C,
,e sI2(C),
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(CEPD)

H -2ax + 2ay, IX, Y] 0,
(TEL) X Ox, [H, X] 2X,

Y-- ay, [H, Y] -2Y,

e T3(R)C,

Seoe T3,

where @ denotes the direct sum of Lie algebras, and T30)C stands for a nontrivial
central extension of T3 by C. Moreover, o/,‘ is the Lie algebra of all functions in one
variable x with Lie bracket [f, g]=f(O,‘g)-(O,,f)g, the Wronskian off and g e /4/’.

THEOREM 1. If the dimension of the reduced symmetry algebra S is bigger than one,
then (1) is equivalent to one of (EPD), (CEPD), or (TEL) up to transformations of
independent variables (x, y)-+(X, Y) and those ofdependent variable u- Uoftheform"

X=f(x), Y=g(y), U-h(x,y)u,

f, g, h" functions of x, y and x, y ), respectively.

We omit a proof of this theorem. Okamoto [9] independently showed a similar
result in a different situation. Only we point out that there is an injective homomorphism
from P to x (R) 6

bS (mod C)- (p, tb)e o/.,‘ @ o/t/y

and that (1) admits an infinite-dimensional symmetry algebra only if (1) (W). There-
fore, in view of Lemma 2 below, nontrivial symme,try algebras that can act on^ (1) are
very restricted, where we say "nontrivial" if dim > and "trivial" if dim _-< 1.

LEMMA 2. Finite-dimensional subalgebra of is one-, two-, or three.dimensional
and, in the latter two cases, it is noncommutative. Hence there are just three cases up to

isomorphisms of Lie algebra.
A proof of this lemma will be given in the Appendix ( 12).
From now on, we consider the (polynomial) symmetry algebra 6ee for D=

(x-y)E(x /y)2L, which we call the symmetry algebra of (H). We separate (H) to a
special case and a generic case according to whether a(a-1) is equal to b(b-1) or
not. Compared with those of (EPD), (CEPD), and (TEL), the symmetry algebra of
(H) is trivial in a generic case. In a special case it is of some interest, but then (H) is
essentially reduced to (EPD).

PROPOSITION 3. (i) In a generic case, 6t’e has a single generator 8,, + y.
(ii) In a special case, Sfe is generated by 8,‘ + 8y and x28,‘ + y28y.
In fact, in a generic case, we can show that S/’ Sfe. In view of Theorem 1 and

Proposition 3 (ii), in a special case (H) can be reduced to one of (EPD), (CEPD), or
(TEL). Indeed, we have the following.

PROPOSITION 4. Ill a special case, the substitution X x2, Y-y2 converts (H) to

(SEPD) {(O2/OXO r)+ a(a- 1)/(X- r)2}u -0 (special EPD).

Moreover, the substitution u (X-Y)av reduces (SEPD) to (EPD) with a b. The
fractional linear (M6bius) transformation group M/Sb acts on (SEPD) by

(4) u(X, Y)-+ u(AX, AY), A MOb.
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We shall here refer to the parameter changing symmetry algebra 3- of (H). It is
a Lie algebra of operators T of the form

T= q0x + 40y + :as + /0t + q,, [L’, T] 0 (mod L’),

where L’ is an operator defined by

L’= (x + y)-(x y)2OxOy + (x +y)6(6 1) (x y)Et(6- 1).

Miller [7] found that the parameter changing symmetry algebra of (EPD) becomes
sl4(C). In a similar manner, we find that if- s/4(C). In fact, (H) arises from the complex
wave equation

(4W) (02 2 z z--Ox--Oy--Oz)V --0

in four-dimensional space time, by separating off two angular coordinates. Equation
(EPD) also arises from this equation by another separation of variables. The symmetry
algebra of (4W) is o6(C)- s/4(C) (Miller [6]), which leads to the parameter changing
symmetry algebras of (EPD) and (H). The algebra 3- will reveal a relationship between
the Riemann function of (H) and Appell’s F4. In this paper, however, we shall not
investigate this problem further.

3. Riemann funetion in a special ease. Denote the Riemann function of (SEPD)
(or equally of (EPD) with a=b) by R(X, Y;..,H); then R(x,y;,)=
/(x, y; :2, ). Although/ is already known ([2], [4]), we now give another simple
calculation. We have a fibration

M6b C4

7r" cross-ratio, dim M6b 3,

C

where the action of AM6b on C4 is defined by (X, Y, .., H)->(AX, AY, A..,AH)
and 7r is a cross-ratio

r(X, Y, .., H) (X E)( Y- H)/(X Y)(..- H).

On the other hand, (2), (3), and (4) show that

(X, Y;..,H)=(AX, AY;A..,AH), A6 Mb,

so that the fibration implies that/ is only a function of s r(X, Y, .., H). Rewriting
(SEPD) as an ordinary differential equation of an independent variable s, we find that
R satisfies

(HG) {s(1-s)O2+(y-(l+a+fl)s)O-a}l=O,

with a a,/3 1 a, 3’ 1. With this specialization of parameters, (HG) is transformed
to the Legendre equation of an independent variable 2s + 1. It is interesting that
(SEPD) is related to the Bessel equation on one hand and to the Legenre equation
on the other hand. The condition (3) is now restated that s =0 implies R 1. Hence
we have the following.

THEOREM 5. In a special case, the Riemann function of (H) is given by

R(x, y; , 1) F(a, l-a, 1; (x-)(y2-l)/(x--y)(2-q2))

where F(a, fl, y; s) is the Gauss hypergeometric function.
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4. Group acting on the Riemann function. We turn to a generic case. The following
transformations of independent variables act on the solution space of (H):

(A) (x, y),-->(hx, hy), h 6 C,
(B) (x,y)->(1/x, l/y),
(C) (x, y)->(y, x).

(A) is a transformation corresponding to an infinitesimal one 8x + By.
The Riemann function R is invariant under the transformations of the independent

variables (x, y, s, /) of the form
(a) (x, y, s, /)-->(hx, hy, As, h/), h eC,
(b) (x, y, s, /)-> (l/x, l/y, 1/s, 1//),
(c) (x, y, st, /) -> (y, x, /, st),
(d) (x, y, s, /)-> (s, 7, x, y).

Among these, (a), (b), and (c) are obtained by applying (A), (B), and (C) to (2)-(3)
respectively, and (d) follows from formal self-adjointness of the operator L. By putting

X=xlrl, Y=ylrl, Z=II,

we can regard R as a function of X, Y, and Z because of its invariance by (a). Thus
the transformations of (X, Y, Z) induced by (b), (c), and (d) are given, respectively, by

(X, Y, Z)->(1/X, 1/Y, l/Z),

(X, Y, Z)- Y/Z, X/Z, l/Z),

(X, Y, Z),--(Z/ Y, 1/Y, X Y).

The group G generated by these transformations has more symmetrical generators

X*: (X, Y, Z)+(X, X/Z, X/Y),

Y*: (X, Y, Z)-(Y/Z, Y, Y/X),

z*: (x, Y, z)(z/ Y, z/x, z).

As is easily seen, X*, Y*, and Z* are involutions and commutative with each other.
Hence the group G (X*, Y*, Z*) is

1 1=8.
PROPOSITION 6. The Riemann function R is a function of (X, Y, Z) and invariant

under the action of G. Equations (2)-(3) are rewritten as

(5) L(x,y)R --0

(6) X Z)( Y- 1 0 implies R 1.

5. Extension of a field. Consider an extension of a field K/k

c(x, Y, z),

k {f K; f is G-invariant},

where the action of G on K is one induced by the action of G on the independent
variables. Then the degree of extension is given by

(7) [K:k] [G[=8.
With this fact in mind, we seek generators of k over C. For a systematization, we denote

x,=x, x=Y, x,=a.
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Consider the following expressions:

(8)
p, X + 1/X + X,IX + XlX,,

(i 1, 2, 3)
q, X,l Xx, + xX, lX, + 2,

where (i, j, k) runs over all permutations of (1, 2, 3). As is easily seen,

(9) Pi, qik (i- 1,2,3).

THEOREM 7. For any permutation (i, j, k) of (1, 2, 3),

k C(pi, pj, qk).

Proof. Denote k’= C(pi, pj, qk). Then (9) implies k’c k. Hence, by (7), it suffices
to show that [K: k’] <- 8. Putting 0 Xk/(XX), we obtain from (8),

02+(2--qk)O+ 1 =0,

(1 + O)OX-(Op)X +(0+ 1)=0 (u= i,j).

Therefore 0, X and Xj are at most of degree two over k’, k’(0) and k’( 0, X), respectively.
Hence k’(0, X, X)=k’(Xi, X, Xk)=K is at most of degree eight over k’, namely,
[K: k’]_<-8.

In addition to Pi and qi (i 1, 2, 3) defined in (8), we consider the following
elements of K:

rq X, Il X, + Xk/X X/Xk
(10) s, X 4- 1/ Xi Xk/Xj Xj/Xk,

ti Xi/ XXk + XXk /Xi
Again (i,j, k) runs over all permutations of (1, 2, 3). We define an unordered triple
(’11, ,22, ’33) (uj +/-) by a linear subspace of K over k of the form

(u,1, ’22, ,33) {f K; X(f) ujf j= 1, 2, 3}.

LEMMA 8. Let i, j, k) be a permutation of (1, 2, 3). Then
(i) p, qek=(1,2,3), roe(i,-j, k)

s, (i, -j, -k), t, (-i,j, k).
(ii) piPj pkqk, rqtj Pi qj 4),

2
rorjk PiPj --4pk, rij pEi --4qk, riji qkSk,

2t= qi(q,-4), si p-4(q + qk)+ 16.
(iii) 2tx, (rij + rji)Op, 4- (tk ti)Op 4- 2tkOqk

6x ro + rji tx lk ti :0, 6Xtk qk 2.

6. Reduction to Appell’s F4. We introduce new variables

r pl/ q3, s p2/ q3, q3.

Since k C(p, P2, q3) C(r, s, t), R is regarded as a function of (r, s, t). Using Lemma
8, we can rewrite (5) as follows:

(11) s3MR + rstMiR + 2M2R +2M3R O,

where M, M2, and M3 are differential operators defined by

M L(r,s)--- OrO 4- a(a 1)/(r- S)2- b(b- 1)/(r + s)2,
M (1 rZ)O 4- (1 s2)O 2rsOrOs 2rOr 2sOs

-2a(a- 1)/(r-s)Z-2b(b 1)/(r + s)z,
M3 t{(t-4)Ot(6,-6r-6s-1)+20t}.
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Since M1R and rstM1R + 2M2R + 2M3R are G-invariant and S is not an element of
k, (11) splits into two parts:

(12) M1R= M2R + M3R=O.
Condition (6) is now rewritten as

(13) s 1 implies R 1.

In view of the explicit forms ofM (j 1, 2, 3), iff(r, s, t) is a solution of (12)-(13)
(suppose f makes sense at t=0), then f(r, s, 0) is also a solution of (12)-(13). Hence
it is reasonable to expect that R is a function depending only on (r, s), and to consider
a system of partial differential equations

(14) MlU M2u =0,

to which (12) reduces, if our expectation is correct. Note that if (14) has a solution
satisfying the condition

(13’) s- 1 implies u 1 (see (13)),

then our expectation is actually correct, and R is given by this solution. This will be
true in the rest of this section and in the next section.

We find that the substitutions

p {(r-S)/2}2-" {(x-y)(s- rt)/2(xy+ T])}2,

(15) q {(r+ s)/2}2= {(x +y)(s+ rt)/2(xy+ sr/)}2,
tl p a/2q b/2 V

transform (14) to a system of partial differential equations associated with Appell’s
generalized hypergeometric function F4(a,/3, y, y’; p, q) with a specialization of para-
meters a,/3, y, and y’.

Recall (see Appell and Kamp4 de F6riet [1], Kimura [5]) that the function F4 is
defined by a double power series

Fa(a, fl, y, y’; p, q)
(a, m + n)(fl, m + n)

,,,=o (y, m)(y’, n)(1, m)(i] n)
pq"’

where (a, k) denotes a factorial function (a, k)=a(a+ 1)... (a+k-1). This power
series converges in a domain

(p, q)6 C2, Ipl ’/2 + Iq] 1/2 < 1.

The function F4 satisfies a system of partial differential equations

N,v {6p(6p + T- 1)-p(6p + 6q + a)(3p + 3q +/3)}v =0,
(F4)

N2v {q(tq q- T’-- 1)- q(6p + 3q + a)(3p + 6q + fl)}v =0.

The system (F4) can be rewritten as an integrable Pfaffian equation of rank four, so
that the family of all solutions of (F4) forms a four-dimensional vector space. Solutions
of (F4) are multivalued holomorphic functions in C\S, where

S {(p, q) e C2; pqD(p, q) 0},

and D(p, q) is a polynomial defined by

(16) D(p, q)=(p-q+ 1)-4p=(q-p+ l)2-4q.
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LEMMA 9. The substitution (15) transforms (14) to (F4) with thefollowing specializ-
ation ofparameters:
(17) a=(a+b)/2, fl=(a+b+l)/2, y=a+1/2, y’=b+1/2.

If the independent variables are real, then the condition (13’) becomes

(18) (p, q)F implies v=p-/q-b/,
where F is a part of a parabola"

F {(p, q) 6 2; 0 < p, q < 1, D(p, q) 0}.

We note that (14) is equivalent to the pull-back of (F4) by a covering map

={(r,s)}-C={(p,q)}, (r,s)--((r-s)2/4,(r+s)2/4),
which removes an apparent singularity p + q 1 of the Pfaffian equation associated
with (F4).

7. Integral representation. Takano 10] computed the monodoromy group of the
system (F4) on the basis of an integral representation.

THEOREM 10 (Takano [10]). Suppose f(s) is a solution of Gauss’ hypergeometric
equation

(HG’) {s(1 s)0+ [(y + y’- 1)-(a + fl + 1)s]0- afl}f 0,

and C is a curve satisfying certain conditions; then an integral

(19) v(p, q)=(2ri)-1 t-v(1-t)-v’f(p/t+q/(1-t)) dt
c

gives a solution of (F4).
Hereafter we assume (17) throughout the rest of this paper. In this section, we

shall observe that, under an appropriate choice of a function f(s) and a curve C, a
function v defined by (19) satisfies (F4)-(18), i.e., u=p’/Zqb/2v givesa solution of
(13’)-(14).

In what follows, we assume that (p, q) moves in a real domain

D, {(p, q) a2; 0<p, q < 1, D(p, q)> 0}.

We explain how we should take a function f(s) and a curve C. Under (17), (HG’) has
the following characteristic exponents at each singular point"

s=0: 0,1-a-b; s=l" 0,-1/2; s=c. (a+b)/2,(a+b+l)/2.

Choice off(s). Let f(s) be a solution of (HG’) having an exponent -1/2 at s 1
and normalized so that

f(s)= (s-1)-/2g(s), g(s): holomorphic at s= 1, g(1)-- 1.

Explicitly, g(s) is given by

(20) g(s)=F((a+b)/2,(a+b-1)/2,1/2; i-s).

If we introduce the notation

s s(t) s( t; p, q) p/t + q/(1 t),

z z(p, q)=1/2{p-q+ 1 +(-)"+x/D(p, q)} (m -0, 1),

ZE-Z2(p,q)=p/(p-q),
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where the square root is chosen so that D1/2> 0, then we observe
(i) 0 and 1 correspond to s c,
(ii) Zo and zl correspond to s 1,
(iii) z2 and correspond to s- 0.

The three points Zm(m =0, 1,2) are located in a following manner:
(I) 0<Zo<z<l, z2<0 or z2> 1 or z2=,

(II) Zo and zl degenerate into a single point as 12 (p, q)- F.
Choice of C. Let C be a closed Jordan curve that encircles the points Zo and z

once anticlockwisely and leaves the points 0, 1, and z outside.
LEMMA 11. Let g(s) and C be as above, then a function

(21) v(p, q)=(2qri)-l Ic t-a(1--t)-b(t--Zo)-l/2(t--Zl)-l/2g(s(t)) dt

is a solution of (F4)-(18).
Proof The expression (21) is only a rewriting of (19). Since Zo and z are branch

points of degree one of the integrand of (21), the curve C is a closed curve on a
Riemann surface of the integrand. Hence, C satisfies a condition needed in Theorem
10, and (21) gives a solution to (F4). We show that (21) satisfies the condition (18).
In a limiting process as (p, q)--> F, the branch points zo and zl degenerate into a single
point in an interval (0, 1), which becomes a pole of order one of the integrand. Thus,
by the residue theorem, we have

v(p, q) za(1 Zo)-bg(s(Zo)), (p, q) F.

On the other hand, if (p, q) 1-’, (16) and (ii) show that

Zo=(p-q+l)/2=p/2, 1-Zo=(q-p+l)/2=q/2, S(Zo)=l,

then we obtain v(p, q)=p-a/2q-b/2, condition (18). U
We change the path of integration C into C’ in a way indicated in Fig. 1. Since

z is a branch point of degree one of the integrand and we have an estimate

[the integrand of (21)1 =< const. It- zoll/2[t- zl 1/2
in a neighbourhood of [Zo, z], we obtain the following theorem.

THEOREM 12. Let g(s) be defined by (20); then a function

(22) v(p, q)= "n’-’ t-"(1--t)-b(t--Zo)-l/2(z,--t)-l/2g(s(t)) dt

is a solution of (F4)-(18), where the integration is taken over the interval Zo< < Zl.
As pointed out in the previous section, this theorem ensures that R =p/qb/2v

gives the Riemann function of (H).

FIG.
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8. Connection coefficients. Equation (F4) has a fundamental set of solutions
vj(p, q)=vj(p, q; a, b) (j =0-3) in a domain Ipl / +lql / <l (s [13, [3), wh r , in
the present case,

vo(p, q)= F4((a + b)/2, (a+ b+ 1)/2, a+1/2, b+1/2; p, q),

v,(p, q)=pl/2-"F4((b-a+ 1)/2, 1 +(b-a)/2,-a, b+1/2; p, q),
(23)

v2(p, q)= q’/2-bF4((a b+ 1)/2, 1 +(a b)/2, a +1/2, - b; p, q),

v3(p, q) p’/2-’q’/--bF4(1 (a + b)/2, (3 a b)/2, - a,- b; p, q).

Let v(p, q)= v(p, q; a, b) be a function defined by (22). Then it can be expressed as
a linear combination of vj (j 0-3)

(24) v(p, q; a, b)= Z C(a, b)oj(p, q; a, b).
j=0

LEMMA 13. The connection coefficients C (j =0-3) are meromorphic functions of
(a, b) C2 with poles only in , where

={(a, b)eC2; a or

Proof For a function f(p, q), we define

f =, (f(o), f(,), f(=), f(3)),
where

f(o) =f, f(’)= Opf f(2)= Oaf f(z)= OpOqf

For a fixed (p,q), FC4i)(a,/3, y, y’;p,q) (i=0-3) are meromorphic functions of
(a,/3, y, y’) whose poles are points for which y or y’ is a nonpositive integer; hence
(23) shows that vJ i) (i,j =0-3) are meromorphic functions with poles only in . Since
(F4) for a function f is rewritten as an integrable Pfaffian equation for a vector f (see
[1], [5]), a Wronskian matrix W (Vo," ", v3) is a nonsingular meromorphic function
of (a, b) with poles only in . On the other hand, for a fixed (p, q), the vector v is an
entire function of (a, b), since the Riemann function of (H) satisfies a Volterra integral
equation depending entirely on the parameters (a,b). Hence the relation
t(Co,..., C3)= W-%, which follows from (24), establishes the lemma.

In the rest of this paper, we determine the coefficients C. In view of Lemma 13,
it suffices to determine these coefficients in some subdomains of C2= {(a, b)}, and then
continue them to whole domain by analyticity. It follows from (23) and (24) that

(1)

(2

(3

(4

if Re (a)+Re (b)-< 1, Re(a)>1/2, then

v(p, p) =p’/Z-"{C,(a, b)+ o(1)}

if Re (a)+Re (b)-< 1, Re(b)>1/2, then

v(p, p)= q/Z-b{C2(a, b)+ o(1)}

if Re (a) < 1/2, Re (b) < 1/2, then

v(p, p)= Co(a, b)+ o(1)

if Re (a) > 1/2, Re (b) > 1/2, then

as p->O,

as p->0,

as p.O,

v(p, p)=pl-"-b{C3(a, b)+ o(1)} as p->0.



912 KATSUNORI IWASAKI

This observation tells us that we have to investigate behaviours of v(p, p) for small
values of p in the respective cases where (a, b) lies in the four subdomains of C2

indicated above.
In the rest of this paper, we assume that (p, q) lies in a set

A--{(p, q) 2.0<p q <}c ll

Then s(t) and z, (m 0, 1, 2), defined before, take the forms

s s(t) s(t; p) =p/t(1- t),

zm zm(p)=1/2{1 +(-)"+1/i-4p} (m =0, 1),

From these, we observe that

s(t)=s(l-t), 4p<--s(t)<l, (Zo<t<zl),
(5)

s(t): decreasing in Zo < =< 1/2, increasing in 1/2-< <

For 0 < p-<, Zo and zl are located in the following manner:
(I’) 0<Zo<1/4,-<Z1<1 Zo+Zl= 1, ZoZl=p,

(II’) zo/p-> 1, (1-zl)/p--> 1 as p-->0.
Let (HG") be the hypergeometric equation satisfied by g(s). Then the characteristic
exponents of (HG") at the singular points s 0 and 1 are

(26) 0and 1-a-bats=0; 0and1/2ats=l.
9. Determination of C, and C2. An integral

E(a, b)= 7r-’ sa-3/2(1- S)-’/2g(s) ds

is a holomorphic function of a and b in Re (a) + Re (b) < 0, Re(a)>1/2, since (26)
shows that this integral is absolutely convergent for those values of a and b.

PROPOSITION 14.

Cl(a, b)= E(a, b) for Re (a)+Re (b)_-< 1, Re(a)>1/2,
C(a, b)= E(b, a) for Re (a)+Re (b)-<_ 1, Re(b)>1/2.

Proof We prove the first formula of the proposition. We assume Re (a) + Re (b) <=
1 and Re (a) > 1/2. Then it follows that Re (b) < 1/2. Since Re (1 a b) ->_ 0, (26) shows that

(27) Ig(s)l -< constant (o-<_s -< 1).

We divide the integral (22) into two parts whose intervals of integration are z0 < < 1/2
and 1/2< < zl. We denote them by Io(p) and Ii(p), respectively. Namely,

v(p, p)= Io(p)+ Ii(p),

where, for , 0 and 1,

/(p) (-)mTr-1 t-a(1--t)-b(t--Zo)-l/(zl--t)-l/g(s(t)) dt.

We first investigate Io(p). Substituting Zo/u, we obtain

Io(p)= z/--IE(p)
where I2(p) is given by

-/( ’/ )-I:z(p) "/7
-1 X(U’ Zo) U l--u)-- (1--Zo/U (Z,--Zo/U)--I/)g(S(Zo/U)) du,
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and X(u; Zo) is a function having value one in 2Zo< u < 1 and zero outside. From (I’)
and (27), we have an estimate

Ithe integrand of 121--< const uRe(a)-3/2(1 U) -1/2 (0 <= U <= 1),

the right-hand side being integrable in 0=< u _-< 1. Formula (II’) shows that

the integrand- ua-a/E(1-u)-l/2g(u) as p0.

Hence, by Lebesgue’s convergence theorem, we find that I2(a, b)- E(a, b) as p-0.
Therefore, taking the fact zo/p 1 into account, we obtain

Io(p) =pl/Z-O{E(a, b)+ o(1)} as p0.

Next we consider the integral Ii(p). From (27), we obtain

II(p)]_<- const (1-t)-Re(b)(Zl t) -1/2 dt
1/2

Iconst zl/2 (1 zl t)-Re(b)(1 -/)-1/2 dt
1/2z

_-< const { + (1 )-(b)}(1 t) -1/2 dr.
o

Since Re (b)<1/2, the right-hand side is finite, so that Ii(p) is bounded in 0<p <
Comparing the asymptotic behaviours of Io(p) and Ii(p), we obtain

I(p) =pl/2-’{E(a, b)+ o(1)} as p-0.

We combine this formula with (1) to establish the first formula of the proposition.
The second formula can be proved similarly by exchanging the role of a and b.

LEMMA 15. E(a, b) 7r-12"-b-lF(a -1/2)F(1/2- b)/r(a b).
Proof Suppose that Re (a)+Re (b)_-<0, Re(a)> 1, Ipl<_-l, and we consider an

integral

;o’E(p; a, b)= 77"-1 t-l/2(1 t)a-a/g(pt) dt.

This integral converges for those (p, a, b) mentioned above, and

E(1;a,b)=E(a,b),

E(0; a, b)- 7r-lB(1/2, a-1/2) 7r-1/2F(a-1/2)/F(a).
We observe that E(p; a, b) satisfies the hypergeometric equation

p(1-p)E"+{a-(a + b+1/2)p}E-](a + b)(a + b- 1)E --0.

Since the characteristic exponents at p =0 are 0 and 1-a (Re (1- a)< 0),

E(p; a, b)= r-l/2r(a-1/2)r(a)-lF((a+b)/2, (a+b-1)/2, a; p).

By the connection formula in Lemma 16 below, we have

E(p; a, b)= (a, b)F((a+ b)/2, (a+ b- 1)/2, b+1/2; l-p)
+(1--p)l/2-bx (a holomorphic function at p= 1),

where E (a, b) is a constant given by the right-hand side of Lemma 15. Hence, by the
assumption Re ( b) > 0, we obtain E (a, b) E (1; a, b) =/(a, b). This proves the
lemma.
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A connection formula for the Gauss hypergeometric function is well known.
LEMMA 16 (see, e.g.,[3], [5]).

F(a, , y;p)= F(a, fl, a + fl-y+ l; l-p)

f)

10. Determination of Co and Ca. Recall that g(s) is a solution to (HG") holomor-
phic in a neighbourhood of s 1. In the present situation, Lemma 16 is restated as
follows.

LEMMA 17. Let h(s; a, b) and A(a, b) be defined by

h(s; a, b)= F((a+b)/2, (a+b-1)/2, a+b; s),

A(a, b) 2-(a+b)Tr-1.
Then g(s) can be represented as follows"
(28) g(s)= TrA(a, b)h(s; a, b)+TrA(1-a, l-b)sl-a-bh(s;1-a, l-b).

The function h(s" a, b) is not only holomorphic at s 0, by definition, but also
bounded near s 1 by (26). Hence we have

(29) ]h(s; a, b)l_-<constant (0=<s_-<l).

Substituting (28) into (22), we obtain

(30) v(p,p)=A(a, b)J(p; a, b)+A(1-a, 1-b)J(p; l-a, l-b),

where J(p; a, b) is given by

J(p; a, b)= t-a(1--t)-b(t--Zo)-I/9(z--t)-l/h(s(t); a, b) dt.

LEMMA 18. (i) If Re (a) < 21- and Re (b) < 1/2, then

asp- O.

(ii) If Re(a)>1/2 and Re(b)>1/2, then

IJ(p; a, b)l<-constp/2-max(R)’ab)) (0<p<).

Proof. (i) Let t- zu+ Zo(1-u), then J(p; a, b) is rewritten as

J(p; a, b) (UZl q-(1-- U)ZO)-a(IlZO-I-(1-- tI)Z1) -b

x u-/2(1-u)-l/2h(s(uzl + (1- U)Zo); a, b) du.

Hence (I’) and (29) shows that the integrand satisfies

Ithe integrandl =< const 1 + (u/2))-r( 1 + u/2))-u-/(1 u)-/.

Since Re (a) < 1/2 and Re (b) < 1/2, the right-hand side is integrable in 0 < u < 1. Moreover,
ZOO0, zl 1 and s(uzl+(1-U)Zo)O as p-)0, so that we have

the integrand--) u--/2(1 u)-b-/2 as p --) 0.

Hence, by Lebesgue’s convergence theorem, we obtain

J(p; a, b)--) B(1/2- a, 1/2- b) F(1/2- a)F(1/2- b)/F(1- a b),

where B(.,.) is the beta function. This proves assertion (i).
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(ii) If Re(a), Re(b)>1/2, then J(p; a, b) is estimated as follows"
l/2

[J(p; a, b)[-< const t-Re(a)(t--ZO) -1/2 dt

+ const (1 t)-Re(b)(z t) -1/ dt
/2

l/2

<= const { -Re(a) + t-Re(b)}(t Z0)-1/2 dt

_-< const 0"rl/2-max(Re(a)’Re(b)) u-min (Re(a)’Re(b))(U 1) -1/2 du

_-< const pl/2-max(Re(a),Re(b)).
Here we note that the third inequality follows from the substitution ZoU in the
second line, and the integral in the third line is finite, since Re (a), Re (b)> 1/2. Hence
the assertion (ii) is proved.

PROPOSITION 19.

Co(a, b)= 7r-12-(+b)F(1/2- a)F(1/2- b)/F(1- a b),

Ca(a b)= r-lEa+b-2r(a-1/2)r(b-1/2)/r(a + b- 1).

Proof We prove the first formula. Suppose Re (a) < 1/2 and Re (b) < 1/2. Apply-
ing Lemma 18 (ii) with a and b replaced by 1-a and 1-b, respectively, we obtain
an estimate

]pl-a-bj(p; a, b)l<--constpl/2-max(Re(a)’Re(b)) O(1) as p-+0.

Hence (30) and Lemma 18(i) shows that

v(p,p)=a(a, b)F(1/2-a)F(1/2-b)/F(1-a-b) as p-0.

Comparing this formula with (3), we obtain the first formula of the proposition in a
domain Re (a), Re (b)< 1/2, and then in a whole domain by analyticity (see Lemma 13).
Next we prove the second formula. Suppose that Re (a), Re (b) > 1/2. Applying Lemma
18(ii), we obtain

J(p; a, b)= o(Ipl-"-l) as p0.

Hence (30) and Lemma 18(i) with a and b replaced by 1-a and 1-b shows that

v(p, p)=p-a-b{A(a, b)r(a-1/2)r(b-1/2)/r(a + b- 1)+ o(1)},
Comparing this formula with (4), we obtain the second formula.

11. Conclusion. We have proved the following theorem.
THEOREM 20. The Riemann function of (H) is given by

R(x, y; sc, rl)= E C(a, b)uj(p, q; a, b),
j=0

where

(x-y)(- rl)} 2,P= 2(xy+ ,7)

Uo u(p, q; a, b),

Ul u(p, q; 1- a, b),

u2 u(p, q; a, 1- b),
U3=U(p, q’, l-a, l-b),

+Y)(+ r/)}
2

q=
2(xy + :)

Co=C(a,b),

C1 C(1-a, b),

C= C(a, l b),
C3=C(1-a, l-b),
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and

u(p, q; a, b)=pa/2qb/ZF4((a+ b)/2, (a+ b+ 1)/2, a+1/2, b+1/2; p, q),

C(a, b) r-lZ-a-bF(1/2 a)F(1/2- b)/F(1 a b).

Remark 21. We look back upon this note and give some comments.
(i) Arguments in 4 and in a part of 6 are rather formal and heuristic, but they

are justified later. See a comment following Theorem 12.
(ii) Theorem 20 shows that the Riemann function of (H) is represented in a very

symmetric manner. But the determination of the connection coefficients C1 and C2
( 9) and that of Co and Ca ( 10) are not so symmetric. It is because a reduction to
(F4)-(18) and an integral representation of its solution break down a symmetry.

12. Appendix. We give a proof of Lemma 2. Such a statement was not in print,
as far as we are aware.

The most important property of the Lie algebra W is as follows:

(*) Iff, g t/V and [f, g O, then f and g are linearly dependent.

Let g {0} be a finite-dimensional subalgebra of W. Then the following two cases
occur.

Case 1. For every f , ad (f) [f,. End(g) is nilpotent.
Case 2. For some f , ad (f) is not nilpotent.

In Case 2, by considering a constant multiple of f, if necessary, we may assume that
ad(f) has an eigenvalue 1. Let e be an eigenvector of ad(f) corresponding to the
eigenvalue 1. Note that the following commutation relation holds:

ad (e)ad (f) (ad (f) 1 ad (e).

Case 1. dim g 1.

Proof For anyfg, there exists an m-> 1 such that ad(f)mg=[f ad(f)’-lg]=O
for every g g. Hence, (,) implies that ad(f)’-lg cf for some constant c. If m _>-2,
then this shows that ad (f’) f cf, where f’ -ad(f)-g. By the nilpotency of ad (f’),
we have c=0. Hence, ad(f)m-g=O for every gg. By repeating this argument, we
have ad(f)g=O (gg). Hence (,) implies that g=Cf which proves the assertion. D

Case 2. Let f and e g be as above.
CLAIM 1. Eigenvalues of ad (f) End (g) are at most 0 and + 1.

Proof Let A be an eigenvalue other than 0 and 1 (if it exists). If m + A # 1 held
for every m N, then infinitely many numbers m + A (m N) would become eigenvalues
of ad(f). (Indeed, this assertion is apparently true for m- 0. If it is true for m n,
and let e, be an eigenvector corresponding to n + A (# 1), then e and en are linearly
independent. Here we recall that e is an eigenvector of ad(f) corresponding to 1.
Hence (.) implies that en+l := [e, e,] # 0 and ad(f)en+l (n + 1 + A)e,+l, which shows
that the assertion is also true for m n + 1.) This contradicts the finite-dimensionality
of g. Hence, there exists an m N such that m + A 1. Similarly by exchanging the
role of 1 and A, we see that there exists an n N such that 1+ nA A. Thus we have
A 1 m (1 n)-l, which can happen only when m n 2 and A -1. This estab-
lishes the claim. E!

CLAIM 2. The generalized eigenspace ofad (f) corresponding to a nonzero eigenvalue
is one-dimensional.

Proof We show this claim for the eigenvalue 1. Similarly, we can prove it for -1,
if it is an eigenvalue. If g is any generalized eigenvector corresponding to 1, then there
exists an m N such that (ad(f)- 1)’g 0. Operating ad (e) on this equality and using
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(**), we have (ad(f)-2)m[e, g]=0. By Claim 1, 2 is not an eigenvalue of ad(f), so
that [e,g]=0, which, combined with (.), shows that gCe. This establishes the
claim. [3

CLAIM 3. The generalized eigenspace of ad (f) corresponding to the eigenvalue 0 is
also one-dimensionaL

Proof Let g be any generalized eigenvector corresponding to 0. Note that e, g] 0.
There exists an m such that ad(f)"g=O. Operating ad(e) on this equality and
using (**), we have (ad(f)-l)m[e,g]=O. This shows that [e,g] is a generalized
eigenvector of ad(f) corresponding to the eigenvalue 1. Hence, by Claim 2, there
exists a constant c such that [g, e] ce. Taking ad(f)e e into account, we obtain
[g-cf el=0. Hence, by (.), g-cf=c’e for some constant c’. However, g-cf is a
generalized eigenvector corresponding to 0, and c’e is a one corresponding to 1, so
that c’= 0 and g cf This establishes the claim. [3

By using these claims, we can easily show that, in Case 2, the subalgebra 9 must
be noncommutative Lie algebra of dimension 2 or 3. Conversely, the examples 9 C 03
Cx and 9 C 03 Cx0)Cx2 ensure the actual existence of such subalgebras, where 03
denotes the direct sum as a linear space. This proof is due to a discussion with M. Furuta.

Acknowledgment. The author wishes to thank Professor W. Miller, Jr. for several
helpful suggestions about the symmetries of the differential equations examined in this
paper.
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UNIFORMLY VALID COMPOSITE EXPANSIONS
FOR LAPLACE INTEGRALS*

LINDSAY A. SKINNERf

Abstract. A uniformly valid asymptotic expansion for integrals of the form

F(t, ,) e ’h(O e-"h(g(X)X- dx,

where 0 < a =< and h(x) has a zero of order >- at x 0, is established. The result, which generalizes a
well-known one for h(x)=x, also confirms the formal matched asymptotic expansion solution of the
equivalent singular perturbation problem -y’+ uh’( t)y g( t)t-, y(oo) 0. Comparable matched expansion
results are derived for related integrals, including one from Bessel function theory, which do not satisfy
differential equations.

Key words, matched asymptotic expansions, coalescing critical points

AMS(MOS) subject classification. 41A60

1. Introduction. The first part of this paper is concerned with the asymptotic
evaluation of integrals of the form

(1.1) F( t, u) e h<’) e-h<X)g(x)x’- dx.

It is assumed that 0< a _-< 1 and g(x), h(x) C[0, ). Also, h’(x)> 0 for x > 0, but
h(x) has a zero of order r >- 1 at x =0. In addition, g<")(x), k<")(x)= O(1) as x-->
where k(x)= 1/h’(x). Thus, in the integral, h(x) has its minimum at the endpoint
x t, and this point coalesces with the singular point x =0 as t-->0/. Also, h’(x)=
xr-a(x) where a(x)>0 for x=>0.

Our initial objective is to establish an asymptotic expansion for F(t, u) that is
uniformly valid for 0 -< < as u --> . The result is a generalization of a well-known
one [1], [4], [8], [9] for h(x) x. Following this we take up variations of (1.1) in which
the integrand may depend on t. As an example, for

(1.2) A(t, u) e v(tanh t-t) e -,(sinh sech t-X)xOt-1 dx,

which is related to the Anger function [5], we establish

(1.3)
A(t, v)= v-/3Zo(v/3t)+(2rv)-/2t-[(tanh t)-/2

.4;.l-(2+ot)/3 V( ll/3t ).Jf. O(/-(4+a)/3)

uniformly for 0-< < oo. In this formula

(1.4)

and

(1.5)

V(T) -TZ4( T)- T3Z2( T)-(27r)/2T’+’/2

Zk( T) Xk e-(X3+3TX2)/6(X 4r T)-’ dX.
T

t-l/2]
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Like (1.1), the integral for A(t, u) involves coalescing critical points. There are
saddle points at x + t, and the algebraic singularity at x 0. A uniform approximation
asymptotically equivalent to (1.3) could be obtained by the method of Chester, Fried-
man, and Ursell [3] and Bleistein [2]. The result would not be so simple, however,
nor would the proof of its validity. Details, which involve the change of variable
defined by z3+ (t)z =sinh x sech t-x, where sr(t) [(t-tanh/,)]2/3, are given in [5]
for the case a 1. A comparable expansion can be obtained for F(t, u) by introducing
z=[h(x)]/" and expanding the resulting coefficient of z- exp(-uz’) about z=
[h(t)]/.

The proof of (1.3), and analogous expansions for other integrals, including F(t, ,),
is accomplished in two steps. In the first step we prove the existence of a preliminary
expansion comparable to the type of expansion established for Laplace integrals in
[6]. In the second step we show that Theorem 2, given in the next section, can be
applied to the individual terms of the preliminary expansion, and that this yields the
final result. As a bonus we learn in the end that actual computations can be done
directly, without a preliminary stage, using the method of matched asymptotic
expansions.

2. Basic results. To begin our analysis, it is appropriate, but not essential, to
observe that F(t, u) is the solution of the singular perturbation problem

(2.1) -y’+ vh’(t)y=g(t)t-, y(oo) 0.

From here the desired uniform expansion can be readily determined formally by
matching inner and outer expansions. Bearing in mind that h’(t)= t-a(t), if we write
the N-term outer expansion as

N-I

(2.2) ONF(t, z,)= ,-/ , u-"/y,(t);
n=O

then, obviously,

(2.3) y,_(t) t-g( t)/ h’( t),

(2.4) yk_(t)=y’k__(t)/h’(t), k>--2,

and y, (t) 0 if n kr- 1. The corresponding formal N-term inner expansion has the
form

N-I

(2.5) INF(t, //)= l
-a/r Z l-m/rym(ll/rt),

m=O

and it is easy to see

(2.6) Yo(T) g(0) Qo(T),

(2.7)
1

Y( T) g’(O)Q,( T) ---7-:. g(O)a’(O)[ Q,+,( T) T’+’ Qo( T)],
r-I

where

(2.8) Qk( T) e[a()/r]T" e-t’)/r]X’x’-+k dX.
T

Additional terms of (2.5) can be obtained by the method developed in 4.
The coefficients in (2.2) have asymptotic expansions of the form

(2.9) y,(t) -"-’ E Cmntin, 0+.
m=0
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Presumably, therefore,

(2.10) Ym( T) Ta+m-1 Cmn T-n, T.--) oo,
n--O

so that ONINF(t, U) is the same as

N-1 N-I

(2.11) INONF(t, 9)=9-/r 9
-’n/r Cmn(91/t) ’+m-n-|.

=0 =0

Then the composite CNF(t, 9), where CN ON + IN--ONIN, has the same N-term
inner and outer expansions as F(t, 9). Thus we come to the following theorem.

TFIEOREM 1. Under the assumptions stated in the three sentences just below (1.1),
F(t, 9)= CNF(t, 9)+ 0(9-(N+)/) uniformly for 0 <- <, as v-->o. In other words,

(2.12)
N-1

F(t, 9)= 9
-/r E 9-n/r[qn(91/rt)+ 9-(-a)/rpn(t)]+ O(9-(N+a)/r),

n=O

where

(2.13) p,(t)=y,(t)- a-n-1 c,..t".
m=O

m--1

(2.14) q,( T) Ym( T)- T+"-
n=0

for any N >= 1.
For r 1, and N 1, (2.12) says

(2.15) F(t, 9)=A-g(O)e-XtF(a, At)+9-[G(t)-G(O)]+O(9--),
where h =a(0)9, G( t) g( t)/ a( t) and F(a, T) is the complementary incomplete
gamma function [5]. Note also that for any r> 1, p,(t)=0 and q,(T)= Y,(T) for
n<=r-1.

To prove Theorem 1 we need a generalization of the composite expansion theory
given in [6] and [7]. We will use the same notation. Thus

(2.16) bt"-"l(t, T)=(m!)(n! dp(t, T)

and 4(t, T) C([0, b]x[1, ]) means 4(t, T) C([0, b] x[0, 1]), where (t, T)=
b(t, 1/T). Also, ft"a(x, X, t) =ft"’’a(x, X, t), and f(x, X, t) o(X-) means
f(x, X, t) o(X-") for any n. The corollary following Theorem 2 is essentially Corollary
1 in [6].

THEOREM 2. Let f(t, T) T"-1 b(t, T) where 0 < a <- 1. If f(t, T) C([0, b]
[0, 1]) and oh(t, T)6 C([0, b]x[1, oo]), then

N-1

(2.17) f(t,/zt) E /x-"[v,(/xt)+/x-’u,(t)]+ O(/.t -N)
n=0

uniformly for 0 <= <- b, as tx - o, where

(2.18)

(2.19)

u"(t)=t-"-’[t’-"l(t’)- ,,=o
bt"’-"3(0’ c)t’]

m--1

([m,--n]v,,(T) Ta+m- ()[m’0](0, T)- E (0, 1T
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Proof From b(t, T) C([0, b]x[1, c]), by Taylor’s theorem,

N--1

(2.20) b(t, T)-- Y T-n4,t’-nl(t,)/O(T-N)
n=0

uniformly for 0 <- <= b as T . Therefore

N--1

(2.21) f(t, T)= T-1 Y T-nbt’-"l(t, o)+O(T-N)
n=0

uniformly for 0=< t=< b as To. Similarly, b(t, T) C([0, b]x[1, ]) implies

N-1

(2.22) f(t, T)= T-1 Y. t’btm’(0, T)+O(tv)
n=0

uniformly for 1 -< T-< , as - 0/. In fact, (2.22) holds uniformly for 0 -<_ T -< , since,
in addition, f(t, T) C([0, b] x[0, 1]). The remainder of the proof of this theorem
parallels the proof of Theorem in [6], which is the current theorem with a 1, and
therefore is omitted.

COROLLARY 1. If f(x, X, t) C([0, b]x[0, ]x[0, c]) and if f(x, X, t) is uni-
formly o(X-) as X-> o, then

N-1

(2.23) f(x, txx, t)= Z tx-k[(lx)kftk](O, tXX, t)]+ 0(1-N)
k=0

uniformly for all (x, t) [0, b x [0, c] as tz - o.

3. Proof of Theorem 1. For the first step in proving Theorem 1 observe that
straightforward integration by parts shows

N-1

(3.1) F(t, l)-- l
-1/r ,-"/ry,(t)+ O(l-(N+l)/r)

n=0

uniformly for c -<_ <, for any c > 0. The coefficients here are the same as in (2.2). Next,

(3.2) e ’h(t) e-’h(X)g(x)Xa-1 dx= e-’[h(b+t)-h(t)]F(b+ t, v)
+t

and hence, for any b > 0,

(3.3) F(t, ,)= I(t, ,)+ o(,-)

uniformly for 0_-< -< b, where

(3.4) I(t, t,) e-’[h(x+t)-h(t)lg(x + t)(x + t)- dx.

Let if(x, t) x-r[ h(x + t) h(t) K(x, t)], where

r--1

(3.5) K(x, t) E xkh[k](t)"
k=l

Then (0, 0) a(0)r!> 0, so, for b>0 sufficiently small, O(x, t)>0 on [0, b]x[0, b].
Therefore

(3.6) f(x, X, t) g(x + t) exp [-Xrd/(x, t)]
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is in C([0, b] [0, oo] [0, hi) and we can apply Corollary 1 to expand f(x, ,1/,.x, t).
Upon substituting into

-(.t)(X(3.7) I(t, ,)= f(x, ,/X, t) e + t)- dx,

and returning to (3.3), we find
N-I

(3.8) F(t, r,)= 1
-/r , l-k/rOk(t l/rt)+ O(z’-(N+a)/r)

uniformly for 0 _-< _<- b, where

(3.9) Q(t, T)= X" e-(x’r"q,,(X, )(X + T)’- dX.

Here we have introduced

(3.0) o(x, T,
k=l

where a(t) t-h(t). Also

(3. qo(X, = g(, q(x, =g’( g(a(x,
and in general

(3.12) q,,(X, t)=f(0, X, t) exp [a(t)X]
is a polynomial of degree n in X.

Expansion (3.8) is to be expected from our work in [6]. In general it is not
uniformly valid for 0_-< < o. Nevertheless, from (3.8) we will now derive (2.12), which
is uniformly valid for 0_<-

To get from (3.7) to (3.8) we had to have O,,(t, T)= O(1) on [0, b]x[0, oo). To
see that this holds, it suffices to check that

(3.13) f(t, T)= X e-(x’r"(X + T)-’ dX
T

is uniformly O(1) in as T-,, oo for any k_-> 1. If we substitute TX for X in (3.13), we
get

(3.14) f(t, T) T+’ X e-r(x"(X + 1)’- dX

where 0(X, t) o-(X, 1, t). Also, since

(3.15) ak(0) () htrJ(0) > 0,

we may presume ak(t) > 0 on [0, hi, and thus ptJ(X, t) > 0 on [0, o) x [0, hi. Therefore,
f(t, T) has a uniformly valid expansion of the form

(3.16) f( t, T) Ta-1

n=O

and each c,(t) C[0, b]. But this says more than just f(t, T)= O(1) as To. It
shows that f(t, T), and therefore each Qk(t, T), satisfies the hypotheses of Theorem
2. Hence,

N-I

(3.17) Qk(t, txt)= , IX-"[Vk,(txt)+ tZ"-Uk,(t)]+ O(tz-)
n=O
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uniformly for 0=< t<=b, where Uk,(t), Vk,(T) are defined, for each k, by (2.18), (2.19).
Upon substituting (3.17) into (3.8), we have

(3.18)
N-1

F(t, u)= u-/r Z ,-k/r [qk(,l/rt)+ ,-(1-)rpk(t)] + O(U-(N+,)/r)
k=0

k k

(3.19) qk(T) , V,.k-,(T), pk(t) . U,,k-,(t).
n:O n=O

It remains to see, in view of (3.1), and (2.19), that (3.18) actually holds for0=
and, furthermore, that the functions pk(t) and qk(T) defined above are the same as
the ones defined by (2.13) and (2.14). But these are fairly routine items, and we shall
omit the details. This completes the proof of Theorem 1.

4. Related integrals. It is a straightforward matter to modify the proof of Theorem
1 to cover integrals of the more general form

(4.1) b(t,/,’) e vh(t’t) e -vh(x’t) g(x, t)X-1 dx.

Assume g(x, t), h(x, t) C([0, oo)x[0, oo)), htll(x, t)=xr-la(x, t) with a(x, t)>0,
and gt"l(x, t), kt"l(x, t) O(1) uniformly in as x oo, where k(x, t) 1/htl(x, t).
The same integration by parts process that led to (3.1) now yields

N-1

(4.2) b(t,/)= 1
-1/r E l-n/rYn(8, t)-"O(l-(N*l)/r)

n=O

for => c > 0, where, in analogy with (2.3) and (2.4),

(4.3) y_(x, t)= x"-g(x, t)/ htl(x, t),

(4.4) yk-(X, t) t] (X, t)/h t), k>-_=Yk-.- t(X, 2

and y, (x, t) 0 for n # kr 1. Similarly, for 0 -< b we again get (3.8), except now
ak( t) tk-htk( t, t). Also gtk( t, t) replaces gtk]( t) in the formulas for qk(X, t). Finally,
we still have ak(O)>0, SO we can still apply Theorem 2 to the (modified) terms of
(3.8). The resulting expansion has the same form as (3.18), and like (3.18) it is uniformly
valid for 0 =< <

Unlike (1.1), in the case of (4.1) we do not, in general, have an equivalent
differential equation problem. From the above discussion, however, it is clear that,
nevertheless, b(t, ,) does have matching inner and outer expansions. Furthermore,
we can calculate these expansions directly. Indeed, the outer expansion for b(t, v) is
the integration by parts formula (4.2), just as (3.1) is the outer expansions for F(t, u).
In particular,

(4.5) Orqb(t, u)= u-g(t, t)/ht(t, t).

In addition, we have

(4.6) b(eT, p)= e e T’n(eT’eT) e-Xrn(x’r)g(eX, eT)X-1 dX,
T

where r/(x, t)- x-rh(x, t) and e ,-1/r. The inner expansion for b(t, u) is obtained
directly from here if we just expand in powers of e, as if X and T were fixed, and
then integrate term by term.

for 0 =< =< b, where
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A simple example will show how this goes. Let h(x, t) x3(1 + + 3X2), g(x, t) 1
and c 1. Substitution into (4.5) yields 03dP(t, v)- v-l[3t2(1 + t+St2)]-. It follows
that 03 13 03 t, v) v- U(t), where

(4.7) U(t)=(3t+t2)/(1 + + 5t).
In addition, with rt(x, t) 1 + + 3x2 in (4.6) we can readily calculate I3(t, ). Indeed,
for fixed T # ,
(4.8) e-xn(x’r dX [1 eTX3-e(6X’- TX)] e-x dX + O(e3),

T T

and thus, for this example,

(4.9) (t, v)= v-1/3Vo(vl/3t)+ v-2/3Vl(ul/3t)+ v-l[u(/)+ V2(vl/3t)]+O(v-4/3)
uniformly for 0 <, where

T _X(4.0) vo(r) e e dX,
T

(4.11) Vl(T) T4-T) Vo(T)-T,
(4.12) V2( T) (T+T+T8) Vo( T) I +T3+T6).

Our methods are applicable also to integrals of the form

(4.13) (t, )= eh(’’ e-h("g(x, t)x- dx.

To illustrate, we shall take h(x, t)=sinh x sech -x and g(x, t)= 1. Thus (t, )=
A(t, ), where A(t, ) is given by (1.2). The idea here is that the exponent h(x, t) has
its minimum at x t, as in (1.1) and (4.1), but now hl(, t)=0. Instead of h(t, t)>0
for > 0, now we have h(t, t) tanh > 0 for > 0, but h(0, 0) 0.

Let c() 6t-lh[](, t). By means of Corollary 1, since c(0) > 6h[3](0, 0) 1, we
can show (by dividing the integral into two pas, 0N x N and x N t) there exists b > 0
such that

N--1

(4.14) A(t, )= -/3 -/3Q(t /3t) + O(-(+/3)
k=0

uniformly for 0 N N b, where

(4.15) (, r)= Xq(X, ) e-(X+(’rx/(X + r)-1 dX,
T

and q(X, t) is a polynomial of degree k in X3. Also,

(4. (,r r-/ c(tr-/, r,

in analogy with (3.16), and thus we can apply Theorem 2 to f(s, S)= Q(s,S).
Therefore A(, ) has matching inner and outer expansions, and a uniformly valid
composite expansion.

The leading term of the outer expansion for A(t, ) can be determined directly
by the standard Laplace method. Indeed,

(4.17) A(t, ) -/Yo(t) + O(-3/), 0,
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where, yo(t)= t-l(27r/tanh t) 1/2. TO get the inner expansion observe that

i_(4.18) A(eT, v)= e e-q’(x’r)(X + T)-1 dX
T

where O(x, t) sinh (x+ t)sech t-x-tanh and e v-1/3. Since

(4.19) O(x, t) (x3 / 3tx2) +(tx4-4tax2) + O((x2 + t2)7/2),
it follows that

(4.20) A( ,-1/aT, p)= ,,-’/3[ yo( T) / t,’-2/a Y( Y) / O(/--4/3)]
for T o, where

(4.21) Yo(T) e-(X+37"x)/6(X + T)"-1 dX,
T

1 I -(X3+3TX2)/6(e TX4 4T3X2)(X / T)-1 dX.(4.22) YI(T) - -r

In addition,

925

(4.23) v-/:yo(eT)=(2,rr)/:’v-’/3T’-3/2[1 /l,’-2/3T2/0(1,,-4/3)]’,

thus, combining (4.17), (4.20), and (4.23), we obtain the uniformly valid composite
formula 1.3).
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A DEFINITE INTEGRAL OF A PRODUCT OF TWO POLYLOGARITHMS*
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Abstract. Using the product theorem for the Mellin transform, a definite integral depending on several
parameters and containing a product of two polylogarithm functions (or two logarithms in the degenerate
case) is replaced by a Mellin-Barnes integral, which in turn is evaluated by residue techniques. The results
are given in terms of infinite series of hypergeometric type. Some special cases for which the infinite series
can be expressed in closed form are also considered.
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AMS(MOS) subject classifications, primary 33A70; secondary 33A35, 44A15

1. Introduction. It is the purpose of this paper to evaluate the integral

(1.1) I,,,,,,(ot, o’, w, r)= x’-lLi,,(-o’x)Lim(-wxr) dx

for positive integers n, m, complex a, tr, to, and real r 0 such that the integral exists.
Lik(z) is the polylogarithm function defined for [z _<-1 and k_->2 by the power series
[9, p. 189]

(1.2) Lik(z) Z- (Iz[ _--< 1)
=IJ

and for Izl > 1 by [9, p. 192], [8]

(1.3)

Lik(z)=(--1)k+’Lik -.lnk (-z)

1 2-;o (1 + (-1)-)(1 +)(k-j) In (-),

where st(q) is the Riemann zeta function and where the logarithm is defined on its
principal sheet. For k 1 we obtain from (1.2)

(1.4) Li,(z)=-ln (l-z)

as a degenerate case. Interest in polylogarithms, which have been investigated in the
past by many mathematicians, has revived in recent years because of their applications
in quantum electrodynamics, group theory, and geometry. For example, Berndt and
Joshi [2] have analysed Ramanujan’s work on these functions, Maier and Kiesewetter
[ 10] have investigated systematically some of their functional relations, and B/bhm and
Hertel [3] have made use ofthem in the theory of n-dimensional polyhedrals. Gastmans
and Troost [5] and Devoto and Duke [4] present tables of integrals leading to or
containing polylogarithms which are useful in quantum electrodynamics.

An integral representation of Lik (z) given recently by Marichev [ 12, p. 105], namely

1 a+ioo r(s)r(-s)
(1.5) Lik(--z)=27ri J-i (--s) k-1

z-Sds (-l<a<O’largzl<’tr’k=O’l’2" ")

* Received by the editors October 8, 1986; accepted for publication (in revised form) June 18, 1987.
f Belorussian State University, Minsk, U.S.S.R.
European Organization for Nuclear Research (CERN), CH-1211 Geneva 23, Switzerland.
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allows us to evaluate the integral (1.1) by using the product theorem of the Mellin
transform, and by applying the residue theorem.

From (1.3), we find that

1
(1.6) Lik(--z)= --7-:lnkz+O(ln-2 z) (zm)

K!

which can be used, together with (1.2), to show that the integral (1.1) converges under
the conditions

-1-r<Rea<0 if r> 0,
(1.7)

-1 < Re a < -r if r < 0,

and larg tr[ < r, larg tol < r.
We may add here that, by making the substitution x g/, we obtain from (1.1)

the "symmetry" relation

1
(1.8) In.m(Ot, O’,to, r)’-’(’llm, tO, O’,

2. An alternative integral for l.,(t, tr, to, r). In this section, we derive a Mellin-
Barnes integral for I..m. By introducing (1.5) into (1.1), we find with the (allowed)
substitution rs =-s,

1 IodU( 1 [a+’F(s)F(-s) )I.. lrl u -.o_, (_s)._.u ds

(1 f’+’r(/r)r(-/r) () )i.,,,,_, (sir)’-’
as

where trto -1/’. Applying well-known theorems for the Mellin transform (see, e.g.,
Sneddon 17, pp. 262-297]), in particular the product theorem

f g(u) c+’f*(s)g*(s)-" as,
u 27ri lc--ioo

we see that

and therefore that

g*(s) (-1)"+’r(s + a)F(-s a)(s + a)’-".

f*(s)=r r

(--1)n+l 1 +’ r(s + a)r(-s a)F(s/r)F(-s/r)
v-io (s+ ot)"-l(s/r)"-’

where

max (0, 1 Re a) < y Re s < min (r, -Re a) (r > 0),
(2.2)

max (r, 1 Re a < y Re s < rain (0, Re a r < 0).

Using [6, No. 8.3343]

r(z)r(-z) csc ,z,
z
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the integral (2.1) can be written as

In,,,(a, o’, to, r)

(-1)"+12

Formula (2.3) is more suitable than (2.1) for evaluation by the residue theorem.
We may note here that In,,, is a special case of Fox’s H-function (see Mathai and

Saxena 14, p. 2]), namely

(2.4)

1 m+l,n+lI,, m(, 0", (.0, t’)=

(l+a, 1),..., (l+a, 1), (1, l/r),..., (1, l/r)]
(0, i/r),..., (0, i/r), (a, 1),. (a, 1)

with n repetitions ofthe brackets (1 + a, 1), (a, 1) and m repetitions of(l, 1/r), (0, l/r).
For rational r= +p/q, (p, q I) it is possible to express the integral (2.1) as a

special case of Meijer’s G-function in the logarithmic case [13, p. 176]. Substituting
s’= s/p in (2.1), and applying the product theorem [6, No. 8.335] ofthe gamma function
we obtain

(2.5) In,, a, tr, to, +P =(-1)"+’(+1)m+l
r p q

G,,,

where

m’= n+ m+p+q-2,

(2.6) n’=p+q,

p’= n+m+p+q-2,

and

(2.7)

l+(l+a-j)/p,

a; alp,

=l(O’a+j-1)/p,
(j 1)/q,

j=l,’’’,p,

j=p+l," .,p+q,
j=p+q+l,. .,p+q+n-1,
j=p+q+n,. .,p+q+n+m-2,

j= 1,. ., n-l,
j-n,...,n+m-2,

mt,nAccording to the theory of the G-function [15], we know that Gp,,p,’(z) is analytic
and continuous in the whole sector larg zl < r(m’+ n’-p’), provided that m’+ n’-p’>
1. From (2.6), we have that m’+ n’-p’=p+q> 1, which further implies [15] that the
point (--1)m’+"’-P’ is not a singular point. It follows that, for rational r, the function
(2.1) is analytic and continuous in the whole sector larg rl< r(1 +q/p). Using the
analyticity of the integral (2.1) with respect to r, it follows that this property holds for
any real r. We shall use this continuity property of (2.1) when considering the examples
in 4.

j=n+m-1,. n+m+p-2,
j- n+ m+p-1, ., n+ m+p+q-2.
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3. The evaluation of the integral. Using techniques developed by Marichev 11 ],
[12] and, for the logarithmic case of integrals (2.1), by Adamchik and Marichev [1]
and Mathai and Saxena [13, p. 157], [14, p. 70], it is possible to evaluate the integral
(1.1) in terms of infinite (hypergeometric type) series. We thus obtain the following
theorem.

THEOREM Let r 0 be real, a, tr, to be complex with [arg tr[ < 7r, larg tol < 7r, and
let o-to -1/r. Further, with N {1, 2, 3," "}, let No {0, N},

10 /fx eN, /(x) 1 h(x);h(x)
otherwise,

H(x) {10 /fx > 0,
ifx<O,

and let k, l, K N.
Then, for Il 1 and

-1-r<Rea<0 ifr>O,

-l<Rea<-r ifr<O,

the integral (1.1) can, for a O, be expressed in the form
(3.1)

o
Xa-lLin(-O-X)Lirn(-toX r) dx

(-1)"(+sgn r)m+17ro-- Irlk+aNo

(-t-1)n(--1)m+n
Tr

to (-1)1 CSC (rq:l)(al)-m -n
(l=)/[rlC=N r

+ (_l)"+(+sgn r)m+lo, (-1):+lrl:+/-(a +[r[K)-,K-m:lrl

+,--W;7..- --+In +H(:r)(-1)"+lo’-zr+lr’a
+[rlg

h(+/-a)(-1) Z ---ln
m=0 ml "rr

+-’ (m2+ n 1) m+l--m’--m2

,2=o n 1
(-’rra)-"h

30

+K(a) 2 1 __1 ln
m=o m

1)2 (-)-
m2=0 1 m3=0

+ H(l)(-1)(sgn r)w-/"+lra

( ).lh _a (_1).+/ 11 __1 ln
n=0 81

+1--1 (2+ m- 1) n+l--nl-n
E ()-"
=o m- 1

(-1)k csc [r(a +/- Irlk)](a +/-lrlk)-"k-lrlk

r-m3B*m3 Cm_m,_m2_m3( TrCe }

r-E "’n3"’n+ --nl--n2--n
n3=0

r-m31l* 13t*
m3-- m+l--m--m2--m3
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r- In "n, =o nl

n2=O m 1 n3=o

and for 0 (which implies r < 0), in the form

Li(_x)Li(_x)
dx
x

-()+[Irl- (-1)csc

(3.2)

where

(-r)"B*.3C,_.,_,,2_. 7r

(3.3)

Bj are the Bernoulli numbers, where

dj

(3.4) C)(x)= as--7 csc (s + x)ls=o,

and where the logarithm is defined on its principal sheet.
In all the expressions above, the upper sign corresponds to Isrl > 1, thelower sign

to I’l < 1.

Proof. Using the theory of the H-function [14], we find that the poles of the
integrand in (2.3), i.e., of

(3.5) (n,m(S’ O, r) CSC 7]’(S -+- t )] CSC 7"/" (s+)

which need to be taken into account when evaluating the integral (1.1), are those
which, for Iffl > 1 lie on the right, and for Iffl < 1 on the left, of the line Re s y. In the
first case the values of the corresponding residues must be multiplied by a factor -1.
The relevant poles are:

(i) Ats=0ifr<0. Pole of order m+2ifa,oforder m+n+2ifa=0, of
order m + 1 if a o.

(ii) At s=-a. If r<0: pole of order n+2 if a/r, of order n+l if a/ro.
If r>0: pole of order n+2 if -a/r., of order n+l if -a/r.

(iii) At s rlk and at s -a + l, for k, . Both poles of order 1 if lrlk # -a + l,
single pole of order 2 if Ir[k -a + L

(i) Ats=0ifr>0. Poleoforderm+2if-a,oforderm+l if-a.
(ii) At s -Irlk and at s -a for k, . Both poles of order 1 if Irlk + l,

single pole of order 2 if ]rk a + I.
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The residues corresponding to these poles can be evaluated by standard methods,
making use of the Leibniz formula for the mth derivative of a product of k functions
of one variable, together with elementary properties of the cosecant and cotangent
functions, and the power series expansion [6, No. 1.41111]

(3.6) 7rx csc rx Y’.
12j 21 )J

=o ji Inl(x (Ixl< 1).

By collecting the computed residues appropriately we obtain formulae (3.1) and (3.2)
of the theorem.

We here list, for convenience, the first six functions C(x) defined by (3.4):

1 d
(3.7) C(x) =-fil.--s CSC (S + X

where

s=O

1 x(x)"-.I CSCJ+I

Co(x) 1,

CI(X)=--COSX,

d2(x) 2 sin- x,

d3(x) cos x(sin2 x-6),

(4(x) sin4 x 20 sin x + 24,

5(x) =cos x(-sin4 x +60 sin2 x- 120).

We may add here that it is not difficult to evaluate the finite sums in (3.1) and
(3.2) by a symbolic algebra system such as REDUCE [7].

4. Special cases. In this section, we consider some special cases of (3.1) and (3.2).
For notational purposes, we make use of the Lerch function [6, No. 9.550]

(4.1) dP(z, u, V)=k
zk

=0 (k + v)
(Izl < 1, -v e No),

which is a generalization of the polylogarithm function (1.2). In particular, for u 2,
v 1/2, we have

(-) z4 (--1)k(x/)ak+lk=ii X/4(4.2) * -z, 2, Z Ti()

where

Ti2(z -1 arctan dt

is the arctangent integral.
We shall also make use of the following lemma.
LEMMA. Let E be the Euler numbers [6, No. 9.72], let

0, j {-2,-1},
E--

lEvi j No,

and let Bf be defined by (3.3). Then
k

(4.3) Sk-- ., (+2)k-BB’_j E*k_2-(k- 1)Bk*
j=0

(k eNo).
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Proofi We start from the identity

(x csc x)(2x csc 2x) x2 sec x-x csc x

and replace the trigonometric functions by their power series (3.6) and [6, No. 1.4119]

see x-- 2 x Ixl <j--O

respectively. Multiplying together the two power series on the left-hand side of the
identity and equating coefficients yields the lemma.

4.1. r =-2, t =0. In this case the summation conditions for the infinite series
become

which exclude all k but permit all odd values of , and all K t. Thus, from
(3.2) with sr trv/-, using (1.2) and (4.3),

(4.4)

Lin(_o.x)Lim(_Oox_2)
dx

X

+ 2-(+(m + n)Li++(-) 2-" In Li+(-)
+ 1 2

In
j=o

In particular, for n rn 1, using (1.4) and (4.2):

_: _.)In (1 + trx) In (1 +tox-2)
dx

rTi2(:l) + Li3( +/- In Li:(
1

x

(4.5) 5
r21

in " + In "+
(ll > 1),

1).
Forn=l, m=2:

In (1 + o’x)Li2(-wx-2)
dx 1 :2, 3

+/--4 7r
: 3, +/- - L 4

(4.6)

1
+- In " Li3(--:2)2

in4sr+ in2 ’+ (11> 1),

(1’1 < 1).
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Forn=2, m=l:

(4.7) Li2(-o’x) In (1 + oox-2)
dx 1--= ln (l +’x)Li2(-tx-2) dXx

For n m 2:

Li2(_crx)Li2(_oox_2)dx 1 q:2, 1 .:r:2) 1 ,2)-=’ff "rr:l* 4, +- Li,(- + In Li4(-

(4.8) (0 ln5 ’+6 7rz ln3 r + 4-0 /r4 ln" (1,> 1),

0 (Isr] < 1).

Using the fact that the integral is continuous for larg o’v/-l < r/2, we can set cr to 1
and obtain from (4.4):

Li,(_x)Li,,,(_x_) =dx 2_(+ r -1, n+m, +(n+m)Li,,+,,+(-1)
x

(4.9) {.rr2"+m )k + (_l)k}(-li;+,,,-(n m) --7,2-(n+l)
=o (2k + 1 k=l

In the case of n+ m odd, these series are well known (e.g., [16, No. 5.1.3.3, 5.1.4.2]).
Thus we obtain

(4.10)

Li,(_x)Li,,,(_x_2)
dx 2_(n+2
x

"it
iEn+m_ll

2"+’+ 2

(n+m-1)! n+m+l IB"+’+ll

(n, m eN, n+ m odd).
This formula is remarkable insofar as it contains both the Bernoulli and Euler numbers.
For n- m 1, formula (4.9) reduces to

Io(4.11) ln(l+x)ln(l+x-)dx rG
3--= - ’(3),

where G is Catalan’s constant.

4.2. r = 2, t =-2. In this case the summation conditions for the infinite series
become

2kq:2No, 1/21+lNo, 2K2eN,
which exclude all k e N, but permit all odd values of e N, all K e N{1} if I1 > 1, and
all KeN if Iffl< 1. Thus, from (3.1)with if= /(, using (4.3),

o
x-3Li, (-x)Li(-wx)dx

(_l)n{2m_l W3/2
!= (2/+1 (21+3)

[ k"(_,-2)ki+1 (__,-2)kk.;X(i) _,-2)k ](4.12a) + 2"-’w m,= + n fl= + 2 In
=,k-

()n+l 1 1 ( 2 )n,n+_n,(.2+m__l)w ---ln ff (--)--n2Sn+l--nl-n2
.=o .=o m-- 1

( > 1, m, n N, larg < , larg < ),
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(4.12b)

? x-3Lin(-trx)Lim(-tox dx

(_,2)t
-2-"-’tr2(-1)" 2"-rtrv/- Y. i7’" 1)I=o (21+

m
=, k"7-ii i)" + n k=,X km(k+li"+’

-r’+2-’-o" Y’. ---In "=0 m

21n" Y. m((k=k k+ 1)"

m2=O n 1 --ml--m

(11 < 1, m, n e N, larg trl < r, [arg to[ < r).

Using the relations [16, Nos. 5.2.5.5,15, 5.2.6.1,2]

Z (-1)lx2t+3 1 1

t=o (21 + 1 )(2// 3) =( 1 / x2) arctan x- x,

xk+
k(k+ 1)=2x+(1-x) In (1-x)-Li2(x),

k=l
(4.13)

xk+l
X 1=(x-1)k2(k+ In (1-x)+x(Li2(x)-l),
k=l

xk+, =x+(1-x)ln(1-x),
k= k(k+ 1)

we find for n m 1, after some calculation,

(4.14)

X
-3 In 1 + x) In (1 + ox2) dx

= (+) In In 1+ -Li - -arctan

+ +ln2 + 2 > 1),

1( [ () () 1 ()In 1+ +=.r tan

+ _ln

For , we obtain in the limit, using Li(-1)=-/12,

(4.15) x-ln(l+x)ln(l+x)dx=.
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Using the fact that the integral is continuous at tr to 1, we obtain

(4.16)

o’
X-3Li.(-x)Li,,.,(-x dx

(_1)
=(-1)" 2m-"/r" )-’.

(21+1)"=o (21+3)

[ k )(--1)k k"+’(k+l)
m(-1)k ]+2-"-1 m k.,k+l,,,,+l+n .,

=1 k=l

m-1
(-r)-&/-

From [16, No. 5.1.24.14] we see that the first sum can in general be expressed only in
terms of generalized zeta functions ’(j, 1/2) and ’(j, 1/4). For n m, however, using the
relations [16, Nos. 5.1.24.10, 5.1.24.15]a

(4.17)

--1)k+l )m-1
kS

=(-1 (1--21-"+k)(n--k)
k=l (k+ 1)" k=O k

+ (_1)k n+k-1 m+k)(m_k)
k=O k

(1-21-

+(-1)m(m+n-1)+(-ln-1)’-1(m+nm-l-2)21n2 (m,nN)

and

(4.18)

(-1)’
E (21+ 1)"(21+3)"/=0

=(-1)" -22.(n_1) =o (n-2k-1)!(2k)!’n" IE:I (n)

where E2k are the Euler numbers, we find that

(4.19)

X-3Li,,(-x)Lin(-x dx

2-"-’ {",’ (2n-k-2)!
=2"-2r-(n-1)! k=o(n-k-1)!k!

[1 -(-11
k=O

Note the misprint in [16, No. 5.1.24.10], where the factor (-1) reads (-1)".
Note that [16, No. 5.1.24.15] is erroneous: IE=kl there reads E2k and (2n-2k-2)t/(n-2k- 1)! reads

(2n-k-2)!/(n-k-1)!.
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x(k n)(n+k-1)! 2k_(1-- )st(n-- k+ 1)
kl

-I- (--1) k+n
(k+n-1)’ n-k+1

k=0 k!
S,-k+l

Because of the fact that only even integers occur as arguments for the zeta function,
expression (4.19) represents a polynomial in with rational coefficients. However,
using (4.3) and the relation [6, No. 9.5421]

(4.20) ff(2j) 22j-1"2j B2jl
(2j)

it is not dicult to show that the coecients of all but the first power vanish, and
therefore that

(4.21) x-3Li(-x)Li(-x

We note that, for n 1, (4.21) agrees with (4.15).

4.3. 1, I/Z In this case, the summation conditions for the infinite series
become

which permit all k, and exclude all K . Thus from (3.1) with /

(4.22)

o
X-3/2Li.(-x)Li(-ox) dx

=-(I)+’2" ml"k (1 2k)" (1k

m--m (2--l)()m2m--m-m2

m2=0 1 m3=0

-H(l)2+
nl=0

(ll 1, m, n e N, larg [ < m ].arg l < ).

Using the relations

(.3)

x2k 2
2 Arth x In (1 x2)

k= k(2k + 1) x

x2k

Y’, 2x Arth x + In (1 x2),
k=l k(2k 1)
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X
2k

? k(2k + 1)2
1

-In (1 -x2) -2 Arth x--[Li2(x)- Li2(-x)]+4,
X X

X
2k

k= k(2k- 1
-In (1 x2)-2x Arth x + x[Li2(x)- Li2(-x)],

X
2k

Y" k2( 1)k=l

x2k
2 k_( 1)k--1

4
Li2(x2) + 2 In 1 x2) + Arth x 4,

X

-Li2(x) + 2 In 1 x2) + 4x Arth x,

X
2k

Y" kE(2k + 1)-k=l

2
Li2(x2) + 4 In (1 x2) +8 Arth x +- [Li2(x)- Li2(-x)] 12,

X X

x2k
k=

y"
k2(2k 1)2-- Li2(x2) -4 In (1 x2)- 8x Arth x +2x[Li2(x)- Li2(-x)],

and [9, p. 6]

(4.24) Liz(x2) 2[Li2(x) + Li2(-x)],

we can express (4.21) in closed form for n 1, 2 and m 1, 2. After some calculation
with REDUCE we obtain for n rn 1"

(4.25)
o’X

3/:z In + o’x) In (1 + wx) dx

4w{x/ In (1 + /-) +x/[ln (1 + /) In -]},
where, because of the symmetry of the integral with respect to o- and to, we can assume
Io’/,.<,1 > 1.

For n 1, m 2, formula (4.21) reduces to

(4.26)

’X 3/2 In (1 + trx)Li2(-tox) dx

4,n.{2v/-[Li2( _w)-ln (1+ -)]-x/-[2 In (1+ _w)-In]}
(Io/<.ol > 1 ),

-Tr{ 8v/- In (1 + f)
+v/-[81n(l+/)+ln2tr 41ntr () 4 ]}--to --to + 8L 2 + r2

The same expression, with cr and to interchanged, holds for n 2, rn 1.

(Io/<.ol < 1).
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For n m 2, we obtain from (4.21)

fo’ X-3/2Li2(-crx) Li2(-cox) dx

+ x/-[ 16 In (1 + /)+In2--g 81n w-+8Li2g()-- +342]}
where, as for (4.25), we can assume [g/w[ > 1.

For g w 1, the above results lead to

X-3/ (1 + x) dx 8 In 2,In

2 2(4.28) x-3/ln(l+x)Li(-x) dx= -( +24 In 2),

x-3/[Li(-x)] dx=(+24 In 2).

elege. K. S. K61big would like to thank H. Lipps ofCERN for a helpful
discussion.
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SPECTRAL MEASURES, ORTHOGONAL POLYNOMIALS, AND
ABSOLUTE CONTINUITY*

JOANNE DOMBROWSKIf

Abstract. This paper studies the spectral measure of an unbounded tridiagonal matrix operator for
which the matrix entries satisfy a certain growth condition, and presents a sufficient condition for the
existence of an absolutely continuous part. The results are related to a class of orthogonal polynomials with
exponential weights.

Key words, absolute continuity, commutators, orthogonal polynomials
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1. Introduction. The purpose of this paper is to continue the study of unbounded
tridiagonal matrix operators, measures and systems of orthogonal polynomials begun
in [2]. A brief review of some known results in the bounded case will introduce the
unbounded problem to be considered.

A bounded cyclic self-adjoint operator C, with cyclic vector b, defined on a
separable Hilbert space , can be represented as a tridiagonal matrix with respect to
the basis obtained by orthonormalizing {Cnb}=o. The positive subdiagonal sequence
{an} and diagonal sequence {bn} in this matrix can be used to obtain information about
the Borel measure (/)-IIE(/),ll =, obtained from the spectral resolution C=
h dEx. It is shown in [1] and [4], for example, that if lim an a, a 0, lim bn =0,
lan an-l < and Ibn bn-l < o then /x restricted to (-2a, 2a) is absolutely

continuous with respect to Lebesgue measure. This result was motivated by and is
applicable to the study of orthogonal polynomials. For the spectral measure/x is also
the measure of orthogonality for the sequence of polynomials {Pn} recursively defined
as follows:

(1.1)
P,(A 1, P_(A

al

(A bn)Pn-,(A)- an-2Pn-2(A)
P.(;)

an-1

In fact, the polynomials {Pn} form an orthonormal basis for L2(/x) and C is unitarily
equivalent to the multiplication operator on L2(/z) defined by Mf(A)= Af(A). Such
systems of polynomials have been studied extensively in the literature. One item of
interest, among many, has been the relationship between the recurrence coefficients
and the nature of the measure of orthogonality.

Recently there has been considerable interest in the study of systems of the form
(1.1) with an > 0, bn real, for which the support of the measure of orthogonality is an
unbounded set. In this case the sequence {an} is unbounded. As discussed in [2], the
corresponding tridiagonal matrix C [cij with Cii-" bi and ci, i+ Ci+l, ai defines an
unbounded operator on 12 with domain consisting of those elements in 12 for which
matrix multiplication yields a vector in 12. If Y (1/an)= then C is self-adjoint and
hence has a spectral decomposition C A dEA. If {bn} is the standard basis for 12,
then bl is a cyclic vector for C and ft(/3) [[E(/3)bll 2 is the measure of orthogonality
for the polynomials in (1.1). The purpose ofthis paper is to present a sufficient condition

* Received by the editors May 12, 1986; accepted for publication June 8, 1987.
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939



940 J. DOMBROWSKI

in terms of the sequences {a.} and {b.} for the existence of a nontrivial absolutely
continuous part for the measure /z. The condition to be presented seems to be the
natural generalization to the unbounded case of the condition given above for the
bounded case. Whereas in the bounded case it is sufficient that limits exist and
differences are absolutely summable, in the unbounded case it is sufficient that limits
exist and differences of differences are absolutely summable. This will be made more
precise below. The main result will be illustrated with a class of orthogonal polynomials
introduced by G. Freud.

2. Main results. Henceforth C will denote an infinite matrix of the form

(2.1) c

0 al 0 0

al 0 a2 0

0 a2 0 a

0 0 a 0

with a.>0 and lim a. =c. It will further be assumed that (1/a.) =0 (so that C is
self-adjoint), that Y.2[a2.-a2_]-< and that E Id-d_l<o, where d.=
[a,,-a._[. The domain of C will consist of those vectors in for which matrix
multiplication yields a vector in 12. As shown below, such operators have no eigenvalues.
Therefore the spectrum coincides with the essential spectrum and remains fixed if a
finite number of terms in the sequence {a.} are changed. This is needed for the main
result.

To establish the results on eigenvalues and the existence of an absolutely con-
tinuous part the following notation is needed. If {b.} is the standard basis for then
Cb. 1/2(T + T*)b. where TO. 2anb.+l. Let Jb. (1/2i)(T- T*)b and obtain the
bounded operator JN from J by substituting aN for a. when n-> N. It follows that

2 2 forCJN-JNC =--2iKN where KN=[kis] is a bounded operator with k,=ai-ai_
i=1, ..., N, kii=aN(ai-ai_) for i> N, ki,i+2=k+:,i=1/2aN(a+l-a) for i>-N and
all other entries equal to zero. This commutator equation, which holds only on a dense
subset of H, is fundamental to the arguments to be presented.

The following result essentially appears in [2]. The proof is summarized to indicate
the modifications needed for the general setting of this paper. Note that d [a. an-ll.
Recall from 1 that an induction argument can be used to show that the polynomials
defined in (1.1) satisfy the equation

: : : : 2 PN- (A) PN(A) + a- P(A)a,P,(A)+ E (a.-a._l)P.(A)= aN-,
n=2

THEOREM 1. If [a. a._]- < and Id. d.-l <3 then C has no eigenvalues.
Proof Assume A is an eigenvalue. One corresponding eigenvector must be x

{P.(A)}. Choose No such that for n>=No. ..[ai-a_,]-<(a.-lAl/2), d.<
1/4(a.-lAI/2) and ETId,-d,-,l<1/4(a.-IXl/2). Let N be defined by P(A)=
max._>No P2(A). It then follows that

(K,x, x-> a,_,P,_(- P,( + a,- e(+a, 2
N+I

(x)]-2aN E [ai-ai-l]-p2i(A)-aN ., di[P+I(A)+P_
N+I N+I

>= aN-,PN-,(A )--- PN(A +’ aN- PN(A).
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But this contradicts the fact, established in [2], that if {dn} is bounded and Cx-Ax
then

If C given by (2.1) is self-adjoint with spectral resolution C A dEx then the
polynomials defined in (1.1) are orthonormal with respect to the measure Ix(/3)=
IIE(/3)blll 2. The following technical lemma about these polynomials is needed for the

2result on absolute continuity. Note that the lemma has content when a is large relative
2 2to the sum En=2 [an an-l]-" Obviously, for example, the lemma provides information

when {an} is monotone increasing.
LEMMA 1. Suppose there exists a subinterval A of [-2al, 2a] and a t > 0 such that

2A cA implies that 4a-A2_>- and n=_[a-an_l]-</8. Thenforn> 1, a p2, dix<

Proof. Fix n > 1. Choose N < n such that a P dix- max<i___n a P dix. Then

2 2 2 2 2a P dix a P dix + a 2ai+l) Pi dix (ai- ai-1) Pi dix
=2 i=2

2 2 )+ 2-->- av- P dix Y’, (a,- ai-1 P, dix.
i=2

2 N [a 2 2 + N 2 2Since a al Y,=I a,_] -Y=2 [ai a_l]- it follows that

Hence (8a/8)ix(A)>_--a P dix>=aP dix as was to be shown, l-!
This lemma will now be used to present the main result of this paper. The notation

sp (C) will be used for the spectrum of C.
2 a2THEOREM 2. If Z n=2 [an-- n-l] (00 and n=2 Idn-dn-l< then IX has an

absolutely continuous part with support sp (C).
Proof Fix R >_- 1. By the Kato-Rosenblum Theorem [3], [7] it is enough to show

that the spectral measure of the trace class perturbation of C obtained by changing a
finite number of weights in {an} is absolutely continuous on [-R, R]. Observe that
since there are no eigenvalues, all such perturbations of C will have the same spectrum.
Now choose Ssuchthat2as-g>8n=sldn= dn_l[, 2as g > 32 n=s[a2=-an-i]-
and such that for n >= N, an >--R and an-> 1/2 an. Note that if N is so chosen, then for
n >- N, A [-RR] and h A, it follows that 4a2, h 2 ->_ 4a R -> 16an s Id. d._l.

2 2Similarly, 4a h >- 64an Tv Jan an-l]-. Assume, for now, that al a as
(i.e., consider a trace class perturbation of the given operator). If A is a subinterval
ofI-R, R], then E(a)b E,= (E(A)4, qb,), where (E(A)bl, b,)= a P dix. The com-
mutator equation CJs-JsC=-2iKs is used in [2] to show that

lal IIE(a)  ll =. On the other hand,
N

(KNE(A)qb,, E(A)dp,) E (a a,_,)2 + E an(a,-a,_,)
N+I

+ Y as(ai- ai-1) Pi+, dix Pi dix
N+l

+ Z aN(ai-a,_,)
N+I

1
aNdi2 N+I

2
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1 ]
+ Y apc[(a,- ai-1)-

PC+2

-X aldi- di-,I

2 E am[a,- a,_]-

-X aNIdi-- di-,}
N

-2 E (a,--ai-l)-
N+I

-E ald, d,-l
N

Now apply Lemma 1 with 5 =4a-R2. Recall that A c [-R, R]. It follows that

(KNE(A)rI, E(A)4I) =>--- I/(A)I.
Combining this result with the inequality obtained from the commutator equation
implies that I(a)l_-<4all,lllal. Let /3 be a Borel subset of [-R,R] of Lebesgue
measure zero. Then for any e > 0 there exists a pairwise disjoint sequence of intervals
{As} such that/3 c U As and Y Ial < e. Since/z(/3) _-<y/z (Aj)--< 4allJ, IIE lal it follows
that /z(fl)=0. Hence it has been shown that the spectral measure of a trace class
perturbation of C is absolutely continuous with respect to Lebesgue measure on
[-R, R]. The theorem follows from an application of the Kato-Rosenblum Theorem.

3. Examples. In this section examples will be presented to illustrate the above
results. The asymptotic expansions needed for these examples are developed in [5].
See also the references cited therein.

The simplest example of practical interest is obtained by letting an v:-/2. It is
easily checked that the conditions of the above theorems are satisfied. The correspond-
ing polynomials {P.} are the Hermite polynomials and it is well known that/z(/3)
j,e- dx.

For a related class of examples choose c to be an even positive integer and let
{Pn(A)} be the sequence of polynomials obtained by orthonormalizing the sequence
{An}n=0 with respect to the measure/z(/3) J, e-x/ dx. These polynomials satisfy a
recursion formula of the form (1.1) with b. =0 and, as shown in [5],

a. n 1/ Co+-+ O
Since

a. an-1 Co[/q l/c, n 1)1/" + Cu[ n-u+/)- (n 1)-u+’/")] + n/t. (n 1 )l/atn_
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with It,] <- M/n4 for all n, the Mean Value Theorem applied to f(x)= x/ shows that
for large n, a,-> a,_. That is, the term coin /’ -(n-1)/ is positive and, for large
n, dominates the remaining terms of the sum. For large n, write d, a, a,_ x, + y,
with x, co[nl/-(n-1)/]. Note that {x,} is decreasing and ]y,l <c. It follows
that Id. d.-l <- Ix. x._[ +Y [y. Y.-I <. Therefore the hypotheses of the
above theorems are satisfied.

4. Final comments. The main theorem of this paper presents a sufficient condition
for the existence of an absolutely continuous part for the measure/. It does not, in
contrast to the results presented in [2], claim that/z is absolutely continuous. This is,
however, true for the examples cited above. It would be interesting to know if the
hypotheses of the main theorem are sufficient to conclude that/z is indeed absolutely
continuous.
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A PROOF OF SOME q-ANALOGUES OF
SELBERG’S INTEGRAL FOR k 1"

KEVIN W. J. KADELLt

Abstract. Selberg has given an important multiple beta type integral. We conjecture that for all k-> 0,
there exists a family {sk,(t)} of homogeneous symmetric polynomials with the following property. If the
integrand in Selberg’s integral is multiplied by s,k.x(t), then the integral still has a simple closed form. For
all k => 0, this family should include the elementary symmetric functions.

For k 1, our symmetric functions are the Schur functions. We prove some q-analogues of this and
some related results.

Key words. Selberg’s integral, Schur functions, Selberg polynomials, q-beta integral

AMS(MOS) subject classification. 33A15

1. Introduction and summary. Selberg [27] has given an important multiple beta
type integral. It is the case m 0 of Conjecture 1.

Conjecture 1.

In,m,l(X y, k) t’-l)+x’<-")(1- ti)(Y-1)+x(n-i+l<=l)A2nk(t) dtl dt.
i=1

(1.1)

fi F(x+(n-i)k+x(i<=m))F(y+(n-i)k+x(i<=l))F(l+ik)
i=1 F(x+y+(2n-i-1)k+x(i<-m+l))F(l+k)

where x(A) is 1 or 0 according to whether A is true or false,

(1.2) An(t1, , tn)= An(t)= H (t tj),
li<j<--n

and, as holds throughout, Re (x)>0, Re (y)> 0 and n, m, l, and k are nonnegative
integers satisfying m + l_-< n. We omit when 0. The substitution ti --> (1 tn-i+l),
1 -< =< n, gives the symmetry

(1.3) In,m,l(x,y,k)=In,l,m(y,x,k).
We can probably extend Selberg’s proof to treat Conjecture 1 using (1.3).

Bombieri and Selberg recently observed that Selberg’s integral includes a conjec-
ture of Mehta [22, p. 42] as a limiting case. Macdonald [20] and Morris [24] used it
to establish the case q 1 of some constant term conjectures associated with certain
root systems. See Evans [11] for character sum analogues of these results. Askey [6]
gives a number of conjectured q-analogues of Selberg’s integral and relates them to
the case al a2 an ofAndrews’ q-Dyson conjecture 1 ]. Zeilberger and Bressoud
[29] have recently proven this conjecture.

We have the following conjecture.
Conjecture 2. Let k denote a partition h /2 2" A 0 with at most n parts.

For all k_-> 0 there exists a homogeneous symmetric polynomial sk,x(t) with leading

* Received by the editors August 12, 1985; accepted for publication May 28, 1987. Most of this work
was performed during the author’s postdoctoral appointment at the University of Wisconsin, Madison,
Wisconsin 53706, supported by a National Science Foundation grant. This work was partially supported
by a faculty grant-in-aid from Arizona State University.

t Department of Mathematics, Arizona State University, Tempe, Arizona 85287. Present address, School
of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455.
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term 1-I= t’ such that

I..x(x, y, k) t}x-’>(1- 6)(Y-’>s.,x(t)A. (t) dr1" dt.
i=1

(1.4)
=n! fk,x I F(x+(n-i)k+A,)F(y+(n-i)k)

i=1 F(X + y + (2n i-- 1)k + A,)

where

k-1

(1.5) f,x H H (k(j-i)+A,-Aj+u).
l<--i<j<--n u=0

We call these the Selberg polynomials. Mena [23] and Richards [26] obtained a
similar set of polynomials. They used a different basis which retains the symmetry in
x and y.

Clearly s,x(t) are the monomial symmetric functions. We shall show that

det tj-’+,l,
(1.6) s l,x(t)= rl--idet It I,=
are the Schur symmetric functions. Conjecture 1 is motivated by the fact that the
elementary symmetric functions are both monomial and Schur functions. Equation
(1.6) includes the case 0 of Conjecture 1 when k 1. The restriction on is easily
removed. We prove q-analogues of all of these results for k 1.

Fixqwith0<q<l and set

(X)o=(x;q)o=l,
n--1

(1.7) (x). (x; q). I-I (1 xq’), n >= 1,
i=0

(x)= (x; q)= lim (x), 1-I (1-xq’).
i=0

We usually omit the base q. Following Jackson [13] we set

(1.8) f(t) dqt=(1-q) X q"f(q’)

and

(1.9) Fa(x) (l-q)’->
(q)
(qX)oo"

Askey’s first conjectured q-analogue [6] of Selberg’s integral is based upon the q-
analogue

(1.10) t(x_l> (tq)
tqY)o dqt

rq(x + y)

of the beta integral. See Askey [5]. It is

(1.11)

t(x_l) (tiq)
i= ti ) <-i<j<=.

dqt," dqt.
t 2k

=qtk(9+2k2(;)l -I rq(x+(n-i)k)rq(y+(n-i)k)Fq(1 + ik)
,= Fa(x+y+(2n-i-1)k)Fa(l+k)
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Selberg’s proof could not be used directly on (1.11), since the exponent of q is
not symmetric in x and y. Macdonald [19] has proven (1.11) when k-1 by using a
basic property 18, Chap. I, (5.11)] of the skew Schur symmetric functions.

In 2, we give a recurrence relation for In,re(X, y, k) which holds for all k _-> 0. In
3, we prove Conjecture 1 for k 1 and treat (1.6). This gives our basic proof of the

case k- 1.
In 4, we give some preliminary results which we require for the q-case. We

reformulate (1.11) with an integrand that is symmetric in tl, t2, , tn and generalize
the Vandermonde determinant.

In 5, we insert the parameters m and into Askey’s conjecture (1.11). We establish
the case n- 2, 0. This result holds for all k_>-0. We obtain the sum of a nearly
poised 3{2 which is a companion to Carlitz’s q-analogue [9] of Dixon’s theorem (Bailey
[8, 3.1, (1)]).

In 6, we prove our q-analogue of Conjecture 1 for k- 1, 0. In 7, we prove
a q-analogue of Conjecture 2 for k 1. In 8, we extend the analysis to treat > 0 for
any k_-> 0. In 9, we obtain further results by using different q-analogues of the beta
integral. Surprisingly, each of these cases leads to the same determinant, which can
be evaluated by Lemma 5 of 4.

2. A recurrence relation. We obtain a recurrence relation which holds for all k >_- 0.
Observe that

In,m(X,y,k)

Io’ [I’ Im t](1 tl) (y-l) tlx-)/x(i<-’(1 ti)(y-I
t t i=2

(2.1a) Ak(t) dt2" dtn] dtl

+(n-m) t-)(1- t,) (y-l)

(2.1b) A(t) dtl dt_l] dt.

Equation (2.1a) gives the contribution to the integral for lim where t=
rain (h, t2, , t) and (2.1b) gives the contribution for m < n. Let Re (y) > 1. Then

lim x t( 1 t)-) t-)+x’)(1 t,)
xO t i=2

() dt.., dt.]
(2.2) N lira x s(- ds dt

x0

lira x(- t(1 t)(- dt

=limx(- u(/(1-u)(- du

xr(n)
lim 0.. ( +x... ( + nx

Although the restriction Re (y)> 1 can be removed by a careful treatment of the
contribution near t 1, 1 n, we prefer to remove it later. We have the following
lemma.



q-SELBERG INTEGRAL FOR k 947

LEMMA 3. Let

(2.3) f(x, t)=f(x, 0)+ O(t)

with a constant independent of x for some neighborhood of x =0 and let f(x, O) be
continuous at x O. Then

(2.4) lira X t(x-)(1 t)(Y-1)f(x, ) de-’f(O, 0).

Proof. Substituting (2.3) into (2.4), we obtain

lira x t(-(1 t)(-f(x, t) dt

=limx t(x-)(1-t)(Y-)(f(x,O)+O(t)) dt
xO 0

(9..5)
r(x)r(y) ( r(x+

lim x f(x, 0)+ O lim x -_-x-o F(x +y)

=f(0, 0),

as required.
Observe that

I fli’t(x-)+x(,<-m)(l_t,)(y-,)AEnk(t)dt, ..dtn_(2.6) f(x, t.) .,
i=1

satisfies our hypotheses. Since

n--1

(2.7) A2.k(t) l-I (t, t)2kA._l(t),k
i=1

we have

(2.8) f(0, 0)= I._a,m(2k, y, k).

When rn n, we must use the convention

(2.9) I._..(x, y, k)= I._,._l(X, y, k).

Using (2.1a) and (2.1b), we obtain the recurrence relation

(2.10) lim XI.,m(X, y, k)= (n m)I._l.,.(Zk, y, k).
xO

By (2.2), the contribution of (2.1a) to the limit in (2.10) is 0. The result follows by
applying Lemma 3 to (2.1b). This idea is due to Askey.

Let P.(t) be a symmetric polynomial. Then

limx t, P.(t)AEk(t) dt dt.
x-O O i=1

(2.11) n ., (1- t,) P,,(tl, t,..., t._,, O)
i=1

Al(t) dq... dt._l.

Since P,(t) is a symmetric function, the integral on the left side of (2.11) is n times
the integral taken over the region t, min (q, t2," "’, t,). As in (2.2), we find that any
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term to of P.(t) which contains t. to a positive power contributes 0 to the limit in
(2.11). Setting t -0 we delete these terms from P. (t). Applying Lemma 3 gives (2.11).

We conjecture that

(2.12) s.,x( I ti
i=l

and

(2.13) k ,o)(tl, t2, t,-l, 0) ks_1,(1,2,...,._)(t).S n,(Xl,A2,’" ,An-

These are easy to see for the Schur functions.
Equation (2.12) gives

(2.14) I.,x(x, y, k) Irl.(.l__An,...,An_l__An,o)(X + 1., y, k).

Since f.k.x is a function of the differences A- A, 1 <=i<j <-n, the product on the right
side of (1.4) also satisfies (2.14). Thus the parameter A. in Conjecture 2 is subsumed
by x. Using (2.11), we obtain

(2.15)

If h. > 0, then limx_o xI.,x(x, y, k) is 0.

(3.1)

3. A proof of the case k 1. We have the Vandermonde determinant

and the expansion

(3.2)

about ti=l, 1-<i=<n.
Let

A. (t) 1-I ti t) det tj’-’l..
l<--_i<j<--_n

sgn(’rr)fi t
Sn i=

A.(t) 1-I [(1- tj)- (1- t,)]

sgn (or) I (1--ti) (r(i)-)
"rreSn i=

(3.3) Sn, { 7r S. 7r( <-_ m whenever 1 _-< _<- m}.

Clearly S.,o S.,. S.. Expanding one of the 2k Vandermondes A.(t) by (3.1), we
obtain

(3.4) In,m(X y, k)= sgn (zr) tx-1)+x(i<--m)+n-r(i)(1 ti) (y-l)
S i=1

Ak-1)(t) dtl’’"
For 7r S.,., it is easy to see that at least two of the exponents

(3.5) (x-1)+n-Tr(i)+x(i<-m), l <-_i<-n,

must be equal. Since A(fk-1)(t) is an antisymmetric function, the contribution to (3.4)
must be 0. Hence, the sum in (3.4) may be restricted to S,m. The Jacobian of the
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transformation ti-> t=<i), 1 <= <-_ n, is sgn (Tr). Since ACfk-)(t) is an antisymmetric func-
tion, each -e S,,m gives the same contribution to the sum in (3.4). Hence

Io’ (3.6) In,re(X, y, k) m!(n- m)!
i=

tx-1)+x(’<-m)+("-’)(1 ti)(Y-1)

A<2k-)(t) dq’’’ dt.

Let (1’) denote the partition in which the part 1 occurs m times. The elementary
symmetric function is given by

(3.7) e,,m (t)

Our argument shows that

I-I ti.
Mc{1,..-,n} iM

(3.8) An (t) e... (t) det [tn-i)+x(i<-m)ln
Hence, by (1.6)

(3.9) sn,m)(t)=e.,.(t).
For k 1, we expand the Vandermonde in (3.6) using (3.2). This yields

io’I.,m(x,y, 1)=m!(n-m)! sgn(Tr) tx-1)+Xim)+<n-i)
S i=1

(3.10)
(1- ti) (y-)+((i)-) dt dt,

=m(n-m) E sgn() F(x+n-i+x(im))F(y+(i)-l)

s, i= F(x+y+n-i+(i)-l+x(im))

=m!(n-m)! I F(x+n-i+x(i<=m))F(y+n-i)U.m(X,y, 1),
i=1

where

(3.11) Unm(X,y, 1): sgn(Tr)
F(x+ + i+ (i) I+x(i <s. i=1 y n- 7r =m))

We wish to prove that Conjecture 1 holds for 0, k 1. This is

(3.12) In(x,y, 1)= I F(x+n-i+x(i<-m))F(y+n-i)F(l+i)
,=1 F(x+y+2n-i-l+x(i<=m))

We have explicitly obtained part of this result. Selberg’s proof [29] extracts a different
set of factors. Observe that in agreement with (3.12), U,,m(X, y, 1) is a function of x + y
rather than of x and y. Thus

(3.13) U,,,.,(x, y, 1)= U,,,.,(O, x + y, 1).

To evaluate U,,,m(X, y, 1), we proceed by induction on n. Let O<-_rn<n. Since F(x)
occurs as a factor on the right side of (3.10), we obtain

lim xI,,,,,, x, y, 1
x-O

(3.14)
rl--1

=m!(n-m)!r(y) I-I F(n-i+x(i<-m))F(y+n-i)U..,.(O,y, 1).
i=1
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However, our recurrence relation (2.10) and our induction hypothesis give

(3.15)
limxI,,,,,(x, y, 1)=(n-m)I,_l,m(2, y, 1)
x-O

.-1F(n_i+l+x(i<_m))F(y+n_i_l)
(n-m) I-I

,=1 F(y+2n-i-l+x(i<-m))
r(l+i).

Solving (3.14) and (3.15) for U.,,.(0, y, 1), we obtain

U..m(O,y, 1)=
m!(n-m)!

(n-m) _i (n-i+x(i<-m))
F(y) ,_- (y+n-i-1)

F(I+i)
r(y+ 2n i- 1 +x(i <- m))

(3.16)
1 n! .-1

r[ F(1 + i)
m!(n-m)! F(y+n-1), F(y+2n-i-l+x(i<-m))

1 I F(I+i)
mW(n-m)V. ,=1 r(y+2n-i-l+x(i<m))"=

Replacing y by x +y in (3.16) and using (3.13) yields

(3.17) U,.,(x,y, 1)=
1 I F(I+i)

mV(n-m)V. i--1 F(x+y+2n-i-l+x(i<= m))"

Substituting (3.17) into (3.10), we get the required result (3.12). The case m n is
equivalent to the case m 0 with x replaced by x + 1. This completes our induction
subject to the condition Re (y)> 1 imposed for (2.2). We may analytically continue
both sides of (3.12) to Re (y) > 0.

Since

(3.18)

we obtain

(3.19) I.,m,t(x, y, k)= I.,,.,,+(x, y, k)+ In,m+l.l(X y k).

Equation (3.12) gives Conjecture 1 for 0, k 1. Conjecture 1 follows for k 1
by induction on using (3.19).

We turn to the case k 1 of Conjecture 2. This is

I..x(x, y, 1) tlx-1)(1- t,)(r-1)s.,(t)A.(t) dt dt.
i=1

(3.20)
=nt (j-i+A,-A)

F(x+n-i+X,)F(y+n-i)

<. i= F(x+y+2n-i-l+hi)

where s,x(t) is the Schur function given by (1.6). Multiplying (1.6) by A.(t) gives

(3.21) s.(t)A.(t) det ltT-’+,]...
Substituting (3.21) into (3.20) yields

t(x-)+("-=(’)+a-(,))(1 ti)(Y-)An(t) dq dt.I.(x,y, 1)= Z sgn() .,
Sn i=1

(3.2:)

i=l
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Using (3.2) to expand the Vandermonde in (3.22) yields

io’ t(x-1)+(n-i+A.)I,(x, y, 1)= n! sgn (r) .,
’S i=1

(3.23)
(1-ti)(y-)+((i)-) dq... dt,

=n! E sgn() F(x+n-i+X,)F(y+(i)-l)

s. ,= F(x+y+n-i+X,+(i)-l)

n! fi F(x + n + A,)F(y + n i) U,.(x, y, 1),

where

(3.24)

Observe that

U.a,(x, y, 1) E sgn (or) fi 1

s. = F(x+y+n-i+A+r(i)-l)"

(3.25) U.a,(x, y, 1) U.,(x,_.,...,a._,_x.,o)(0, x +y + A., 1).

We proceed by induction on n. We treat first the case A. 0. By (3.23) we have

lira xI,,,(,a,,...,A._,,o)(x y, 1)
x-O

(3.26)
n-I

n!r(y) I-I r(n i+ x,)r(y + n-i)u.,,,....,._,,o(O, y, 1).
i=1

Our recurrence relation (2.15) and our induction hypothesis give

lim xI,,,(A,,....,._,,o)(X, y, 1)
xO

i r(n-i+l+A,)F(y+n-i-1)
(3.27) n(n -1)! f_,,(a,,,...,A._,)

,=1 r(y+ 2n i- l + A,)

i1F(n- i+ l + A,)F(y+ n- i-1)
=n! 1-I (j- i+hi-hj)
<.- = F(y+2n-i-l+h)

Solving (3.26) and (3.27) for U.,x,,,...,._,,o)(0, y, 1) yields

U.,,,,...,._,,o(0, y, 1)
(3.28)

H (j-i+A-As) H (n-i+A,)
l<s.- =1 = F(y+2n-i-1 +A)

Replacing y by x + y + A. and A, 1 n 1, by A- A., 1 n 1, in (3.28) and
using (3.25) yields

(3.29) U.a(x,y, 1)= H (j-i+A-As)
1

li<jn i=1 F(x +y + 2n i- 1 + hi)"

Substituting (3.29) into (3.23), we get the required result (3.20).

4. Preliminaries. Let Q (Q,),, be an upper triangular matrix. Expanding the
Q-Vandermonde

(4.1) a,(t)= H (t,-Q,.t)
li<jn
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in powers of tl, tz," ", tn yields

(4.2) QAn(t) Y. sgn (Tr)( H Qi,j)itn-r(i))+Q*n*(t),
Sn <--i <j-< i=1

-n’(i) -n’(j)

where o**(t) is the sum of all of the terms in the expansion of oAn(t) in which at
least two of the variables q, t2," ", t, occur to the same power. Q**(t) expresses
the extent to which QAn(t) fails to be an antisymmetric function like An(t). We define
the antisymmetrization of fn(t) by

(4.3)
..n(f,(t)) E sgn (Tr)fn(Tr(t)),

Sn

7r(t) (t(), t(2), ",

We have the following lemma.
LEMMA 4.

(4.4)

Proof Let to be a term of oA,(t). If ti and tj where 1 l< <j _-< n occur to the same
power in to I-Ii=l ti, then, since the left side of (4.4) is an antisymmetric function, we
see that the contribution of to to (4.4) is 0. Assume that all of the exponents in to 1-Ii=l ti
are distinct. We claim that

(4.5) to 1-I ti=sgn(r) Qi,i t"-i))+xi<="),
i=1 1-- "_--__n i=1

,tr(i)> r(j)

where

(4.6) "[l" E Sn,

This is clear for m 0. Assume that m > 0. Since the maximum exponent in to 1-Ii: ti
is n and they are distinct, there is a single possibility which fails to occur. The total
of all of the exponents of to I-I= ti is m + (), so the missing exponent is n- m. Since

Hm > 0, there exists k, 1 < k < n, such that tk occurs to the power n in to i= ti. The
exponent of tk in to is at most n--1. Hence 1--< k=< m and tk is chosen from each
possible factor ofoAn (t). We may take 7r(k) 1 and our claim (4.6) follows by induction
with n, m, replaced by n- 1, m- 1.

For 7rE Sn,,,, we obtain

(4.7) n(sgn (Tr) i=]I tn-r(i))+x(i<=m)) det ltJn-i)+x<--m)lnn.

The result follows by using (4.7) and (3.8) to evaluate the contributions (4.5) to the
left side of (4.4).

Let d, (t) be an n-dimensional antisymmetric measure. That is, for all 7r Sn

(4.8) d,(Tr(t)) sgn (r) d,(t).

Multiply both sides of (4.4) by d, (t) and integrate. The Jacobian of the transformation
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ti t(i), 1 =< _-< n, is sgn (r). Using (3.8), we obtain

(4.9)
ti QA,(t) d(t)

i=

1<= "<=n i=1
7r(i)> 7r(j)

When Qi,j 1, 1 =< <j _<- n, (4.9) becomes

(4.10) H tiA,(t) d,(t)=m!(n-m)! t"-i)+x(i<=")d.(t).
i=1 i=1

Comparing (4.9) and (4.10), we obtain

(4.11)
t QA,(t) d. (t)

i-----

m!(n-m)! s.,.
(i)> -n’(j)

Q,,j t, A,(t) d. (t).
i=

It is well known (see MacMahon [21]) that

(4.12)
7rS l<=i<j<=n i=1

rr(i)> rr(j)

For m =0, (4.4) becomes

(4.13) E.( H (t-Qtj))= fi !-1, ---Q)
l<=i<j<=n i=1 (1--)- A,(t).

This is a result of Macdonald [17] for the root system A,_I. See Carter [10, Thms.
10.2.1, 10.2.3] and Kadell [16].

Using the simple identity

(4.14) (a)., (-a)"q(’ aq .,’

we find that

(2k-1) (tjq l-k) _t(.2k-)(,tiq l-k)(4.15) ti
ti 2k-1 tj 2k-I

,j

Thus

t(2k-) (tjql-k)(4.16) qA(k-(t) H -i
l<=i<j<--n ti

is an antisymmetric function and

(4.17) aA(t) A.(t) qA?k-1)(t)

2k-1

is a symmetric function.
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Let m=O, Qi,j=q k, l<-i<j<-n, and choose d(t) so that the left side of (4.11)
is Askey’s integral in (1.11). Using (4.11) and (4.12), we obtain

(4.18)
Io (t,q)o qA2,,k(t dqtl’’’dqti=l tlX--1)(tiqY)
n!q[kx()+2k2()] I F(x+(n-i)k)F(y+(n-i)k)F(ik)

,--1 Fq(x +y+(2n i-1)k)Fq(k)

which is the symmetric version of Askey’s conjecture (1.11). Observe that the integrand
in (4.18) is a symmetric function. This is the first step in Macdonald’s proof [19] of
(1.11) for k= 1.

While we offer only the Laurent expansion (4.2) of QA,(t), the ordinary
Vandermonde A.(t) is capable of many expansions. We have the following lemma.

LEMMA 5. Let Bo {pl(t), p2(t),’"., p,(t)} be a basisfor the space ofpolynomials
in of degree at most n- 1. Then there is a constant c such that

(4.19) det Ip,(t)l.. cA.(t).

Proof. We proceed by induction on s to show that

(4.20) B={t"-I "-,p+l(t), ,p.(t)}

is a basis for all s with 0-_< s -< n, provided the basis Bo is properly ordered. This holds
for s 0 by assumption. Let 0 _-< s _-< n 1 and write "-s-1 in terms of the basis Bs. This
gives

(4.21) n-s-1
Cs, tn-r’Jr Cs,rPr(t).

r=l r=s+l

Since t"--l span (t"-, t’-), C,r cannot be 0 for all r with s+ 1-< r <- n. We
assume that Bo is ordered so that

(4.22) c,s+ 0.

Solving (4.21) for p+l(t), we see that p+l(t) span (B+I) and hence B+ is a basis.
For 0-< s _-< n, we set

(4.23) Ds

n--1 n--1 n--1t 2

t t t
p+(tl) ps+(t2) ps+(t.)

p(t) p,,(2)

Let 0<_-s_-< n-1. Multiply row s+l of D by c,s+ and for each r with 1 <_-r_-< n,
r # s + 1, add C,r times row r to row s + 1. We obtain

(4.24) det(D+z)=cs,+det(D,), O<-s<=n-1,

provided the basis Bo has been properly ordered. The left side of (4.19) is det (Do)
and det (D.)= A.(t). Thus (4.24) yields

n--I 1
(4.25) det Ip,(t)l. 1-I A.(t),

s=0 Cs,s+

as required.
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Kadell 15, Lemma 7] gives a weaker version of Lemma 5. See Gordon and Houten
[12a], [12b] for an interesting special case which is related to plane partitions. We
require the special cases

(4.26) det I(At),->l,, qq)Aq)A,(t),

(4.27) det It-’(Atj)(,-l>l,, A,(t),

and

(4.28) det I(Aq"-’t)<,-,)l.. q2q>Aq)A.(t).

(5.1)

and

5. The casen=2,1=0. LetLc{1,.-.,n}andset

OAn,L(t) A(QX(IL)q, QX("L)t)

l-I (Qx(iL)ti-Qx(jL)tj)
l<--i<j<_n

Qty’L"-iJ H (ti--QX(:iL)-x(iL)t)
l<=i<j<=n

OAn,m,t(t) oAn,{,,-- .,m}l.J{n-/+l,-..,,)(t)
(5.)

A,(Qtl,’", Qt,., tin+Z,’’’, t._,, Qt._t+,,..., Qt.).

The suppo of the measure dt has an accumulation point at 0, but not at
t= 1. We cannot make the substitution t(1- t._+), lin, as we did for (1.3).
This accounts for the asymmetry of the exponent of q in (1.11). Set

0t fo (x-)+x(i) (tiq)
qln,m,l(X, y, k)

=1
t tiqy+X(n_i+l))

(5.3)
(.)a.,o,,(t) .a(#-)(t) d.t...d.t..

The q-multinomial coefficient is given by

(5.4)
a,

In particular,

(5.5) In] -(qn-m+)m-
m (q)

We have the following conjecture.

(5.6)

n ] _(qn-m-t+l)m+!
m, q (q),,(q)t

Conjecture 6.

qln, rn,l(X y) k)-- FI! qt kx()+k(7)+ k(21)+2/<:2()

fi F.,’ (x+(n-i)k+X(i<-m))Fq(y+(n-i)k+g(i<=l))F’(ik)
i=1 F(x+y+(2n-i-1)k+x(i<--m+l))Fq(k)

When m 0 or m n, 0, or m 0, n, (5.6) reduces to (4.18) which is equivalent
to Askey’s conjecture (1.11).
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Observe that the right side of (5.6) satisfies

(5.7) qtkyql qL,m,l(X y, k) qtkXq qI,t.m(y, X, k).

We should be able to prove Conjecture 6 if we could establish the symmetry (5.7). We
have the following theorem.

THEOREM 7. Conjecture 6 holds when n 2 and O.
Proof. Askey [6] has shown that (1.11) holds when n 2. Thus (4.18) holds when

n 2 and (5.6) holds when n 2, rn 0, and when n m 2, 0. We must treat
the case n 2, m 1, =0. Observe that

(tiq)oo (tiq)o
(5.8)

tiqy+)oo tiqY)
(1 t,qy)

and

(5.9) (1 tqY)(1 -t2qY) 1 -qY(t + t2)+ q2Yt, t.

Since (qk)An,o,o(t)qA(nk-)(t) --qAank(t) is a symmetric function, we obtain

(5.10) qI,o(X, y + 1, k) qI2,o(X, y, k) 2q qI,l(X, y, k) + q2y qi2,2(X, y, k).

The result follows by solving (5.10) for qI:.(x, y, k). V
The case n--2, rn 1, =0, provides an interesting summation formula for a

nearly well-poised 3b. We have the well-known q-binomial theorem (see Andrews
[2, (2.2.1)])

(5.11) bo[a (at)oo
q,

(t)o’ Itl<l,

where the basic hypergeometric series is given by

(5.12) s+4)s[ a’a2’’’’’a’+l ] (a)n’’’(as+)n xn
b b, b

q, x., (q o

Using the special case

(5.13)
\ i ak ,=o (q),

q ta

of (5.11) and (1.10), we obtain

fot Iot (tlq) (tq) 2k(t2q 1-kqI,l(X, y, k) tt- (tqY) (tEqy) tl
\ t )2k

2k (q-2k)i q(l+k)i ,x+2-i dqt
(tlq)o

i=o (tl )

dqt dqt2

(5.14) tj+2k_ t2q)oo
dqt2

(t2qY)

k (q-k),q(l+k) F,(x+2k-i+ 1)Fq(y) F(x+ i)Fq(y),--oE i-i Fo(x+y+2k- i+ 1) Fq(x+y+ i)

r (x)r (x + 2k + 1)rq(y)r(y)
Fq(x + y)rq(X + y + 2k + 1)

q-2k, q-2k-x-y, qX
32 -2k-x, x+yq q

qy+k+l I
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The first equality in (5.14) holds since we have added an antisymmetric function to
the integrand. By Theorem 7, we have

(5 15) qlal(x,y,k)=qk(l+qk)Fq(x)Fq(x+k+l)Fq(y)Fq(y+k)Fq(2k)
rq(x +y+ k)rq(x +y+ 2k + 1)ro(k)

Equating (5.14) and (5.15) and solving for the 3b2 yields

3qb2[q-2k, q-2k-x-y, q qy+g+,]q-2k-x, qX+y
(5.16)

Fq(x + k + )rq(y + k)ro(x + y)rq(2k)qk,(1 + qk)
Fq(x + 2k + 1)r(y)ro(x +y+ k)ro(k)"

This may be written as

-ak, a, b
ql-k ] (qk+)k(abqk+l)k

(5.17) 34: -./ -k/ q, lab
q a, q b (aqk+)k(bqk+i-k"

Compare this with

[ q-2k, a, b q2_k/ ] (qk+l)k(abqk)
(5.18) 34 k/ 1-k/ q, ab k

which is due to Jackson [14]. Carlitz [9] gives another proof of (5.18) using some
q-analogues of quadratic transformations.

6. A 0roof of Conjecture for h = l, I =0. Although our q-integral is a discrete
sum, the integrand vanishes if any two of the variables tl, :, , t, are equal. As with
(2.1), we obtain

fol X(tlO)[Itl t(x_l)+x(iNm (tiq)m
qI (x, y, k)= m t (tqY) t ,=2 (t,qY)

(6.1a)

qA(t) dqt:"" dqt] dqt,,

fo (tq) [I1 I+(n-m) tx-l) xx -it(x--1)+x(iNm) (tq)
(tqY) t t =1 (tqY)

(6.1b)

A(t) dqtl’’" dqtn_lJ dqtn.

It is easy to use the q-beta integral (1.10) to obtain a recurrence relation as we
did in 2. Equation (1.9) gives

(6.2) lira
(1 q)

Fq(x) lim Fq(x + 1) 1.
o (l-q) o

Under the hypotheses of Lemma 3, we obtain

lim
(1 qX) fo t_ (tq)6.3

o (1- q) tqY)
f(x’ dt f(O9 0).

In replacing (2.2), we must change dqt to dqU. This shows that (6.1a) contributes 0
to the limit in (6.4) below. Taking f(x, t) to be an (n- 1)-dimensional q-integral as in
(2.6), we obtain

(6.4) lim
(1-qX)

Im(X,y,k)=(n-m)qI_,(2k, y,k)
o (l-q)
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This is valid for all m, 0 <= m <-_ n, using the convention

(6.5) qin_l,n(X, y k)= qI._,._(x, y, k).

The cancellation argument for (3.6) gives

(6.6)
qI.m(x,y,k)=m(n-m), -it(x-)+x(i<-m)+("-i) (tiq)

i= tiq
y )m

Setting A qr in (4.26) and solving for A.(t), we obtain

(6.7) A.(t) q-tyq)+() sgn (Tr) lI (tiqY)(.(i)_).
Sn i=1

For k 1, we expand the Vandermonde in (6.6) using (6.7). This yields

(6.8)
qI,,,m(X, y, 1) m!(n- m)!q-ty()+()l

Fq(x+n-i+x(i<-m))Fq(y+n-i) qUn,m(X,y, 1),
i=1

where

(6.9) qUnm(X y 1)= Z sgn (Tr) lYI 1

s. ,= F(x+y+n-i+Tr(i)-l+x(i<-m))"

Since q Un,m(x y 1) is a function of x +y rather than of x and y, we have

(6.10) qU.,(x, y, 1 U.,,. (0, x + y, 1).

We evaluate qU.,m(X, y, 1) using the argument of 3. We proceed by induction on
n and let 0 -< m < n. By (6.8) we obtain

(6.11)

lim (1-qX)qInm(X y, 1)= m(n-m)q-ty(9+()
(l-q)

Fq(y) H Fq(n-i+x(i<=m))Fq(y +n-i) qUn,m(O,y, 1).
i=1

The recurrence relation (6.4) and our induction hypothesis give

lim
(1-qX)

qI.,.(x, y, 1)
-,o (l-q)

(6.12)

(n m) qln-,,m(2, y, 1)

m q q[(’)+2(’)]=(n-m)(n-1)!

-i Fq(n_i+l+x(i<_m))Fo(y+n_i_l)II
i=1 Fq(y + 2n i- 1 + x( <= m)) rq(i).
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Solving (6.11) and (6.12) for q Un, (0, y, 1), we obtain

qU,,,(0, y, 1)=[n-l] q
m q Fq(y)

_r (1 qn-i+x(im)) I’q( i)
ll
,=1 (1-qy+"-’-I) Fo(y+En-i-l+x(i<-_m))

(6.13) --In] qtyq)+,,+3q)l l__(1-q"-m)
m r(y) (1-

1 (1 qn--i+X(im)) rq(i)
11
,=1 (1-qy+"-’-I) F(y+2n-i-l+x(im))

_In] qt,(9+(7)+() r(i)
m q =1Fq(y+2n-i-l+x(im))

Replacing y by x +y in (6.13) and using (6.10) yields

(6.14) qU,(x,y, 1)= In] qtX()+y()+()+3q) Fq(i)
m =1Fq(x+y+2n-i-l+x(im))"

Substituting (6.14) into (6.8) gives

ro(x+n-i+(iNm))rq(Y+n-i)
,1 Fo(x+y+2n-i-l+(iNm))

in agreement with Conjecture 6 for k 1, 0.

7. mff q-lge fCeee fr 1. A q-analogue of Conjecture
2 is given by the following conjecture.

Conjecture 8. Let denote a paition I I. NI 0 with at most n pas.
For all k 0 there exists a homogeneous symmetric polynomial os,() with leading
term= t, such that

(7.1)

where

We now show that Conjecture 8 holds for k- 1 with

(7.3) qS,,x(t) s,,,x(t).

(qk(j--i)+Ai--Aj) k(7.2) qfk,., 1-I (1 q)kl<_i<j<_n
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Since the integrand is a symmetric function and contains A,(t) as a factor, the argument
for (2.15) and (6.3) yields

(_1.. q(7.4) lim qln, (X, 1) n _I,(AI,A2,...,A
,-o (1 -/-)- ,,2,..-,a._,,o) Y, qln ._,)(2, y, 1)

Substituting (3.21) into (7.1) gives

(7.5) qI.,x(x, y, 1): nl tx_l)+(n_i+Xi .(tiq) A.(t) dqtl dqt..
i=1 tiqy)

Using (6.7) to expand the Vandermonde in (7.5) yields

(7.6) qIn,k(X y, 1) n q-y(;)+(;1 fi rq(X + n + A,)Fq(y + n i) qU.,a(x, y, 1),
i=1

where

(7.7)

We have

qU k(x, y, 1) Y sgn (Tr) fi 1

zrS i=1 Fq(x+y+n-i+h,+cr(i)-l)"

(7.8) qU.,x(x, y, 1) q U.,(x,-a.,...,a._,-x.,o)(0, x’+ y + A., 1).

We proceed by induction on n. We treat first the case A. 0. By (7.6) we have

ll’no (1
n--1

(7.9) nq-Y<)+<)1Fq(y) H Fq(n + Ai)Fq(y + n i)
i=1

qU..(,........._.o)(O, y, 1).

Our recurrence relation (7.4) and our induction hypothesis give

lim
(1 q)

qI.,(,,,...,,._,,o)(X, y, 1)
o (l-q)

n(n 1) q?-1),+2.,)+2.;) qf_,(a,.,,...,._)

(7.10)
Fq(n- i+ l + A)Fq(y+ n- i-1)

i=1 Fq(y+2n- i-l+

n qZP2
=<=.-1 (1 -q)

Fo(n + 1 + X,)rq(y + n i- 1)
II
i=1 Fq(y + 2n i- 1 + Ai)

Solving (7.9) and (7.10) for qU.,(,,x:,...,,,_,,o)(O, y, 1) yields

q U.,(,1,,,...,._,,o(0, y, 1)

(1_ (-,+,,-)
(7.11)

1=i<=.-1 (l-q)
.-1 (l_q--i+,) 1

=l (l-q) = Fq(y+Zn-i-l+
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Replacing y by x + y + A, and hi, 1 _-< <_- n 1, by h An, 1 --< _-< n 1, in (7.11) and
using (7.8) yields

qUn,k(x, y, 1) q[E=(i-1);i+x()+y()+3()]
(7.12)

H
(l_q-i+xi-xj) fl 1

l_-<i<j=<, (1 q) i=l Fq(X + y + 2n 1 + A)"

Substituting (7.12) into (7.6), we get the required result (7.1).

8. The case > 0. The following special case of Lemma 4 is important enough to
be labeled a theorem.

THEOREM 9.

(8.1)

where

M{1,...,n},lMl=m iMk.JJ
L{1,...,n}-M,ILI=I

t, oA.,(t) QCn,m,l, e.,+j(t)A.(t),

(8.2) QCn,m,l, J o l-j o"
Proof It is easy to see that since A,(t) is an antisymmetric function, so is the left

side of (8.1). Explicitly, m!(n-m-l)!j!(l-j)! times the left side of (8.1) equals

(8.3) "’n ( mji=l ti oAn’{m+’"’"m+l’(t))
Thus (8.1) holds for some constant oC,,m,O, which can be evaluated using (5.1) and
(4.4). Alternatively, we set

(8.4) t,=Q’, l <-i<-n.

The left side of (8.1) vanishes unless L= {n- l+ 1,. ., n}. Thus

Q[,i] Q[E,,’I) A,(Q,...,Q"-IQ"-+2,...M={1,...,n-l} J{n-l+l,...,n}

(8.5) oC,,m,lO Q2’ A, Q, Q" ).
S{1,--.,n}

The case a q- t= qU+x, of the q-binomial theorem (5.11) is

(. (q’x (-xl.
n=O q

Replacing q by Q and equating coeNcients of x yields

(8.7)
Ac{s,...,s+N--1} Q
A=

Using (8.7) to evaluate the three sums in (8.5) and solving for oC,.m.O, we obtain (8.2),
as required.

The parameter 0 introduces the factor

(8.8) fi (1-at,)= 2 (-a)e,,(t.-‘+,’’’, t.)
i=n--l+l j=O
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with A qY into the integrand in (5.3) and replaces the Vandermonde
(recall (5.2)). Let d.(t) be an n-dimensional antisymmetric measure. We have

I-[ ti (1 Ati) QA’,O,l(t) d. (t)
i=1 i=n--i+l

(8.9)
(_A)j I-I t, t, oA’,O,l(t) d,(t),

j=0 j i=1 i=n--j+l

since each of the (]) terms in the expansion (3.7) of the elementary symmetric function
in (8.8) gives the same contribution to the integral. Multiply both sides of (8.1) by
d,(t) and integrate The (m,)(j) terms on the left side of (8.1) give the same contribution
to the integral as do the (m-) terms that arise when the elementary symmetric function
on the right side is expanded. We obtain

m, j i=
ti QA’,o,I(t) d (t)

(8.10)

IIQCn’m’l’J
l +j i=

Solving (8.10) for the integral on the left side and substituting into (8.9) yields

t (1 Ate) QA’,o,(t) d (t)
i= i=n--l+l

(8.11)
1

(-A)ioc’,m,,,
+j

I-I ti A’(t) d.(t).
( H)j=o m i=1

m,

Setting Q= qk, A qY, and taking the appropriate choice of d.(t), (8.11) becomes

1 (--qY)J(qk)C’,m,t,j( n )ql’m+j(x,y,k).m+j
(8.12) qI’,m,l(x,y,k)-( n)y=om,

We have the following theorem.
THEOREM 10. Fix n _-->2, x, y and k >-0. Conjecture 6 (5.6) holdsfor all m >-0, l>-_O,

m / <-_ n, if and only if it holds for all m, 0 <-_ m <- n, when O.
Proof. We must show that (8.12) holds when we substitute (5.6). Dividing by

this is

(8.13)
(qy+(n-l)k; qk)l

(qX+y+(2n-m-l-1)k; q k)l

kl k (n 1)k k(q- ;q )(q ;q )j k

j=O (c’i -k)--x-’-’-(’-’n----’---2-; q’-)- q

of the well-known q-analogue (Slater [28, (3.3.2.2)]) of Saalschfitz’s theorem. I-]

(8.14)
(d/b),,

b"
(q-n)i(b)i

This is equivalent to the special case (Slater [28, (3.3.2.7)])
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We have thus proved Conjecture 6 when n 2 and when k 1.
An alternative special case of the q-analogue of Saalschiitz’s theorem is the

q-analogue (Andrews [2, Cor. 2.4]) of Gauss’ theorem. We require only the terminating
case (Slater [28, (3.3.2.6)])

(d/b)._ (q-"),(b),
(.5 q

Set

(8.16)
qJ,,,,,l(X, y, k) t’-l)+x(i<-m) tiqx(’<="-O)

i=1 (tiqY)

We have the following conjecture.
Conjecture 11.

qJn,m,l(X, y, k)= n!

(q-)An,m,l(t qAk-i)(t)dtl’’’dtn.

11 )
q[kX()+xl+k(n)+k(t)+2k2()]

(8.17)
m,l

Fq(x+(n-i)k+x(i<-m))Fq(y+(n-i)k+x(i<-l)) Fq(ik)
,=1
It Fq(x+y+(2n_i_l)k+x(i<_m+l) rq(k)

We may take Q=q-k, A= 1, in (8.11). Substituting into (8.17), we obtain an
identity which is equivalent to (8.15) with base qk. This proves the following theorem.

THEOREM 12. Fix n>--2, x, y and k>-_O. Conjecture 11 (8.17) holds for all m>-O,
>- O, rn + <- n if and only if it holds for all m, 0 <- rn <= n, when O.

Since our formulas (5.6) and (8.17) for qI, and qJ, agree when /=0, they are
equivalent by Theorems 10 and 12.

9. Further extensions of Selberg’s integral. Following Askey [6], we may give
q-analogues of Selberg’s integral using a number of known q-analogues of the beta
integral. Let

(9.1) f(t) dqt=(1-q) 2 q"f(q").

We may use

(9.2) (x-’) (-cqX+yt)
(-ct)

dqt
(-cq’) (2c-’ql-X) r(x)r(y)
(-c2 (=-S r(x+y)’

where there are no zero factors in the denominator of the integrand. This is given by
Askey [5]. Set

qFnml(X,C y, k) tx-1)+x(i<--m) (--qX+y+2(n-1)k+x(i<----m)+x( i+l<----l)ti)
i=1 (-cti)o

(9.3) (qa)An,m,l(t qA(.2-’)(t) dqh dqt.
and

(9.4)
t(x-1)+X(i<=m) (--cqX+y+2(n-1)kti)o

CG.,.,,t(x, y, k) .,i -l+x(m<i<=n-l)q
i=1 (-cq ti)

A(2k-’)(t) dqt, dqt..(q-bA.,.,l(t) -.
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Since k_-> 0 is a nonnegative integer, all of our q-analogues of A2nk(t) are polynomials.
Thus, qFn and qGn divided by the nth power of (9.2) are rational functions in q, qX,
qY and c. Similar remarks apply to q/ and qJ,. For any integer/z, we have

-q(-x--2(-’kqFn,m,l(X y, k)
(9.5)

=q-[l(nx+m)+(2l-l)k()]qJn,m,n-m-(x’-x y 2(n 1) k, k)

and

-q(-:’-y-20’-’klqGn,m,l(X y, k)
(9.6)

q-[(Iz-1)(nx+m)+(2l-l)k(;)] qln,m,n-m-I(X X y 2(n 1)k,k).

Since a rational function is determined by finitely many values, we see that Conjecture
6 (5.6) and Conjecture 11 (8.17) are equivalent to

m, (qk)
qFn,m,l(X, y, k) n! qtk’’(’--k(7-k(9

( m: ,)
(9.7) fl (--cqX+2(n-i)k+x(i<=m)) (--c-lql-X-2(n-i)k-x(i<=m))

i=1 (-c) (-c-’q)

Fq(x+(n-i)k+x(i<-m))Fq(y+(n-i)k+x(i<-l)) Fo(ik)
=1 Fq(x+y+(2n-i-1)k+x(i<-m+l)) Fq(k)

and

(_cqX+2(n-i)k+x(’<----m)) (__c-l ql-X-2(n-’)k-x(’m))
(9.8)

= (-c) (-c-’q)

Fq(x+(n-i)k+x(im))Fq(y+(n-i)k+x(il)) Fq(ik)

= Fq(X+y+(Zn-i-1)k+x(im+l)) Fq(k)

respectively, with replaced by n-m-L This establishes the equivalence of our
formulas (5.6), (8.17), (9.7), and (9.8) for qI,, qJ,, qF,, and qG,, respectively.

Our entire analysis goes through as before with the cases =0 and m + l= n
interchanged. Carlitz’s q-analogue (5.18) of Dixon’s theorem and its companion (5.17)
also arise in the case n 2. Rather than give a direct proof, we may use (9.5) and (9.6)
to "transpoW’ Theorems 10 and 12 to apply to F, and G,. For k 1, we may take
m + n and use (3.1) and (4.26) with A =-c.

Askey’s last conjecture in [6] is based upon- -’) r.(x)r.(y)a (_tc-q)(td q)
dqt=

cd (-cd-’)(-d(9.9) (Std7iq) (c+d) (-qYcd-)(5) Fq(X+y)
where there are no zero factors in the denominator of the integrand and

(9.10) f(t)dqt=c(1-q) Z q"f(-cq")+d(1-q) q"f(dq").
n=0 =0
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This is given by Andrews and Askey [3]. We set

ca k)
(-tic-lq)

=1 (-t,c-lqX+X(’<-’))oo (t,d

>A....,(t) a->(t)dt...dt.(9.11)
and

I_! I_ -I (--tic-lqX(i>m)) (t’d-lqX(i<-"-l))C’aqK...,l(x, y, k
i=1 (--tic-lqX) (tid-lqy)

(9.12) (q-k)A.,r,l(t) q_.A(2k-1) (t) dqtl’’’dqt..
We shall work with oH.. We have the following conjecture.

Conjecture 13.

C’dH.,.l(x,y,k)=nV

(9.13)

[m l] qk)
q[k(")+k( 2)-()()+k2()

(cd) l+"-i)k (-cd-1)
=1 (c+ d) (--qY+("-)k+x<--cd-1)

(-dc-1)
(__qX+(n-i)k+x(i<-m)d-l)

(I Fq(x+(n-i)k+x(i<-m))Fq(y+(n-i)k+x(i<--1)) Fq(ik)
i=l rq(X+y+(2n-i-1)k+x(i<--m+l)) rq(k)

The substitution ti - -t.-+l, 1 =< -< n, gives the q-analogue

(9.14) c’dHnml(X y, k)= d’CHn,l,m(y X, k)q q

of the symmetry (1.3). We cannot use this substitution for qI., qJn, qFn, or qG. since
the lower limit of integration is 0. The substitution t t_i+l, -< _-< n, only gives again
the equivalence of our formulas (9.7) and (9.8) for qF. and qG.. Unfortunately, (9.14)
does not imply the symmetry law (5.7) of qI.. If we could establish (5.7) (or an
equivalent symmetry of qJ., qF., or qG.), then we should be able to extend Selberg’s
proof [27] by expanding our q-analogue of A2.k(t) in powers of t, 1 <-- --< n. We cannot
make use ofthe symmetry (9.14) since we must expand in terms of (-tc-lqX)., 1 <- <= n,
and (td-lqy),., 1 <-i <= n. We can do this for k 1 using Lemma 5. Our proof of the
case k 1 works because our key results (6.9) and (7.7) show that qU,,.(x, y, 1) and
qU.,x(x, y, 1) are symmetric in x and y. This gives the case k 1, m 0, of (5.7).

The usual argument for obtaining a recurrence relation gives

(9.15)

lim
(1- qX) c,d H. (x, y, k)

x-o (l-q) q

cd (-cd-1)oo
=(n-m)

(c+ d) (-qrcd-’)o
qkmc(n-m-1)

i=1 ti (2k-1)+x(im)

n-i1 (tid-lq)o A(2k_
q’-n-1

i=1 (tid-lqy)o (q)A 1,m(t) 1)(0 dqtl dqtn-1.



966 KEVIN W. J. KADELL

Since

(9.16)

t2k_l)+X(im) (--cql-k-x(im)ii / (2k--1)+x(i<m)

ct’--(cq-yt’<-(-tq-%-),__/t,.,

we obtain

(9.17)

lim
(1-qX) C’dH.,,(x,y,k)=(n-m)-------

x-o (l-q) q

cd (-cd-)
(c+ d) (-qYcd-)

c2k(.-1) cq,a H._ (2k, y, k).q 1,m

To treat the case k 1, set A -qXc- and A qYd- in (4.26). In short order we
have

(9.18) -I rq(x+n-i+x(i<-m))r(y +n-i)
i=1

Y. sgn(r) fi 1

s. ,--1 rq(x+y+n-i+’n’(i)-l+x(i<=m))"

Observe that the sum on the right side of (9.18) equals U,,,m (X, y, 1) (6.9), which we
have already (6.14) evaluated. Equation (9.13) follows for k 1, =0.

Since (6.14) also arises in connection with orthogonal polynomials and plane
partitions, it is an important sum. As with all of our q-analogues of Selberg’s integral,
it is really a polynomial identity. Set z x +y and multiply both sides of (6.14) by

(9.19) (q- 1)(9 fi Fq(Z+2n-i-l+x(i<-m)).
i=1

Equation (6.14) then becomes

(9.20)
E sgn (’tr) fi (qZ+2"-’-i)+x(’<=’)),.,.t,_l
rS i=1

qtzc)+u<9+s(p l-I (q-+x<<-")- q-S+xs<-")),
li<jn

which is equivalent to the case (4.28) of Lemma 5 with A q’+" and t q-x(s--<’),
l<=j<-n.

We may give the same type of results for ’dK..,.,. The formula is

(9.21) C’dqK,,..,,t(X, y, k)= q[Xl+ym] c,dqnn,m.l(X, y, k).

An important generalization of the Schur function is given by

(9.22)
det I(aS.,x(tq det Itj’-’l..
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Set A=-qXc-1 in (9.22) and A=qYd- in (4.26). Using our evaluation (7.12) of
qUn.,(x, y, 1), we obtain

(-t,c-lq) (t,d-lq)’dqln.(x, y, 1)

(-qc-S.,(t) A(t) dqh’"dq t.

(9.23)
,<. (1 q)

cd (-cd-). (-dc-)
(c+d) q+-’cd-)( q+-’+dc-)i=l

r(x + n + A,)r(y + n i)

= Fo(x+y+2n-i- I+Ai)

Askey and Wilson [7] give the ohogonal polynomials for an impoant q-analogue
of the beta distribution. Rahman [25] conjectures a q-analogue of Selberg’s integral
using this measure. It would be interesting to apply our methods in this case.

Note added in proof. Aomoto [A] has proven Conjecture 1 for 0. The conjecture
follows by (3.18) and (3.19). Kadell [K] extends Aomoto’s proof to treat (1.11) and
Conjectures 6 and 11.
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A PROOF OF ASKEY’S CONJECTURED q-ANALOGUE OF
SELBERG’S INTEGRAL AND A CONJECTURE OF MORRIS*

KEVIN W. J. KADELL’

Abstract. Aomoto has recently given an extension of Selberg’s integral. We extend his proof to the
q-case and establish a conjecture of Askey. Our result is equivalent to a constant term identity for the root
system An. This extends a conjecture of Morris.

Key words. Selberg’s integral, Aomoto’s extension, q-beta integral, Morris’ theorem, Cauchy-Selberg
labeling for A.
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1. Introduction and summary. In 1944, Selberg [15] gave an elegant evaluation of
an important multivariable beta type integral. Macdonald 12] obtained the case q 1
of his constant term conjectures for Bn, Cn, D and BC.. Recently, Aomoto [4] proved
an extension of Selberg’s integral to which we may add the parameter 1. This is the
following.

THEOREM (Aomoto [4]).

I.,,l(X, y, k) t-)/x<’<-")(1 t)Y-)/x"-+-<--lA(t) dtl dt
i--1

(1.1)

I F(x+(n-i)k+X(i<-m))F(Y+(n-i)k+X(i<-l))F(l+ik)
i=1 r(x+y+(2n-i-1)k+x(i<-m+l))r(l+k)

where x(A) is 1 or 0 according to whether A is true or false,

(1.2) A,,(t, , t,,): A,,(t)= I-I (ti- tj),
l<_i<j<--n

and, as holds throughout, Re (x)> 0, Re (y)> 0, and n, m, l, and k are nonnegative
integers satisfying rn + <-n. We omit when O.

The substitution ti--> (1 t,_i+), 1 -< =< n, gives the symmetry

(1.3) I,,,,,(x, y, k)= I,,l,,(y, x, k).

This is essential to Selberg’s proof [15] of the case m =0 of (1.1). See Andrews [3]
for a readily accessible version of this argument. This proof did not work in the q-case
since we could not give an appropriate symmetry for Askey’s Conjecture 1 of [6].
Where the symmetry was restored [6, Conjecture 8], the argument failed for other
reasons.

Aomoto’s proof [4] of the case 0 of Theorem 1 relies on a difference equation
involving the extra parameter m. We extend this argument to treat a q-analogue of
(1.1). Our result is Theorem 2.
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THEOREM 2.

qSn,m,l(X y, k) t
i=1

(1.4)

qti )o
qy+X(n-i+l<=t) ti)

I-I t2ik(ql-k)dqtl"’dqt.
l<=i<j<=n \ ti] 2k

q[kx(’)+k(7)+2k2()]

fi Fq(x+(n-i)k+x(i<=m))Fq(y+(n-i)k+x(i<=l))Fq(l+ik)
i=l rq(x + y + (2n i- 1)k + x(i <- m +/))rq(1 + k)

where q is fixed with 0 < q < 1,

(X)o=(x;q)o=l,

n--1

(1.5) (x),, (x; q),, 1-I (1 xqi),
i=0

n>l

(x) (x; q) lim (x),, I-I (1 xq’),
n-oo i=0

and, following Jackson 8],

(1.6) f(t) dqt=a(1-q) . q"f(aq),

(.7) to(x) (. q)(_
(q)oo
(qX)"

The key to Aomoto’s proof [4] is the observation that if

(1.8) F(0, t2,’’’, t,)= F(1, t2,’’’, t,)=0

and F satisfies some simple conditions, then

(.9)

Aomoto sets 0 and takes F to be t times the integrand in (1.1), where 8 equals 0
or 1. Two simple lemmas allow us to eliminate the results of (1.9) for 8 0 and 8 1.
This gives

(x+(n-m)k)
(1.10) I.,(x, y, k)

(x +y+(2n_ m l)k)
I.,_(x, y, k),

The case 0 follows using a recurrence relation given by Selberg 15]. See also Kadell
[10]. Since 1 t+(1- t), we have

(.) t.,.,(x, y, )= L,m+.,(X, Y, )+ ,,,+(X, y, ).

Theorem 1 now follows by induction on I.
In 2, we introduce the q-derivative corresponding to the q-integral (1.6). A

simple telescoping sum provides a q-analogue of the fundamental theorem of calculus.
We extend (1.9), thus taking the first step in the proof of Theorem 2.
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In 3, we give two lemmas that extend the basic steps of Aomoto’s proof [4] to
the q-case. Unfortunately, we cannot eliminate from our equations as easily as we can
when q- 1. This is because the integrand of (1.4) with rn- l- 0 is not symmetric in
tl, t2," ", tn. In 4, we recall Lemma 4 of Kadell [10] and give a useful alternative
formulation. This allows us to treat all of the difficulties arising from the asymmetry.
We also recall a recurrence relation [10, (6.4)] and obtain a recurrence relation for
qSn.m(X, y, k).

In 5, we use simple manipulations of our results to obtain a q-analogue of (1.10).
We then establish the case l-0 of Theorem 2.

By Lemma 4 of [10], this gives the case l-0 of Conjectures 6 and 11 of [10].
These conjectures now follow by Theorems 10 and 12 of [10]. In 6, we use the same
approach to prove Theorem 2.

In 7, we show that Theorem 2 is equivalent to a constant term identity for the
root system An. Set

i=1 [i b-x(i--m)

where a and b are nonnegative integers. Let

(1.13) oCSn,m,l(a, b, k)= C.T. qCSn,m,l(a b, k; t),
where C.T.f(t) is the constant term in the Laurent expansion of f(t) in powers of
tl, t2," ", In. Our result is

THEOREM 3.

q a+b+(n-,)k+x(,<=l)( q ,k(1.14) qCSnml(a, b, k)- 1-I
i=l (q)a+(n-i)k+x(i<--m+l)(q)b+(i-1)k-x(i<_m)(q)k"

The case m- =0 was conjectured by Morris [14, (4.12)]. He proved-[14, 6]
the case m -0, q 1, by using a version of Selberg’s integral which extends Cauchy’s
form of the beta integral.

2. q-derivatives. Set

dq
F(t)

F(t)- F(qt)
(2.1)

dqt t(1-q)

A q-analogue of the fundamental theorem of calculus is given by

dq
F(t)dqt (1 , aq

F(aq )-F(aqn+l)
=o aqn(1-q)

(2.2)

Z F(aqn) F(aqn+l) F(a)-lim F(aqn).
n=O

Let

(2.3) qWn(x, y, k)__ ni_i tlx-l) (qti)
I-I tikkq

\

i=l (qYti)m lNi<jNn ti] 2k

denote the integrand in (1.4) when rn l-0. For 1 <-i<j <-_ n, the function

t(2k-1)( l-k tJ(2.4) qA(,2k-1)(t) 1-I -, q
l<=i<j<--n til (2k-1)
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vanishes when ti=tj and on k-1 lines on one side of this line and k-1 lines
symmetrically located on the other side. Thus (see Kadell [10, (4.15)])

A(2k-qAk-(Tr(t)) sgn (Tr) q_ (t),
(2.5)

7r(t) (tl), t2),""", t<,,)),

where 7rS,. To obtain a q-analogue of A,k(t), we may multiply qA,2k-1)(t) by
I-Ii<-,<j<-, (t,--qkt) (as in qW,(x, y, k)) or by I]l_-<,<j-<, (t,--q-kt). Thus qW,(x, y, k) is

A-not symmetric in fi, t2, t, even though q 1)(t) is antisymmetric (2.5). The
reader should carefully observe the role played by this last factor throughout the proof
of Theorem 2.

We now assume that

(2.6) 1 <- rn _<- n, Re (x) > 0, Re (y) > 1 and is a nonnegative integer.

This assures that qWn(x, y, k) is 0 if ti 1/q for some i, 1 -<_ -<_ n. Hence, we may extend
the range of each integration in (1.4) to 1/q. We adopt the obvious notation for partial
q-derivatives. Since rn > 1 we see that Hi= t vanishes when t =0. Using (2.2), we
obtain

q I/q

(2.7) 0 tl
i=

tiqW,(x, y, k) dtl"" dqtn.

In order to compute the partial q-derivative above, we require a product rule for
q-derivatives. It is

dq I Fv(t)= l----( Fo(t)- I F(qt))dqt v=l t(1-q) v=l o=l

(2.8)
1 v-1

y I-[1Fi(qt)(F(t)-F(qt))t(1 q) =1 i= j=v+l
F(t)

Fi(qt)-d-qtFv(t) (’I F(t).
v=l i=1 j=v+l

A few simple computations give

(2.9)

Oq ( S2k( ql-k) ) (1-- q2k) 2k-1)(1-k)OqS 2k (l-q)
s q

(2k-l)

(l-q) (s--qkt) q
2k’

(2.10)

(2.11)

and

do t. (1 qX) <x-)

dot (1 q)

dq (qt) (1-q<y-’)) 1 (qt)o
dqt (qYt)- q

(l-q) (1-qt) (qYt)"

Let v run from 2 to n and take s q, tv, in (2.4). Using our product rule (2.8)

(2.12) qs)2k( q,-k) q2k S q-kt) szk( ql-k)2k (s--qkt) 2k’
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we obtain

(2.13)
aq( lq

tgqtl l<--i<j<-n
tk q

ti/2k/ (l--q) o=2 j=2 (tl--qktj)
1

H tk(ql-ktj(/1-- qktv) l_-<i<j, li] 2k

Continuing with our product rule (2.8), we use (2.10) followed by (2.11) to compute
the partial q-derivative in (2.7). We obtain

(2.14)

(1-q2k) q2k(-2) q2k(,-l)(1--qx+)qa.,,.(x, y, k)+ qK.,.(x, y, k)
(i-q) = (l-q)

q2k(n-l)+x+8+l (I q(y-l)) ,
(1- q)

qE...(x, y, k),

where

(2.15)

(2.16)

fl/q fl/qqAn,m(X y, k)= I (tl q-ktj) 1

Jo o j=2 (tl--qktj) (tl--qkt)

I-[ t,q W.(x, y, k) dqtl"" dot.,
i=1

fl/q fol/q (tl__q-ktj)
qKn,m(X, y, k)

o = t qt;)

t l-I ti W.(x, y, k) dqt’" dqt,,

(2.17) I/q fOI/qE.,.(x, y, k) fi (tl--q-ktj) 1

j=2 il Z-i" (1 qtl)

H tiqW(x, y, k) dtl"’" dqt,.
i=l

3. Two lemmas. The effect of the factor (tl--q-ktj)/(tl--qktj) in (2.15), (2.16),and
(2.17) is to replace the factor (tl-qkb) of qW.(x, y, k) (which "glues onto" one end

-kA2k-(t)) by (h-q tj) (which "glues onto" the other end). Observe thatof q--n

i (t--q-ktj) 1
W.(x, y, k): fi -it(x-) (qti) Ak_)(t

j--2 (tl--qktj) (tl--qktv) q
i=1 (qYti) q

(3.1) H (t,--qktj) fi (tl--qktj)(t--qktj)
2<=i<j_<--_n j=v+l
ivj

v--1 v--1

H (h-q-ktj) 1-I (t,--qkto)
j=2 i=2

Since

(3.2) tl q-ktj) _q-k( tj qktl)

the function (3.1) is antisymmetric in t and t. We have Lemma 4.
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LEMMA 4. Let a be a nonnegative integer and Sym (t) be symmetric in t and tv
where 2 <- v <-_ n. Then

l/q J’l/q v-l (tl--q--ktj) 1
t’ Sym (t) I-I

ao o j=2 (t,--qkt:) (q--qkto) qW,(x,y,k) dqt,

’ f’/ Io’/(-’ )-l-i)(3.3)
(1 + qak) o ,=o" t(qktv)( Sym (t)

1
,= ;, ,W.(x, y, k) dqtl dot..

oof Let X denote the integral in (3.3). Interchanging tz and t gives

l/q (/q - (q--q-kt) 1
(3.4) X t Sym (t) qW,(x, y, k) doff.., dot,

o o =2 (q--qkt) (q--qkto)

since Sym (t) and (3.1) are symmetric and antisymmetric, respectively, in t and t.
Obsee for a =0 that X =-X and hence X =0. We have

a--1

(3.5) (t--qkt)-- t(qkto) (--’)(t--qkto) i=0

The result (3.3) now follows by adding qk times (3.4) to X (3.3), simplifying the
integrand by (3.5), and dividing by (1 + qk).

a k) where equals 0 or 1. For 2 < v < m,We now apply this lemma to qAn,m(X, y,
we may take a , Sym (t)== t. This gives

(3.6) oA,,(x, y, k) O, 2 v m,

t,
(q-q kt)

qA"’m(X’Y’k)=(l+qk) go ,= =2 (q--qkt)
(3.7)

W,(x, y, k) doq.., dot, 2 v m.

For m < v n, we may take a + 1, Sym (t) i=2 ti" We obtain

qA’(x’ y’ k)
l + q)

(3.a
qW(x,y,k) dqq".dot, m<vNn,

1 lOl/qfl/q t fi + qt) 1qA"’(x’y’k)=(l+q2k) o ,= =z (ta--qkt)
(3.9)

,W.(x, y, k) d.t,.., d.t., m < v n.

We have a simple lemma.
LEMMA 5.

(3.10) (X, k)., y, ,K..(x, y, k)+ q +’ (x, y, k)q,

Proof The integrand (2.17) of qE,, x, y, k) equals

tl qt
(3.11)

(1-qq) t14
l qt)

(x, k). The result (3.10) follows directly by usingtimes the integrand (2.16) of qKn, y,
(3.11) to expand the integrand (2.17) of E,,(x, y, k).
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4. A basic lemma. Lemma 4 of Kadell 10] enables us to treat factors of the form
(h--q-ktj)/(tl--qktj). We require the integral formulation [10, (4.9)]. This is

ti H ti Qia t d, t E I-I Qi,
"=1 l<---i<j<--n rSn, l<---i<j<n

"rr(i)> r(j)
(4.)

f’’" f i=ll t"-i)+x(i-m) d,(t),

where d,(t) is an n-dimensional antisymmetric measure and

(4.2) S..m={rS. lTr(i)<=m iff i<--m}.

For any choice of Qa, 1 =< <j =< n, we need only be concerned with the sum in brackets
on the right side of (4.1). Since

(4.3) (6- Qa6 -Q,a( 6 Q-’, 6 ),

we may permute the 6, 1 < < n, thus changing H= 6 to the product of any m of the
6, 1 _<- -< n. This is precisely what we require and, fortunately, there is an easy way to
do the computation.

In the proof of Lemma 4 of [10], we showed the following. The terms in the
expansion of 1-I= 6 l-I<=<<=. (6- Qa6) in which no two of the variables 6, 1 -<_ i-< n,
occur to the same power are of the form

(4.4) 1-I t H 6 1-I (-Q,6)=sgn(cr) H Q, t"-’<))+’<i<="),
i=1 li<j<_n l<--i<j<n l<--i<j<--n i=1

or(i) <’n’(j) or(i)> -rr(j) "rr(i)> (j)

where r S..m. Since d. (t) is antisymmetric (2.5), the other terms contribute 0 to the
integral (4.1). The substitution 6 --> t,), 1-<_ i-< n, gives 1-I=<i<__<.,,)>) Q, times the
integral on the right side of (4.1).

Let [s,t]={iZIs<=i<=t} and let M[1,.] with IMI-m. The terms in the
expansion of 1-I 6 l-I_<<_<. (6-Q.6) with distinct exponents are of the form

6 1-I (-Qa6)=sgn (or) 1-I Q, II t"-))+<’),
<i<jn <--i<j-<-n i=1

or(i)> or(j) or(i)> or(j)

(4.5) H t, H
iM l<i<j<-n

7r(i)< ’(j)

where 7r is in

i[4.6)

We obtain

(4.7)

S., {r S. r( i) <- m iff M}.

H (t,-Q,atj)d,(t)=[, H
l<=i<j<----:n 7rSn,M l<-i<j<--n

r(i)> -n’(j)

f’’" f i=1
fi t"-i)+x(i<--m)d.(t,.

It is well known (see MacMahon [13]) that

(O;
(4.8) Z II Q=.

=s. ,_-__i<j_-__. (1 Q)"
or(i)> r(j)

Q marks the inversions 1 =< <j =< n, or(i) > or(j), of or. We may view r as a word or(i),
1 =< =< n, and let the letters be any set of n distinct numbers.
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Let 7r S..4 and consider i,j with 1 -< <j <_- n. If M, j M, then 7r(i) -< rn <
7r(j). If i M, j M, then 7r(i)> rn => 7r(j). This gives

(4.9) e(M) 2 1
li<j<n
iF:M,jM

inversions of 7r. The remaining inversions have either i,j M or i, j M. These arise
independently from the subwords 7r(i), M and or(i), 1, n] M, respectively.
See Kendall and Stuart [11, pp. 496-512] and Goulden and Jackson [7, pp. 96-99]
for the multinomial version of this argument. We obtain

(4.10) Z I] Q Qe(M)(Q; Q)m(Q; Q),-,.
=s.,, ,__<,<j<_, (1 Q)"

Equation (4.7) then becomes

(4.11)
I II t, II
iM l<i<j<=n

ti Qtj) d(t)= QeM)
Q; Q)m(Q;

(I- Q)"

ti H t, Qt) d,(t) =(Q; Q),(Q; 1

i= l<--_i<j<--n (1- Q)" m!(n-m)!
(4.13)

t II (-.
i=

Comparing (4.11) and the case M =[1, m], we obtain

iM

(4.14)
Qe(M) ti

i=

Observe that the integral on the right side of (4.11) is independent of Q and M. We have

(4.12) e([1, m])=0, card (Sn,M)= m!(n- m)!.

Set M 1, m] and compare (4.11) and the case Q 1. This yields

By (2.5), the measure

(4.15) d.(t)= fi tlx-’) (qti)oo A2k_
i=1 (qYti)oo q--n 1)(t) dqtl dqtn

is antisymmetric. For =0, the integrand (1.4) of qS,.m(x, y, k) is

(4.16) H t, qW,(x, y, k) dqt, dqt,= H ti II (t,--qkt) d,(t).
i=1 i=1 l--i<jNn

In [10], we studied

(4.17)

qIn,m,l(X y, k) tx-1)+X(i<-m)

i=l

qti )oo
qy+x(n-i+ <--l)

ti )o

A(q, , tn-l, qktn-l+l,’’’, qktn)
A(2k-1)(t dqtl...dqt

H Qt) d. (t).

"f’"f It-i+xi<-m’d"(t)’i=l
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For O, the integrand is

H t, H (t,- t) d(t).(4.18)
i=1 l<--i<j<=n

For Q qk, (4.13) becomes

(qk;qk)m(qk;qk),_m
(4.19) qSn,m(X y, k)= (1--qk)"
We have the recurrence relation [10, (6.4)]

(4.20) lim
(1 qX)

qI m(x, y, k)- (n m) qI_l.(2k, y, k).
x-o (l-q)

Using (4.19) or the same analysis, we obtain

(4.21) lim
(1 qX)

qSn ,(x, y, k)
(1

-o (i-q) (1-q

(4.22)

Let 1 _-< s _-< n. The permutations

II
l<=i<j<=n

are inverses and

(4.23)
Observe that

fi tl Q-l tj)
j=2 (q-Qtj)

(4.24)

The substitution

(4.25)

gives

1

m!(n m)!
qln’m(X y’ k).

Try(t) (t, t," ts_l, t+,, t.),

o’s(t) (t2,""", t, t, t+,’’’, t,,),

sgn (rs) sgn (tYs) (--1) (s-l).

ti Otj) H ti Otj) fi t O-l tj) fi tl Otj)
2<=i<j<=n j=2 j=s+l

-’(--O-’)(s-l) H ti Qtj) fi tj Qtl)
2<=i<j<-n j=2

fi (tl-Qtj)
j=s+l

(_Q-1)(s-1) H (t,(i)- Qt()).
l<_i<j<_n

ti t=s( ), 1 <= <-- n,

f... ff(t) (tl-Q-’tj) H
j=2 }Z;i l<--i<j<--n

t, Qtj) dz (t)

=Q-(-’)f...ff(Tr(t)) H (ti-Qt) d (t).
l<--i<j<--n

We again assume that (2.6) holds. Setting s v- 1, Q qk, in (4.26), our results
(3.7), (3.8), and (3.9) become

q-k(v-2) If/q fl/q I(x, k) tiqW(x,y, k) dqt", dqt,qA,, y, ii_y/_gi ,o i=

(4.27)
-k(v-2)

-q---qS, m(X, y, 2<v<m,=
(l+q

(4.26)

qS,_l,m(2k, y, k).
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(4.28)

(4.29)

0 q-k(v-2) f 1/q 1/q m-1

1-I t, q Wn (x, y, k) dqtl dqtnqAn,m(X, y, k)
(1 + qk) Jo .o

-k(-2)q

k---- qSn m-l(x, Y, k), m < v <-_ n,
(l+q

k) ti(tr_l+qktu)

oWn(x, y, k) dqtl dqt., m v <- n.

We have

e([1, m-1]U(v- 1}): v-m-l,
(4.30)

e([1, m-1]U{v})=v-m.

Setting Q= qk in (4.14) and using (4.30), (4.29) becomes

(4.31)
(X, k)qAn.., y,

(1 + q2k)(qk(v-m-)_F qk(-,+l>) qS,,,m(X, y, k)

qk(-m)qSn,m(x, y, k), m<v<=n.

Set s n, Q= qk, in (4.26). Recalling (2.16), we obtain

(4.32) (x, k)qK.,,, y, q

We have

(4.33)

Since

(4.34)

(4.14) gives

-k(n-1) IoI/q f l/q m--1

1-I tiqWn(x,y,k) dqt"’dqt.
dO i=1

qK,,..,(x, y, k)= q-k(n-1) qSn,m_l(X, y) k).

e([1, m-1]U{n})=n-m,

(4.35) qK,,,,.,,(x, y, k) qk(1-,,,) qS,,.r,,(x, y, k).

5. A proof of Theorem 2 for 1=0. We must first give a q-analogue of (1.10)
Assume that (2.6) holds. Set =0 in (2.14) and use (3.6), (4.28) and (4.33). We obtair

(5.1) +qk(,,-,)(1.--_qx)
(1 ’/-)" qSn’m-l(X) y’ k)

q2k(n-1)+x+l (1 q(y-1))
(1 q)

OqEn’m(X’ y’ k).

Multiply by (1- q) and move the term with qEn,m(X y, k) to the left side. This gives

q2k"-l>+’+l(1 --qY-’>) qEn,,(x, y, k)

[ (1-qk)
v=m+l’ qk"-2)+qk"-’)(1--q’)] qS,,,_,(x,y, k)

(5.2)
[(qk(,.-,)_ qkn-,))+ qn-,>(1 q,)] qS.,m-l(X, y, k)

qk(.-,)(1 qx+k(.-.)) qSn,._,(x, y, k).
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Set =0 in (3.10), solve for q qEn,m(x y, k), and use (4.35). This gives
0q qEn.m(X,y, k)= (x, k)+ (x, k)-qKn, Y, qEn, Y,

(5.3)
_qkl-,,,) qS,,,m(x, y, k)+oE,.m(x, y, k).

Set 1 in (2.14) and use (4.27), (4.31), (4.35), and (5.3). We obtain

0=(l_q2k_..__) qk,,-2,
(1 q) v=2 (1 + qk) qS,.,,(x, y, k)

+ (1 qEk)
(1 q) v=m+l qk2-.-3) qS..m(X, y, k)

(5.4) + qk2,,-,,,-,)(1 qX+l)
(1- q)

qS,.m(X, y, k)

+ qk2,-,,-)+x+l (1 q(Y-))
(1- q)

qS..m(X, y, k)

q2k(n-l)+x+l (1 qCy-1)) o

(l-q)
qE,,m(x, y, k).

Multiply by (1- q) and move the term with qE...(x, y, k) to the left side. This yields

q=k"-)+x+l(1- qCY-)) qE..(x, y, k)

[ i(1 qk) E qk,-2) + (1 q2k) qk2o-,,,-3)
v=2 v=m+l

+ qk-"--l)(1--qX+)+ qk2"-’-)++l(1--qy-1))] qS,,,,,,(x, y, k)

(5.5)
[(1 q-))+(q-)- q"--))
+(qk(2n-m-1)__ qk(2n-m-1)+x+y)] qSn.m(X, y, k)

(1 q+y+k_.-.-l)) qS...(x, y, k).

Comparing (5.2) and (5.5), we have

(5.6) qk-l)(1--qx+k"-m)) qS.._(x, y, k)=(1-qx+y+k"-’-)) qS..m(X, y, k)

or

(5.7) oS,,.,,(x, y, k) qk(m-1) (1 q+k,,-))
(1 qX+y+k(2n-m-,)) qSn.m-(x, y, k),

provided (2.6) holds. It is easy to see that

(5.8) qprn,m(X,y,k)=q[kx()+k(")] fi Fq(x+(n-i)k+x(i<-m))
,=1Fq(X+y+(2n-i-1)k+x(i<-m))

satisfies (5.7) since, by (1.7),

(5.9) r.(x+ (1 -q)

Clearly

(5.10) qS...(x, y, k) qS..o(X + 1, y, k)
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and qprn,,(x, y, k) also satisfies (5.10). Hence

(5.11) qQn,,.(x, y, k)=
qS.,.,(x, y, k)
qpr,r(X,y,k)

satisfies

(5.12)
qQ,,(x,y,k)=qQn..,_l(x,y,k),

qQ,n(x, y, k) qQ.,o(X + 1, y, k).

We easily obtain

(5.13) qQn,m(X, y, k) qQn,.(x + 1, y, k)

for all m, 0 =< m-< n. Thus qQn,m(X, y k) is independent of m and periodic in x with
period 1. We extend qQ,,,,(x, y, k) to all x.

In order to prove Theorem 2 for 0, we must show that

(5.14) qQ,,,,(x, y, k)= q2k2) I Fq(y+(n-i)k)
Fq(1 + ik)

i--1 Fq(l+k)

By (5.12), it suffices to treat the case m 0. We proceed by induction on n. For n 1,
(1.4) is the q-analogue

(5.15) t(x_l)(qt) dqt:Fq(x)Fo(y)
(qYt) Fq(x+y)

of the beta integral. See Askey [5].
It is clear from (5.9) that

(1 __qX)
(5.16) lim F(x) r(1)= 1

x-o (i-q)

and from (5.11) that

(5.17) qSn,,(x, y, k)= qpr..,.(x, y, k) qQ.,,.(x, y, k).

Observe that qpr,,o(X, y, k) has Fq(x) as a factor. A simple computation gives

(5.18)

lim
1 q

qS,o(X, y, k) lim
1 q

,-.o (1 q) x-o (1 q)
qpr.,o(X, y, k) qQ,,,o(X, y, k)

1 1 Fq((n-i)k)
=Fq(y+(n-1)k) i=1 Fq(y+(2n-i-1)k)

qQ,,.o(O, y, k).

However, the recurrence relation (4.21) and our induction hypothesis give

lim
1 qX)

qS.o(X, y, k)
x-.o (l-q)

(1- qk.)
qS,,-1 o(2k, y, k)

(l_qk)

(5.19)
(1 qkn)

q
(1 _qk)

]’ Fq(2k+(n-l-i)k)Fq(y+(n-l-i)k)Fq(l+ik)
i=1 Fq(2k + y + (2(n 1) i- 1)k)F(1 + k)
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Equating these two results and solving for qQn,o(O, y, k), we obtain

(1 qkn) [2k2(n’l)+2k2(n’l)]F nlqQ..o(O, y, k)=-----q q(y+(n-1)k) rq(y+(n-l-i)k)(1-q) i=l

r((n+l-i)k) r(l+ ik)
H

(5.20)
=q2k() I Fq(y+(n-i)k)

(1--qk") Fq(nk) -I’ Fo(1 + ik)
i=1 (1--qk) ro(k) ,=, r(1 + k)

Fq(l+ik)--q2k("
i=l
II Fq(y+(n-i)k)-(i-"

By (5.13), this establishes (5.14) when x is an integer. To treat all x, we may use
Liouville’s theorem: a bounded entire function is constant. See Ahlfors [1, Chap. 4].
Let a, b e R. Since 0 < q < 1, we have

(5.21) Iqa+ibl q, 1(1 q)’+’b (1 q)",

and

(5.22) (q)<=l(q+’b)l<-(-q)oo, a>0.

This gives

(5.23) IqSn,o(x, y, k)[ qSn,o(Re (x), Re (y), k).

Recalling (1.7), we have

(5.24) (l-q)(’-’) (q)oo <=]Fq(a+ib)l<_(l_q)(,_(q)
(-q)oo (q)=Fq(a), a>0.

This shows that the modulus of each factor of qpr,,o(X, y, k) (5.8) is bounded above
and below by a continuous function of Re (x). Using (5.11) and (5.23), we see that
IqQ,,o(X, y, k)l is bounded by a continuous function of Re (x). Since a continuous
function assumes its maximum on a closed set, IqQ,,o(X, y, k)l is bounded for all x in
the strip

(5.25) S {xll -<_ Re (x) -< 2}.

By (5.13), it is bounded for all x. The result (5.14) now follows by Liouville’s theorem.
The restriction Re (y)> 1 (2.6) is easily removed by analytic continuation. This com-
pletes the proof of the case 0 of Theorem 2.

6. A proof of Theorem 2. By (4.19), the case =0 of Theorem 2 (1.4) gives the
case 0 of Conjectures 6 and 11 of 10]. These conjectures now follow by Theorems
10 and 12 of [10]. A similar analysis establishes Theorem 2.

We have

qS..,,..l(X, y, k)
i= i=n--l+l

(6.1)
j=O A[n-l+l,n]

ti H ti qWn(x, y, k) dqt, dqt..
i= iA
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Observe that

(6.2) e([1, m]U a)= .,ieA i-(m+ l)la[-([[)"
Setting 0 q in (4.14) and using (6.2), (6.1) becomes

(6.3) ,S,,.,,,.(x, y, k) (-qY)J 2 qtk(X,EA ’--(m+,)j--(?))l qS,,.m+(X, y, k).
j=0 A[n-I+l,n]

We can perform the inner sum by using the well-known (see Andrews [2, (2.2.1)])
q-binomial theorem

(at) 2 , Itl < 1.(6.4)
(t) j=o (q)

For a q-, xq"+1, this gives

(6.5) (xqn-i+l), (q-’)J(xq"+’)
Equating coefficients yields

(6.6) qE,EA’=(-1)j(q-’)j,

IAI =j

Replacing q by qk in (6.6) and substituting into (6.3), we obtain

(q-lk.
(6.7) qS,, t(X, y, k)= qO,+k,,-,,)-k)) qk)’i

qS,, m+.(X, y, k).

Since we have evaluated each of the integrals on the right side of (6.7), we can
evaluate ,S,,,,,:(x, y, k). By (5.9) and (1.4), we have

m+: (I q+<"-))qS. m+(x, y, k)
qS,,,,,,(x, y, k)

q(kmj+k(2 n qX+y+2,,-,-)ki=m+1 (1-
(6.8)

q(-yj+k(m-n+l)j+kQ2))
(q-X-(n-m-l)k., qk)j

(q-X-y-fZ,,-,,,-2)k; qk)
Equation (6.7) now gives

(6.9) qS.,,,,(x, y, k)=S.,,.(x, y, k)
(q-lk; qk).(q-X-fn-m-1)k;

j=o(qk, qk)(’-x-y-(2n-m’-2)k, ...k qkj."
"t,l j

This is the same series that arose [10, (8.13)] in our analysis of qI,,.,,.(x, y, k). It can
be summed by the special case (see Slater [16, (3.3.2.7)])

(6.10) b"(d/b)"= (q-"),(b),
(d), ,=o (-’2il q

kof the well-known q-analogue [16, (3.3.2.2)] of Saalschiitz’s theorem. Taking base q
in (6.10), we obtain

(qy+(n-l)k qk)l
(6.11) qS..,..l(X, y, k)=qS.,m(X, y, k) (q+y+(E.-,.--)k; qk)t"
Theorem 2 (1.4) now follows easily using (5.9).
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7. A proof of Theorem 3. Since k is a nonnegative integer, we have the finite sum

(7.1) 1-I tk( ql-k tj qCkn(") fi t’,
l<=i<j<-n ti/2k i=1

where ai >-- 0, 1 _-< -<_ n,

kand each qCn(t) is a polynomial in q. Substitute (7.1) into (1.4) and use (5.15) and
(5.9). This yields

qSn,m,l(X, y, k) tx-1)+x(i<=m)

i=

(qti)
qy+x(n-i+ <=l)

ti)

(qCk(o)i=lfi t’)dqtl’’’dqtn
(7.3) :qCk(t) Fq(X+X(i<--m)+’)Fo(y+x(n-i+ 1----</))

i= Fq(x+y+x(i<-m)+x(n-i+l<-+ai)

I Fo(x+x(i<=m))Fq(y+x(n-i+l<-l))
i= Fq(x+y+x(i<-m)+x(n-i+l<=l))

k fi (qX+X(i<=m))ai
qCn() i<_m)+x(n-i+l<=l

i-- (q++x< )),
Equate (7.3) and Theorem 2 (1.4) and solve for the last .at. Using (5.9), we obtain

k I (qX+X(i<----m))
q[kx()+k(")+2k2()]

(7.4)

i=l (qX+Y+X(i<=rn+l))(2n-i-1)k(q)k.

Since the left side of (7.4) is a finite sum, both sides are rational functions of q, q,
and qY. Thus (7.4) holds for all x and y. Observe that we do not need to use Liouville’s
theorem or analytic continuation to prove Theorem 2.

By reversing the order of the factors, we have

1--n

Applying this to (ti/tj)k gives

(7. q q

Multiplying these equations for 1 N <j N n and using (7.1), we obtain

(q)(t):(--1)k<)q<)<) t<n-1)k tk(q-k
li<jn k k i=l li<jn ti]

(7.7)
k (-(n-))(-1)(q(q 2 oc(

i=1

2k
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Recall (Kadell [9, (3.31)]) that

(7.8) (qt), E (-t)Jq(’) (q)+b
b j=-b (q)a-j(q)b+j

is equivalent to the special case (6.5) ofthe q-binomial theorem. Replacing by t q gives

Substitute (7.7) into (1.12) and extract the constant term using (7.8) and (7.9). This yields

qCS,,,,.(a, b, k)= (-1)(q((

i=1

By (7.2), we have

(7.11)
i=1

Equation (7.5) gives

1

q b-x( i<-m )+(n-1)k-oq

Using

fi (-1)’--’k= fi (-1)’= 1.
i=1

(7.13) =-A+
2

(714) (A+B
2

and (7.2), we obtain

(7.16) I-I q(X(i>m)-’+(n-1)k)+a,(b+l-x(i<=m)+(n-1)k-a,)+(,)-- q(n-m)(n-1)k+2bk()+n((’)k)

i=1

Equation (7.10) now becomes

qCSn,m,l(a, b, k) (--1)k() q()()+(n-m)(n-1)k+2bk()+n((n’))

(q) a+b+x(il)(7.17)
,= (q)+X(’+)-(,-)(q)-x(’)+(n-)

(q-b+x(’m)-(n-1)k)a
i= qa+l+x(im)+x(n-i+lin-1)k) a,"
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We can evaluate the last Y,, by taking

(7.18) x=-b-(n-1)k, y=a+b+l,

in (7.4). This gives

i=l(q
q-b+x(i<---m)-(n-1)k)o

a+ +x(i<m)/x(n-i/ <--l)-(n-1)k) oi

(7.19) -k(b+(n- 1)k)( )+k( )+2k2()=q

I k(qa+b+l+x(i<----l)q-b+x(im)-(n-1)k) (._i) (.-i)k( q ik

i=I (qa+l-(n-l)k+x(i<----m+l))(2n-i-l)k(q)k

By (7.5), we have

(7.20)
(q-b+x(i<=m)-(n-1)k) (n-i)k (--1) (n-i)k q(-b+x(i<-m)-(n-1)k)(n-i)k+((’i)k)

(qb+l-x(i<----m)+(i-1)k)(n_i)k.

Clearly, for fixed j,

=, j-1 j

Substituting (7.19) into (7.17) and simplifying by (7.20) and (7.21), we obtain

(7.22) qCSnml(a, b, k)= qEXP (_q2a__T.+b+(___n--i__)k+_x(__jNl)(q)_i_k.
i=1 (q)a+(n-i)k+x(i<_m+l)(q)b+(i-1)k-x(i<_m)(q)k

where

(7.23)

EXP= +(n-m)(n-1)k+n
2

+k +2kz + (n-i)k+
(n-

i=1 i=l 2

It is easy to see that EXP is independent of m. Thus

(7.24)

Observe that

Take A k, B n- i, in (7.25) and j 2, 3, in (7.21). This gives

(7.26) i=1 ((n-i)k)=k2(n-i)+(k2)(n-i)=kz(n3)+(k2)(n2)’2,=1 2
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We obtain

EXP= 2(2k) ()+2k()+ n(k:(nl)+ (k2)(n-1))-2k:(n 1)()+3k()
(7.27) k()[(k-1)+2+ k(n-2)+(k-1)-2k(n-1)+ k(n-2)]

--0.

This proves Theorem 3 since (7.22) now agrees with (1.14).
A similar argument shows that Theorem 2 follows from Theorem 3. Indeed,

Theorems 2 and 3 are equivalent to the summation formula (7.4). Observe that x in
(7.18) is negative. Thus, (7.4) provides a common analytic continuation of Theorem
2 (1.4) and Theorem 3 (1.14).
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A UNIFIED APPROACH TO MACDONALD’S ROOT-SYSTEM
CONJECTURES*

DORON ZEILBERGER"

Dedicated to Dennis Stanton and John Stembridge for reminding me that antisymmetry
is even more powerful than symmetry.

"Yes, of course. It works with herring, but will it work with ferrous metals ?"
Woody Allen [All).

Abstract. Using ideas of Stembridge and Stanton a method is presented that should settle the Macdonald
(and the more refined Macdonald-Morris) root-system conjectures for any specific root system, provided
there is sufficient computer time, memory space, and (for now) some luck. The method consists of an
algorithm that reduces Macdonald’s conjecture for a given root system to a finite, albeit long, algebraic
calculation, which is then performed using computer algebra. The method is illustrated by proving the so
far open G case of the Macdonald-Morris conjectures. The question that remains is: will it work with E8
(and F4, E6, ET)?

Key words. Macdonald’s root-system conjectures, constant term, q-analogue, computer algebra

AMS(MOS) subject classifications. 05A15, 05A17, 33A15, 33A75

Introduction. This paper is about Macdonald’s root-system conjectures. In order
to understand it, it is necessary to know a little bit about root systems and their Weyl
groups. While it seems obvious that before one can talk about root-system conjectures
one has to know about root systems, this is not the case for many of the papers on
this subject. By the classification theorem for root systems, it is possible to spell out
what the conjectures say for each of the four infinite families and the five exceptional
root systems, and then treat each case separately [Mo]. Although only one root-system
is treated at a time in this paper, its method is cast in the general root-system mold.

Historically root systems first came up in the deep and sophisticated theory of
Lie algebras. This noble birth gave them a fancy aura that scared away many a plebeian
mathematician. However, root systems are really very simple-minded, combinatorial-
geometrical structures and it is possible, perhaps even preferable, to study root systems
without knowing anything about Lie algebras.

A root system is a finite collection of vectors, called roots, in regular (Euclidean)
space such that if you place a mirror perpendicular to any of them, the image of the
visible part that is reflected in the mirror coincides exactly with the invisible part
behind the mirror. Furthermore, the vector difference between any root and its image
under any such mirror is an integer multiple of the root corresponding to the mirror
(i.e., the root that is perpendicular to the mirror). These two conditions are very strong
and it turns out (the classification theorem) that all irreducible root systems fall into
five infinite families and five exceptionals. If you add the condition that these vectors
can only be parallel to their negatives (reduced root systems) then one infinite family
(BCn) drops out.

* Received by the editors March 2, 1987; accepted for publication August 4, 1987. This research was
partially supported by the National Science Foundation.

? Department of Mathematics, Drexel University, Philadelphia, Pennsylvania 19104.
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An excellent treatment of root systems and Weyl groups is given in Chapters 2
and 10 of Carter’s book [C]. These two chapters are completely independent of the
rest of the book and are entirely elementary. This paper can be understood by any
one who has read the first two sections of Chapter 2 and the first two sections of
Chapter 10 of [C]. A comprehensive and (surprisingly) quite readable account is given
in [Bo], but for the present paper [C] is more than enough.

Notation. The Macdonald conjectures are about certain multivariable Laurent
polynomials. A Laurent polynomial is a linear combination of monomials that may
have negative integer exponents as well as positive integer exponents. For example
x + 1 + x- is a Laurent polynomial in one variable and x +y+ x-ly2 is one in two
variables. Usually x denotes a vector of variables, x (xl,..., x) and a a vector of
integers, a (a,. , a). Also

X71.X X1

For example x(1’-2’) XlX-2x.
For the roots a of a root system, x", are often called "formal exponentials." But

since all root systems can be made to have all their roots with integer components,
these exponentials can be easily defrocked of their formality. The root lattice of a root
system consists of all integer linear combination of roots, and all our Laurent poly-
nomials will be linear combinations of monomials xv for 3’ in the root lattice. The
Weyl group W of a root system [C, Chap. 2] acts on the roots, and by linearity on
the root lattice. The elements w of the Weyl group W are made to act on monomials
by

w(x)=xW
and by linearity on all Laurent polynomials. For example, if W(OI, O2) (--O2, al) then

w(x-y + 3 + xSy-2) x-2y- + 3 + x2y5.

A Laurent polynomial G is symmetric with respect to the Weyl-group W if
w(G) G for every w in W. The sign of an element w of W, written sgn (w), may be
defined as [C, p. 18] (-1) n(w), where n(w) is the number of positive roots that w turns
into negative roots, i.e., the number of elements in the set w(R+) f3 R-. A Laurent
polynomial G is antisymmetric if for any w in the Weyl group W, w(G)=sgn (w)G.

C.T. stands for "the constant term of" (in x (x,..., Xl)), and IAI denotes the
number of elements of the finite set A. The letter usually denotes the rank of R, and
d,..., dl, are the "fundamental invariants" [C, p. 155] of R.

The ()a q-notation will be used extensively. (y; Q)a, the q-analogue of (1 _y)a
to base Q, is defined by

(y; Q)a=(1-y)(1-Qy)(1-Q2y) (1- Qa-ly),

and whenever the "base" Q happens to be q we will omit it: (y)a =(y; q). The
standard base of Euclidean space is denoted by {ei}, ei (0, 0,..., 0, 1, 0, 0,..., 0),
where all the components are zero except the component that is 1. Of course x ei xi.

1. Conjectures. In 1962, in his study of the statistical theory of complex systems,
Dyson [D1] conjectured

((D) constant term of H 1
Xi na

l<:ij<_n a !n

His conjecture was soon proved by Gunson [Gu] and Wilson [W] and Good [Goo]
gave a beautiful proof some years later.
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When Macdonald saw Dyson’s conjecture (D) he saw the root system An-1.
Indeed, since

A,,_l={ei-ej; l<-_ij<-n} and

(D) can be written as

xei-(

x

(na)!
constant term of I] (1-x)a-

A,_ a !n

He then wondered what happens if A,_I is replaced by other root systems.
The case a 1 of Dyson’s conjecture (D) is an almost immediate consequence of

the Vandermonde determinant identity and the constant term then is n!=
n(n-1)... (2). Now the Vandermonde determinant identity has a celebrated root-
system analogue" Weyl’s denominator identity (e.g., [C, p. 149]), and imitating the
argument that proved (D) for a 1 yields, for any root-system R with Weyl group W,

C.T. II (1-x )=lwl.

For R An-l, W Sn and since wl- ]s l- n !, this agrees with the a 1 case of (D).
So the a-- 1 case of (D) has a nice root-system analogue. What about general a ?

It is well known that wl factorizes nicely [C, 9.3.4(i), p. 133]:

wl- a,,
where dl,’", dl are the "fundamental invariants" of the Weyl group W (these
fundamental invariants are, among other things, the degrees of the generators of the
algebra of polynomials invariant under W). For An-1 these invariants are 2, 3,. ., n
(the degrees of the elementary symmetric functions!). Rewriting the right-hand side
of (D) as

Macdonald [Ma3] conjectured that

(M) constant term of I],R (1-x’)a=(dlaa)’"(dlaa)"
Macdonald was also able to prove the special case a 2, and by using Selberg’s integral
[Se] he proved the Bn, Cn, and Dn cases. Recently Habsieger [Habl] and Zeilberger
[Z2] proved the G2 case. For R F4, E6, E7, and E8, (M) is still open, as far as I know.

Next Macdonald went on to formulate a "q-analogue" of (M). Andrews ([Anl];
see also [An2]) already formulated a q-analogue of (D) in 1975. Actually Andrews
conjectured a q-analogue of a more general conjecture of Dyson, and his conjecture
specializes to the following q-analogue of (D):

(qD) C.T. I-I (x) (qxj [nk], ( 12kkI [ck])
The general Andrews conjecture was proved in [Z-B].

Motivated by this and (M) Macdonald [Ma3] conjectured

(qM)
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Macdonald [Ma3] was able to prove (qM) for k 1, 2 and k . For k o (qM) is
a consequence of his own famous Macdonald Weyl identities [Ma2] (many special
cases of which were known to Dyson [D2], but Dyson "missed the opportunity" to
see the connection to root systems). For general k (qM) is only known to date for
R =A. [Z-B] and G2 ([Habl], [Z2]). Hanlon [Hanl] did the limiting case n= of
B,, C,, and D.

One of the greatest delights of mathematics is the interplay between the abstract
and the concrete, the general and the special. Whenever one has a general result or
conjecture, it is very instructive to see what it says in special cases, and studying these
special cases often sheds new light on the general case. Morris [Mo] took Macdonald’s
conjectures and made them explicit for all the root systems. Then by studying the
case and playing with MACSYMA he was able to come up with a more general
G2-Macdonald conjecture, involving two parameters a and b instead of the single
parameter k:

C.T. H (1 -xS) H (1 -xS)b

short G2 long G

(3a + 3b)!(3b)!(2a)!(2b)!
(2a+3b)!(a+2b)!(a+ b)!a!b!b!"

This was encouraging because it always helps to have more parameters (recall Polya’s
dictum: "the more general the easier"). Indeed Good’s ([Goo]; see also [An2], [As3])
elegant proof of Dyson’s conjecture (D) proceeds by proving the more general formula
(also conjectured by Dyson [D1])"

(D’) C.T. H (1-x) a’ -(a+" "+a")!
l-<_ij<- a! a.!

and the extra elbow room provided by the n parameters a,..., a, is crucial.
Morris sent his G2 conjecture to Macdonald and, once again, Macdonald saw the

right root-system generalization ([Ma3], [Mo]). Now there is a parameter associated
with each root length. (Since Al, Dl, E6, ET, E8 have only one root length the
generalization is void for them. For BI, CI, G2, F4 we have two parameters and BC
has three parameters.)

Macdonald soon found a q-analogue [Ma3, 3.1]: if k are nonnegative integers
such that ks k if a and/3 have the same length, then

(qM-M1) C.T. H (XS)k(qx-)k =a certain explicit product.
sR

I already mentioned that the case k of (qM) is a consequence of Macdonald’s
Weyl identitities [Mall. These identities are the analogue of the Weyl denominator
formula for affine root systems. (Incidentally these were "the tip of the iceberg" that
motivated the representation theory of Kac-Moody algebras [Kac, p. xiii], but that’s
another story.) It turned out that the Macdonald-Morris conjectures (qM-M1) can be
viewed as the "truncated form" of Macdonald’s identities for the so-called S(R) affine
root systems ([Ma3, p. 999]; see [Mal and [Mo] for definitions of affine root systems).
The classification theory of affine root systems [Mal] says that the irreducible ones
are either of the form S(R) or S(R). It was thus natural for Macdonald to formulate
his conjectures as the truncated form of his identities and that led to the ultimate
generalization ([Ma3, Conjecture 3.3], [Mo, pp. 25, 26])" Let ks be as before and let
u be certain constant integers (depending on the affine root system) that satisfy us u
whenever a and /3 have the same length (see [Mall or [Mo] for their values, for
example for S(G2) , Ushort 1 and Ulong 3). Let R be the underlying finite root system;
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then,

(qM-M2) C.T. I-I (x; qu)k(qUx-; qu)k =a certain explicit product.
cR

The Macdonald conjectures, like most interesting mathematics, lie on the cross-
roads of several subjects, and so appeal to a wide spectrum of mathematicians. Lie
algebraists suspect that, like the Macdonald identities, they are the tip of a deep
algebraic iceberg [Hanl]-[Han3], [Stanll], [Stanl2]. Analysts [Mo], [Asl]-[As3] see
many interesting examples of multivariate hypergeometric series identities, "a topic
about which little is currently known" [Mo, p. 4]. Geometers wonder whether there
are things about root systems that they do not know, and combinatorialists [Z-B],
[Brl], [Br2], [C-HI, [B-G] are challenged to develop a combinatorial theory of Weyl
groups that will emulate the rich theory of the symmetric group.

But regardless of our parochial interests and prejudices, we are all awed by the
simplicity of these conjectures. The statement of the Macdonald conjectures, for any
specific root system, can be explained to a high school student, but the proofs elude us.

2. Aplroaehes. I will now give a very brief survey of the various approaches that
have been used to tackle the Macdonald conjectures.

Selberg’s integral This fascinating generalization of Euler’s beta integral was
discovered by Selberg [Se] in 1944 but lay dormant for about 35 years, partially because
it was ahead of its time, partially because it was written in Norwegian and partially
because Selberg wrote it before he got really famous. This sleeping beauty awoke from
its deep slumber when Enrico Bombieri consulted Selberg about a certain conjectured
definite integral of Mehta [Me], [As3], [Ma3] and Selberg dug his old paper out of
his files. It turned out that Mehta’s conjecture (that has been open for about 15 years)
is an easy consequence, via a limiting process, of Selberg’s integral.

Mehta’s conjecture [Me], which can be thought of as an integral analogue of
Dyson’s conjecture (D), also received root-system analogues by Macdonald [Ma3,

5]. Beckner and Regev (see [Ma3, 5]) showed how Selberg’s integral can be used
to get these root-system-Mehta conjectures for the classical root systems.

Macdonald [Ma3] showed, by a clever change of variable, that Selberg’s integral
is equivalent to the BCn, q 1, case of (qM-M), which implies (M) for Bn, Cn, and
Dn. Using a corollary of Selberg’s integral, due to Morris [Mo, p. 94], Zeilberger [Z2],
and Habsieger [Habl] proved the G2 case of (M). Aomoto [Ao] has recently found
a very ingenious proof of Selberg’s integral by using integration by parts, recurrences,
and symmetry; see [As3] for a nice account.

By employing Jackson’s q-analogue of integration, Askey [Asl] formulated an
elegant q-analogue of Selberg’s integral that has recently been proved by Kadell [Kadl
and by Habsieger [Hab2]. Kadell q-analogized Aomoto’s proof and Habsieger used
Selberg’s original method coupled with some brilliant ideas of his own. Kadell and
Habsieger also showed that their Askey- q-Selberg identity implies the q-analogue of
Morris’ identity mentioned above. This q-analogue, conjecture by Morris himself [Mo],
enabled Habsieger [Habl] and Zeilberger [Z2] to prove the G2 case of (qM-M1).
Incidentally, Kadell and Habsieger’s q-Morris identity contains, as a special case, the
An case of (qM-M) (first proved in [Z-B]).

Counting tournaments. I already mentioned that the case a 1 of (D) follows
from the Vandermonde determinant identity. The case n 3 is also classical, being
equivalent to Dixon’s identity [Anl]. Both these classical identities received beautiful
combinatorial proofs. Gessel [Ge] (see also [An2, 4.4]) gave an elegant graph-theo-
retical proof of Vandermonde’s determinant identity by counting tournaments, and
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Foata IF], [C-F] gave a gorgeous proof of Dixon’s identity by using multitournaments
on three players.

Combining these two pretty proofs, Zeilberger [Z1] managed to give a purely
combinatorial proof of Dyson’s conjecture (D’) (and thus of (D)). In that paper
Zeilberger wrote: "We believe that our proof has a good chance of being generalized,
because most combinatorial proofs involving binomial coefficients have q-analogues.
However, another idea is still needed since the obvious q-generalization fails." The
"obvious generalization" was to q-count words by using either the number of inversions
or the major index as the "statistics" because both yield the q-multinomial coefficients.
But neither ofthese worked. The new idea that was needed was to introduce a brand-new
statistic, the z-index, and to prove that it, too, yields the q-multinomial coefficients.
This was done in [Z-B], which contains a proof of Andrews’ conjecture (and hence
of the An-1 case of (qM)).

Motivated by the success of the combinatorial method, there were attempts to
extend it to general root systems [Brl], [Br2], [C-H]. Although these papers contain
some very promising ideas, they failed, so far, even to prove the G2 case. I should
also mention [B-G], that, using the methods of [Z-B], contains interesting extensions
of Andrews’ conjecture, and [Gr], that gives an elegant MacMahon-style combinatorial
proof for the above-mentioned fact that the z-statistics yield the q-multinomial
coefficients.

Lie algebra cohomology. Hanlon [Han2], [Han3] found an interesting formulation
and refinement of Macdonald’s conjectures in the context of the cyclic homology of
the exterior product of a Lie algebra with C[t, t-l]. Besides the considerable intrinsic
merit of this approach, it also serves to make the conjectures accessible and appetitizing
to all those sophisticates who are unwilling or unable to think in terms of the simple
formulation of the original conjectures.

Hypergeometric SU(N). Milne [Mi] found an elegant elementary proof of the
AI1 case of Macdonald’s identities. It is very possible that Milne’s deep generalized
hypergeometric theory will, one day, contain the Macdonald conjectures as a very
special case.

Schur functions. Stanley [Stanll], [Stanl2] found an interesting connection
between the An cases and Schur functions. This connection was further explored by
Stembridge [Stel], [Ste2] and Goulden [Gou]. While these works do not try to prove
the Macdonald conjecture per se, they Schur do give lots of insight. Indeed, it was
exactly this study that led Stembridge [Ste3] to his elegant proof discussed below. It
is not unlikely that a similar study of characters of general simple Lie algebras will
lead us in the right direction.

I should also mention the interesting character sums analogues of Evans [E] and
the fascinating connection between Mehta type integrals, PI rings and the representation
of the symmetric group found by Regev JR1], [R2], and further explored by Cohen
and Regev [C-R].

In April 1986, Dennis Stanton told me that John Stembridge had a short and
elementary proof of the An_l case of (qM) (or equivalently, the equal parameter case
of Andrews’ q-Dyson conjecture). At first I was only mildly.interested, since Kadell
and Habsieger hadjust then completed, independently, the proof ofAskey’s conjectured
q-Selberg integral ([Hab2], [Kadl], mentioned above) and also showed that it implies
the q-Morris conjecture, that in turn implies the An_ case of (qM). In fact, I saw [Z3]
how to use the Aomoto-Kadell method to get the q-Morris directly, without q-Selberg.

I wrote to John Stembridge anyway, requesting an account of the proof, and
received from him a barely legible xerox copy of a three-page handwritten sketch that
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Dennis Stanton had prepared. When I finally understood the proof I got excited. At
long last a proof that has a "root-systemy" flavor! Although the proof was only of the
An-1 case, it had some universal root-system elements in it, and it used properties of
the symmetric group that pass verbatim to any Weyl group, that I was sure that it
should extend to the general case.

This was, of course, also realized by John Stembridge himself as he pointed out
later when he finally got around to writing the paper [Ste3]. However, his proof took
advantage of a certain "miracle" that seemed to occur only for An-1. Surely what was
needed was to get rid of the dependence on the miracle, possibly by sacrificing elegance.
I thought about that all through the summer (while taking care ofmy newborn daughter
Tamar) and the result is this paper. (The fall was spent programming the algorithm
and debugging the programs. If nothing else, this project made me a fairly competent
C programmer.)

As John Stembridge told me himself, his proof, as well as parts of his impressive
thesis [Stel], were largely motivated and inspired by Dennis Stanton’s ingenious proof
of Macdonald’s Weyl denominator identity for the classical root-systems [Stantl],
[Stant2].

Using these beautiful ideas of Stembridge and Stanton, I will present a method
that systematically handles the Macdonald conjectures for any given, fixed, root system,
provided there are sufficient computer resources, and, for the time being, some luck.
What I do know for sure is that it works for the (already known) A2 and G2 cases
and for the (so far open) G case ( 9). Besides, I am almost sure that the element of
luck can be disposed of and that the method can be proved to constitute an effective
algorithm for settling the Macdonald and the Macdonald-Morris conjectures for any
given root system. Of course, that by itself would not constitute a proof, or even an
effective algorithm for the general conjecture, because there are an infinite number of
root systems.

On the other hand, it is very possible that the A-D cases of the Macdonald and
Macdonald-Morris conjectures will soon be settled by either using the Askey q-Selberg
integral [Kadl], [Hab2] directly, or by using similar methods of proof. In that case
we will only be left with the seven exceptional cases (G: and its dual, F4 and its dual,
and E6, ET, and Es, but since the first two are already known this leaves us with five
cases). These should succumb to the method of this paper (at least in principle, and
barring very bad luck). But even if that would turn out to be the case, it would certainly
not be the proof from the book. The ultimate proof should be "classification-free" and
take care of all root systems at once.

To give a very apt analogy, the Weyl denominator formula [C, p. 149] can be
proved case by case. An_l is just the Vandermonde determinant identity, which is an
elementary exercise in determinants. The cases .Bn, C, and D also specialize to simple
algebraic identities that can be easily proved by induction. The remaining exceptional
cases, G2-Es, give rise to finite polynomial identities that can be checked by computer
(although I have to admit that, for E8, even the CRAY will take "a while" to handle
the 2 terms). However, there is a beautiful "classification-free" proof of Weyl’s
identity that can be found in Carter’s book ([C, 10.1]).

I believe that besides the instant gratification that the present method brings, it
is also an important step toward the ultimate proof. Unlike any previous approach, it
makes use of the general root-system-Weyl group framework, and thus may pave the
way to the final proof. In addition, it also provides a "laboratory" for computing other
coefficients, besides the constant term, for any specific root system (see below). This
may lead us to formulate a yet more general conjecture, and this more general conjecture
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may very well turn out to be much easier to prove.

3. Antisymmetry.

No two fermions can exist in identical quantum states.
Wolfgang Pauli)

Let R be a root system and let us define

(3.1) F’k(X) H (x)k(qx-’)k, H,=C.T. F’k(X).
aR

Macdonald’s conjecture (qM) asserts that H, has a nice explicit form (namely,
the right-hand side of (qM)). In any case, whether (qM) is true or false, our goal will
be to compute H,. It turns out (and this observation is due to Macdonald, although
Stembridge was the one to realize its full significance) that one can consider instead

(3.2) Fk(X)= I-[ (X’)k(qX-’)k-1
aR

and

Hk C.T. Fk(X).

This is so because of the fact, soon to proved, that Hk and H, are related by a simple
formula

(3.3) [ 1, qkdiHk Hk I,= \ l q k ]"

The reason why it is better to consider the constant term of Fk rather than that of F,
is that Fk is a much nicer Laurent polynomial: it is almost antisymmetric.

Indeed, by peeling off the first layer out of the (X’)k in (3.1) we get (since
(y)k=(1--y)(qY)k-1)

Fk(X)= H (1-x) ]-I (qX)k-l(qX-’)k-1
aR aR

(3.4) H x’/2(x-’/2-x’/2) 1-I (qx)k-1
aR otR

=x II (x-/-x/-) IJ (qx)-,
aR aR

(3 is one half the sum of all the positive roots). Let

(3.5) Gk(X)= x-Fk(X).

Then, because of (3.4)

(3.6) Gk(X) H (X-/2-X/2) H (qXa)k-1
R R

We claim that Gk(X) is antisymmetric. Indeed, the second product is symmetric
because any element w W sends R to itself [C, p. 13, line 4] and the first product is
antisymmetric for the same reason, only now we get a minus sign whenever a positive
root a is sent to a negative root (i.e., whenever w(a) R-). Thus the effect of applying
we W on the first product of (3.6) is to multiply it by (-1)"w) where n(w)=
]w(R+) fq R-I and this is equal to the sign of w [C, p. 18]. It thus follows that Gk(X)
itself is antisymmetric.
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From now on, we will forget all about Fk (and certainly about F,) and work
solely with Gk, noting that the quantity of interest, Hk, is given in terms of Gk by

(3.7) Hk C.T. (XGk)Cx-Gk.
Our goal, to be pursued in the next two sections, is to find Hk. But we must show
now, following Stembridge [Ste3], that Hk is indeed related to H as promised by (3.3).

Indeed, since (y)k=(Y)k_l(1--qky), we have (by (3.1) and (3.2))

(3.8)
H C.T.

R
/H (1--qkx-)Fk=C.T.[.R/ (1--qkx-’)] xGk

=C.T. H [(1--qkx-e)xe/2]Gk =C’T" I-I (Xe/2--qkx-e/2)Gk
eR eeR

When the product on the extreme right is expanded we get 2IR+I terms, since each term
in the product corresponds to a pair of opposite roots, and each term in the resulting
huge sum corresponds to choosing, for every a in R/, whether to take it or its negative.
This prompts us to define a choice set f, as a subset of R such that for each a R/

either a f or -a 12.
We can now write the right-hand side of (3.8) as (set qk),

(3.9) C.T. E (--t)lanR-I(xSUm)/2Gk).
1 choice set

Here sum (f) denotes the (vector) sum of all the elements in f.
Now let us call a choice set a bad guy, if sum () lies on a reflecting hyperplane,

i.e., there exists a root fl such that (sum (f),/3) 0. Otherwise let us call it a good guy.
The sum in (3.9) can, of course, be written as

(3.10) C.T. (-t)]ffqR-I(xsum(a)/2Gk)+f.T. (--t)lflfqR-I(xsUm(O)/2Gk).
fgood guy bad guy

The proof of (3.3) will continue right after this.
CRUCIAL LEMMA. Let G(x) be antisymmetric with respect to the Weyl group W

and let y be any vector of integers.
(i) C.T. (xWV)G)=sgn (w) C.T. (xVG), for each element w in the Weyl group W.
(ii) Ify lies on a reflecting hyperplane, i.e., there exists an a R such that y, a) O,

then C.T. (xVG) O.
Proof of the Crucial Lemma.
Proof of (i).

C.T. (xWVG)=C.T. w(xVw-(G))
C.T. x*w-l(G) C.T. x sgn (w-)G
sgn (w) C.T. xVG.

In this chain of equalities we have used, in that order: (a) the definition of the action
of w on a Laurent polynomial; (b) the fact that applying w on a Laurent polynomial
never changes the consant term (because w is, among other things, a linear transforma-
tion, so w(0) =0 and w(x) xw)= x); (c) the antisymmetry of G; (d) sgn (w-l)
sgn (w), and you can always take a constant out of C.T.

Proof of (ii). Let We be the Weyl reflection corresponding to the root a [C,
p. 12]; then we(y)= 2’ (since y lies on the mirror that is perpendicular to a) and since
sgn (we)=-1, we have, by part (i),

C.T. (xVG)= C.T. (xWV)G)= (sgn (we)) C.T. (xVG)=-C.T. (xrG).

Thus C.T. (xVG) is equal to its negative and must be zero.
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We now return to the proof of (3.3).
Because of part (ii) of the Crucial Lemma and the definition of a bad guy, the

second sum in (3.10) vanishes. Now from Lemma 10.1.6. and its proof of [C, p. 147],
or from Lemma 2.13 of [Ma2], it follows that if 1 is a good guy then there exists a w
in the Weyl group W such that sum (1))/2 w() and w(R+). So a good choice
set 1) uniquely determines w W and vice versa. It is thus possible to write (3.9) as
(note that [w(R+) f’l R- n(w))

H’k 2 (--1) "(w)t"(w) C.T. (xW()Gk).
wW

But because of part (i) of the Crucial Lemma,

C.T. (xW(Gk)=sgn (w) C.T. (xGk)

and since sgn (w)= (-1) n(w), we have that H, is equal to

H,=(ww thaw)) Hk’

and (3.3) follows because of the following beautiful identity due to Bott, Solomon,
and Macdonald [Ma2] (see [C, p. 135 it, p. 155])

l_td,
(3.11) Y’. n(w) ]-[

wW i=-5 1-t

We should remark, though, that if one is only interested in one root system at a
time (as we are in the present method), then we really do not need (3.11), since the
left-hand side is just a specific polynomial that can be explicitly computed and, if
desired, factorized.

4. Induction. This section constitutes my own twist on the Stembridge approach.
Stembridge’s [Ste3] inductive scheme, for An, was to creep along the coefficients of
Gk (keeping k fixed) until one gets to a high enough coefficient whose value is equal
to the Hg for An-1. So his induction was with respect to n, and his k stayed fixed. Our
induction is with respect to k and the root system stays fixed.

Using (y)k+l=(1--qky)(y)k, (qy)k=(1--qky)(qy)k_l, (3.2) and (3.5), we have

(4.1) Hk+l-" C.T. (x’Gk+l)=C.T. (X’aeR (1--qkx)Gk).
Now put q k and expand the product

(4.2) x 1-I (1-tx") 2 ao’(t)x’
aR p’S’

where S’ is a certain finite set of vectors in the lattice generated by the roots and a,(t)
are polynomials in t. Now, each p’ S’ is either on a reflecting hyperplane (a bad guy)
or [C, Prop. 2..4, p. 22] there is a w W and p in the fundamental chamber such
that p’= w(p). Thus defining S to be the set of all the W images of S’ that lie in the
fundamental chamber, the right-hand side of (4.2) can be written as

(4.3) E ap,(t)xO’+ E E a,,w(t)xw)
p’bad pS W

where a,w(t) are certain (easily computable) polynomials in (some of which may
be zero).



MACDONALD’S ROOT-SYSTEM CONJECTURES 997

Substituting this into the right-hand side of (4.1) we get that the contribution from
the first sum in (4.3) is zero (Crucial Lemma (ii)), and it follows from part (i) of the
Crucial Lemma that

(4.4) Hk+l= ao,w(t) C.T. (xW(p)Gk)= , ( ao,w(t) sgn (w)) C.T. (XGk).
pS W pS W

Now for each p 6 S, let

(4.5) A,(t) ao,w(t) sgn (w).
wW

A(t) is a certain explicitly computable polynomial in t. Going back to (4.4) we have

(4.6) Hk+l A,(t) C.T. (XGk).
pS

One of the summands here is p=6, so we have expressed Hk+l in terms of
C.T. (xGk)= Hk and a certain finite number of "neighboring coefficients." We have
thus encountered the notorious "problem of uninvited guests" that crops up so often
when trying to prove something by induction. One way out of this, the polite way, is
to put up with these undesirable terms and conjecture that they too, have a certain
explicit form, and then redo (4.6) to account for these as well (and cross our fingers
that they will not bring in more undesirable terms). I do not see how to do it (at least
not yet). The other way is the rude way. Get rid of these undesirable terms by expressing
all of them in terms of the only term that we really care about: the one and only Hk.

5. Equations. This section will describe Stembridge’s variation on an old trick in
q-series, adapted to our needs. This trick converts a q-product in one variable f(x)
into a sum by computing f(qx)/f(x). If this turns out to be a rational function, then
cross-multiplying yields a functional equation relating f(x) and f(qx). By expanding
f(x) in a power series, this translates into a linear recurrence in the coefficients, that
sometimes can be solved explicitly. However, attempting to use this method for
multivariate products always produces a mess, unless we have antisymmetry on our
side, and even then one has to be very careful.

So let us go to business. Using the definitions (3.2) and (3.5), we have

(5.1) Gk(X) x- I-I (X)k(qX-’)k-,.
cR

Recall that x (Xl, Xl) ol (o1, , at) and x x11 x Define

L(x)=(x)(qx-)_,;

then if al O.f. (x qxl) =f (x). and in general (we assume, without loss of generality
(see Introduction) that a has integer coordinates)

L(X1 <’- qx,) (qalXa)k(ql-a’X-a)k_
f(x) (X’)k(qX-)k_,

Now by making all the )k explicit and using telescoping, we easily obtain

(5.3)
fa(Xl (--" qXl) po,(X)

L(X1) qo,(x)

where, if a > O,

(5.4a)
po,(X)=(1--qkx’) (1--qk+,-lx),

q,=(qk-l--x).. .(qk-’--q’,-lx’),
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and if a < O,

(5.4b)
p,(x) (qk-_ q-lx,) (qk-_ q,x),
q(x)=(1--qk-lx’) (1--qk+,X’).

Since for all root-systems [C, pp. 47-49] -2<_-a _<-2, p, q, are at worst quadratic in
Xa"

It follows from (5.3) and the definition (5.1) that

(5.5)
Gk(X, qx,) _, po,(x) P(x, qk, q)

Gk(X,)
=q H k,o, q,(X) O(x, q q)’

say, where P and Q are certain, explicitly computable, polynomials in x (x, , xt),
q and q.

Now, by cross-multiplying (5.5), we get the functional equation

(5.6) Q(x)Gk(X qxl)= e(x)Gk(X).

Out of this functional equation we can get many linear equations relating various
coefficients of Gk. For any vector/3 in the lattice generated by R, we will get a linear
equation Eta, involving coefficients C.T. (XVGk) for 3’ in a certain set of vector exponents
Ex(fl), that is contained in the fundamental chamber.

The way to do this is to first multiply both sides of (5.6) by x and then apply
the functional C.T.

(5.7) C.T. [xt3Q(X)ak(Xl qxl)] "-C.T. [xt3P(X)Gk(X)].
We now plug into (5.7) the expanded form of P and Q (remember that P and Q are
certain explicit polynomials that we have to compute in order to perform the algorithm).
Then we use the linearity of C.T. and get on the right-hand side a linear combination
of creatures of the form C.T. [XVGk]. On the left-hand side we get a linear combination
of entities of the form C.T. [XVGk(X - qx)]. These should be converted to the previous
form using the obvious relation

(5.8) C.T. [XVGk(X - qxl)] q-V, C.T. [XVGk].

We now use the Crucial Lemma, discarding all the "bad" y, i.e., those that are
orthogonal to a root, and for any good 3" that is not in the fundamental chamber we
find the unique w W and y in the fundamental chamber such that 3,’= w(y) and
rewrite C.T. [xV’Gk] as sgn (w) C.T. [xVGk(x)]. Then we collect all the terms and bring
them to the left-hand side and get a certain linear equation

(5.9) E3: _, a(qk, q) C.T. (XVGk)=0

where the sum is over a finite set Ex(fl) of exponents y that lie in the fundamental
chamber.

By a judicious choice of/3 we would hopefully obtain equations that only involve
those t9 S that feature in (4.6). Hopefully there would be ISI-1 such independent
equations. (Of course it would also be all right if we could say the same thing about
some set that contains S.) By a proper choice of/3 it is always possible to get an
equation that involves C.T. (XGk)= Hk.

Solving this system of IS[- 1 homogeneous equations, at least one ofwhich involves
Hk, we should be able to express all the unknowns as Hk times some rational function
in qk and q. This is so since the coefficients in the system are polynomials in qk and
q. We have thus found explicit expressions for all the terms that feature in (4.6) in
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terms of Hk, and plugging them in we will get Hk+l/Hk, a certain rational function in
qk and q. Calling the conjectured value of Hk by the name of Rk (Rk is the right-hand
side of (qM) divided by (3.11)), we can then compare Hk/l/Hk with Rk+l/Rk. Since
obviously H1 R, the fate of (qM) will be determined by whether or not Hk/l/Hk is
equal to Rk/l/Rk.

6. Implementation. This can be, and has been, implemented on a computer. The
input is the root system R, and it is necessary to know the Weyl group W (this is given
in the planches of [Bo]). It is very easy to write a routine to check whether a given
vector is a bad guy Oust do-loop the inner product along R/). Then you need to write
a Weyl-sorting routine that given any good vector in the root-lattice finds its image in
the fundamental chamber and the sign of the element w in W that sends it there. Of
course you also need a polynomial multiplication routine (which you can easily jot
down yourself, no need for MACSYMA). This is enough to produce (4.6) and the
P(x) and Q(x) of (5.5).

Now comes the creative part, experimenting with various fl’s that will give an
equation E that involves the relevant coefficients that feature in (4.6). For those root
systems for which -l_-<a-<l (most of them) the choice fl=-8 will produce a
tautology: 0=0, because the only survivor, after applying part (ii) of the Crucial
Lemma, is C.T. [XGk] Hk. It is thus likely that for/3 near -8 we will get relatively
few terms.

Once you have [SI- 1 independent equations you solve them and plug the solutions
into (4.6). You will never have to see (or print out) the solutions of the system (5.9),
because it can all be done internally (in MACSYMA this amounts to finishing your
lines with dollar signs rather than with semicolons). You will not even have to see or
print out the resulting rational function Hk/I/Hk obtained by plugging in the solutions
of the system (5.9) into (4.6).

All you have to do is enter the rational function Rk+I/Rk (you can even write a
routine for that) and ask the computer to output the difference between these two
rational functions. If you get ZERO then you have proved (qM) for your particular
root system. If you get something else then you have disproved (qM). Either that or
(more likely), you have made an error somewhere.

7. A2. The new method will now be illustrated on the simplest nontrivial case,
the root system A.. Of course this case is already well known, even classical (it is
equivalent to Jackson’s q-Dixon identity [An1]), and the proof that we present here
is perhaps the longest and ugliest ever. But in order to learn how to use machine guns
to kill elephants one should first practise on flies. Another reason for doing the A2
case is that its results will be needed in 9, when we do G, and this will make the
paper self-contained. The present example is simple enough that it can be done by
hand, and the reader is encouraged to check all the steps and to supply all the details.

Equation (qM) says, in its equivalent formulation derived in 3, that if

q q q
k k k k-1 k-1 k-1

Hk C.T. Fk
and

(q)3k-1
Rk (q)2k_l(q)k( 1 q2k),

then Hk Rk.
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To get Rk from Rk=(q)3k/(q)3k we used (3.3) with the fundamental invariants
2, 3 of A2. A list of the fundamental invariants for all finite irreducible root systems
can be found for example in the excellent appendices of [Bo], as well as in [C, p. 155].

Now a routine calculation shows that (t--qk),

(7.1) Rk+ _(1 + t+ t2)(1--qt3)(1--q2t3)(1 + t)
Rk (1-qt)(1-q2t)

Now it is easily checked that R 1 and H 1, so all we have to do is verify that
Hk+x/Hk is equal to Rk+l/Rk. So let us compute Hk+l/Hk.

For A2 we have (e.g., [Bo, p. 250] or [C, p. 46])

A {(1,-1, 0); (1, 0,-1); (0, 1,-1)}., (1, 0,-1), and the Weyl group W is $3, the symmetric group on three elements
that acts by permuting the coordinates of (71, ’/2, "g3) for y in the root lattice. The bad
guys are those vectors that have two of their coordinates equal.

Now we do (4.2), namely we expand

( x 3)( X l)(x-! 1-t 1-t x2 1-t 1-t 1-t 1-t
X3

Discarding the bad guys, grouping the good guys into orbits under $3, as in (4.3),
plugging into (4.1) and using the Crucial Lemma yields, like in (4.4)-(4.6) (set
A(p) C.T. [X’Gk]),

Hk+I--(1 +2t+3t2+3ta+3t4+2t+ t6)A(1, 0,-1)
(7.2) (t + + 2t + 4 + t)A(2, 0, -2)

+ (t + + t4)A(2, 1, -3) + (t2 / + t’)A(3, -1, -2) taA(3, 0, -3).

Thus, S= ((1, 0,-1), (2, 0,-2), (2, 1,-3), (3, -1, -2), (3, 0,-3)}, and we need to find
four independent equations relating {A(p); p S}.

Now (5.3) becomes

fl-IO(qXl,X2,X3) fO_l(qX1, X2, X3)
1-- q tcX1

/1-10(21,22,23) qk- Xl /10--1(Xl’ X2’ X3)
qk-

Xl

and (5.5) becomes (1 1),

Gk(qX1,X2, X3)
Gk(X, X2, X3) qk-1 _X1 qk-1 _X_.[1

X3

and (5.6) becomes

q Gk(

and multiplying out yields

(q2k-1 qkXl kXl X---q --+q Gk(qXl, X2, X3)
X2 X3 X2X3]

(7.3)

=(1 qkxl kXl+q2k X___q Gk(X1, X2, X3)-
X2 X3 X2X3/
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Experimenting with various /3 yields that (0, 1,-1), (1,0,-1), (0,2,-2), and
(1, 1,-2) pro&ce the desired equations (of course there are many other choices of/3
that will do). For each of these/3, multiplying both sides of (7.3) by x, using (5.8)
and the Crucial Lemma yields the equations:

E(o,1,-1)" (1--q2k-l--qk-l+ qk)A(1, O,--1)+(q-l--qZk)A(2, O,--2)=0,

E(1.O,_l)" (1--qZk-Z)A(1, O,--1)+(qk-Z--qk)A(2, O,--2)+(q:Zk--q-Z)A(3,--1,--2)=0,

E(o,2,_2)" (1 q2k-’)A(2, O, --2) + (q-1 + qk-,_ qk qZk)A(2 1, --3) 0,

E1,1.-2)" (qk-:--qk)A(2, O,--2)+(qk-:Z--qk)A(2, 1,--3)+(q2k--q-2)A(3, O,--3)=0.

Solving this system we get (t qk) (recall that A(1, 0, -1) Hk),

A(2, 0, -2)
(t-q)(1- 2)

Hk,
(1-t)(1-qt)

(7.4) A(3, -1, -2) A(2, 1, -3)
(q- t)(q- t2)

H,,
(1-qt)(1-qt2)

-t(1 q2)(q t)( q)( 1 3)
A(3, 0,-3)=(l_qt)(l_qte)(l_q2t2)(l_ t) Hk.

This much was done by hand. Now using MACSYMA we can plug it all into
(7.2) and get Hk+I/Hk. Then we subtract it from Rk+/Rk given in (7.1). The answer
is indeed zero and we have just proved (qM) for A2.

Now that we know that Hk is indeed equal to what it is supposed to be, namely
to Rk, we can plug that expression into (7.4) and get as a lagnappe explicit expressions
for A(2,0,-2)=Ak(2,0,-2)=C.T.[xx2Gk]=C.T.[xlxIFk], etc. This_will be
needed in 9.

8. Modifications. Our method can be easily adapted to the more refined Mac-
donald-Morris conjectures (qM-M1) and (qM-M2). In fact, because of the added
parameter it is even computationally faster. We will only treat (qM-M2), since (qM-M1)
is just a special case of (qM-M2) ((qM-M1) corresponds to the S(R) cases for which
it is well known [Mall, [Mo] that us= 1). It is also well known (for example from
the classification theorem for finite root systems [Bo], [C] that all the irreducible
reduced finite root systems have either just one root length (An, Dn, E6, ET, and Es)
or two root lengths (Bn, Cn, G2, and F4). The only nonreduced irreducible finite root
systems, BCn, have three different root lengths. Since (qM-M2) reduces to (qM) for
all the single-length root systems, we will assume that the root systems have two root
lengths, short and long, and leave it to the reader to do the appropriate obvious
modifications for BCn.

So let us rewrite (qM-M2) for two-lengths root systems. Denoting kshor by a, klong
by b, b/shor by us, and Ulong by Ul, we have

(qM-M2’)

a certain explicit product.
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The right-hand side can be looked up in [Ma3] or [Mo, pp. 25-26]. Its exact form
is irrelevant for the purposes of the present method whose modest aim is to prove
(qM-M2) for one root-system at a time, and as such does not care to look at the general
pattern. Besides, the method should be able to compute the constant term in question
from scratch and it is dishonest to "peek at the answer." In any case, for any specific
root-system, it is possible to look up the explicit conjectured right-hand side from [Mo].

So let us call the polynomial inside the braces of (qM-M2’) F’,b(X). We are
interested in evaluating

(8.1) H,b C.T. F’,(x).

In analogy with 3, we will consider instead

F,,,b(X) (X; q’)(q’"X-’; qU)a-1 1- (Xa; q"’)b(q"X-’; qu’)b-1,
short R long

H,.b=C.T.F,,b(x).

Since the Weyl group W acts separately on the long roots and the short roots (as
is obvious from the fact that the elements of W are isometries), the calculation of (3.3)
can be carried verbatim to show that

(8.2) G,,,(x) =: x-Fa,(x)
is antisymmetric.

For w in the Weyl group Wlet ns(w) W(Rs+hort)fq R- and nl(w) W(Rl+ong)fq R-
(so n(w)= ns(w)+ nl(w)). Define

(8.3) W(t, s)= _, tnW)s "’w),
wW

which for a fixed root system (and therefore a fixed Weyl group) is a specific polynomial.
Macdonald [Ma2] has a wonderful formula for W(t, s) as a product that is indexed
over the positive roots (for s it reduces to (3.11)), but it is not really needed for
our present narrow-minded purposes.

A completely analogous argument to that of 3 (only now we keep track of the
short and long roots separately, with their respective parameters and s) yields

(8.4) H’,,b= Ha,bW(q’"% qbu’).

We now want to evaluate

H,,b=C.T.[xG,,b].

The difference now is that we have two parameters a and b rather than the single
parameter k. The induction step is similar to that described in 4 only now we induct
with respect to either a or b (I prefer a). Unlike the previous case where the base case
was trivial, now a 1 is no longer trivial but is essentially the (qM) conjecture for the
subroot system consisting of the long roots

Hl,b C.T. Fl,b (X)

where

F,,b(X)= R1 (1--X’) (X’; qUl)b(qUtx-; q")b-,.
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Expanding

(1 -xS),

we can express HI,b as a certain linear combination of various coefficients of

Fb(X):= (xS; q")b(q"x-S; q")b-.
R’long

Thus before we can embark on (qM-M2) for R we must do first (qM) for the
subroot system Rlong and find not only the constant term of Fb(x) but also some
neighboring coefficients. It can be easily shown that these coefficients are among those
"lagnappes" that we got anyway in system (5.9). For example, the long roots of G2
constitute the root system A_, and when we do G in the next section we will use the
A2 information obtained in 7. Similarly, before we can do F4 we must do D4, etc.

Having established the base case a 1, 4 passes almost verbatim: (4.1) becomes

(8.6) Ha+l,b =C.T. [xGa+l,b(x)]=C.T. [x H (1--qaU’xS)Ga,b]
eshor

and (4.6) becomes (t q a,,)

(8.7) Ha+l,b Z Ao(t) C.T. [xG,,b].

Now comes the analogue of 5. We have to be a little careful because
Ga,b(Xl qx)/G,,b(X) may not be a rational function. Instead we look for vectors of
integers z (z, , z,) such that

(8.8)
ak(qZlx’’ qZ"x")

ak(xl, ,xn)

is a rational function. This can be achieved if Us divides (a, z) for every short root a,
and u divides (a, z) for every long a. Of course we will try to choose z in such a way
that the rational function (8.8) is as simple as possible (in the next section z (2, 1, 0)).

In analogy with 5 we define

f(x) (xS; q",),,,(q’,,x-S; q’),,,_a

where ks a, us Us if a is short and ks b and us Ul if a is long.
In analogy with (5.2) we have

fs(qhxl, qZ,x,,)
L(x, ,x.)

So if we replace

qq"% a(z,a)/us, k-ks

then (5.3) and (5.4) are still true. Equation (5.5) now becomes

(8.9)
Ga,b(qz’xl, qZ"x,,)_ q-(,z [l

ps(X)
G,,b(X,, ", x,) s;k qs(X)

(q(Z,S)x; q",,),,(q",-z,s)x-S; qU’)k_
(xS; q’o,),(q’o,x-’; q’),,_

P

where P and Q are explicitly computable polynomials in x, q, t, and s where qaU.,
s qbUi.
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Equations (5.6) and (5.7) are still true but with Gk(Xl-qXl) replaced by
Gk(qZ’xl, qZ"x,) and instead of (5.8) we need

(8.10) C.T. [XVGa,b(qhxl, q"x,,)] q-") C.T. [xVG,.b].
This follows from

C.T. [xrG,(qhxl, qZ"x,)]

q-(r,z) C.T. [(qzlXl)Yl’’" (qZ"x,)r G,,,b(qZ’xl, q"x,)]

and the fact that C.T. is unaffected by scaling.
Everything is as before; the only difference is that in (5.9) the coefficients av

depend on (t, s, q) where qO" and s q b,,, i.e.,

(8.11) Et3" E av(t, s, q) C.T. [xVG,b] =0.

Everything else translates smoothly. Solving the system we will express all the
coefficients that feature in (8.7) as certain rational functions in (q,t,s) times
C.T. [xG,b] H,b. Substituting the solutions thus obtained into (8.7) will give us the
rational function H+l,b/H,b. Since we already have a formula for Hl,b this easily
yields a formula for H,b. Alternatively, if we believe that the conjectured value for
H,,b, let us call it R,,b, has a good chance of being correct then all we have to do is
look up R’,,b (the conjectured right-hand side of (qM-M2)) in [Mo] and then compute
Ra,b by dividing Ra,b by W(q", qbu,) of (8.3). We then compute Ra+l,b/Ra,b (a rational
function in (q, t, s)). Assuming that we have already checked that H1,b Rl,b, the status
of the conjecture (qM-M2) for the particular root-system in question is determined by
whether or not Ha+l,b/H,b--Ra+l,b/Ra,b is zero or not.

9. G’.
THEOREM (G case of (qM-M2)). The constant term of

Fa,b(X, y, z):= ;q ;q ;q ;q ;q .; q3
a\Xy b b b

Y; q q Y; q q; q q3XY_., q3 q3 ," q3 q3qx z b XZ b yz’ q3
b

is equal to

(q; q)3a+3b(q; q)3b(q; q)(q3; q3)a+3b(q3; q3)2b(q3; q3)a
Ra’b :=

(q; q)2a+3b(q; q)a+ab(q; q)2a(q3., q3)a+b(q3; qg)a+b(q3., q3)"

In this explict form the conjecture appears in Morris’ thesis [Mo, p. 139]. It is
alluded to in [As3, 5, fifth sentence] and is mentioned explicitly in [As4].

From [Bo, pp. 274-275] or [No] or [C], a2= {(1,-1, 0), (0,-1,1), (-1, 0,1),
(-1,-1, 2), (1,-2, 1), (-2, 1, 1)}; 6 (-1,-2, 3), and the Weyl group is the dihedral
group of order 12, that is the direct product of $3 with {I,-I}, where I denotes the
identity mapping and -I(a, , y) (-a, -, -y). (It is a very instructive exericise for
you to obtain the Weyl group yourself.) The bad guys are the vectors of integers
(al, a, a3) in which two coordinates are equal (those that are orthogonal to one of
the short roots) and those vectors of integers in which one component is zero (those
orthogonal to one of the long roots; recall that for all vectors in the root-lattice the
sum of the components is zero).

A direct calculation shows that W(t, s) of (8.3) is given by

(9.1) W(t, s)= 1 + t+s+2ts+ iS2+ 12S+212S2+/3s2+ t2s3+ t3s 3.
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(For example -231 sends (1,-1, 0) to (1, 0,-1), a negative root; (0,-1, 1) goes to
(1,-1, 0), a positive root; (-1, 0, 1) goes to (0,-1, 1) a positive root; so ns(-231)
1(-231)(R+) R-I I((1, 0, -1)1 1. Similarly, n!(-231)= 1 and so -231 gives a contri-
bution of ts to the sum of (8.3).)

W(t, s) factorizes nicely, namely

(9.2) W(t, s)=(l+ t)(l+s)(l+ ts+ t2s2)

(compare [Ma2, p. 168]).
So with the notation of 8 it follows from (8.4) that (us 1, u 3, qa, s q3b)

and the theorem will be proved if we can show that Ha,b Ra,b where Ra,b

R,b/W(qa, q3b ).
A simple calculation gives that

(q; q)a,,+ab(q; q)ab(q; q)2-l(q3; qa)+ab-l(q3; qa)2b-l(q3; q3)a
(9.3) R,b (q; q)2+ab(q; q)+ab-l(q; q)a(q; q)-I

(q3; qa)a+:b(q3 qa)+b(q3 qa)b(q3. qa)b_

A routine calculation gives (t q, s qab)

(1--qt3s)(1--q2tas)(1 t)(1--qt)(1 tasa)(1--q3t3)
(9.4) g+l,b/g,,b (l_qtZs)(l_q2t2s)(l_ts)(l_qt)(l_t)(l_qatas2).

) ) ) ) ) )F,,b(X) q q q ;q3 ;q3 ;q3
a\Xy b b b

(9.5) qx q q q qz; q

Z’-’" b-1 XZ
q3 q3; q3

b- yz b-

H,b C.T.

We must show that Ha,b Ra,b. This will be done by induction on a. First we must
prove the base case H.b Rl,b.

Proof of the base case a 1. Substituting a 1 in R,b given in (9.3) and setting
Q q3 gives

(Q)ab (1-Qb)(1-Q)
(9.6) R,b (Q) (1 QEb)(1 Q2b+l).

We will need the A2 results proved in 7. For our present purposes it is convenient
to rewrite it in the "fundamental roots" form (sometimes used by Morris [Mo]) obtained
by setting u xl/x_ and u x/x3. Also let us replace q by Q (so everything is to
base Q: (U)b (Ul; Q)b, etc).

Let Fb be defined by

(9.7) /3b (U)b(U)b(UU2)b(Q/U)b-(Q/U)b-(Q/UlU2)b-1.

Ha,b
H,,b (1 + qa)( 1 + qab)(1 + q,+ab + q+6b)

So let
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Then the results from 7 that we need here are

(9.8a) C.T./3b

and from (7.4) (A(2, 0,-2))

(Q)3b-,
Q)b_I( Q)b(1- Q2b)

(9.8b) C.T.(UlU2b) =(Qb-Q)(I+Qb)
(1_ oeb+,) (C’T-/3b)

Now we want HI,b C.T. Fl,b, where (plug in a 1 in (9.5)),

F,,b (1 x/y)(1 z/y)(1 z/x)

xy b Y’ q kX q ; q ; q3 q3; q3
b b b XZ b YZ b

Now let u xz/y2, u2=yz/x2. Then

y y x

and then if we take Q q3,

Fl,b (1 U l/3U/3)(1 U/3U/3)(1 U l/3U/3)b.
SO

1/3 2/3 4/3 2/3Hl,b=C.T. [1-ul/aul/a-ul , +Ul +UU2 -l Fb=C.T. [(I +UlU)Fb]

(u corresponds to the vector (1,-1, 0)+ =(1, -1, 0)+(1, 0,-1) =(2, -1, -1), a bad
guy (for A), and all other terms are even worse" they are fractional. Their contribution
is of course zero since b does not have any terms with fractional exponents, being a
Laurent polynomial.)

Using (9.8a) and (9.8b) we get

which after a routine calculation turns out to be equal to R. in (9.6) (end of proof
of the base case a 1).

Proof of the inductive step. Now that we know that H. Ra,b for a 1 we go
next to the inductive step.

For the root system G, , one-half the sum of the positive roots, is equal to
(-1,-2, 3), and (8.6) becomes (recall q)

Ha+l,b C.T, [X-l-2z3aa+l,b]
(9.0 c.. [x--3( x/( /( z/x

(-/x( /(-x/,,].

We now expand

x-’y-z3(- x/y(-/(- z/xl(- y/xl(-/(- x/zl,

discard all the bad guys and collect all the good guys into orbits under We then
substitute everything back into (9.10) and use the Crucial Lemma, and then finally we
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collect terms. (I highly recommend that the reader check this either by hand or by
machine, there are only 26-- 64 terms in the expansion.)

We get for (8.7)

na+,b =(1 + t+ t2+ t4+ ts+ 6) C.T. [x-y-2g3Ga,b]

(9.11) -(t + + 5) C.T. [x-ly-3zaGa,b]
+(t2+ t3+/4) C.T. [x-2y-3ZSGa.b] C.T. [x-ly-4ZSGa,b].

In preparation for the MACSYMA input file given below let us put

x0--C.T. [x-ly-2Z3Oa,b]/na,b 1 (by definition),

xl =C.T. [x-ly-3Z4Ga,b]/na,b,

x2 C.T. x-2y-3z Ga,b ]/Ha,b,

x3 =C.T. [x-ly-4ZSGa,b]/ na,b

With p0, p l, p2, p3 as defined in the input file below, (9.11) becomes

(9.12) Ha+l.b/H,b =pO*xO+pl*xl +p2*x2+p3*x3

and we will call this "sum" in the input file below.
Finally we need linear equations relating x0, xl, x2, and x3. The simplest vector

z (zl, z2, z3) that makes (8.8) a rational function is (2, 1, 0). Now (8.9) becomes

Ga,b(qZx, qy, Z) P
G.b(x,y,z) Q

where P and Q are computed using (5.3) and (5.4) as modified in 8 before (8.9).
Proceeding as described in 6 (I used a computer but it is possible to do it by hand)
we get the following results. (a00,..., a23 are given in the MACSYMA input file
below.) The choice/3 (2, 2, -4) yields

E(2,2,_4): aOO*xO+ a01*xl =0;

/3 (0, 3, -3) yields

Eo,3,-3): al0*x0+ all*xl + a12*x2 =0;

and/3 (4, 0,-4) yields

E4,o,-4): a20*xO+a21*xl+a22*x2+a23*x3=O.

(A copy of the C program that implements the algorithm of 5, modified as in
8, by which I obtained the above equations, is available upon request (either a

printout by U.S. mail or by electronic mail; sorry, no disks). However it is highly
recommended that the readers write their own programs. It is much easier to write
your own code than to try to understand somebody else’s computer scratch.)

MACSYMA INPUT FILE

aO0: t^3*s^2*q t/q+ t’s- t^3*s + t^2*s^2 t^4*s*q t^2+ s/q
+ t^2*s*q t^2*s/q + 1 t^4*s^25
aO0: 0- aO0$
aOl: t^4*s^2*q q^ 15
alO: -t^4*s^2*q+ q^2+ t^2*s^2*q+ t^2*s^2 t^4*s*q
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t^2*q^3 t^2*q^2 + s’q^2 + s t^2 t^4*s*q^3 + t^2*s^2*q^3
+ t’s^2 + t^2*s*q t^3*s*q- t^3*s t^3*q^3_ t^2*s*q^2
+ t*s*q^3 + t*s*q^2 + 2*t*s t^3*q t^3 -2*t^3*s*q^3
+ t*s^2*q^3 + t*s^2*q^2$

all: t^2*s*q+ t^2*s t^2*s*q^3 t^2*s*q^2-s+ t^2*q + t^2
+ ^4*s-q^3 t^2*s^2*q^3 t^2*s^2*q^2 + t- t^3*s^2*q^35

a12: t- t^3*s^2*q^3 + 1 t^4*s^2*q^35
a12:(-1)*a125
a20: t*s^2*q t^2*s^2 t^3*q^-3 + t^2*q^-2 t^2*s*q+ t^3*s + t^2*s*q^-3

t*s*q^-2 t’s+ t^3*s*q^-2$
a21: -t^2*s^2*q+ t^3*s^2*q+ t^3*s^2+ t^2*q^-3- t’q^-2 t*q^-3

+ t^3*s*q t*s*q -35
a22: t^3*s^2*q t*q -35
a23: -t^4*s^2*q+ q^-35
pO: 1 + + t^2 + t^4 + t^5 + t^65
pl: -t-t^3-t^5$
p2:" t^2 + t^3 + t^45
p3:-t^35
xO: 15
xl: O- aOO*xO$
xl: xl/aOl$
x2: alO*xO+ all*xl$
x2:0 x2/a 125
x3: a20*xO+ a21*xl + a22*x25
x3: O- x3/a235
sum: pO*xO+pl*xl +p2*x2+p3*x35
rhs: (1-q*t^3*s)*(1-q^2*t^3*s)*(1- t^2)*(1- q*t^2)$
rhs: rhs*(1 t^3*s^3)*(1 q^3*t^3)$
rhs: rhs/((1-q*t^2*s)*(1-q^Z*t^Z*s)*(1 t’s)*(1- q’t)*(1 t)*

(1 -q^3*t^3*s^2))$
sum: sum rhs$
ratsimp(sum );
quit( );

In the input file we solve for x l, x2, x3 successively. Then we ask MACSYMA to
compute "sum"= Ha+l.b/Ha,b. We enter Ra/,b/R.b given in (9.4) and call it "rhs."
So far every line has been terminated with a dollar sign so that the partial steps are
not going to be printed out. The second line from the bottom is

sum: sum rhs$

that defines the new "sum" to be the difference between the conjectured right-hand
side and the real right-hand side. This should be zero if the conjecture is true. The
last line asks MACSYMA to simplify this difference: ratsimp(surn); and now, finally,
there is a semicolon, because now we do want to see the answer.

On December 22, 1986, 3:30 p.m., after two previous unsuccessful attempts (due
to typing errors that were presently detected), I typed on my terminal:

macsyma < inputfile

After a few minutes came the output: 27 blank double lines (due to the dollar
signs) and
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(c28)
(a28)
YEA!!!

10. Prospects. The next in line is F4. But before we can do F4, we must do D4,
the short part of F4. A preliminary calculation done by Dave Robbins shows that for
D4, (4.6) involves more than one hundred terms. So we will have to find and solve a
system of more than one hundred linear equations with rather complicated coefficients.
While this is still within the reach of current computers, it is hard to justify that kind
of expense before all other means have been exhausted.

As I have already mentioned, the reason why the Macdonald-Morris conjectures
(qM-M2) are easier than the original Macdonald conjectures (qM), is that the two
parameters let us break the problem into two subproblems. In a way we are first doing
the long roots and only then the short roots. But nowhere in 8 have we ever used
the "physical appearance" of the short and long roots, that is the fact that the roots
of Rlong are "longer" than those of Rshort. All we used was the fact that the partition
R Rshort(_J Rlong partitions the root-system R into two subsets both of which are
invariant under the action of the Weyl group W.

Is it possible to find such a partition for those root systems that have only one
root length (An, Dn, E6, ET, Es)? The answer is: not quite, but almost. Instead of the
Weyl group W itself, we have to settle for invariance under a certain subgroup of W.
It turns out that it is possible to find such a partition of R which is invariant under a
very large subgroup of W, so we only have to sacrifice a little bit of symmetry. Still,
we have to put up with some vectors that were previously denounced as bad guys. In
return, however, the corresponding polynomial that appears in (4.1) is much smaller
and the trade-off is well in our favor, since the resulting set S in (4.6) turns out to be
much smaller.

For example, An-1 can be partitioned into

An-l-- {+/-(el ei); 2<= <= n} t.J {+(ei- e); 2<= <j <= n}.
The second set is the subroot system An-2 in the last n- 1 coordinates and its Weyl
group Sn_l (that acts by permuting the last n-1 coordinates) is the subgroup that
leaves both subsets invariant.

In fact, the first subset above can be further partitoned into its positive and negative
roots and so An_ can be partitioned into three subsets, each of which is invariant
under the above-mentioned Sn-1. Indeed, we have

An-1 {e- e,; 2 =< _<- n} t_J {-el + e,; 2 <= <= n} t_J {+/-(ei- e; 2 =< <j -< n)}.
We should thus expect a three parameter "pseudo"-Macdonald-Morris conjecture

(10.1) C.T. I-[ (Xl/Xi)a H (qx,/x,)b 1-I (x,/xj)c(qx/xi)c_,=something explicit.
i=2 i=2 2<-i<j<=n

Such an identity indeed exists and was conjectured by Morris [Mo] (Morris proved
the q 1 case). It was recently proved by Kadell [Kadl] and Habsieger [Hab2], who
deduced it from their Askey q-Selberg integral. However it is possible to get a
Stembridge-style proof by using the method of 8 [Z4]. The a 0 case is easily seen
to be equivalent to the a b 0 case. Then one inducts on a and gets a recurrence in
a. The analogue of (4.6) contains only n terms and it is easy to find n- 1 independent
equations satisfied by them. The base case a b 0 is just the An_ case while the
a b c is the An case. This provides the necessary induction.
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For Dn the situation is not quite as rosy, but it is still very promising. While it is
not possible to partition Dn into three subsets invariant under a large subgroup of W,
it is possible to do it with two subsets.

Indeed,

(10.2) D, {+/-el + ei; 2<= i<- n}U {+e+ ej; 2<-_ <j<- n}.
The second set is just the root-system D_I on the last n-1 coordinates. The Weyl
group of this D_ consists of all signed permutations with an even number of signs
that act on the last n- 1 coordinates [Bo, p. 257, (X)]. It leaves both subsets of (10.2)
invariant. I conjecture that if

(10.3) H,=: C.T. I (Xl/Xi)a(qXi/Xl)a-l(XlXi)a(q/XlXi)a-1
i=2

H (Xi/Xj)b(qXj/Xi)b-l(XiXj)b(q/xiXj)b-1,
2i<jn

then Ha,b has an explicit and perhaps nice expression. In any case the method described
in 8 should produce Ha,b+l/Ha,b, a certain rational function, and whether it is nice
or not it should give us a formula for Ha,b that we know should be nice when a- b.
In any case the analogue of (4.6) is much simpler now, and the number of equations
needed is considerably reduced. The base case a 1 is essentially D_I, and once we
obtain the recurrence in a, and thus the expression for Ha,b, then Hb,b will give the
D case of (qM). Once we will have Dn, the remaining classical families Bn and C
should be relatively easy. D is the "hard core" of both B and C, and it hopefully
would be relatively easy to add the rest. Similarly, it should be possible to find more
refined conjectures for F4 and the E’s that will enable us to break the proof into
manageable pas.

Another possibility is to find the "trivializing generalization": a much more general
statement than the Macdonald conjectures that would be trivial (or at least easy, or
in any case possible) to prove. Except for some coecients in the A, case [Ste3],
the general coecients of Gk and G,b do not seem to have nice expressions. So we
have to abandon the hope of finding a nice expression for the general coecient of
Gk. But perhaps it is possible to find ceain linear combinations of these messy
coecients that are good-looking. Remember that in our method the desired coecient,
Hk+, was obtained, via (4.6) as a ceain linear combination of more or less ugly
coecients of the k case. Maybe it is possible to find a family of polynomials, a, say,
parametrized by paitions h such that

(10.4) C.T. [R+ (X)k(qX-)k_aA ]
has a nice expression in k and A. Now that we have a laboratory for producing not
only the constant term, but also other coefficients of Fk(Fo.b), there is a vast hunting
ground for formulating and testing such more general conjectures (see [Kad2] for a
similar idea in the context of the Selberg integral).

A related idea, inspired by Aomoto’s [Ao] proofof Selberg’s integral, was suggested
by Askey [As3]: Break the ascent from k to k + 1 in (qM) by raising the subscripts on
the roots one, or few, at a time. The present method also offers a convenient workbench
for Askey’s approach. In paicular it is possible to verify his G2 conjectures made at
the end of 4 of [As3].
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Note added in proof. Kevin Kadell has meanwhile proved the BC,, cases of
(qM-M1), and thus also the Bn, Cn, D, cases. Frank Garvan (preprint) has used the
method of this paper to prove the q 1 case of F4. He also succeeded in proving the
F4, I3 cases of the Macdonald-Mehta conjectures. Frank Garvan and Dennis Stanton
have proved that the system (5.9) is always upper triangular, in the q 1 case.
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STRONG INTERNAL RESONANCE, Z2Z2 SYMMETRY,
AND MULTIPLE PERIODIC SOLUTIONS*

THOMAS J. BRIDGES]

Abstract. Equal (strong internal resonance) or nearly equal natural frequencies in a Hamiltonian system
are shown to lead to a higher multiplicity and secondary branching of periodic solutions. The role of Z203 Z2
symmetry is emphasized as a basis for the analysis. The Lyapunov-Schmidt method is used to generate a

set of bifurcation equations. The higher order terms in the bifurcation equations are formally neglected,
leading to the basic normal form for coupled equations with Z20)Z symmetry. Known results for this
normal form are used to determine the nature of the periodic solutions in a neighborhood of a resonance.
A stability analysis is based on Floquet theory and the Lyapunov-Schmidt method. Regions of stability are
established and particular singular points in parameter space are found where periodic solutions may not
exist. The analysis is carried out on an example: the orthogonal planar pendulum.

Key words. Hamiltonian system, bifurcation, symmetry, singularity theory

AMS(MOS) subject classifications. 34C15, 34C25, 47H15, 70K99

1. Introduction. The circle group S and the symmetry group Z2 play a funda-
mental role in an analysis of the nature of periodic solutions of a Hamiltonian system
near equilibrium. The action of the circle group represents the translation invariance
in time. A development of this role with the use of the Lyapunov-Schmidt method has
been given by Moser [23]. The role of Z2 symmetry is more subtle and appears in the
bifurcation equations after application of a Lyapunov-Schmidt splitting. The import-
ance of Z2 symmetry and its basic role in the analysis of periodic solutions has been
emphasized by Golubitsky and Langford [10]. In Hamiltonian systems, where a Hopf
bifurcation parameter is absent, it is usual to treat the period as a bifurcation parameter
and then apply the Lyapunov-Schmidt method (Hale 13, Chap. 8]). For a nonresonant
Hamiltonian in this setting it is generic that the bifurcation equations are Z2 equivalent
to the pitchfork. When a 1 1 resonance occurs we find that the symmetry, group Z2Z2
plays a central role. Similarly the symmetry group Z203 Z2)Z2 can be shown to play
a central role in an analysis of the l:l:k (k-> 1) resonance.

This is similar to the role played by Z203 Z2 symmetry when a double eigenvalue
occurs in an equilibrium problem. In this context Bauer, Keller, and Reiss [1] first
showed that splitting a double eigenvalue results in secondary bifurcation. Golubitsky
and Schaetter 11] subsequently showed that this was a result of the unfolding of the
normal form for equations with Z2Z2 symmetry. This principle of splitting a double
eigenvalue to find secondary branches has since been observed in a number of interest-
ing applications. Golubitsky and Schaeffer [12] have analyzed the buckling of rec-
tangular plates, Buzano [5] has analyzed the buckling of thin rods, and Kriegsmann
and Reiss [17] have analyzed magneto-hydrodynamic equilibria. Margolis and Mat-
kowsky [20] first applied this concept to the secondary branching of periodic solutions,
and Bridges [3], [4] subsequently applied this theory to find secondary branches of
periodic surface waves in an enclosed basin.

From a strictly Hamiltonian point of view, periodic solutions near a resonant
equilibrium have been well studied in the celestial mechanics literature. H6non and
Heiles [14], Braun [2], and Kummer [18], for example, have used numerical methods
and the Gustavson normal form to determine the multiplicity and stability of periodic

* Received by the editors, October 29, 1986; accepted for publication August 24, 1987.
? Department of Mathematics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609.
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solutions at a 1"1 resonance. An up-to-date review of generic bifurcations in Hamil-
tonian systems is given by Meyer [21].

In this paper the Lyapunov-Schmidt method is used to reduce the analysis of
Hamiltonian systems at 1:1 resonance to a set of bifurcation equations. Known
properties of the normal form for Z203 Z: symmetry are then used to analyze the nature
and multiplicity of the periodic solutions. Stability is determined using Floquet theory.
The number of degrees of freedom may be arbitrary as long as the other degrees of
freedom are nonresonant. Clearly it is sufficient to consider a system with two degrees
of freedom,

H(O1 01 02 02) --101( 012 q" 012) q- 1/2602( 022 q" 0) -}- H3
where H3 is a convergent power series that begins with a third-order term.

However, for added insight, we will develop the ideas by considering a physical
problem with two degrees of freedom, which is sufficiently general and contains some
interesting properties besides. The system is a compound orthogonal pendulum.

Consider a right-handed coordinate system with the z-axis directed upwards and
the x-axis directed to the right with a pendulum of mass ml and length 11 suspended
from the origin with its motion restricted to the x-z-plane. Suspended from the mass
m is a second pendulum of mass m2 and length 12 whose motion is restricted to the
y-z-plane. In addition the base of the pendulum (the origin) undergoes a horizontal
planar harmonic excitation, say

Yo /x2122x/ COS cot

where (/x,//’2) is a measure of the excitation amplitude and sr corresponds to the
phase between the two components of the excitation.

The Lagrangian for such a system is easily shown to be

L 1/2(m + m2)[o +.fo2 + 211o01] + m212))2J2 COS 01 COS 02
2(1.2) +1/2(m q- ma)12Oq-ma1202q m21112102 sin 01 sin 02

+(ml + m2)gl(cos 01-- 1)+ m2gl2(cos 02 1).

The interval of time [0, 2r/w] is mapped to [0, 27r] and we define the parameters
A g/w211, ll/12 1 tr and m m2/(ml + m2). Then application ofthe Euler-Lagrange
operator to (1.2) generates the nonlinearly coupled pair of second-order ordinary
differential equations

d2 O1 -I- A sin 01 --/Zl2X/ COS (t + sr) cos 01dt
(1.3a)

m

(1.3b)

d202
dt2--A(1- r)sin 02-/z22/ cos cos 02

+ (1 r) sin 02[ b" sin 01 + 012 cos 0,] 0

where A will play the role of a bifurcation parameter, o- is a parameter that is used to
unfold the 1 1 resonance, and R: will be an unfolding parameter that breaks the
symmetry. We are interested in periodic solutions of the set of equations (1.3) when
the two linear natural frequencies are equal or nearly equal, that is, in the neighborhood
of o- 0. Physically this is when the lengths of the two pendulums are very nearly equal.
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Although the results herein are for the 1 1 resonance they are not so limited. The
l:k resonance, although referred to as a higher order resonance when k => 1, behaves
much like a 1 1 resonance. It can be shown that the 1 :k resonance may have a normal
form similar to that of the 1 1 resonance and in addition the 1 1 :k resonance can be
analyzed using the normal form for a Ze0)Ze0)Ze symmetric problem.

The results herein for secondary branching of periodic solutions may also hold
for the 1:1 resonance in nondegenerate Hopf bifurcation when two parameters are
present. The analogous situation is given by the following evolution equation with
u R4:

du
to-+ A(tr)u + B(h)u F(h, tr, u)

where h, tr R, F(h, tr, 0)-0 and F is nonlinear in u, A, B R44 with B(0)-0 and
A(o’) has eigenvalues h (O’), A + + -(0) -i,h+(tr), A(tr), A2 (tr) with A (0)= i, A- (O) -i,
and h-(0)= i. If varying tr away from zero splits the 1"1 resonance with h fixed, then
we expect analogous secondary branching of periodic or quasi-periodic solutions.
Related results for the Hopf bifurcation theorem at resonance have been obtained
by Kielh6fer [15], Caprino, Maffei, and Negrini [6], and Chow, Mallet-Paret, and
Yorke [7].

2. Symmetry and the branching equation. It is usual to convert (1.3) to a set of
four first-order equations and set the problem in a Banach space with a graph norm.
With a second-order derivative in the nonlinearity, however, some simplification is
found by working from an integral equation point of view. Consider the integral
operators

(2.1a)

(2.1b)

where

Kdp k( t, z)ch( z) dr,

Ktqb-- kt(t, 7")dp(7") aT"

(2.1c) k(t, z): E
q,(t),*(7")+

n2
=1

and q,(t) ei"’/x/27r, x/-1; the * denotes complex conjugation and k,(t, z) Ok
Expressed using the above operators, terms in the equations (1.3) become 0j 4j,
0 =-K4 and 0 =-K,4 for j= 1, 2.

The governing equations may then be written as the abstract operation

(6, ;, ,, ,) 0

for fixed rn with (, 2) and b (b, b) and the operators are given explicitly
by

(b, A, o-,/z) b-A sin Kb 2v//z cos (t + r) cos K41
(2.2a)

(2.2b)

m
sin K4,[b2 sin K4,2 (K,be)2 cos

@2(th, A, or,/., the A (1 or) sin Kb2 2x//x2 cos cos Kb2
+ (1 o’) sin K4,2[ 4’1 sin K4, (Ktbl)2 cos K4,].
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is now a compact mapping ’g x R R R2
X where X is a Banach space of pairs

of continuous functions, g=XoXXo where Xo is the Banach space go=
{f:f(t+2r)=f(t),f’RC is continuous, and =f(-) dr=0} and for anyfgo the
I[fll =sup, If(t)l and for any g we have I111 =max {11,11, I1=11}.

When 0 the mapping satisfies two sets of symmetry conditions. Due to the
translation invariance in time 1 and commute with the action of the circle group
Fo S. Associating angles 0 in S with numbers in [0, 2),

Fof(t)=f(t-O)

for 0 Fo, f go. On g we consider the diagonal action of Fo on go x go. In addition
we note that (2.2a) is odd in and even in 2 whereas (2.2b) is even in and odd
in . In other words commutes with the action of the symmetry group F2 Z2Z
[12, Chap. X], where F2 is a four element group that may be represented by the set
of four diagonal operators F diag [ 1, 1]. In summary we have Proposition 2.1.

PROPOSITION 2.1. en O, commutes with the action of Fo and F.
Proo The proof comes from the fact that F(, A, , 0) (F2, A, , 0) which

follows from substitution of F diag [1, 1] and noting that 1 is odd in 1 and
even in and is even in and odd in 2. The fact that (, A, , 0) commutes
with the diagonal action of F0 on Xo x Xo follows if Fo commutes with K. Consider

FoK k(t-O, r)b(r) dr

(, ,+ 0(
0

0+2

(, s)4(s-O) s
0

NFo.
Whether or not commutes with the action of F is not a necessary component

of the analysis. The impoant point is that the bifurcation equations commute with
action of F. An example from celestial mechanics is the well-studied Hamiltonian at
1"1 resonance of Hnon and Heiles [14], [2], [18], [19],

(.3 =(o+o+(o+o+cOO+ao
that corresponds to the differential equations

dO(2.4a) dt+ O + 2c0O 0,

dO(2.4b)
dt

+ O+ cO+ 3 dO O.

This pair considered as a mapping does not commute with the action of F2. However
the bifurcation equations do. Additional properties of this equation are considered in
6.

When/x 0 both the F2 and Fo symmetry properties are lost. However for a more
general analysis /x will be included in the Lyapunov-Schmidt reduction and when
appropriate the symmetry properties are reintroduced in the analysis of the bifurcation
equations for the special case /x 0. For the Lyapunov-Schmidt reduction we need
Proposition 2.2.
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PROPOSITION 2.2. (b, A, tr,/x) is continuously Frdchet differentiable with respect
to ch and the Frdchet derivative of at dp O, h 1, and tr =tx- 0 is a symmetric
Fredholm operator with index zero and four-dimensional nullspace.

Proof. First define an identity operator on X by I- diag 1, 1]. Then the Fr6chet
derivative 6 of at th 0, h 1, tr 0 acting on a vector u (ul, u2) is

U2 U2

where in this case A is a diagonal operator A =diag [1, 1] and K is as defined in (2.1a).
K is a completely continuous operator with symmetric kernel k(t, z) k(’, t). Therefore
the dim N(I-AK)=codim R(I-AK). The operator [I-AK] is a diagonal operator
acting on Xo x Xo with a two-dimensional nullspace corresponding to each Xo spanned
by {ql, q*}. Therefore taken together on X dim N(I-AK)=4. [3

With Proposition 2.2 we may decompose the space X as X N(I- AK)0) R(I- AK)
and we define a projection operator P diag [P, P] where

Plf @,(t)(@l,f)+ @*l(t)(@*l,f).

(.,.) is a functional pairing on Xo

(f g) f*(r)g(r)

It follows that R(I-AK)= {f X: Pf= 0}. Now the function b is split into two parts

where u Pb and v [I-P]4 and we define the mapping from N(I-AK) C by

(2.5) aj=(O,, bj) for j= 1,2.

The equations may now be decomposed in Lemma 2.3.
LEMMA 2.3. The function dp u + v is a 27r periodic solution of 0 if and only if

(2.6)

and

(2.7)

where

(2.8a)

v2 h(ul +Vl, u+v, t)

P
h2(Ul+ Vl, u2+ v2, t)

h,(thl, 4’2, t) (A 1)K4,, + A(sin Kthl- K4,1) + 2x//Xl cos (t + ’) cos Kb
m

sin Kb,[4 sin K62 (Ktb2) cos Kb2],
1-0"

h2(b, b2, t)= (A 1 cr)Kb2+ A(1 cr)(sin K6- K42) + 2,/2z2 cos cos Kb2
(2.8b)

-(A 1)crKq52- (1 or) sin Kb[bl sin Kb (Ktb)2 cos K4,]

and [I-AK+P] is an isomorphism from N(I-AK)+/-- R(I-AK).
Proof The pair of equations (2.2) has simply been rearranged into a linear and

a nonlinear part h X - X that satisfies D4,h(O 0, t) 0 where D, is the Fr6chet deriva-
tive. By the Fredholm alternative the equation [I-AK] h has a solution only if
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h R(I-AK) or equally h N(I-AK)-. This yields (2.7). Equation (2.6) is found by
projecting (2.2) along N(I-AK) onto its complement. The restriction of [I-AK] to
N(I- AK) +/- is then an isomorphism [I- AK+ P] N(I- AK)

Properties of (2.6) are established in Lemma 2.4.
LEMMA 2.4. There exists a solution v(t; a,h-1, or,/z) of (2.6) satisfying (a)

v(t; O, O, O, O) O, and (b) for I l, II, bounded away from zero the solution v of
(2.6) is also bounded away from zero but tends to zero with its last four arguments.

The mapping h x- X defined in (2.8) satisfies the following inequalities:

(2.9) [Ih I1 =max (llhll,
and

(2.10) max ( ll(Dhi)vjll} <=c2(a, A l, tr, l)
t=l,2 j=l

where Cl, c2 are positive bounded functions that tend to zero with their arguments.
Proof When a A 1 tr =/z 0 v satisfies

(2.11)
[I-AK+P)(vl)/92

/sin KV -KVl- m sin Kvl[v2 sin Kv2- (Ktv2)2 cos Kv2]
sin Kv2-Kv2-sin Kv2[vl sin Kv- (Ktv)2 cos Kv] ]"

The Fr6chet derivative of (2.11) is [I-AK+P] which was established in Lemma 2.3
to be an isomorphism from N(I- AK)-L- R(I-AK). By the implicit function theorem
there exists a unique v X in a neighborhood of the origin. But note that v 0 satisfies
(2.11). It follows that v 0 is the only solution connected to the origin and (a) follows.

When a, A 1, or,/ are nonzero v 0 is clearly not a solution of (2.6). It follows
that v # 0 when a, A 1, or,/ are nonzero but by (a) v must tend to zero with its last
four arguments.

The inequalities will now be proved. From (2.8) we have that

Ilh,II _-<]A -1[ IIKII I[Ul + viii + 241Zl1 + IA III sin K(u + Vl)-K(Ul-" Vl)
(2.12)

m
Ellu=/ v=ll / IIK, II=llu=/ v_ll =]+

1--o"

and Ilh211 has a similar expression. Now Ilujll <-21ajl for j 1, 2, IIKII is bounded and
bythe first part of this lemma I111 tends to zero with its arguments. Therefore IIhll, IIh=[[
are bounded by functions of c, A- 1, o’,/x which tend to zero with their arguments.
Choosing the maximum of these we have cl in (2.9).

The Fr6chet derivative of h with respect to v is

(Dhl)v, [ (A 1)+ A[cos Kbl I] 2x/l cos (t + ’) sin Kbl

cos KtlIts2 sin Kt2-(Ktt2)2 cos Kt2] K.
l--or

Therefore

(2.13)
II(Dh)ll IIK]I []A li+]AI Ilcos K61-111 + 2x/lm,]

m
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However, by part (a) we know that 4 [[x - 0 with a, h 1, tr,/. Therefore the right-hand
side of (2.13) is less than some number dependent on a, h 1, tr,/ and going to zero
with a, h 1, r,/. Repeating this argument for each of the other Fr6chet derivatives
of hi and choosing the maximum of the bounds as c2 we have (2.10).

With Lemmas 2.3 and 2.4 the bifurcation equations are constructed in Theorem 1.
THEOREM 1 There are positive constants eo > 0, ho > 0, tro> 0,/o > 0 with u [[x

Co, ]A- 1[--< Ao, [tr[--< tro, and [/x[ /o such that there exists a unique X with v
( t; a, h- 1, tr, I) which satisfies (2.6). has a continuous first derivative with respect
to its arguments and ( t; O, O, O, O)= O. Substitution of this unique v into (2.7) generates
the bifurcation equations

1 1
(A 1)al--- Icll:al+ 2x/-/x’ ei-t---m22t1-l-r1(z’r a*, A- 1, tr,/x) 0,

and

1
(A-1 tr)a2 ---la212a2+2-/.t2 1 2 . .,ala 2 + r(a, a A 1, tr,/.t) =0

I]11 O1 I/1(t) + *(t) +
42 a2 a t(t; a, A 1, tr,/_t)

is a 2rperiodic solution of (2.2) ifand only ifthe bifurcation equations are nondegenerate.
The remainder term r (rl, rE) satisfies

rll 0(1 ,1 + + (IA -11 + I rl)(l ,l + 1 21) + (1 ,1 + 1 =1)
as IA -II, I 1, 0.

< Vo to itself whenProof. v=[I-AK+P]-’h is a mapping from the ball II ll --
Cl-<_3Vo/7. In addition v [I-AK+p]-lh is a uniform contraction when c_<3/7. As
cl, c2 may be made arbitrarily small by proper choice of ho, Co, %, and/-to the existence,
and properties, of 4 u + 3 are a consequence of the uniform contraction mapping
theorem. The function 3 may be obtained as the limit of the sequence {v,} with
v,/l [I- AK+ p]-i h(v,, t) for n 0, 1, with Vo 0. Using the first approximation
we arrive at the bifurcation equations with the given error bounds. E1

As the bifurcation equations are nonanalytic they will be analyzed by decomposing
the amplitudes into % pj e% for j 1, 2. This yields

1 m
(2.14a) (A 1)p ----Pl----PPl COS 2(se2 :1) "" 2/r[/,1 COS (1-- ’) "" Re [r e-i,] =0,

(2.14b)
1 1

(A 1-’)P--p--por cos 2(- :1) + 2x//x cos s+ Re [r2 e-ie] 0,

(2.15a)
m----plp2 sin 2(s :1)- 24/z, sin (se, st)+ Im [r, e-il] --0,

(2.15b) lpp2 sin 2(s2-- :l) 2x/-/z2 sin :+ Im Jr2 e-i:2] 0.

These equations are the basis of the qualitative behavior of the nondegenerate periodic
solutions for the orthogonal planar pendulum. It provides a family of initial conditions
and relative phases that result in periodic orbits. It is these equations that will be
analyzed in the next two sections.
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3. Autonomous oscillations and Z2@ Z2 symmetry. Treating the phase difference

:2-:1 as a parameter the four bifurcation equations may be thought of as functions
of p (pl, p2) and K (A, 2-1, or,/_), with/z 0,

(3.1a) fl(P;/() Pl 1 47rPl COS 2(2 I)P "-05,

lp 1 ]cos 2(:2- sCl)p +05,(3.1b) f2(p ) p A-1 cr
4r r

(3.2a) gl(P )
m

=---plpsin2(2-l)+05,

(3.2b) gz(P; )=-lp2p2sin2(-1)+05

where 05 contains terms of fifth order and higher. Equations (3.1) are analogous to
the normal form for the double cusp with symmetry [11, p. 219]. In the absence of
(3.2) the function f when nondegenerate is Zq)Z: equivalent to

(3.3a) fl(x, y; )= x[xZ+4me3yZ-(A 1)] =0,

(3.3b) f2(x, y; K) y[4e3xZ+ yZ-(A l-o)]=O

where e3 cos 2(2- (1). However, the presence of g and its coupling to f through the
phase make the equivalence formal only. We have no rigorous basis for neglecting 05
in all four equations and therefore proceed on a formal basis by neglecting 05. This
implies that sin 2(-:1)=0 when plp2 0; therefore we study solutions of (3.3) with

e3 +1. The set (3.3) is the basic normal form for problems with Z2q)Z2 symmetry
and has been studied in much detail by Golubitsky and Schaeffer [12, Chap. X], from
which we have the following proposition.

PROPOSITION 3.1. The bifurcation problem f in (3.3) is degenerate when tn and
e3 1 or Them m and 6 4-1.

Proof The equations become dependent at these values of e3 and m. The complete
proof is given in [12, p. 423].

The implication is that the system has families of periodic solutions at admissible
values of rn and e3 other than these critical values. The points of degeneracy point
towards more complex solutions. In 6 some examples will be given to suggest what
might occur in the system at these points of degeneracy.

For values of rn and e3 other than the degenerate points, the periodic solutions
corresponding to (3.3) are

I: x =v/A- 1; y=0,

II: x=0; y=v/A-l-o",

III x 1-4me3 4me3A-I+o"
1- 16m 1-4me3

y 1-4e3 [ ---e3]1-16m 1

and only nonnegative values of x, y are admissible. Solution sets I and II are pure
mode pitchforks and correspond to the Lyapunov families emitted by the bifurcation
points A 1 and A 1 + o-. The mixed mode solutions are divided into five sets separated
by the points of degeneracy. For e3 + 1; 0 < rn < 6, 6 < rn < 1/4, and < rn < 1 and for
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e -----1; 0 < rn <6 and 6 < rn < 1. Solution types for each of these regions have been
classified by Golubitsky and Schaeffer 12, Chap. X]. The parameter o- which perturbs
the 1:1 resonance plays the role of the universal unfolding for this normal form. The
unfolding results in a secondary branching of the periodic solutions.

Although there is a translation invariance with respect to time, the requirement
that sin 2(:2 :1) 0 restricts the phase between the two pendulums, e3 1 corresponds
to in phase motions and e3 =-1 corresponds to a phase difference of +r/2 between
the two pendulums.

Figures 1-4 show examples of the multiplicity and nature of the autonomous
periodic solutions in a neighborhood of the resonance. Figure contains in-phase
and out-of-phase solutions at 1"1 resonance with m 1/2, and Fig. 2 is an unfolding of
Fig. 1 with tr . Figure 3 shows a neighborhood of the 1"1 resonance for rn and
tr =- with both in-phase and out-of-phase solutions. Note that there is a global
connection between the two Lyapunov families. Figure 4 is similar with parameters
m o and cr =- with in-phase and out-of-phase solutions. In Figs. 1-4 the in-phase
coupled solutions are indicated by +1 and the out-of-phase coupled solutions are
indicated by -1.

These figures are not bifurcation diagrams in the usual sense, although the
terminology applies well, due to the fact that A corresponds to the period of the
oscillations. The figures are essentially maps of initial displacements and relative phase
between the two modes such that periodic solutions result. A stability analysis of the
solutions is carried out in 5 using Floquet theory. That analysis shows that the
in-phase motions, e3 +1, are stable for all m such that rn > q while the out-of-phase
coupled motions, e3 =-1, are stable for all m (the degenerate points excepted). The
stability of the solutions implies that there is no exchange of energy between the two
degrees of freedom during the motion.

4. Symmetry breaking due to forced oscillations. When the parameter/ is included
in the analysis the bifurcation equations for pl, p2 no longer commute with the action
of Z20)Z2. The symmetry is broken and/ provides an unfolding of the normal form.
Although the F-codimension (the dimension of the unfolding that preserves the Z2Z2
symmetry) is three (two modal parameters (m, e3) and tr) the contact codimension
which allows for the dissolution ofthe ZzZ2 symmetry is 16 11, p. 219]. Consequently
the addition of the parameters /1 and /-’2 is by no means a universal unfolding but
the parameters have been introduced naturally and correspond to a measure of the
forcing of the dynamical system. The addition of more parameters and further study
is necessary before a complete picture of the forced oscillations may be formed. After
neglecting terms of fifth order and higher, and performing a smooth change of variables,
the bifurcation equations are

X(X2 + 4rne3y2-(A 1 )) -/1 cos (1- sr) 0,(4.1a)

(4.1b)

with the constraints,

y(4ex+y-( 1 ))- cos =0

(4.2a) 1 sin (:- )+4mxy sin 2(:2- :1)=0,

(4.2b) /2 sin :2- 4xZy sin 2(:2- :) =0.

Equations (4.2) clearly include the special case

(4.3) sin :, sr) sin 2 0.
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From this subclass of solutions some examples will be shown. We note however that
there may be other families of periodic solutions with sin (s1- r) 0 and sin so2 0.
With the restriction (4.3) we have

(4.4a) f(x, y; tc)=x[x2+4me3y2-(A-1)]-t.tle=O,

(4.4b) fz(x, y; tc)=y[4e3xZ+ yZ-(A-l-o’)]-ftze3=O,
with t (A, rn, r, ft, e) and e (e, e, e3) where

e cos (sc- sr) + 1,

e2 COS 2 -- 1,

e3 cos 2(sc2 sc) + 1.

Particular solution sets for (4.4) are illustrated in Figs. 5-9.
In Fig. 5/xl 0, r 0, m 1/2, r 0, and " 0 forces e + 1. This is an unfolding

of Fig. 1. There are two branches with x=0. At x=0, y=(ix2/2) 1/3, A 1 +3(/z2/2)2/3

there is a bifurcation point for a branch with x 0. In addition there is an isolated
branch with x 0. Solid lines correspond to a stable branch and dashed lines correspond
to an unstable branch. There is no qualitative difference when r is nonzero here as
indicated in Fig. 6. Figure 6 has the same parameters as Fig. 5 but with o-> 0.

In Fig. 7 ft 0 but/z2 V/ftl, 7 "--0, m 1/2, o-= 0, and r 0 requires that e h-1.
Here there are two branches satisfying y x/x. On the lower of these there is a limit
point at x=(iz/14) /3, A +21(/x/14)/3. The bifurcation point, at x=(ix/6) /3,
A 1 + (/z/6)2/3, on the upper symmetric branch is a pitchfork bifurcation and emits
two unstable branches with y x/x. The stability properties are indicated by dashed
and solid lines. Figure 8 is similar to Fig. 7 but a phase is introduced in the forcing
function; " 7r/2, and/x2 x//3/x. This generates two branches with y x/5/3x. On
the lower of these there is a limit point at x=(31x1/14) /3, A 1 +(4/x2/3)2/3. The
bifurcation point at x (//10) 1/3, A --1 +-2(/Zl/10)2/3 is a pitchfork bifurcation and
it emits one locally stable and one locally unstable branch with y x/-/3x.

Figure 9 is a r-unfolding of Fig. 7. The parameters are the same as those of Fig.
7 but with cr=.005. In this situation r splits the bifurcation point on the upper
symmetric branch producing a limit point. The results in Figs. 5-9 correspond to m =
(the two masses are equal). /x-unfoldings for 6< m <1/4 and 0< m <6 should also
provide interesting results.

5. Stability analysis of the periodic solutions. The stability of the periodic solutions
found in the previous sections will be determined using Floquet theory. As the periodic
orbits themselves are only known locally the stability properties will be determined
locally using the Lyapunov-Schmidt method to determine the sign of the Floquet
exponents in the neighborhood of a bifurcation point.

The Fr6chet derivative of the coupled ordinary differential equations governing
the motion of the orthogonal planar pendulum results in the linear system

(5.1)
d20 dO’

[I + AI( t)] ---E3,,9. + A2( t)-77+ [I + A3( t)] 0’ 0
at- at

where the 2x2 matrices Aj(t) for j 1, 2, 3 satisfy A(t +27r)= A(t) and expressions
for each of them are given in the Appendix.

From Floquet theory we know that (5.1) has a solution O’(t)= O"(t) e "’ with the
stipulation that O"(t + 27r)= O"(t) and r/ is the Floquet exponent that determines the
stability of the periodic orbits. Sign [Re (r/)] < 0 implies stability and sign [Re (r/)] > 0

implies instability.



1026 T.J. BRIDGES



INTERNAL RESONANCE AND SYMMETRY 1027

FIG. 9. Effect of or on two component forced oscillations. Same parameters as Fig. 7 but with o-= .005.

The Lyapunov-Schmidt method will be used to estimate r/ near the origin. To
simplify the analysis (5.1) is converted to an integral equation for ’(t)=-K0" where
sr (’l, ’2) and ((t) 0". After some manipulation the equation for " is

(5.2) [I- AK]c I-A1 + (2(I + A1) + A2)K, + (rt2(I + A1) + 7A2+ A3)K] r,

which is a mapping from X "X and terms are as previously defined. For (5.2) we have
the following lemma.

LEMMA 5.1. Equation (5.2) has a 27r periodic solution only if =
a cos + b sin + ’, where a, b R2, satisfies the system of equations

[I-AK+P]r’= h(r’, t; a, b)

and

(5.4) Ph =0

where h is given by the right-hand side of (5.2).
Proof It was previously established that [I-AK] is a Fredholm operator and

X N(I-AK)R(I-AK) and the Fredholm alternative applies. This requires that
h R(I-AK) resulting in (5.4). The operator [I-AK+ P] is a restriction of [I-AK]
to N(I- AK)-. l-]

Is is now straightforward to apply the implicit function theorem to (5.3) resulting
in a unique sr’ in a neighborhood of the origin. Substitution of this solution into (5.4)
will then result in the "bifurcation-stability" equations,

2mm
(5.5a) (A-1)Al+2iqAl-

1 2 1
12A1

m
a a2A -4- a A1-- a a A + r

(5.5b)
1

47r

(h o)A2 + 267A
2 1

OlA2OlO2Al 2

2-[a2A2+ 2lc2lZA2] + r2 0

where rl and r are higher order terms which satisfy

Ilrll- o{(l’ll / I,=l)2(Ix 11 / I,1 / (l,l / I,21)2)/ I,11 11 / I,l2}
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and A --(al-ibl)/x/ and A2 (a2-ib2)/x/. If we formally neglect the higher order
terms and expand the set (5.5) into four real homogeneous equations, then a solution
exists only if the determinant of the coefficient matrix is zero. This yields a fourth-order
algebraic equation for the Floquet exponents,

A(7) n4- 2bn2 + IJ, l" IJ=l- o
where

and

b
Jg/’l

X
2 11/’2 y2

2
el[2X + lel/ --8my2e3/x]---ez[2y+/J,282/ --8xZe3/y]

8x2y2[(8- e3)m E3]

2x + txel/x2

J1
8xe3

8mye3 )2y + ix2e2/y2
[ 8mxy2e3

J2 |
-8x2y83

When/x 0, [Jl[" [J:l =0 and stability is assured if b < 0, that is when (8-83)rn-
83 > 0. This yields the result stated in 3 for stability of autonomous oscillations. Out
of phase oscillations (83 -1) are stable for all rn and in phase oscillations (83 + 1)
are stable for rn > .

When/x # 0, the important points are those where ]Jl[" [J:l 0. These correspond
to points where there is an exchange of stability. Rather than a complete analysis,
stability properties corresponding to Figs. 5-9 will be given. For Figs. 5 and 6/x 0
and [Jl] 4x[(1 16m)y+ tx283/2y2]. If x 0, then ]Jl]--0 if

282
Y= 2(16m- 1

In Fig. 5 this corresponds to the limit point for the x 0 branch. With J[-/’l 0 ]J21
-8rnxy2lx2, which provides no additional information. When x 0 a stability exchange
occurs when b =0. This occurs when y3--(-I,X:,82/2). This is the limit point on the
lower x 0 branch. A similar result holds for cr 0 with the location of the critical
points peurbed. The results are indicated in Figs. 5 and 6.

For Figs. 7 and 8 a general analysis is more difficult but the following information
may be obtained. Along the symmetric branches, where y kx, [Jl] 0 when

(5.6) x= k2 1 (k+ 1)+ 1
where k2= 3 for Fig. 7 and k2-- 5/3 for Fig. 8, and J21 0 when

’181 )1/3(5.7) x
483(2 -" k2)

First, for Fig. 7, (5.6) results in a bifurcation point at x (jx/6) 1/3, a q-(/xl/6)2/3

on the upper symmetric branch and a limit point at x (/Xl/14) 1/3, A 1 + 21(/Xl/14)2/3
on the lower symmetric branch. ]J21 0 when x (1/20) 1/3, A 1 14(/xl/20)2/3. There-
fore we have that the solutions along the upper symmetric branch are stable for
0< a < 14(#/20)2/3, unstable for 14(/zl/20)2/3 < A < + (/J,/6)2/3, and stable for
a > 1 +(1/6)2/3. The unsymmetric branches emitted by the bifurcation point are



INTERNAL RESONANCE AND SYMMETRY 1029

unstable. The anomaly here is that there are no stable periodic solutions for 1-
14(/Xl/20)2/3 < A < 1 + (/Xl/6)2/3. This is a small neighborhood of the linear resonance
A-1.

A similar analysis for Fig. 8 shows that the upper symmetric branch is stable for
A > Ab where Ab is the bifurcation point, and there is an exchange of stability at the
limit point on the lower symmetric branch. For the unsymmetric branch the stability
properties are anomalous. For the +x branch there is a small region of stable solutions,
separated from the bifurcation point by a region of unstable solutions, and for the -x
branch the solutions are stable for a small distance and then they become unstable. A
blow-up of the region around the bifurcation point is shown in Fig. 10. The reason
for these stability regions is not clear.

6. Remarks. The basis of 3 and 4 is that the bifurcation equations when
nondegenerate correspond to periodic solutions. When the bifurcation equations are
degenerate we expect other solutions to occur or more complex families of periodic
solutions. To illustrate what may occur at degenerate points we consider the Hamil-
tonian of H6non and Heiles [14] given in (2.3)-(2.4). Following the analysis in this
paper the bifurcation equations for the H6non-Heiles problem are:

(6.1a)

(6.1b)

with

x[x2+pyZ-(A-1)]=O,

y[ qx2 + y2 (A 1 )1 0

2
(6.2a) p -5-r (1- e3/ 6),

(6.2b) q =(4+ 18r+3(2-r)e3)

with e3 + 1 and r d e. When p 1, q 1, and pq 1 the equations are nondegenerate
and periodic solutions occur. This has been proved from a different point of view by
Braun [2] and Kummer [18]. When r=- and e3 1 the normal form is degenerate;
q 1. (This is analogous to the degeneracy rn z, e3 1 for the O-P pendulum.) The
critical value r=- is precisely the Hamiltonian studied by H6non and Heiles [14]
and Lichtenberg and Lieberman 19]. Lichtenberg and Lieberman 19, pp. 46-50] show
that regions of stochasticity occur in the phase space for this particular set ofparameters.

This normal form is also similar to the normal form for the spherical pendulum
studied by Miles [22]. Using the approach in this paper we find that the normal form

s

S

FIG. 10. Blow-up of the neighborhood of the bifurcation point in Fig. 8 showing the regions of stability.
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for the spherical pendulum without forcing or damping is

x[x2+(3e3-2)y2-(A 1)] 0,

y[(3e3- 1)x2+y2- (A 1)] =0,

which is clearly degenerate when e 1. At this value the form is similar to the form
for the O-P pendulum when m z, e3 1, and the H6non-Heiles form with r =-3.
Miles [22] has shown that the spherical pendulum has quasi-periodic as well as chaotic
solutions when damping and forcing are present.

The degeneracy corresponding to rn 6 in the O-P pendulum is more severe. The
equations are completely degenerate. However this is precisely the type of degeneracy
studied by Erneux and Reiss [8] in their study of equilibrium solutions, and Erneux
and Matkowsky [9]. Erneux and Matkowsky showed that a bifurcation from periodic
solutions into quasi-periodic solutions may occur in the neighborhood of a degeneracy
of this type in the context of the Hopf bifurcation.

Knobloch [16] has begun a systematic classification of degenerate normal forms
for 0(2) symmetric Hopf bifurcation. The 0(2) symmetric normal form is a special
case of the Z2Z symmetric normal form, therefore those results may also be
applicable to the degenerate 1"1 resonance in Hamiltonian systems. His approach is
to include the appropriate higher order terms and this leads to interesting new classes
of periodic solutions.

and

Appendix. The matrices Al(t), A2(t), A3(t) introduced in (5.1) are defined here.

m
sin Kb sin Kb2t0

1-o"
Al(t)

(1 o’) sin K) sin Kb2 0

0

A2(t)
2(1 o-)(K,b) cos Kbl sin Kb2

A3(t)--( all a12
\ a21 a22/

m \
(K,q2) sin Kql cos Kb2]

0 J

all (A 1) cos KI + [cos Kb 1 2x//z cos sin Kb
rn

COS Kbl[b2 sin Kb2 + (K,b) cos K4,2],

rn
a2 sin Kbl[q2 COS Kb2 + (Kt62) :z sin Kb2],

l--or

a21 -(1 0-) sin K62[4 cos K4 + (Kt4l)2 sin K4],

a22 [A(1 -or)- 1] cos K42+ [cos Kcr2-1] 2x//x2 cos sin K6
-(1 o-) cos K62[ 41 sin K41 (Kt4l)2 cos
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Abstract. A doubly nonlinear equation with no growth assumptions on the parabolic term or on the
heat flux is studied. Two existence and comparison results are established under different assumptions on
the data. The technique uses truncation-penalization of the energy and energy estimates through convex
conjugate functions.
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Introduction. Doubly nonlinear evolution equations of the form

Ob(u)
-div A(Vu) --f on f x (0, T),

u=0 on012x(0, T),

b(u)l,=o=b(uo),

f bounded domain of N
were first studied, to our knowledge, by Lions [8], Raviart [10], and Bamberger [2]
in the case where

b(u) lula-2u, A(w) Iwl"-=w.
Grange and Mignot [7] address this problem in an abstract setting, namely

d
(Bu)+Au f, Bul,=o Buo,

dt

where A and B denote the subdifferentials of the convex functions and . The
analysis developed in [7] is based on the essential restriction that must be continuous
on a Banach space V1, and on a Banach space V2, where VI is densely and compactly
embedded in V2. Power type nonlinearities are then restricted to satisfy

1 1 1

c p N

Furthermore A and B are assumed to be bounded on the bounded sets of V1 and
V2 and is assumed to be coercive.

Similar equations are also investigated with the help of semigroup techniques in
L1 (cf., e.g., Benilan [3]).

In this paper existence of a solution of semi-abstract equations of the form

O
--b(u)-div D(Vu) =f in x (0, T),
Ot
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u=0 on 0x(0, T),

b(u)l,=o b(uo),

is established in the following framework:-- is a C convex functional on [Lq(fl)] N, q > 1, with (w)_->/3( I.wl q dx) r/q,
r> 1, 2N/(N+2)<q.

--b is a locally Lipschitz monotone real-valued function.
Loosely speaking, there need not exist a Banach space V2 on which b is the

subdifferential of a convex continuous function , and, if it exists, V1 need not be
embedded in V2. We are, for instance, in a position to solve the doubly nonlinear
evolution equation with power type nonlinearities for any values of a and p (greater
than one). Furthermore the function b may grow faster than any power function at
infinity (b(u)= e eu, for example). In contrast, it need not be strictly increasing on any
part of R. Thus the evolution equation may become stationary in subdomain of
x(O, T).

Similar results are given by Alt and Luckhaus 1 in a setting that includes equations
of the form

db(u)
Ot
-div A(Vu)=f,

where A is a monotone strongly elliptic operator on RN, i.e.,

(A(z) A(z’), z Z’)RN >-- alZ Z’l p.

Note that in the case when A(w)= wlP-2w, p is then restricted to be greater than or
equal to two.

In Alt and Luckhaus [1], as well as in Grange and Mignot [7], the proof of the
existence of a solution is based on a backward time difference scheme. Our method
uses penalization through addition of a term of the form e(Ou/Ot) together with a
truncation of the function b.

The detailed hypotheses on b, , the initial condition b(uo), and the forcing term

f are given in 1, together with the existence results. The first result (Theorem 1) is
concerned with forcing terms f in W’(0, T; L2(I)) and initial conditions b(uo) in
L(I) with Uo in w’q(l). It states the existence of a solution u that also satisfies a
maximum principle if f has a distinguished sign. The second result (Theorem 2)
addresses the case of a forcing term f in W’(0, T; W-’q’())(1/q+ 1/q’= 1) and an
initial condition b(uo) in LC(l) f3 W-’q’(l) with Uo in w’q(l).

Section 2 is devoted to the proof of Theorem 1 while 3 addresses the proof of
Theorem 2. The details of the different steps are briefly described at the end of 1. It
should be noted however that our proof of Theorem 2 ( 3) is inspired by the Lemmas
1.8 and 1.9 of Alt and Luckhaus [1].

Throughout the paper, the notation Ilull,,.s denotes the usual Sobolev norm of u
on W"’s(), where W"s() is the space of all Ls(fl)-functions with derivatives up
to order rn in L(I’). Unless otherwise specified, the product (,) stands for the duality
product between w’q(l) and W-’q’(l).

1. Assumptions and statement of the existence results. Let 1 be a bounded domain
of N (N-> 1) with Lipschitz boundary 01. Let q, r, a, and T be four real numbers
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satisfying

1 < q <

2N
(1) q> r>l

N+2’

a>0, T>0.

Inequalities (1) result in the following compact imbeddings:

(2)

In (2) the space w’q(l) is the subspace of all wl’q(l)-functions with null traces,
whereas q’ is the conjugate of q, i.e., 1/q + 1/q’= 1.

Let b be defined as a real-valued function of the real variable with the following

b is locally Lipschitz,

(3) b is monotone increasing,

b(0) =0.

Remark 1. The function b is not restricted by any growth assumption at infinity,
nor is it assumed to be strictly increasing.

If denotes the primitive of b, i.e.,

( t) b(s) ds,

is a positive C convex function, and its convex conjugate function *, defined as

*(t) sup { ts (s)},
sG

satisfies, for every of ,
(4) *(t)--> 0, *(b(t)) b(t)t-(t).

Let be defined as a real-valued functional on [Lq()]N with the following
properties:

is C ,
is convex,

(5) D is bounded on the bounded sets of [Lq(-)] N,

a,(o) =0,

(w) >- allw]],q for any w in [Lq()] N.

The remainder of this paper is devoted to the proof of the following theorems.
THEOREM 1. Under the assumptions (1), (3), and (5), and if

(6) Uo W’q(l)), b(uo) L2(),

(7) f W’"(0, T; L2(I)),

W’(a) L(a) W-"’(a).

properties:
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the problem

Ob(u)
-div DdP(Vu) f in 12 (0, T),

Ot
(8)

u =O on O x (O, T),

b(u)l,=o=b(uo),
admits a solution u such that

(9) u to(0, T; w’q(12)),

(10) b(u)t(O, T; t2(12))fq WI’(0, T;

The norm u in Loo(O, T; W’q(12)) is bounded above by a continuous function of
(VUo) and of the norm [[[3qll off in W’"(0, T; W-"q’(f)).

Furthermore, ifuo and Uo2 satisfy (6); whilef andf2 satisfy (7), and ifb(uo,) b(uo2)
is almost everywhere positive on 12 whilef f2 is almost everywhere positive on f (0, T)
there exist a solution Ul associated to Uo, f and a solution u2 associated to Uo2, f2 such
that b(Ul)- b(u2) is almost everywhere positive on

THEOREM 2. Under the assumption (1), (3), and (5), and if

Uo W’q(f), b(uo)e LC(f) fq

fe W’(O, T;

(11)

(12)

the problem

Ob(u)
-div D(Tu) f in 12 (0, T),

Ot
(13)

u O on O O, T),

b(u)l,=o= b(uo),

admits a solution u such that

(14) u L(O, T; w’q(a)),

(15) b(u) (0, T; L,(12)) ffl W"(0, T; w--l’q’(-)).

Furthermore, if uo and Uo2 satisfy (11) while f and f2 satisfy (12) and if b(uol)-
b(uo2) is almost everywhere positive on 12, while ((f-f2)(t), p) is almost everywhere
positive on (0, T) for any q in w’q(12), there exist a solution u associated to uol, f
and a solution u2 associated to Uo2, f2 such that b(u)- b( u2) is almost everywhere positive
on ,.q x (0, T). 13

Remark 2. In the settings of both theorems,

b(uo)Uo L(), b(u(t))u(t) L(0, T; L()).

This property is trivially checked in the case of Theorem 1. It results from a
theorem of Br6zis and Browder [5, Thm. 1] in the case of Theorem 2. The positivity
of and * then implies that

(Uo), *(b(uo)) L() and (u), *(b(u)) L(0, T; L()).

Furthermore in the setting of Theorem 2 the initial condition b(uo) will be shown
in Remark 10 to lie in L(), which is consistent with the continuity property of b(u)
with respect to time.
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Remark 3. Theorem 2 provides an existence result for a class ofnonlinear parabolic
homogenization problems. A family A of symmetric bounded measurable matrices is
considered. It satisfies, for almost every x of RN,

11=_-< (A(x),) _-< l:l=,
where a and/3 are two strictly positive real numbers.

If u; is an element of H(O) such that

b(u;) LC(fl) fq H-’(fl)

and if f is an arbitrary element of W1’1(0, T; H-l(f)), the problem

ob(u)
-divATu =f in ,

Ot

b(u)[,=o b(u),

u 0 on 012

admits a solution u in L(O,T;H(f)) with b(u) in L(O,T;L(f))f’I
W’(0, T; H-(f)). We assume that, as e tends to zero,

u converges weakly to Uo in H(f),

(b(u), u) remains bounded independently of e.

The theory of H-convergence (Tartar [13]) ensures the existence of a subsequence A’
of A and of a symmetric bounded measurable matrix A with

112 =< (a(x)sC, )R <= fll[ 2,

almost everywhere in RN, such that, as e tends to zero,

A’ H-converges to A.
It is then fairly straightforward to prove the following homogenization result: there
exists a subsequence u ’’ of u such that, as e" tends to zero,

u "--- u weakly in H(E),

A"Vu"--’AVu weakly in [L2(f)] N,
where u is a solution of

Ob(u)
-divAVu=f in f (0, T),

Ot

b(u)l,__o b(u),

u=0 on0f(0, T).

The proof of this result will not be presented here for the sake of brevity.
The proof of Theorem 1 is presented in 2. It is divided into five steps to which

correspond five sections. Section 2.1 is devoted to the formulation of a Galerkin
approximation. To this effect, the function b is truncated and a small linear perturbation
is added; b(t) becomes b" (t) + et, where b" is the function resulting from the truncation
of b at height 1/r/. In 2.2 the limit process is performed in the Galerkin approximation.
In 2.3 the truncation height l/r/ is increased to infi.nity. The coercivity parameter e

tends to zero in 2.4. Finally the comparison result is derived in 2.5.
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The proof of Theorem 2 is presented in 3. The initial condition Uo is truncated
at the height n whilefis approximated by a sequencer in WI’(0, T; L2(fl)). Theorem
1 is applied with the truncated Uo as initial condition and with fn as forcing term. The
parameter n is then increased to infinity.

2. Proof of Theorem 1.
2.1. The Galerkin approximation. As previously mentioned, we introduce b(t),

Wn(t) to be

1
b(t) if Ib(t)[ _-<-,

b’(t)-
1--sg (t) if Ib(t)l> 1,

*’(t) b(s) ds.

The function W is C convex and the function b is monotone. We propose to solve

(b(u)+euT)-div O(Vu) =f in x(0, T)

(16)
u=O on O x (O, T),

b’(u)l,=o=bV(uo),
using a Galerkin approximation.

Let 1,"" ", ," be a basis of w’q() consisting of (fl)-functions. If v is
an arbitrary element of w’q(), there exists a sequence V of such that

m+
V , v strongly in W’(fl).

i=1

Let m be an arbitrary but fixed integer. To any element V of corresponds the
element v of (fl) defined as

m Vi.
i=1

The mapping is one-to-one since the , are a basis of W’(fl).
Let be the mapping from into itseff whose ith component is

If V and W are two arbitrary elements of ,
((vm)_(), V_m) [((V)_(m))(V__) dx

(17)
+e Jivm-w[ dxeiV- Wm[-,,

where is a constant such that for any V in
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Hence G is monotone coercive; it is also clearly continuous. We thus conclude with
the help of Brouwer’s fixed point theorem that G is onto (cf., for example, [8, Lemma
4.3, p. 53]). In view of (17),
(18) (G’)- is Lipschitz with Lipschitz ratio 1/e.

Let ’ be the mapping from E" into itself whose ith component is

[O’( vm)]i (DO(Vvm), V(i)RN dx.

Since D(I) is continuous on [Lq()], ’ is continuous.
Finally define F’(t) to be the vector of m whose ith component is

[F’(t)]i= faf(t)oidx.
By virtue of (7), F(t) is a continuous function of t.

The continuity properties of (G)-, (b, and F imply that the ordinary differen-
tial equation

dW
(19) (t)+"((Gm)-l(w’))(t)= Fro(t), W(0) W,

dt

where W is an arbitrary element of , has a local C solution W’(t) on a time
interval [0, T(W)); T(W’) is a strictly positive real number which depends on W’.

The existence of a global solution on [0, T] is ensured if IW(t)] is proved not
to blow up whenever tends to T(W) with T(W’)_-< T. In view of the continuity
properties of Gm, it suffices to show that V"(t), defined as

vm(t)-(Gm)-’(wm(t)),
has a bounded norm as tends to T(W’).

If we set

the system (19) reads as follows:

d
(20) --G’(V’(t))+m(vm(t)) Fm(t), V’(0) V’.dt

Multiplication of the first equality of (20) by gin(t) and integration over the time
interval (0, t) of the resulting expression leads to

fo’ f (obn(vrn)v + e--ovmot
(21)

=Iofnf(s)vm(s) dxds"

v (s) dxds+ (D(Vv"(s)),Vvm(s))Ndxds

We now appeal to the following result first established by Alt and Luckhaus 1, Lemma
1.5, p. 315].

LEMMA 1. Let f be a bounded domain of n. Let be a C convex function on, with b as derivative ((0)- 0). Let * be its convex conjugate. Assume that

Wo" (1)), 1 < s <u Loo(O, T;

(22)
b(u) L(O, T; L,(I2)),

O- 1
--b(u) t(O, T; W-"s’(f)), -+--= 1.
Ot s s’
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Assume further that there exists an element Uo in W’S(f) such that

(23)

and that

(24)

Then

(25)

g(o) L’,() C W-"’().

,i,*(7(u)) (0, r; L,()), *(/(Uo)) LI(f)

and, for almost any in (0, T),

(26) f.q’*(b(u(t))) dx-I. qe*((u)) dX= Io’ (’(u(s)------)) u(s)l
where (,) stands for the duality bracket between W"s(f) and w-l’s’(O). [3

Lemma 1 is applied in our context with s=q, qC(t)=’(t)+e(t2/2),
T < T(W’), Uo v’ and it yields

z(b (s))+ El)re(S)) (S) dx as
(27)

(xltn),(bn(vm(t))) dx/_zllv.,(t)ll

Remark 4. In view of the regularity of the function v relation (27) can be
established independently of Lemma 1. At a later stage of this study however, Lemma
1 will become an essential ingredient and it will be repeatedly applied with s q.

Inserting (27) into (21) leads to

(28)

where from now on Illflll stands for the norm off in wl’l(0, T; w-l’q’(’-)).
Since

(o) =0,

the coercivity property of (cf. (5)) together with Poincar6’s inequality imply that

Io(29) (P(Vvm(s)), Vv"(s))R dx ds >-_ (Vv(s)) ds >- a ]]vm(s)[[ ., ds.

Because (’)* is always positive, insertion of (25) and (29) into (28) yields

(30) --211vm(t)ll o,2 + a v" (s)ll ,, ds<- + Ill/Ill [[vm(s)III,q aS,

where denotes a generic constant.
Since r is strictly greater than one, (30) implies that IIv"(t)llo,2 remains bounded

on [0, T(W’)) and thus that IV"(t)l remains bounded as tends to T(W’), which
was the result sought.
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Recalling (6), we denote by U’ the vector of W" associated with the projection
Uo of Uo on the span of q,..., qm, i.e.,

Uo Uoqi
i=1

Uo strongly in Wlo’q(’).

According to the previous analysis, the equation

d
(31) --Gm(um(t))-f-dpm(um(t)) F"(t), U’(0) U’,

dt

admits a global Lipschitz solution on [0, T].

A priori estimates. Multiplication of the first equality of (31) by dUm/dt and
integration over the time interval (0, t) of the resulting expression leads to

Obn(u (s))Ou (S)
dxds+e dxds+(Vum(t))

ot ot ot
(32)

*(Vu’) + f(s)
Ou (s____) dx ds,

Ot

where

Urn(t) 2 U’( t)pi.

The function b" is Lipschitz and u is in Lip (fx (0, T)); thus, by virtue of the
monotonicity of b’,

(33)
Obn(u’(s)) Oblm(S)

dxds (bn)’(u (s))
OI’lm(s) 2

Ot Ot Ot /

The coercivity property of (cf. (5)), (in)equalities (32), (33), and Poincar6’s
inequality imply that

frO 0rnl 2

ffO’ fds/llu"(t)llrl,q<-(Vu’)/ f(s)dxds.(34)
Ot o, Ot

The last term of the right-hand side of inequality (34) is integrated by pas with
the help of (7). We obtain

sup(35)
ot o,

The time can be chosen arbitrarily in [0, T]; thus,

ffo ll um(s) ds+ sup [[u(t)l],q
Ot 0,2 t[0,T]

(6)
*(u)+ 3]llflll sup

t[0,T]

Finally Vu converges to V Uo in [Lq()]N as m goes to infinity. The continuity
of on [Lq()]N implies that

,I,(V u") ,,, (vu).
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(37)

If m is taken to be large enough, (36) reads as follows"

-<_ (VUp) + 1 + 3lllflll sup llm (t)II 1,q"
t[0,T]

The function Ilu(t)ll, is continuous on [0, T]; it reaches its supremum on [0, T].
It is then easily deduced from (37) that

(38) x/ Ou"/Ot is bounded in L2(0 T; L2(’)) independently of m, 7, or e,

(39) urn(t) is bounded in L(0, T; w’q(l)) independently of m, 7, or e.

Because D is bounded on the bounded sets of [Lq()]N, (39) implies that,
1/q’+l/q=l,

if

(40) D(Vur) is bounded in L(0, T; [Lq,, (12)] N) independently of m, r/, or e.

Remark 5. The bounds in (38)-(40) continuously depend on (Vuo) and IIIflll
only (recall that IIIflll is the WI’I(0, T; W-l’q’(f))-norm off).

Finally, since b

(41) b’(u ") is bounded in L((0, T) x),

but the bound depends on
With the help of (38)-(41) we conclude that there exists a suitably extracted

subsequence of u (still denoted u m) such that, as m tends to infinity,

u u weak-* in L(0, T; w’q()),

ou ou weakly in L(0, T; L2())
(42) Ot Ot

D(Vu) Y weak-* in L(0, T; [Lq,()]N),
b’(u)X weak-* in L((0, T)x).

In the following section we propose to use (42) to pass to the limit in (31) as m
tends to infinity, and to identify the quantities Y and X.

2.2. Passing to the limit in the Galerkin approximation. Let be an arbitrary
element of ((0, T)). Equation (31) together with the convergence (42) imply that,
for any integer i,

oX i + e

_
div Yn

_
=0,

where the duality bracket refers to the duality between ((0, T) x) and ’((0, T) x
) (the basis vectors lie in ()).

The sequence {} is a basis of W’q() which contains (). Thus, if is an
arbitrary element of (),

+e-divY-p =0,

and, by the density of ((0, T))

Ou n

(43) 0X + e div Y -f 0.
Ot Ot
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In view of (43), X2 has a trace in W-’q’(f). A proper choice of " in c([0, T))
and convergence (42) lead to

((X’(0)+eu’(0)qi’(0)))= lim f (b’(ug’)+ eug’)qi(O).

But {qi} is a basis of w’q(f) and ug’ converges strongly to Uo in W’q(f); thus

(44) X’(0) + eu"(O)= b’(uo)+ euo.
Because of the estimates on u and Ou’/Ot (cf. (42))

u’(0) u’(0) weakly in L(O)

as m tends to infinity; thus

(45)

and (44) yields

(46)

uy(O)=uo,

X’(O)=b’(uo).

We now seek to identify the quantities X and Y. The identification of X" is
very simple. A straightforward application of Aubin’s lemma (cf., e.g., [12, Cor. 4])
to u implies that

u u" strongly in c([0, T]; Le(f))

as m tends to infinity. Since b" is Lipschitz and bounded, it follows that for any
finite s

b’(u) b’(u) strongly in ([0, r]; L(O))

as m tends to infinity and, in view of (42), that

(47) x=b’(u), b’(u2) e ([0, r]; L(O)), 1Ns<+.

The identification of Y is performed with the help of the following simple lemma.
LEMMA 2. Assume that satisfies (5) and that Wm is a sequence of

L(0, T; [Lq()]) such that

ww weak-* in L(O, T; [Lq(O)]N),
(48)

P(wm) Y weak-* in L(O, T; [Lq,(O)]N),
as m tends to infinity (or zero). If

(49) (g(s), w(s)) & ds dt lim (D(w(s), w(s))) & ds dr,

then

(50) Y=D*(w).

The proof of this lemma is a straightforward adaptation of a classical result of
Minty (cfl, e.g., [8, Remark 2.1, p. 173 and Prop. 2.5, p. 179]). It will not be reproduced
here.

In our setting w, w, and Y are to be identified with V u ’, Vu,n and yn, respectively.
In view of (42), (48) is satisfied. To show that

(51) Y2=D(Vu)
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we only need to prove that

(52) (V’(s), Vu’(s)) dx ds dt

=> lim (Dap(Vu’(s)), Vu’(s))a- dx ds dt.

According to (21) and (27) (applied to u in place of v’), we have

(53) f(s)u(s) dx ds dt + r (’)*(b’(uo)) dx +]]Uo o,

(*v)*(b(m(t))) d/+ll()ll o,
Note that is Lipschitz and that (4) holds for b n, , and ()* in place of b,

and *, respectively. Since u converges weak-* to u2 in L(0, T; w’q(a)) and
ug converges strongly in w’q() to uo, the two first terms of the right-hand side of
equality (53) are easily seen to converge to

as m goes to infinity.
The strong convergences of the sequences b’(u’) and u" in ([0, T]; L2())

imply that

lim (’)*(b’(u(t))) axat=- (.,)*(b,(u(t))) axat

and

fo" T

lim u (t) 2o,2 dt u " (t)ll 2o,2 dt.

We are now in a position to pass to the limit in (53). We obtain the following:

lim (D(Vu’(s)), Vu’(s)) dx ds dt

(54) f(s)u:() dx ds dt + r (’)*(b’(o)) dx

Multiplication of (43) by u and integration of the resulting expression over
(0, t)x a, then over (0, T) yields, with the help of (47),

;r fo’ fa r:(s), Vu:(s))." dx ds dt

(55) f(s)u(s) dx ds dt
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The last term in the right-hand side of equality (55) is evaluated with the help of
Lemma 1 (cf. Remark 4). We obtain the following"

fo Io’ (t (b’(u(s))+ eu(s)), u(s)) ds dt

(56) (*’)*(b’(u’(t))) dxdt

+2 I1()11 de- rlloll0,2 2

Inseing (56) into (55) and comparing the resulting expression with the right-hand
side of inequality (54) yields (52), which in turn proves (51).

At this stage of the proof we have constructed a sequence u with the following
properties:

(5) aa()+ -divD().=ot ot

(58) uT(0) u0,

(59) b’(uT)[,=o b’(uo).
Fuffhermore the weak lower semicontinuity propeffies of the L, Lq,, and Lq

norms imply, by viffue of (38)-(40) and (42), that

(60) Ou/Ot is bounded in L(0, T; L()) independently of e and ,
(61) u is bounded in L(0, T; w’q()) independently of e and ,
(62) D(Vu) is bounded in L(0, T; [Lq,()]) independently of e and .

With the help of (60)-(62) we conclude that there exists a suitably extracted
subsequence (still denoted u) such that, for fixed e,

uu weak-* in L(0, T; w’q()),

(63) OuOu weakly in L(0, T; L()),
Ot Ot

D(Vu) Y weak-* in L(0, T; [Lq,()]),
as goes to zero.

In the following section we propose to use (63) to pass to the limit in (57)-(59)
as tends to zero, and to identify the quantity Y. To this effect we need to derive
an estimate on b’(u) independent of (and e) and to identify its weak limit.

2.3. Passing to the limit in the truncation. The quantities "(u), b" (u) lie in
L(0, T; w’q()) WI’(0, T; L()) because " and b" are Lipschitz. Thus, b’(u)
is an admissible test function in (57). Upon integration over the time interval (0, t) of
the result of the multiplication of (57) by b’(u), we obtain

211b’(u’(t))ll o,+ (u(t)) dx

(64) + (b)’(u2(s))(D(Vu2(s)), Vu2(s)) dx ds

2
IIb’(uo)ll o.+ (Uo) dx+ f(,)b"(uT(s)) dxd,.
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The derivation formula for the composition of a Wl"q function by a Lipschitz
function is implicitly used in (64). It is classical if the Lipschitz function is piecewise
C 1. For a proof in the case of an arbitrary Lipschitz function see, for example, [9,
Cor. 1.3, p. 353] or [4, Thm. 4.3].

Since b" is monotone and q" is positive, (64) yields

1 . < (Uo)}} 2

2
]]b’(u t))ll 2o, ..111 b" 0,2 + e j (Uo) dx

(65)
/T sup IIf(t)llo,= sup IIb(uy(t))llo,=.

t[0,T] t[0,T]

Remark 6. The L space regularity off is required in estimate (65), and it motivates
the regularity hypothesis (7) on f.

As r tends to zero, b’(uo) and qt’(Uo) converge almost everywhere to b(uo) and
(Uo), respectively, while

Ib’(uo(x))]<-_]b(uo(x))], ,Ir’(Uo(X))<-q(Uo(X)),

for almost every x of f. By hypothesis, b(uo) belongs to L(12) (see (6)). In view of
(4) and the positivity of

0 <= (Uo(X)) <- b(uo(x))uo(x)

for almost every x of f, and thus (Uo) belongs to L(Ft).
The dominated convergence theorem permits us to conclude that

b’(uo)--> b(uo) strongly in L(f),
(66)

"(Uo)-> q(uo) strongly in L(f),

and thus to give an upper bound for the right-hand side of (65). We obtain, for
small enough,

211bn(un(t))]l < +e XP(Uo) dx+lo, llb(uo)ll
(67)

+T sup IIf(t)[Io, sup
te[o,r] te[o,r]

Since IIb’(u(t))llo, is continuous on [0, T] (cf. (47)), an argument similar to the
one that led to (38), (39), would show that

(68) b’(u) is bounded in L(0, T, L(f)) independently of e and r/.

At the possible expense of extracting one more subsequence, we are thus at liberty
to assume that the sequence u2 is also such that

(69) bn(u’)---’X weak-* in L(0, T; L()))

as r/ tends to zero.
Passing to the limit in (57)-(59) is now an immediate task if we remark that, in

view of (57), (60), and (62),

(70) Ob’(u)/Ot is bounded in L_(0, T; W-’q’(f)).
We obtain the following:

(71) OX__z+ e-div Y =f
Ot Ot
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and, with the help of (60), (61), (68), and (70),

(72) u(O) Uo,

(73) Xl,=o b(uo).

It now remains to identify X and Y. Once again, the identification of X directly
results from Aubin’s lemma. In view of (63),

u u strongly in c([0, T]; L2(12))

as rt tends to zero. Since b" converges pointwise to b on R as 7 tends to zero, a
subsequence of b’(u) (still denoted b’(u)) satisfies

b’(u(x, t)) b(u(x, t)) for almost every (x, t) of x (0, T)

as tends to zero. Recalling (69) then implies that

(74) X b(u), b(u) L(O, T; L2()).

The identification of Y relies on Lemma 2. The quantities w, w, and Y are
identified with 7u, 7u, and Y, respectively. In view of (63), (48) is satisfied. To
show that

(75) Y D(Vu),

we only need to prove that

(76) (Z(s), Vu(s)) dx ds dt

lim (D(Tu(s)), 7u(s)), dx ds dr.
0

The proof of (76) is essentially the same as that of (52). It consists in passing to the
limit in (55), (56) as n tends to zero (with Y replaced by D(Vu)). We obtain the
following:

lim (D(Vu(s)), Vu(s)) ax as at
0

;o(77) o,- [lu(/)it o, dt

-lira (’)*(b’(u(t))) dxdt+ Tlim (’)*(b’(uo)) dx.
0 0

Since

(’)*(bn(uo)) uobn(uo)-’(Uo),

convergences (66) imply that

(78) limf(*’)*(b’(u))dx=In(ub(u)-W(u))dx=InW*(b(u))dx"
Similarly, since u and b’(u) converge almost everywhere to u and b(u),

respectively,

(")*(bn(u(x, t)))-*(b(u(x, t)))
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for almost any (x, t) in x (0, T) as r/tends to zero. The positivity of (’)* together
with Fatou’s lemma yield

fo fo(79) lim (’)*(bn(un(t))) dxdt - *(b(u(t))) dxdt.

Insertion of (78) and (79) into (77) leads to

lim (D@(Vu(s)), Vu(s))a dx as at
0

(80) f(s)u(s) dx ds at + T **(b(uo)) dx+ [[Uoo,2

*’(b(u(t))) dx

Multiplication of (71) by u, integration of the resulting expression over (0, t) x then
over (0, T), and application of Lemma 1 readily shows that the right-hand side of
inequality (80)is precisely ’o (Y(s), Vu(s))a dxds dt, which proves (76) and
thus (75).

We have constructed a sequence u with the following propeies:

u (0, r; w,")), bu) (0, r; ()),

ot ot

(82) u(O) Uo,

(83) b(u)l,=o=b(uo).
Once again, the weak lower semicontinuity propeies of the L, Lq,, and Lq norms

imply, by viue of (60)-(63), (68), (69), (74), and (75) that

(84) Ou/Ot is bounded in L(0, T; L(a)) independently of e,

(85) u is bounded in L(0, T; w’q(a)) independently of e,

(86) (Vu) is bounded in L(0, T; [Lq, (a)]u) independently of e,

(87) b(u) is bounded in L(0, T; L(a)) independently of e.

With the help of (84)-(87), we conclude that there exists a suitably extracted
subsequence (still denoted u) such that

uu weak-* in L(0, T; w’q(a)),

OUo weakly in L(0, T; L(a)),
(88)

D(Vu) Y weak-* in L(0, T; [Lq, (a)]N),

b(u)X weak-* in L(0, T; L(a))

as e tends to zero.
In the following section, (88) is used to pass to the limit in (81)-(83) as e tends

to zero, and the quantities X and Y are identified.
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2.4. Passing to the limit in the coercivity parameter. By virtue of (81), (84), and (86)

(89)
ob(u)

is bounded in L2(0, T; W-’q’(fl)).
Ot

In view of (88) and (89), the limit of (81) as e tends to zero is

(90) 0--X- div V=f,
Ot

while that of (83) is

(91) xlt:o b(uo).

Remark 7. The initial value of u, i.e., Uo, is lost in the limiting process because
of the absence of estimates on Ou/Ot that are independent of e.

The absence of an estimate on Ou/Ot precludes the application of Aubin’s lemma
to u. However, that lemma can be applied to b(u) because of (87) and (89); it implies
that, as e tends to zero,

b(u)X strongly in c([0, T]; w-l’q’("))o

Since u converges weak-* to u in L(0, T; w’q(12)) we conclude that

(92) b(u(t))u(t) dxdt- X(t)u(t) dxdt

as e tends to zero.
We introduce the functional J defined on L2(O (0, T)) as

J(v)=
(v(t)) dxdt if(v) belongs to L,(f(0, T)),

+ otherwise.

In view of the properties of (cf. 2.1), J is positive, convex, and lower
semicontinuous. It is also proper, since (0)= 0.

A classical result of convex analysis [11, Thm. 2, p. 532] allows us to identify the
subdifferential OJ(v) of J at any point v of L(fl (0, T)) as

oJ(v)={wL(f(O, T))lw(x, t)=b(v(x, t))
(93)

almost everywhere in 12 (0, T)}.

Since both u and b(u) lie, in particular, in L:(I2 (0, T)), b(u) belongs to
OJ(u). Thus,

(94) b(u(t))u(t) dxdt+J(w)>=J(u)+ b(u(t))w(t) dxdt,

for any w in L(O (0, T)). Because of (88), (92), and the weak lower semicontinuity
of J, we are in a position to compute the limit of each term in inequality (94). We
obtain that, for any w in Le(O (0, T)),

(95) X(t)u(t) dxdt+J(w)>=J(u)+ X(t)w(t) dxdt.

Inequality (95) implies that u belongs to the domain of J and that

(96) XOJ(u),
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and the characterization (93) of 0J enables us to conclude that

(97) X- b(u).

Once again the identification of Y relies on Lemma 2. The quantities win, w, and
Y are identified with Vu, Vu, and Y, respectively, and (48) is satisfied with the help
of the convergences (88). To show that

(98) Y=D(Vu)

reduces to proving that

Io’ fo(99) (Y(s), Vu(s))n, dx ds dt

->_ lim (D(Vu(s)), Vu(s))n dx ds dr.
eO

As seen earlier, the right-hand side of (99) is the lim-sup of the right-hand side
of (80) as e tends to zero. We obtain the following:

lim (D(Vu(s)), Vu(s))a dx ds dt
eO

N f(s)u(s) & ds dt + r *(b(uo)) &- **(b(u(t))) &dt.

But * is positive lower semicontinuous and convex on ; thus, with the help of
(97),

o **(b(u(t))) dxdtlim **(b(u(t))) dxdt,
0

which leads to

(100)

lim (D(Vu(s)), Vu(s)) dx ds dt
e--O

<= f(s)u(s) dx ds dt + T xIt*(b(uo)) dx

qt*(b(u(t)))dx.

The right-hand side of inequality (100) is easily seen to coincide with

o(Y(s),Vu(s))a,dxdsdt after multiplication of (90) by u, integration of the
resulting expression over (0, t)f then over (0, T), and application of Lemma 1.
Inequality (99) is proved and equality (98) is established.

Recalling (88), (90), (91), (97), and (98) we conclude that there exists an element
u of L(0, T; w’q()) which satisfies (8)-(10). The proof of the existence part of
Theorem 1 is now complete.

The bound on the norm of u in L(0, T; w’q()) is a direct consequence of
Remark 5 and of the weak lower semicontinuity property of the Lq norm.
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2.5. Comparison result. It is now assumed that Uol, Uo2, fl, f2 satisfy the hypotheses
of Theorem 1 and that

b(uol) >= b(uo) almost everywhere on f,

f->f2 almost everywhere on f x (0, T).

Let ul and U2 denote the associated solutions of (8)-(10) whose existence was
established in the previous sections.

Let sg (t) and sgo (t) denote the following real-valued functions of the real
variable"

0 if t->O,

sg(t)= It if-a=<t-<O,

a--1 ift=<-a,

Sgo (t) {0 if t-->0,
-1 if t<0.

In view of (60) and (61), the quantity sg(uT-uE) is an element of
Lo(0, T; w’q(f))f) W’2(0, T; L()) (and b’(u) as well). Thus it is an admissible
test function in (57) (with u, f replaced by uE, f or u,f). Upon integration over
the time interval (0, t) of the result of the multiplication of (57) by sg (uT-u), we
obtain by difference

[(b’(u) + eu’)-(bn(u’])+ eu)](s) sg2 (u-uE)(s) dxds

(101)
+ (sg2)’(uT- uL)(s)(Dcb(VuL(s))

-DriP(Yule(s)), (7u’]-Vu)(s))n dx ds

(f -f)(s) sg2 (u’]- u])(s) dx ds.

Once again the derivation formula for the composition of a W’q function by a
Lipschitz function is implicitly used in (101). By virtue of the monotonicity of sg and
D and the positivity of f-f2, (101) yields

(102) [(bn(u]E) + eu) --(b" (uL)+ euL)](s) sg2 (u’] u)(s) dx ds <= O.

As a tends to zero, sg2 (u- u) converges weak-* in L(I) x (0, T)) to sg (u uE)
and (102) becomes

-[(bn(u)+ eu’])-(b’(u’])+ eu)](s) sg (uL- u’])(s) dxds<=O.

Since bn(t)+ et is monotone and takes the value zero for equal to zero,

sg- (u’]E- u) =sg [(bn(u’)+ eu)-(bn(u)+ eu)]
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almost everywhere in 12x(0, T). The function b’(u/)+eu’/E (i=1,2) lies in
W1’2(0, T; L2(12)). Consequently the last inequality reads as

(103)
a
[(b’(u’]E)+ euL)-(b’(u])+ euL)]-(t) dx

=< f [(b’(uol)+ eUol)-(b’(uo2)+ eUo2)]- dx,

for any in [0, T]. In (103), [. ]- denotes the convex Lipschitz function -inf (., 0).
Since ]- is convex and continuous, the convergences (63), (66), (69), and (88)

together with relations (74) and (97), easily allow passing to the limit in the result of
the integration of inequality (103) over the time interval (0, T) as r/and e successively
tend to zero. We finally conclude that

(104) [b(Ul)-b(u2)]-(t) dxdt<= T [b(uo,)-b(uo2)]- dx.

The function [b(uo)-b(uo2)]- is by assumption equal to zero, which implies that for
almost every (x, t) in 12 (0, T),

(b(Ul)- b(u2))(x, t) <--_ O.

The proof of Theorem 1 is now complete.
Remark 8. Note that the hypothesis on b(uol)-b(uo2) has not been used in the

derivation of inequality (104) which thus holds true only under the assumption that

fl-f2 is almost everywhere positive on 12 (0, T).

3. Proof of Theorem 2. The proof of Theorem 2 is based on the existence result
given by Theorem 1. Specifically we introduce

u, T(uo),

where, for any positive r, Tr is the Lipschitz function defined as

if Itl -< r,
Tr(t)

rsg(t) ifltl>r.
Since Tn is a piecewise C Lipschitz function and Uo is in w’q(12), u is in

W’q(12), and the derivation formula applies, from which it is easily deduced that

(105) u Uo weakly in

as n tends to infinity.
We also introduce a sequence fn in W1’1(0, T; L2(12)) such that

(106) f"-f strongly in WI’I(0, T;

as n tends to infinity, and we propose to study the behavior of u ", the solution of

(107)

Ob(u")
3t
-div D(Vu")__fn

U"=0 on 012x(0, T),

in 12 x (0, T),

b(u")lt=o= b(ug),

as n tends to infinity. Theorem 1 ensures the existence of such a u in L(0, T; w’q(f))
with b(u")in L(0, T; L2(12)) f3 WI’(0, T; W-1’q’(12)).
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Furthermore the norm of u in L(0, T; w’q(f)) is bounded by a continuous
function of (Vu) and of the norm lilY’Ill off in W1’1(0, T; W-l’q’()) (cf. Theorem
1). It is then immediately deduced from (105), (106), and the properties (5) of that

(108) u" is bounded in L(0, T; w’q(f)) independently of n.

Once again the boundedness of D on the bounded sets of Lq(f) implies that

(109) D(Vu") is bounded in Loo(0, T; [Lq,()]N).
With the help of (108) and (109) we conclude that there exists a suitably extracted

subsequence (still denoted u) such that

u --- u weak-* in Lo(0, T; w’q(I))),
(110)

D(Vun) Y weak-* in Loo(0, T; [Lq,(I))] N)
as n tends to infinity. Furthermore, by virtue of (106)-(109),

(111)
Ob(u")

is bounded in Loo(0, T; w-l’q’(l))) independently of n.
Ot

We need to derive an estimate on b(u) so as to be in a position to pass to the
limit in (107). The function u is an admissible test function in the first equation of
(107). Upon integration over O x (0, t) of the result of the multiplication of the first
equation of (107) by u we obtain the following estimate"

(112) **(b(u"(t))) dx <- **(b(ug)) dx+l[lf"]ll Ilu"(s)ll,ods,

where lilY’Ill denotes the norm of f" in W’(0, T; W-’q’(o)). Lemma 1 and the
coercivity properties of are implicitly used in establishing (112) (refer to (21),
(27)-(29) for an identical argument).

A subsequence of *(b(u)), still denoted *(b(u)), converges almost
everywhere to q*(b(uo)). Furthermore, in view of (4) and the positivity of q,

0<= *(b(u(x))) <= b(u(x))u(x) <= b(uo(x))uo(x),
for almost every x of f. Recalling Remark 2 we conclude that, as n tends to infinity

(113) Ia *(b(u)) dx- Ia *(b(uo)) dx

and, with the help of (112), that

(114) *(b(u")) is bounded in Lo(0, T; LI(I))) independently of n.

In (114) we have identified *(b(u")) with one of its subsequences.
We now make use of the following remark (cf. [1, Remark 1.2, p. 314]).
Remark 9. Let be an arbitrary strictly positive real number. Then

Ib(t)l<-_6q’*(b(t))+ sup [b(r)
Il<_-l/

for every in R.
Remark 10. Note that Remarks 2 and 9 immediately imply that b(uo) is in fact

an element of L(f).
Thus, for any strictly positive 6 and almost any (x, t) in f (0, T),

(115) ]b(u"(x, t))l<=6xIt*(b(u"(x, t)))+ sup
I-I=<l/
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Integration of (115) over any measurable subset Q of f implies, in view of (114), that,
for almost any in (0, T),

(116) f Ib(u(t))l dx<=6+mes(Q) sup Ib()l,
Io-I---- l/

where is a generic constant independent of n.
Thus,

b(u") is bounded in L(0, T; Ll(f)) independently of n,
(117)

b(u) is uniformly equi-integrable in

We are now in a position to prove the following lemma.
LEMMA 3. The sequence b(u,(t)) lies in c([0, T]; Ll(f)) and as n tends to infinity

(118) b(u,(t))-X strongly in c([0, T]; Ll(f)),

where X is also an element of ([0, T]; Ll(f)).
Proof of Lemma 3. By virtue of (108) and since the embedding of w’q(o) into

L(f) is compact, we conclude that there exists a measurable set Z in (0, T) of zero
measure such that

(119) F {un(t); n N, 6 (0, T) Z} is relatively compact in LI(-).

Through application of the Dunford-Pettis Theorem (see, e.g., [6, Cor. 11, p. 294]),
(117) implies that

(120) b(F) {b(un(t)); n N, (0, T)-Z} is sequentially weakly relatively
compact in Ll(f).

The compactness properties (119) and (120) of the sets F and b(F) ensure that

(121) b(F) is relatively compact in LI().

Indeed, if hn is an arbitrary sequence of b(F), there exists a subsequence of h,
(still denoted by hn) and a sequence w, of F such that, as n tends to infinity,

(122) w, w in Ll(f) and almost everywhere in f,

(123) b b(w) h weakly in L(f).

Since b is a continuous function (122) implies the almost pointwise convergence
of b(w,) to b(w). The weak convergence (123) then implies the strong convergence
in Ll(f) of the sequence b(w,) to b(w) (see [6, Thm. 12, p. 295], which proves (121).

By virtue of (121), there exists a compact set K in Ll(12) such that

(124) b(u(t))-b(un(t’)) K for any n and for almost every and t’ in (0, T).

In view of (111) a proper choice of s (s small enough) guarantees that

W(a) w-l’s (a),(125)

and

(126)
Ob(u.)

is bounded in L(0, T; w-l’s(-)).
ot

We now appeal to a straightforward adaptation of a classical lemma of Lions (see
[8, Lemma 5.1, p. 58]), which may be proved exactly as in [12, Lemma 8, p. 84].
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LEMMA 4. Let B and Y be two Banach spaces with continuous embedding ofB into
Y. Let X be a compact subset of B. Then, for any strictly positive number e, there exists
a strictly positive constant C such that

[fl B --< e + C Ifl v for any f in X.

Lemma 4 is applied in our context with B LI(I)), Y= w-l’s(fl), and X-K.
Thus, with the help of (124) and (125), for any strictly positive number e, there exists
a strictly positive constant C such that

(127) b(u. (t))- b(u,,(t’)) [[o,, -<- e + C []b(u.(t))- b(u,(t’)) [[_l,s
for any n and for almost every and t’ in (0, T).

Estimate (126) implies that

< dtr <- c1t-(128) [[b(un(t)) b(un(t’))[[_l,=
Ot -1,s

where c is a generic constant independent of n.
Inserting (128) into (127) leads to

(129) Ilb(u,(t))-b(u,(t’))llo,l<-_e+C[t-t’[ for any n and for almost every
and t’ in (0, T).

Estimate (129) readily yields the existence of a sequence of continuous representa-
tives of b(u.(t)) (still denoted by b(u.(t))) such that for any positive number e, there
exists a strictly positive constant C with

IIb(u.(t))-b(u.(t’))llo.l<-e+Clt-t’l for any n and every and t’ in
(130) [0, T].

The continuity of b(u.(t)) and (121) imply that b(u.(t)) is continuous on [0, T]
with value in a compact set of L1(1) (which is independent of n). The uniform
equicontinuity (130) of the sequence b(u.(t)) permits the application of Ascoli’s
theorem, which completes the proof of Lemma 3.

It remains to prove that X b(u). Let to be an arbitrary function in LI( x (0, T)).
The function TR(b(u")-b(to)) converges almost everywhere in x (0, T) to TR(X--
b(to)) and its L-norm is bounded above by R. Hence

(131) TR(b(u")-b(to))- Tg(X-b(to)) strongly in Ls(l)(0, T)), 1-<s<+oo,

as n tends to infinity. If o denotes an arbitrary positive element of c(l x (0, T)) we
conclude, with the help of (110) and (131), that

,lim+o q(t)T(b(u(t))-b(to(t)))(u(t)-to(t)) dxdt

(132) r

fo fa q(t)Tg(x(t)-b(to(t)))(u(t)-to(t)) dxdt.

The integrand in the left-hand side of equality (132) is always positive because b is
monotone. Thus the limit is positive and we conclude that, for almost every (x, t) in
x(O, T),

(133) TR(X(x, t)- b(to(x, t)))(u(x, t)- to(x, t)) >-- O.

Since R is arbitrary, (133) implies that, for almost any (x, t) in fl (0, T),

(134) (X(X, t)-b(to(x, t)))(u(x, t)-to(x, t))>-O.
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A proper choice of to in (134) then shows that

(135) x=b(u) almost everywhere in lx(0, T).
Passing to the limit in (107) is now an immediate task in view of (106), (110),

(111), (118), and (135). We obtain the following:

(136) Ob(u)-div Y=f in 1" (0, T).
Ot

Since a subsequence of b(u) (still denoted b(u)) converges almost everywhere
and monotonically to b(uo), and with the help of Remark 10,

(137) b(u)-, b(uo) strongly in Ll(fl),
as n tends to infinity. By viue of (111), (118), and (135)

(138) b(u),=o b(uo).
It now remains to identify The identification relies once again on Lemma 2.

The quantities w, w, and Y are identified with Vu ", Vu, and respectively, and (48)
is satisfied with the help of estimates (110). To show that

(139) Y=D(Vu)
we only need to prove that

(140)
lim (D(Vu"(s)), Vu" (s)) ax ds

As was seen earlier (cf. 2.4) the right-hand side of (140) is the limit superior of
the right-hand side of inequality (100) with f Uo, and u, respectively, replaced by f",
Uo, and u

We obtain, in view of (106), (110), and (113),

lim (D(Vu"(s)), Vu"(s)) dx dsdt
eO

f(s)u(s) dx ds tit+ T *(b(uo)) dx

lim **(b(u())) &

But * is positive and lower semicontinuous on N; thus, with the help of (118),
(135), and Fatou’s lemma,

O *(b(u(t))) dxdt lim *(b(u(t))) dxdt,

which leads to

(141)

lim (D(Vu"(s)), Vu"(s))nN dx ds dt
e--O

<-- f(s)U(S) dx ds dt+ T *(b(uo)) dx

*(b(u(t))) dxdt.
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The right-hand side of inequality (141) is easily seen to coincide with

to (Y(s), Vu(s))aN dxds dt after multiplication of (136) by u, integration of the
resulting expression over (0, t)fl then over (0, T), and application of Lemma 1.
Inequality (140) is proved and equality (139) follows.

Recalling (110), (118), and (135)-(139), we conclude that there exists an element
u of L(0, T; w’q(-)) which satisfies (13)-(15). The proof of the existence part of
Theorem 2 is complete.

If f and f2 satisfy (12), and fl-f: is positive in the sense of Theorem 2, the
sequences f,f introduced in (106) can be chosen such that f]’-f is positive almost
everywhere on 1) (0, T). According to Remark 8, inequality (104) applies to u’ and
u. We obtain the following:

(142) [b(u?)-b(u’)]-(t) dxdt < T [b(Ul)-b(u2)]- dx,

where ul and u)2 are the sequences associated to UO1 and Uo: through (105). In view
of (118), (135), and (138), inequality (142) is easily seen to yield

[b(Ul)-b(u2)]-(t) dxdt<= T [b(Uol)-b(uo2)]- dx,

as n tends to infinity and the hypothesis on b(uol)- b(uo2) permits us to conclude.

Acknowledgments. The authors thank the referee for his numerous retnarks and
A. Damlamian for his advice in improving the original manuscript.
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TRAVELING WAVE SOLUTIONS ARISING
FROM A TWO-STEP COMBUSTION MODEL*

DAVID TERMAN"

Abstract. The combustion process A B C may give rise to many traveling wave solutions, each
traveling with a different velocity. The first reaction, A- B, may produce a flame F1 with speed 01, while
the second reaction may produce a second flame F12 with speed 0a. If 01 < 0a, then the rear flame F12 will
approach the forward one, F1. One may expect that what eventually evolves is a single configuration moving
with constant velocity. This corresponds to a third traveling wave solution. In this paper it is shown that if

01 < 0a, then such a third wave does indeed exist.

Key words, reaction-diffusion equation, Conley index, traveling wave solution

AMS(MOS) subject classification. 35K57

1. Introduction. This paper is concerned with proving the existence of traveling
wave solutions of a reaction-diffusion system which arises in the theory of combustion.
The equations take the form

(1.1) U=DUxx+F(U)

where U (T, Y1," ", Y,-1) R" and D is a positive, diagonal matrix. The traveling
wave represents a combustion front in a premixed reactive gas. The components of U
specify the dimensionless temperature and the mass fractions of the reactants. For a
background of the physical motivation of these equations, see [2] and [13].

By a traveling wave solution of (1.1) we mean a nonconstant, bounded solution
of the form U(x, t)= U(z), z x + Or. Note that a traveling wave solution satisfies the
system of ordinary differential equations

DU"-OU’+F(U)=O.

We are primarily concerned with the two-step reaction process AB C.
However, in order to motivate our results, we make a few remarks concerning the
simple reaction A B. If we assume that the reaction rate is of mass action-Arrhenius
form, T is the dimensionless temperature, and Y is the mass fraction of A, then (T, Y)
satisfies the system

(1.2) T=dITxx+QBYe-/T Yt=d2Yx-BYe-/T

where dl, d2, Q, B, and E are all positive constants. We assume that (T, Y) satisfy
boundary conditions of the form

(1.3) (T(-oo), Y(-oo)) (T_, Y_) and (T(oo), Y(oo)) (T/, 0).

A traveling wave solution then satisfies the system

(1.4) dIT"-OT’=-QBYe-e/r, d2Y"-OY’= BYe-elf

along with the boundary conditions (1.3). To prove the existence of a traveling wave
solution we must show that there exists a 0 for which there exists a solution of (1.3),
(1.4). Because the right-hand side (1.4) is zero only when T 0 or Y--0, there cannot

* Received by the editors February 25, 1986; accepted for publication (in revised form) January 6, 1987.

This work was supported in part by the National Science Foundation under grant 8401719.

? Department of Mathematics, Ohio State University, Columbus, Ohio 43210.
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exist any traveling wave solutions unless T_-0, which is physically not reasonable.
This is often referred to as the "cold boundary difficulty" (see [13]); because the
formulation (1.2) requires that the mixture react all the way in from x =-c, by the
time finite x is reached the combustion would be complete. To overcome this difficulty,
it is necessary to avoid reactions at a finite rate over an infinite time. A common way
to do this is to introduce an ignition temperature. We replace (1.2) by

(1.5) Tt=dlT+QBYf(T), Yt=d2Yxx-BYf(T),

where f(T) is continuous and satisfies the following:
(a) There exists T > 0 such that f(T) 0 for 7" < T;
(b) f(T)>0 for T> T.

Berestycki, Nicolaenko, and Scheurer 1 prove that there does indeed exist a traveling
wave solution of (1.5) which satisfies (1.3). They show that on such a solution T(z)
is monotone increasing, Y(z) is monotone decreasing, and

(1.6) T+ T_ + QY_.

Note that (1.6) is easily obtained by integrating the equations in (1.4) for -< z <.
In this paper we consider the existence of traveling wave solutions arising from

the reactions

(i) (ii)
(1.7) A B C.

If T is the dimensionless temperature, Y the mass fraction of A, and Y2, the mass
fraction of B, then the traveling wave equations corresponding to this reaction network
are

doT"- OT’= -O, Y,f( T)- 02 Y2f2( T),

(1.8) d, Y’-OY’,= Y,f,(r),

d2Y 0Y Y1 f, (T) + V2f2( T)

where f( T)= B e-,/T and f2(T)= B2 e-/. The constants do, d, d2, Q, Q2, B,
B2, E, and E2 are all assumed to be positive. As before, because of the cold boundary
difficulty we introduce ignition temperatures. We assume that f(T) and f2(T) are
continuous functions, and there exist positive constants T and T2 such that for i-1
or 2, f(T) 0 for T < Ti, and f/(T) > 0 for T > T.

We assume that the unburned state

U_ (T_, Y,_,

is prescribed. Let us now imagine (1.?) as taking place in two steps, and thus producing
two flames. The first reaction, A- B, in (1.7) will convert the given unburned state to
a partially burned state. This will produce a flame, F1, with speed say 0 . The second
reaction, B- C, will then act on the product of F1 and convert the partially burned
state to a completely burned state. We denote this second flame by F12 and its velocity
by 0 2.

The above flames will proceed at different velocities. For example, if the speed
of F12, which is built on the products of F1, is slower than F1 itself, then we can
imagine two flames both existing, but the distance between them would be ever
increasing. Now suppose that F12 is faster than F1. In this case the rear flame
approaches the forward one. As it does, its effect is to heat up the forward one. We
may then expect that what eventually evolves is a single configuration moving with
constant velocity. This corresponds to a traveling wave solution of (1.8). In this paper
we prove that if 0< 02, then such a wave does indeed exist.
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In order to formally state our first result we assume, for now, that T1 < T2. For
convenience, we assume, without loss of generality, that the unburned state is given by

(1.9) U_= (T_, YI-, Y2-)= (0, 1, 1).

For our first result we assume that

(1.10) 0< T1 < QI < T2< Q1 +2Q2.

This condition will be needed to guarantee the existence of the simple flames, which
we now define.

Suppose that T < T2. Then f2(T) 0, and (T, Y1) satisfies the reduced system

(1.11) doT"-OT’=-QI Ylf(T), dl Y-OY Ylfl(T).

This is the traveling wave system corresponding to the single reaction A B. From 1
we conclude that there exists a solution of (1.11) which satisfies

(1.12) (T(-), YI(-))=(0, 1) and (T(o), Yl(o))=(Q1,0).

Here we used (1.6). This wave corresponds to the flame F1. If (1.10) is satisfied, then
on this solution T(z)< Q1 < T2 for all z. Hence, the solution of (1.11), (1.12) satisfies
(1.8) for all z. Note that because T(z)< T2, Yz(z) satisfies

d2 Y- 0Y rlf(T).

Integrating this last equation and the second equation in (1.11) for -< z < o, we
find that

-0(r2() 1) f rlfl( T) dz -0,

or Y2()= 2.
We do not know that the solution of (1.11), (1.12) is unique. Let

01=sup{0: there exists a solution of (1.11), (1.12) with speed 0}.

That is, 01 is the maximum speed of F1.
We now consider the flame F12. Along F12, Yl(z) =0. Hence, (T, Y2) satisfies

(1.13) doT"-OT’=-Q2Y2fz(T), dY-OY’2 Yf_(T),

(1.14) (T(-), Y2(-)) (Q, 2), (T(), Y2(o)) T+, 0).

These are the traveling wave equations corresponding to the single reaction B- C.
From (1.6) we conclude that T+ Q1 /2Q2. From [1] we conclude that there exists a
solution of (1.13), (1.14). Let

012=inf{0: there exists a solution of (1.13), (1.14) with speed 0}.

In this paper we are interested in the case 01 < 012. We prove the following theorem.
THEOREM 1. Assume T < T2, (1.10), and 01 < 0. Then there exists a solution of

(1.8), for some speed O, which satisfies
(1.15) (T, Y1, Y2)(-c)=(0, 1, 1) and (T, Y1, Y2)(+)=(Ql+2Q2,0, O).

Moreover, T, Y1, and Y are positive for all z, T(z) is monotone increasing, and Yl(z)
is monotone decreasing.

In this paper we only prove this theorem for the case do =dl d 1. The proof
for the case of unequal diffusion constants can be found in 11]. We outline the proof
in 5 of this paper.



1060 D. TERMAN

We now state other theorems which we can prove in a manner similar to the proof
of Theorem 1. The proofs of these other results will appear in a future paper.

Assume that T2 < T, and

(1.16) 0< T2< Q2< T < Q,+2Qz.

If T < T1, then (T, Y2) satisfies

(1.17) do T"- OT’= -Q2 Y2f2(T), d2Y 0Y Y2f2(T).
From [1] we conclude that there exists a solution of (1.17) which satisfies

(1.18) (T(-), Y2(-))=(0, 1) and (T(c), Y2())=(Q, 0).

Let us denote this flame by F2. Because the solution of (1.17), (1.18) may not be unique
we let

02=sup {0: there exists a solution of (1.17), (1.18) with speed 0}.

There will be a second flame, which we denote by F21, which acts on the product of
F2. We can think of this flame as converting A to B by reaction (i) in (1.7) and B
thereupon being almost immediately converted to C by the faster reaction (ii). Unlike
before, F21 does not correspond to the solution of a reduced system. Instead it is a
solution of (1.8) together with the boundary conditions

(1.19) (T, Y1, Y2)(-c) (Q2, 1, 0) and (T, Y1, Y)(+) (Q, + 2Q2,0, 0).

We can then prove Theorem 2.
THEOREM 2. Assume that T2 < T1 and (1.16). Then there exists a solution of (1.8),

(1.19) for some 0 > O. Moreover T, Y, and Y2 are positive for all z, T is monotone

increasing, and Y(z) is monotone decreasing.
Let

021 inf { 0: there exists a solution of (1.8), (1.19) with speed 0}.

We then have Theorem 3.
THEOREM 3. Assume that T2 < T1, (1.16), and 02 < 021. Then there exists a solution

of (1.8), for some speed O, which satisfies
(T, Y1, Y2)(-c)=(0,1, 1) and (T, Y, Y2)(+)=(Ql+2Q2,0, O).

Moreover, T, Y1, and Yz are positive for all z, T(z) is monotone increasing, and Yl(Z)
is monotone decreasing.

It remains to consider the cases when (1.10) and (1.16) are not satisfied. We then
have Theorem 4.

THEOREM 4. Assume that (1.10) and (1.16) are not satisfied. Then there exists a
solution of (1.8), for some speed O, which satisfies

(T, Y1, Y2)(-) (0, 1, 1) and (T, Y1, Y)(+) (Q1 + 2Q, 0, 0).

Moreover, T, Y1, and Y are positive for all z, T(z) is monotone increasing, and Y(z)
is monotone decreasing.

In the next section we outline the proof of Theorem 1. The proof is quite
geometrical, and the purpose of the next section is to introduce the basic geometrical
features of the proof. The proof of the theorems consists of three basic steps. The first
step is to obtain a priori bounds for the solutions. These estimates are derived in 3.
The next step in the proof is to prove the theorem for the special case do dl= d2 1.
The proof for this case is based on the Conley index and is carried out in 4. The last
step of the proof is to continue the solution from the case do= dl d2 1. As we
mentioned earlier, this continuation is carried out in [11].
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An essential feature in the proof of the theorem is the Conley index. Other authors
have used index arguments to prove the existence of traveling wave solutions. In
particular, Gardner [9] also considered a combustion problem. In that paper he
introduced the method of perturbing the ignition temperature kinetics so that Conley’s
methods can be applied. This method is used here (see 4B). Another important step
in this paper is to attach to the traveling wave equation a flow in the P-direction. This
idea was used by Conley and Smoller [5] who considered the existence of traveling
wave solutions for systems of the form U, Uxx + VF(U).

2. A brief outline of the proof of Theorem 1. We now briefly outline the proof of
Theorem 1. We assume throughout this section that T1 < T2 and (1.10) is satisfied. The
proof of Theorem 1 is quite geometrical. The purpose of this section is to introduce
the basic geometric features of the proof.

The first step is to reduce (1.8) to a first order system. Let q T’, Pl Y’I, and

P2 Y. Then (1.8) is equivalent to the system

T’= q,

doq’= Oq Q1Ylfl( T)- Q Y2f2( T),

(2.1)
Y =Pl,

dlp Opl + Ylfi(r),

dzp’ Op2- rlfl( T)+ Yef2( T).
Let y(z) (r(z), q(z), Y(z), pl(z), Y2(z), p2(z)), and

A (0, 0, 1, 0, 1, 0), B (Q1,0, 0, 0, 2, 0), C=(QI+2Q2,0, O,O,O,O).

The flame F1 corresponds to a solution, yl(z), of (2.1) which satisfies

(2.2a) lim yl(z)=A and lim yl(z)=B.

The flame F12 corresponds to a solution 712(z) of (2.1) which satisfies

(2.2b) lim y12(z)= B and lim y12(z)= C.

We assume, in this section, that these simple waves are unique. In particular, the wave
speeds 0 and 012 are uniquely determined. We wish to prove that if 0< 01, then
there exists a solution yo(Z) of (2.1) which satisfies

(2.2c) lim yo(Z)= A and lim yo(Z)-0.

In each case the traveling wave solution corresponds to a trajectory in phase space
which connects two critical points.

One of the key ideas in the proof of the theorems is to attach to (2.1) the equation

(2.3) O’=e(O-Oo)(O-O1)

where 0 <_- 0o and 0-<_ e << 1. Let

a,=(a, 0o), BI=(B, 0o), CI=(C, 0o),

az=(a, 01), Bz=(B, 0), C2=(C, 01),

IA {(% 0): 3, A, 01 -< 0=< 0o},

In {(% 0): 3’ B, 01 --< 0 _-< 0o},

i: {(, o): = c, o, _-< o_-< Oo}.
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First consider the case e 0. Then lA, IB, and lc correspond to lines of critical points,
and (yl(z), 01) and (y12(z), 012) trace out curves in phase space which "connect" these
lines. This is illustrated in Fig. 1. Figure l(a) depicts the case 01< 012, and Fig. l(b)
depicts the case 01 < 02.

Now suppose that e > 0. The lines la, lB, and Ic now correspond to solutions
which connect the critical points A1 to A2, BI to B2, and C1 to C2, respectively. Crucial
to the proof of Theorem 1 is the following result.

PROPOSITION 2.1. For each e>0, there exists a solution (y(z), O(z)) of (2.1),
(2.3) which satisfies
(2.4) lim (y(z), 0(z)) =al and lim (y(z), 0(z)) C2.

Remark. This proposition is true in both cases, 01 < 012 and 01> 012. This result
is proved later in the paper. We comment on the proof shortly. First we discuss what
happens to (y(z), O(z)) as e->0. We shall have a priori bounds so it will be clear
that at least some subsequence of {(y(z), 0(z))} converges to something.

Let us, for the moment, consider the case 01 > 012. It is possible that for 0 < e << 1,
(y(z), O(z)) is as shown in Fig. 2(a). That is, (y(z), O(z)) lies close to 1a for

O O12

O

A e c -,/ A B C "’
(a) (b)

FIG.

c2

B C

(a)

FIG. 2

0o A

012

0

O’

_0

(b)

C
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01 0 00, then lies close to (y(z), 01), then lies close to In for 012 0f 01, then lies
close to (y12(z), 02), and finally lies close to lc for 01 =< 0 -< 012. In the limit e-0, the
curves (y(z), O(z)) converge to the union of the curves 1A for 01_--< 0_--< 0o, (yl(z), 01),
ls for 012<--0--<01, (y12(z), 012), and lc for 01-<_0<-012. Hence, (y(z), O(z)) does not
converge to a traveling wave solution.

In the above paragraph we strongly used the assumption that 01 > 012. Since 0’ < 0
for e >0, it follows that if 01< 012, then (y(z), O(z)) cannot converge to a curve
which is the union of (y(z), 01), (y2(z), 0 2) and pieces of 1A, l, and Ic. We prove
later that the only other possibility is that there exists 0e (01, 0o), and a sequence
{en} such that as n c, e, -> 0 and {(y-(z), 0"(z))} converges to a curve which consists
of three pieces. These are the following:

(a) 1A for 0 < 0 < 0o;
(b) A trajectory (yo(Z), 0) which satisfies (2.1), (2.3) for all z with

0, limz__ To(Z) A and limz_,+oo To(Z) C;
(c) lc for 01<0<0.

Then To(Z) is the desired solution.
The proof of Proposition 2.1 is based on Conley’s Morse Theory (see [3], [6],

and [10]). First we prove the proposition for the case do dl d2--1. For general
diffusion coefficients, we continue the solution. This last step is outlined in 5.

3. A priori bounds. We now derive some a priori bounds which establish the
positivity and monotonicity properties of the dependent variables. We will also find
an upper bound on the speed 0 of a solution. Let 4i,(z)= (T, q, Y1, Pl, Y2, Pz, O)(z)
be a solution of (2.1), (2.3) together with the boundary conditions

(3.1) lim (z) A1 and lim Cb(z)
-[-

We assume that e -0, and 0o > 0. The motivation for considering such a solution was
given in the previous section.

LEMMA 3.1. Y1 (z) > 0 for all z.

Proof We first show that Y(z)>-0 for each z. If not, there exists Zo such that

(3.2) Yl(zo) < 0 and Y(zo) > O.

Let a =sup {z <Zo: Y(zo)= 0}. Certainly a is well defined. Then Y(a) =0, Y(z) > 0
for z e (a, Zo), and Yl(Z) < 0 on (a, Zo). Then

dl Y’ 0Y Y1f(T) _-< 0 on a, Zo].

On the other hand,

dl Y 0 Y’I >= dl Y OoY on [a, Zo].

Therefore, dl Y’;-OoY<=O on [a, Zo], and (e-/d’ZY)’<--O on [a, Zo]. Integrate this
last equation from a to Zo to obtain Y’l(Zo)<-_0. This, however, contradicts (3.2).

If Yl(zo) =0 for some Zo, then we must have Y(zo) =0. This implies that Y(z) =0
for all z. Since Y(-oo)= 1, this gives a contradiction.

LEMMA 3.2. Y2(z)> 0 for all z.

Proof We first prove that Y2(z)>--0 for all z. If not, there exists Zo such that

(3.3) Y2(zo) < 0 and r(zo) > O.

Let a sup {z < Zo; Y(z) 0}. Then Y(a) 0, Y(z) > 0 on (a, Zo), and Y2(z) < 0 on

[a, Zo]. Therefore,

d2Y 0Y Y1f(T) + Y2f2(T) _-< 0 on a, Zo].
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Therefore, d Y 0oY <-- 0 on a, Zo], or

(e-/d2z Y)’ _--< 0 on [a, Zo].

Integrate this last equation from a to z0 to obtain Y(zo) --< 0. This, however, contradicts
(3.3).

If Y2(zo) 0 for some Zo, then Y(Zo) 0 and Y(zo) -> 0. If T(zo) -< T1, then
Y2(z) 0 for all z, which is impossible. If T(zo) > T1, then d2Y Yf(T) < 0, which
again gives a contradiction.

In a similar manner we have Lemma 3.3.
LZMMA 3.3. T(z) > 0 for all z.

Proof. The proof of this result is similar to the two just given, so we do not give
the details.

LZMMA 3.4. Y’(z)<-0 for all z.

Proof. If not, then there exists Zo such that Y(Zo) 0 and Y’(Zo) <- 0. If T(Zo) <- T,
then d Y’[- OY’ =0. Hence, Y(z) Y(zo) for all z, which is impossible. If T(Zo) > T,
then Y’(Zo) YIf(T) > 0 which gives a contradiction.

LEMMA 3.5. If 0< T(z)< Ql+2Q2, then T’(z)>-O.
Proof If not, then because T(+) Q1 + 2Q2, there exists Zo such that T’(zo)= 0

and T"(Zo)>-O. If T(zo)< T1, then T(z)= T(zo) for all z, which is impossible. If
T(zo) > T, then T"(Zo) -Q1YlfI(T) Q2 Yzfz(T) < 0, which again gives a contra-
diction.

Remark. The proof of this last result shows that if T(zo) > Q1 + 2Q2 for some Zo,
then there exists zl such that T’(z)>-O for z <zl, and T’(z)<=O for z>=z. If this were
not true then there must exist z2 such that T’(z2)= 0 and T"(z2)>-O. We then proceed
as before.

LEMMA 3.6. If e O, then T’(z) >- 0 for all z.

Proof Consider the equation T"- OT’= -Q1Yfl( T) Q2 Yzf2( T) <- O. Multiply
this equation by eTM to obtain (e-ZT’(z))’<-_O. If we integrate this last equation from
z to , then we obtain the desired result.

LEMMA 3.7. If e O, then 0 < Yz(z) < 2.

Proof If e =0, then 0’(z)= 0 for all z. Suppose that 0(z)= 0. Let u=d Y-OY1,
v d2Y- 0Y2, and w u + v. Then

u(z) d, Y(z)- OY’l(z) Ylfl(T) >= O.

Hence, u(z) is an increasing function. Since u(-)= 0 and u(c)=0, it follows that
-0 <-_ u(z) <-_ 0 for all z. Moreover, w’(z) Y2f2(T) >_- 0, and w(z) is an increasing
function. Since w(-)=-20 and w()=0, it follows that -20 =< w(z)<=0. Because
v w u, it follows that -20 _-< v(z) <= O. Hence, d Y- OY2 v -> --20. Multiply the
left and right sides of this equation by e-/a2z and integrate from z to -c to obtain
the desired result.

We conclude this section by obtaining a priori bounds on the speed 0 for which
there exists a solution of (2.1) which satisfies certain boundary conditions. If y(z) is
a solution of (2.1) which satisfies either (2.2a) or (2.2c), then y(z) lies in WA(O), the
unstable manifold of A for a particular value of 0. To obtain an upper bound on 0,
we prove that if 0 is sufficiently large, then each nontrivial trajectory in W(0) becomes
unbounded.

Choose L so that for 1, 2, f(T) < LT for 0 < T < Q1 + 3Q2. Let

(3.4) 0o 2 + 2L(O, + 2Q2+ 1)+ 01.
PROPOSITION 3.8. If O > 00, then each nontrivial trajectory in WA( O) is unbounded.
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Proof Suppose that (z) T, q, Yp, Y2, p2)(z) is a solution of (2.1) with 0 > 0o
such that limz_,_ (z) A. Let

S={(T, q, YI,Pl, Y2,P2)" 0 --< T<-q or q_-< T<_-0}.

First we prove that (z) S for each z. Note that if T< T1, then fl(T)=fi(T) =0.
Hence, (T, q) satisfies T’= q, q’= Oq. This implies that (0T- q)’= 0. Because T(-c)
q(-c) 0, it follows that q OT for all z such that T(z) < T1. Since 0 > 0o, this implies
that (z) e S as long as T(z) < T1. In particular, there exists Zo such that (z) S for
z zo

We now prove that dp(z)eS for all Z>Zo. If this is not true, let z=
inf{z> Zo: q(z) S}. Then dp(z)OS. We assume that T(z)>O. The other case is
similar. Let n=(1,-1). Because q(z) is leaving S at z= z,

n. (T’(21) q’(z,)) >= O.

We shall prove that this is impossible. Note that q(zl) T(z). Moreover, from Lemmas
3.4 and 3.7, 0< Y(z) <- and 0< Y(z)_-<2. Therefore,

n. (T’(Zl) q’(z)) q(z,)-- Oq(z) + QI Ylfl(T)+ Q2 Yzf2( T)

=q(z)[1-O+
=q(z)[1-O+

Q1Yfl( T)+ QE YEf2( T)]
q(Zl)

Q, Yfl( T)+ Q Y2f( T)]
T(z,)

=< q(z,)[1- 0o + L( Q1 + 2Q2)]

<0,

and we have the desired contradiction.
We have now shown that I)(z) S for all z. Because q(z)- T’(z), this implies that

T’(z) > T(z) for all z. Hence, T(z)> K e for some K and the result follows.

4. The case do dl d2 1.
4A. Reduction of order. Our goal is to prove Proposition 2.1 for the case do d

d 1, which we assume to be true throughout this section. If we multiply the second
equation in (1.8) by Q + Q2, the third by Q2, add the resulting equations to the first,
and let

Z= T+(QI+Q2)YI+Q2Y2,

we find that Z"-OZ’-O. Since Z’(-oo)- Z’(oo)= 0, it follows that Z is constant. By
assumption Z(-oo)= Q1 + 2Q2. This implies that

(4A.1) y=l
Q2
Q +2Q- T- (Q + Q2) Y].

Plugging (4A.1) into (1.8) we obtain

T"- OT’= -Q, Yfi( T)-[ Q, +2Q2- T-(Q, + Q2) Y]fz( T),
(4A.2)

Y’ 0Y Y1 fl (T).
The boundary conditions (1.15) reduce to

(4A.3) (T, Y,)(-oo) (0, 1), (T, Yl)(Oo)= (Q +2Q2, 0).
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4B. Perturbation of the equations. Let P {(T, Y1): T-> 0, Y1 >- 0}. Of course, we
are only interested in values of (T, Y1) P. The rest points of (4A.2) in P are

{(T, Y1): O<-_ T<-_ T,, YI->_0}U{(T, Y1): YI=O,O<- T<-- T2}U{(OI+2Q2),O)}

This set is too large to work with. Recalling the discussion in 2, we eventually want
to reduce the problem to one in which there are only three critical points. This is done
in a number of steps. We begin by perturbing (4A.2) so that the resulting system has
five critical points. Let

F(T, Y,)=Q, Y,f,(T)+[Q,+2Q2- T-(Q,+O2)Y1]f2(T).

Then (4A.2) can be written as

Let

and

T"- OT’= F( T, Y1), V’- OY Ylfl( T).

T( T- T1)
g,( T)

0

if T<Q1,
if T> Q

(1 )g2(T, Y1) -gl( T) + Y1 -11( Q1 T) Y1

We shall consider the perturbed system for el > 0:

(4B.1) T"-OT’=-F(T, Y)-elg,(T), Y-OY= Ylf(r)-elg2(T,
Note that the rest points of (4B.1) are at the following values of (T, Y1): (0, 0), (T1,0),
(Q1 + 2Q, 0), (0, 1), and T1, (1/Q,)(Q, T)).

In what follows we consider the traveling wave system:

T’= q,

q’= Oq F( T, Y1) elgl( T),
(4B.2)

Y=p,

P’, Opl + Y1A( T)- e,g2( T, Y,)
for e small. After proving the existence of the desired connecting orbit, we let e
approach zero.

4C. An isolating neighborhoofl. A compact set N in phase space is an isolating
neighborhood if each trajectory on the boundary of N leaves N in forward or backward
time. Isolating neighborhoods are important because we can assign an index (the
Conley index) to the maximal invariant set inside them. Moreover, isolating neighbor-
hoods remain isolating neighborhoods upon perturbations of the equations. In this
section we construct an isolating neighborhood which contains all the trajectories of
interest.

To begin with, fix 6 and 6 positive, and let D be the set shown in Fig. 3. That is,

D= (T, Y1)’-6T-Q,Y+2Q+6, YI(T+2)
(r, Y)-QlYl+r+r-O1Yl+l+2+,o Y5(rl+2)

u{(r, gl):-, g+ rl+r,++,-g0}.
Let , , , 4, s be the (closed) sides of D as shown in Fig. 3.
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T 0" T

FIG. 3

LEMMA 4C.1. There exist 3, 31, and * such that if 0< e, < e*, then D is positively
invariant for the reaction equations

T’= F( T, Y1) + el Qlgl(T) hi( T, Y,),
(4C.1)

Y’, Y,A(T) + ega(T, Y,) ha(T, Y,).
Remark. To say that D is positively invariant means that any solution of (4C.1)

which lies in D for some Zo remains in D for all z > Zo.
Proof. Let

3 min { T1, Q1- T1,1}
M, inf {f( T)" T1 + 3 < T < Q, + 2Qe + 3},
iQe=T(T-T,) for T=OI+2Qe+3,

Ms sup 1, Me},

M3=inf{ T2-T1 M2/2
3Q,Ml/2}2M/2’ O’ QI’

e*=min 2M/e,1 and 31=M3M/e.

Assume that 0< el < e*. We show that the vector field defined by the right side of
(4C.1) points into D. We treat the five sides of D separately.

(a) On 0.1, T’= e, Q, T(T- T1) > 0.
(b) Suppose that (T, Y1)e 0.2. Let n (1, Q1) be a normal to 0.e pointing out of

D. We wish to prove that on 0-2, n. (T’, Y)< 0 where (T’, Y’I) is given by (4C.1). If
T < Q1, then F2(T)= 0. Hence, on 0-2,

n.(T’, Y’1)= Q1Ylfl(T)+e, Q1T(T T)-Q, Ylfl(T)

-elQ, T(T-T1)+elQ, Y,(-(Q,-T)-
-el Yl(202+ 3) < O.

If T=> Q1, then on 0-2,

n.(T’, Y)= Q, Y,f,(T)+[Q1 +2Q2- T-(Q, +Qe) G]A;T)

-Ol Ylfl(r)+elQ, Y1 -(Q1-T)- Y,

-( + 0glA(r- g( +0< 0.
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(c) On 0.3, n =(-1,-Q1) is an outward normal. On 0"3, T< T1 + 6 < Q< T2. If
Y1 > 0, then on 0"3,

n.(T’, Y)=-Q, Ylfl(T)-elQ1T(T-T1)+Q Yfl(T)-elQ1YI(-ll(Q1-T)-Y1)
-elQ1T(T- T1)- E1YI(QI-(T+ 6))<0.

If Y1 < 0, then on 0"3, T < T1 + 6 and Y1 > 61. Hence,

n.(r’, Y)=-E1Q1T(T- T1)-E1YI(QI-(T+6))

<-elQ1Ml+e161(Q1- T)<0.

(d) On 0"4, Y1 -61 and T1 + 6 < T < Q1 + 2Q2 + 6. If T =< Q1, then on 0"4,

Y=-Ylfl(T)-elT(T-T1) + el YI(-(Q1-T)-Y1)
>= 61M1- elM2- e161(1 + 61)

>= 61M1- 2Mze* > O.

If T> Q1, then

Y=-Ylfl(T)+EIYI(-(Q1-T)-
61M E’62 > O.

(e) Finally, assume that (T, Y1) 0"5. Then

T’= Q1Ylf(T) + [Q1 +2Q- T-(Q1 + Q2) Y1]f2(T)

-<- Q1Ylf(T)-[6 + Q1Y,]f2(T)

<= -[6 Q,61]f2(T) < O.

We now construct an isolating neighborhood for the four-dimensional flow defined
by (4B.2). For V> 0, let

P {( T, q, Vl, Pl)" T, Y1) D, Iq[--< v, Ip,[--< w}.
LEMMA 4C.2. V can be chosen so that D1 is an isolating neighborhood for each O.
Proof Assume that y(Zo) T, q, Y1, pl)(Zo) OD1. We must show that y(z) leaves

D in either backward or forward time. First assume that [q(zo)[ < V and Ipl(zo)[ < V.
Let n be an outward normal to OD at (T(zo), Yl(zo)). If y(z) is not tangent to OD1,
then the result follows immediately. If y(z) is tangent to OD1 at Zo, then (T(z), Yl(z))
must be tangent to OD at Zo. Hence, n’(q(zo), pl(Zo)) =0. This implies that at z= Zo,

n.(q’(z),p(z))=On.(q(z),p(z))-n.(F(T, Y1)+elgl(r), Ylfl(T)-Elg2(T,

=-n.(F(T, Y)+eg(T), Yf(T)-egz(T, Y))>0

by Lemma 4C.2. Hence, (T(z), Yl(z)) is outwardly normal to OD at Zo. This implies
the desired result.

It remains to consider the cases Iq(zo)l V and Ip(zo)l L. We assume that
q(zo) V. The other cases are similar. For convenience, we assume that Zo 0. Choose
K such that

IF(T, Y)+elgl(T)l+lYlf(T)-elgz(T, Y1)I<K in D.

Then, if 0 => 0,

q’ Oq + F( T, Y1) + E,gl( T) > -K
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as long as q(z)>0. Hence, q(z)>q(O)-Kz> V-Kz> V/2 as long as 0<z<l and
V> 2K. Therefore, if 0 <-z =< 1, then T’=q >- V/2. This implies that

__VT’(1) > T(0) + Q1 + 2Q2 + 6
2

if V is sufficiently large. In particular, (T(1), Y1 (1)) D and y(1) D1.
Now suppose that q(zo)= V and 0 < 0. Then

q’ Oq + F( T, Y,) + e,gl( T) < K

as long as q(z)> 0. Hence, if-1 =< z_<0, then

V
q(z)>q(O)+Kz= V+Kz>--

2

as long as -1 < z < 0 and V> 2K. Therefore, if-1-< z_<-0, then T’=q > V/2. This
implies that

V V
T(-1)<T(0) -<Q,+2Q2+6

2

if V is sufficiently large. In particular, (T(1), Y (1)) D and y(1) D1.
4D. A Morse decomposition. Let 0o be as in (3.4) and fix e > 0. Attach to (4B.2)

the equation

(4D.1) 0’= e(02- 0).
The reason for doing this was motivated in 2. Let

N={(% 0): y D,, 101_-< 0o+ 1}.

There are six critical points of (4B.2), (4D.1) in N. These are at the following values
of T, q, YI, P,, 0):

a (0, 0, 1, 0, 00),

/3, T,, 0, -(T- O,), 0, 0o

y, (O, + 2Q2, 0, 0, 0, 00),

a2 (0, 0, 1, 0,-0o),

/32 T,, O,- T-Q,), O, -Oo

yz=(Q,+2Q2,O,O,O,-Oo).

Our immediate goal is to prove that for each e > 0 there exists a solution of (4B.2),
(4D.1) which satisfies

(4D.2) lim (y(z), 0(z))= a, and lim (y(z), 0(z))=

The proof will involve the Conley index. We begin by constructing a Morse decomposi-
tion of the maximal invariant set in N.

DEFINITION (Morse decomposition). Assume that S is a compact, invariant subset
of phase space. A Morse decomposition of S is a finite collection {M=}cp of subsets

M= c S which are disjoint, compact, and invariant and can be ordered {M,. ., M,}
so that for every y S\LJ __<j_<_n M, there exist indices i<j such that w(y) and
w*(y) Mi. By w(y) and w*(y) we mean the w,- limit and oJ*-limit sets of y, respectively.

The construction of the Morse decomposition requires a number of steps. First
we define certain neighborhoods of

ao= (0, 0,1, 0) and 7o= (Q, +ZQ2, 0, 0, 0).
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Here we have given the (T, q, Y1, Pl) coordinates of ao and Yo. Let 6 be as in the
definition of D. Let

G1 ={(T, q)" -6 <- T<-q+ 3, O<-_q <- V}

U{(T, q)" q-6 <-_ T<-6, -V<-q<-O},

G2={(Y,pl) 1-8 < YI<-p+I+6,0<=pI<= V}

U{(Yl,pl)’p+l-6 <- Y<=I+6,-V<=pl<-O},

G’={(T,q, Y,pl)’(T,q)GI,(YI,pl)G2, and (T, Y1)e D}.

LEMMA 4D.1. If 0 >= 0o-1, then solutions of (4B.2) can only leave G’ through the
sides Iq[ V or [p,[ V.

Proof We prove that on OG’ fl {[q[< V and [p,[ < V} the vector field given by
(4B.2) points into G’. If T, q, Y, Pl) OG’, then either (T, q) OG or Y1, Pl) OG2.
We assume that (T, q) OG fl {[ql < V}. That proof for G2 is similar. We treat each
side of G separately.

(a) Assume that T -8 and q > 0. Then T’= q > 0.
(b) Assume that T 6 and q < 0. Then T’= q < 0.
(c) Assume that T=q+6 and q>0. An outward normal to OG is n=(1,-1).

If T_-< T1, then for 0 > 0o-1,

n.(T’, q’)= q-Oq+elT(T-

=< (2- 0o)q < 0.

Here we used (3.4). If TI < T-< Q1, then

n. T’, q’) q Oq + Q1Yf(T)+ e T( T- T)

=< (2- Oo)q + Q, Y,LT+ e,(01- rl) T

<-[2+ Q, YL+ Q,-Qo]T

<-0

where we use (3.4) and YI<=l/Q1[Ql+2Q2+l] in D.
(d) Assume that T-q-6 and q<0. An outward normal to OG at (T, q) is

n (- 1, 1). Moreover,

n. r’, q’)-- -q + Oq + e, r( r- T1)

< (2- 0o)q <0.

This completes the proof of the lemma.
In a similar fashion we construct a neighborhood of y0. Let

H1 ={(T, q)" Q,+2Q2-6 <= r<= q+ Q,+2Q2+8, 0<= q-<_ V}

U {(T, q)" q+Q1+ZQ-6<=T<=QI+ZQ+6,-V<-_q<-O},

Hz={(Yl,Pl) -8<= Yl<=pl+6,0<=pl < V}

U {( Yl pl)" pl 6 <= YI <- 6, V <- p, <-_ O},

H’={(T,q, Y,p,)" (T,q)H1 and (YI,pl)H}.

As in Lemma 4D.1, we have Lemma 4D.2.
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LEMMA 4D.2. If 0 <-0o+ 1, then a solution of (4B.2) can only enter H’v through
the sides ]ql v or pll V.

We are now ready to define the Morse decomposition.
Let

G (( T, q, Y1, P,, 0): T, q, Y1, P,) G, 10 0o1-<- 1},

Hv={(T,q, YI,PI, O): (T,q, YI,P1)6G,]O+Oo]<-I},
NI=Cl {(y, 0): y D,\G’, IO- Ool_<- 1},

Nz= G U {(y, 0): yEDI,IOI<=Oo-1}UH,

N3=cl {(% 0): y D\H, 10+ 0olM 1}.

By cl X we mean the topological closure of a set X. Let Mo equal the maximal invariant
set in N, and Mi, i= 1, 2, 3, equal the maximal invariant set in Ni. The picture we
have in mind is shown in Fig. 4.

We claim that (M1, M2, M3) defines a Morse decomposition of Mo.
LEMMA 4D.3. N is an isolating neighborhood.
Proof Suppose that (y(Xo), O(zo)) ON. If O(zo) 0o+ 1, then O’(zo) > 0. Therefore,

(y(z), O(z)) leaves N in forward time. If O(zo)=-Oo-1, then 0’(Zo)>0. Therefore,
(y(z), O(z)) leaves N in backward time. If y(z)OD, then because D is an isolating
neighborhood for each 0, it follows that y(z) must leave D1 in either forward or
backward time. Hence, (y(z), O(z)) must leave N in forward or backward time.

LEMMA 4D.4. N1, N2, and N3 are all isolating neighborhoods.
Proof We prove the lemma for N; the proofs for N2 and N3 are similar. Suppose

that (y(Zo), Oo(zo))ON. If O(zo)=Oo+l, then 0’>0 so (y(z), O(z)) leaves N1 in
forward time. If 0=0o-1, then 0’<0 so, again, (y(z), O(z)) leaves N1 in forward
time. If (y(z), O(z))ON, then, because N is an isolating neighborhood, (y(z), O(z))
must leave N, and therefore N. Finally if (y(Zo), O(zo))OG, then by Lemma 4D.1,
(y(z), O(z)) must enter N2, and therefore leave N, in forward time.

PROPOSITION 4D.5. (M, M2, M3) defines a Morse decomposition for Mo.
Proof Trajectories that lie in Nz cannot enter N in forward time, and trajectories

that lie in N3 cannot enter N2 in forward time. This is because on 0N CI 0N2 the vector
field points into N, while the vector field on ON2 ON3 points into N3.

O

Oo

-O

N

FIG. 4
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Choose Foe Mo\(M M2kJ M3), and let F(z) be the solution of (4B.2), (4D.1)
which satisfies F(0) Fo. If Fo Nt, then the above comments imply that F(z) N2 tO N3
for all z < 0. Hence w*(Fo) M. Certainly w(Fo) M, since this would imply that
Fo M which we are assuming is not true. Hence, w(Fo) M2 t.J M3.

A similar argument shows that if Foe N2, then to*(Fo) M U M2 and to(Fo)
M2 U M If Fo N3, then to*(Fo) M U M: and w(Fo) M3.

4E. Computation of the indices. We prove that h(Mo)= h(M)= h(M3)=0 where
h is the Conley (homotopy) index and 0 is the Conley index of the empty set. This
information will be used in the next section when we discuss h(M2) and then prove
the existence of a connecting orbit.

LEMMA 4E.1. h(Mo)=0.
Proof We continue the flow (4B.2), (4D.1) to one in which the maximal invariant

set in N is the empty set. Consider the following equations parametrized by A"

(4E.1A)

Of course, if A =0 then (4E.1A) is the same as (4D.1). The proof of Lemma 4D.3
shows that N is an isolating neighborhood for the equations (4B.2), (4E.1A) for each
A _-> 0. If Ao is sufficiently large, then 0’= -e(0 02) + Ao> 0 for each 0. Hence (4B.2),
(4E.1Ao) does not have any bounded solutions. If I is the maximal invariant set in
N for the flow given by (4B.2), (4E.1A), then h(Io) h(4) 0. Since Io Mo and I
are related by continuation (see [3]) it follows that h(Mo) =0.

LEMMA 4E.2. h(M1) 0.
Proof Clearly M lies in the set {(% 0)" 0= 0o}. Let h(M) equal the Conley

index of M considered as an isolated invariant set for the flow defined by (4B.2) with
0 0o. We prove that h(M)= 0. From elementary properties of Conley’s theory, it
then follows that h(M) h(M) ^ E =. We shall need other properties of the Conley
index.

Consider the equations (4C.1). Then c---{(T, Y)=(0, 1)} is an attracting rest
point for these equations. Choose H to be an open neighborhood of a such that H D,
and on OH the vector field defined by (4C.1) points into H. Recall that D was defined
in 4C. It follows that D\H is an isolating neighborhood. Let P be the maximal
invariant set in D\H for the equations (4C.1), and h(P) equals the Conley index of P.

We wish to relate h(M) with h(P). To do this we need one more preliminary
step. Recall the sets D and G’. Note that M c N 71 { 0 0o}
cl {(% 0)" y D\G, 0 0o}. Let S =el (D\G’). Lemma 4C.2 and Lemma 4D.1 imply
that S is an isolating neighborhood for the flows given by (4B.2) for each 0 => 0o. For
0 >_- 0o, let h(0) be equal to the Conley index for the maximal invariant set inside of
S for the flow given by (4B.2). From the definitions, we have that h(0o) h(M).
From the basic Continuation Theorem [3] it follows that h(0o)= h(0) for all 0 > 0o.
Hence, it remains to prove that h(0)= 0 for 0 sufficiently large. From 12, Thm. I] we
conclude that for 0 sufficiently large, h(0)= h(P). We now show that h(P) =0.

We compute the index of P directly. Recall that P is maximal invariant set in
D\H. By Lemma 4C.1, trajectories enter D\H along its outer boundary. Moreover,
trajectories leave D\H along OH. It is easy to imagine a vector field which enters D\H
along its outer boundary, leaves D\H along OH, and has no invariant sets. Hence,
h (P) h (b) 0. Of course, we could also compute h (P) directly, using the isolating
neighborhood D\H.

LEMMA 4E.3. h(M3)=0.
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Proof. The proof of this result is similar to the proof just given, so we do not give
the details.

4F. A connecting orbit for el, e2)0. In this section we prove the following
proposition.

PROPOSITION 4F.1. There exists a solution (z) of (4B.2), (4D.1) which satisfies
limz__ (z) a and lim

The first step in the proof of this result is to prove something about h(M2). Note
that if S is any isolated covariant set, then h(S) is the homotopy type of a certain
topological space. Let H(h(S)) be the homology for h(S) with coefficients in some
fixed ring.

LEMMA 4F.2. H(h(M2))-O.
Proof Let N12 N1 U N2 and MI be equal to the maximal variant set in N2.

Then (Ma, M2) defines a Morse decomposition of Mo. It follows (see [6]) that this
induces the exact sequence

(4F.1) - n2(h(M3))- n(h(M2))- nl(h(Mo))- nl(h(M3))- H(h(MI2))- n(h(Mo))- H(h(M3))-O.
Because h(M3) h(Mo) =0, we conclude that H(M3)= H(Mo) =0. From the exact
sequence we conclude that H(M2) 0.

Now (M2, M) defines a Morse decomposition of M2. This induces another exact
sequence relating H(M1),H(M2), and H(M2). Because H(M1)=H(M2)=O, the
result follows.

LEMMA 4F.3. M2 a U ")/2"

Proof If this were not true, then (see [3]) we must have that H(M2)= H(al)
H(y). Because H(M2)=0, and a and 72 are nondegenerate rest points, this is
impossible.

We now return to the proof of Proposition 4F.1. Choose hoe M2\(a U ’)/2) and
let F(z) be the solution of (4B.2), (4D.1) which satisfies F(0)= ho. We prove that
limz__ F(z) a and limz_ F(z) Y2. Assume that F(z) (y(z), O(z)). If ]0(z)] 0o,
then O’(z)< 0. It immediately follows that

(r(z)) U *(r(z)) = MN {(7, 0). I01 0o}.

To complete the proof of the proposition we show that

M2f){(y,O)" O=Oo}=al and M2f3{(y,O)" O=-Oo}=y2.

We only prove the first identity since the proof of the second is almost identical.
Recall the sets G, G2, and G’ defined in 4D. Note that M2 c N2 and

sn {(% 0). 0= 0o} {(% 0)"

We prove that the only bounded solution in G is the rest point a. Suppose that
oG’, (o, Oo)4al, and (T,q, Y,p)(z) is the solution of (4B.2) which satisfies
T, q, Y, p)(0) =/30. Then either T, q)(0) (0, 0) or Y, p)(0) (1, 0). Suppose that
T, q)(0) (0, 0). The other case is similar. We prove that (T, q)(z) leaves G1 in either

forward or backward time. This will imply that (T, q, Y, p)(z) leaves G in forward
or backward time.

There are many cases to consider. For example, suppose that T(0) > 0 and q(0) > 0.
As long as q(z) > 0 we have that T’(z) q(z) > 0. We claim that as long as (T, q)(z)
G,q(z)>O. If not, choose z so that q(z)=0 and q(z)>0 for 0<z<z. Then
T(zl) > T(0) > 0, and, from the definition of G, if (T, q)(z) G, then T(z) < T.



1074 D. TERMAN

This is due to the assumption that 6 < 1/2T. It follows that q’(z1) Oq(z) eT( T- T) >
0, which is impossible. We have now shown that as long as T, q)(z) G, T’(z) q(z) >
0. Because there are no rest points in G for T> 0, we conclude that (T, q) must leave
G1.

There are other cases to consider, but their proofs are very similar to the one just
given.

4G. The limit el 0. In this section we complete the proof of Proposition 2.1 if
01=-0o and do=dl=d2 1. So far we have proven that for each e>0, 0<el<e*,
there exists a solution O(e, el)(z) of (4B.2), (4D.1) which satisfies

lim @(e, el)(z)= al and lim 1I)(, 61)(Z ’)/2"

Fix 0 and let (z)= (, 1/ke*)(z). Assume that

k(z)=(Tk, qt,, yk pk k k,, 0 )(z): ( (z), O(z)),
and choose the translation so that 0k(0) 0. Since k(0) N, a compact set, for each
k it follows that some subsequence of {k(0)} converges to, say, o. For convenience,
we assume that the entire sequence {k(0)} converges to o.

Let (z) be the solution of (4B.2), (4D.1) with el =0 which satisfies (0) =o.
We wish to prove that lim (z) a and lim q(z) ’Y2. If we then make the substitution
(4A.1), this will complete the proof of Proposition 2.1 if do dl d2 1, and 01 -0o.

Because e >0, on (z), 0’(z) e(02-O)<O. Moreover, lk(z) N2 for all k and
z. Hence,

to*((0))Nfl{0=0o} and to((0))N2Vl{0=-0o}.

We must now be more careful than in the preceding section because when el--0,
N VI {0--0o} contains uncountably many rest points. We must, therefore, understand
in more detail the behavior of each k(z) near al and Y2. We use the fact that for
each k, ()k(z) lies in both the unstable manifold at al and the stable manifold at yz.

To prove that lim__oo (z)= al, let

Z--{(T, q, Yl,Pl,O):O<=T<=q or q<=r<=o}fl{O>=Oo-1}.

We prove the following lemma.
LEMMA 4G.1. There exists Zo such that (z), for Z<Zo. This.implies that

lim (z) a, because the only bounded solution in , is al.

ProofofLemma 4G.1. Because lim__o dPk(z) al for each k, we may choose Zo,
M so that if k> M and Z<Zo, then Ok(z)> 00--1 and Tk(z)< T1. We shall prove
that if k> M and z < Zo, then k(z) E. This will imply the desired result.

Fix k> M. To complete the proof, first we show that there exists Zl such that
k(Z) , for z < Zl. To prove this, note that as z -oo, k(z) approaches Cl tangent
to the linear space spanned by the eigenvectors corresponding to the positive eigen-
values of the linearized equations at a l. These linearized equations are the following:

OoPl O’ 2eO.T’= q, q’ Ooq, Y Pl P

The positive eigenvalues are 0o, 0o, and 2e, with eigenvectors (1, 0o,0,0,0),
(0, 0, 1, 0o, 0), and (0, 0, 0, 0, 1), respectively. The linear subspace spanned by these
eigenvectors lies in as long as 0 > 0o-1. This proves that there exists zl such that
(k(z) e .. for Z < Zl.

We now show that k(z) eY, for zl<--z<--Zo. If this is not true, let z2
inf {z: k(z) ;}. Then cI’k(z) must be leaving ; at z2. We prove that this is impossible
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by showing that if 0 > 0o- 1 and T < T, then on 0E the vector field defined by (4B.2)
points into E. We consider each side of 0E separately.

If T(z2) =0 and q(z2)> 0, then T’(z2)=q(z2)>O. If T(z2) 0 and q(z2)<0, then
T’(2’2)--q(z2) < 0. In both cases, the vector field points into E.

Suppose that T(z2)=q(z2)>O. Let n=(1,-1) be a vector outwardly normal to
{(T, q): 0 T<- q} at (T(zz),q(z2)). Then n.(T’,q’)=(1,-1).(q, Oq)=q-Oq<O
because 0 > 0o- > 1. A similar analysis holds if T(z2) q(Zo) < 0. In both cases, the
vector field points into E. This completes the proof of the lemma.

The proof that lim (z)= 72 is much easier because 72 is an isolated rest point.
In fact, it is the only bounded solution in N2 fq {0 =-0}.

4H. The limit e 0. For e > 0 let (z) (T, q, Y, Ply, Y2, Pze, Oe)(z) be the
solution of (2.1), (2.3) with do=d=d2 which satisfies (2.4). We assume that
01 -0o. We wish to let e 0 and prove that if 01 < 012, then (z) converges, somehow,
to the desired connecting orbit.

Choose the translation so that T(0)=1/2(QI+2Q2+ T2). By compactness, there
exists a subsequence {ek} such that ek-->0 as k-+oo, and .k(0) converges to, say,

* (T*, q*, Y*, p*, Y2*, P2*, 0"). Let (z)= (T, q, Y1, Pl, Y2, P2, O)(z) be the solu-
tion of (2.1), (2.3) with e =0 such that (0)=*. Of course, O(z)= 0* for each z.

LEMMA 4H.1. 0* > 0.

Proof Lemma 3.5 and the remark following it imply that there exist rest points
K1 and K2 of (2.1) such that limz__oo (z) (K1, 0") and limz_.+oo (z) (K2, 0"). In
particular, there exists rl, 7"2 such that lim T(z)=rl and limz_.+oo T(z)= r2.
Because T(0) 1/2(Q1 + 2Q2 + T2), we conclude that

r, <(Q +2Q2+ T2)< r2.

There are no rest points of (2.1) with T2< T< Q1 +2Q2 or T> Q1 q-2Q2. This implies
that r <= T2 and r2 Q1 + 2Q2. Now T(z) satisfies the following equations:

(a) T"- 0* T’= -Q1Ylfl(T) 02 Y2f2(T);
(4H.1)

(b) T(-oo) rl < T1, and T(oo)= Q1 +2Q2.

If Y*> 0, then Yl(z)> 0 for all z. In this case we integrate (4H.1)(a) for -oo<z<oo
to obtain

> 01[ 014- 202-- r]- f Ylf(T) dz > O.0*

If Y* =0, then Yl(z) =0 for all z. We again integrate (4H.1)(a) for -oo<z <oo,
and use (4A.1), to obtain

o*=o2[Ol+202-%]-lfoo Y2fz(T) dz

Q1 + 2Q2- rl] -1 I Q1 + 2Q2- T]f2(T) dz

Choose z so that T(z)= T1. By Lemma 3.5, z < 0 for all e > 0.
LEMMA 4H.2. There exists 6 such that if e <6 and z <z, then q(z)>1/20*T(z),

Ipl(Z)l>1/2o*lY,(z)- ll, and Ip(z)l>1/2o*lrz- ll.
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Proof Choose 6 so that if e <6, then [0(0)-0"[<1/20". It then follows that
O(z) > 1/20" for z < z. If z < z, then T(z) < T1. Hence, if z < z, then T’ q and
q’ Oq > 1/20" q. This implies that (1/20" T q)’ < 0. If we integrate this equation from
-o to z we find that q(z)>1/20*T(z). The proofs of the other two inequalities are
similar.

By compactness, there exists a subsequence {e} such that e-0 as jc
and (z) converges to, say, F=(T,q,Y,p,Y,p,O). Let F(z)=
(T, q, Y,Pl, Y2,P2, O)(z) now be the solution of (2.1), (2.3) with e=0 which satisfies
F(0)=F. Clearly, 0(z)= 0 for all z. Because 0’(z)<0 for each e >0 and z, we
conclude that 0_-> 0". From Lemma 4H.2 we conclude the following lemma.

IO:T(z), IPl ----- IYl(z)-ll, and Ip2(z)l->LZMMA 4H.3. If z<O, then q(z)>=- (z)l>10*
o*l r2(z) ll.

Corollary 4H.4 follows immediately.
COROLLARY 4H.4. lim__ T, q, Y1, Pl, Y2, P2)(z) (0, 0, 1, 0, 1, 0).
From Lemmas 3.4 and 3.5 we have that Y(z)<-0 for all z and T’(z)_->0 as long

as z < Q1 + 2Q2. It follows that there must be a rest point (T+, q+, Y-, p, Y-, p-)
such that

lim T, q, Y, p, Yz, p)(z) T+ q+, r-, p-, Y-, p-

Moreover, T+> T. This last statement implies that q+= Y-= p-=p-=0.
LEMMA 4H.5. Either T+, Y-) Q 2) or T+, Y-) Q, + 2Q2, 0).
Proof Suppose that T(z)< Tz for all z. Then (T, Y) satisfies the equations

(4H.2) T"- OT’+ Q Yfl(T) O, Y OY’ Yfl(T) O,

lim (T, Y)(z)=(0, 1) and lim (T, Y)(z)=(T+, 0).
-k-

If we integrate the first equation in (4H.2) we find that

(4H.3) T+O=Q, f Ylf,(T) dz.

If we integrate the second equation in (4H.2) we find that

(4H.4) 0=I Yf( T) dz.

It follows from (4H.3) and (4H.4) that T+= Q1.
Note that Y- OY’2 + Ylfl(T)= 0. If we integrate this equation for

use (4H.4), and the fact that Yz(-)= 1, we find that Y2(c)= 2.
Now suppose that T(z)> T2 for some z. Then (T, Y1, Y) satisfy the equations

T"- OT’+ Q, Ylfl(T) + Q2 Y2f2( T) O,

(4H.5)
Y’-OY’, Ylf(T) 0,

Y 0 Y+ Y,f(T) Y2f2(T) 0,

lira (T, Y, Y2)= (0, 1, 1), lim (T, Y, Y2)= (r+, 0, 0).
q-

Integrate the second equation in (4H.5) for -< z <o to find that (4H.4) holds.
Integrate the third equation in (4H.5) for -c < z < to obtain

f_Y2f2(T) dz=20.
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Finally, if we integrate the first equation in (4H.5) for -oo<z<oo we find that
T+= Ql+2Q2.

Note that if T+ Q1 + 2Q2, then the proof of Theorem is complete for the case
do=d1 d2 1. That is, (T, Y1, Y)(z) is a solution of (1.8) which satisfies (1.15).
Therefore, we assume that T+= Q1. We shall show that this implies that 01 > 012, thus
completing the proof of Theorem 1.

Let {e} and {z} be as before. That is, j(zj) converges to F as j oo. For each
j, reparametrize the trajectories .j(z) so that instead of -oo< z < oo we have 0< s < 1.
Call the new curves A(s). As j-oo, the curves A(s) will converge to a curve which
we denote by

A(s) T(s), q(s), Yl(s), pl(s), Y(s), p2(s), O(s)) y(s), O(s)).

PROPOSITION 4H.6. Suppose that T+ Q1. Then there exists 0 < sl < sz < s ( S4 < 1
such that we have the following:

(a) y(s)=a for O<s<=sl;
(b) O(s) 0 for sl <- s <= s2;

(c) y(s)=Bfor sa<-s<-s3;
(d) O(s) O* for s3 <= s <= s4;

(e) y(s)= Cfor Sa-<s<l.
Proof We have already shown that there exists 0<sl <s such that y(s)= A for

0<s_-<Sl, O(s)=O for s<=s<=s2 and T(s2)-B. To determine the behavior of A(s)
for s > s we must first study the local behavior of the flow (2.1), (2.3) near the points
(B, 0) for 0*-< 0=< 0o.

First assume that e 0 and 0->_ 0". Then the linearized equation at (B, 0) has two
positive eigenvalues, two negative eigenvalues, and a triple zero eigenvalue. The triple
zero eigenvalue is because near (B, 0) there is a three-dimensional subset of rest points.
This subset of rest points is of the form

{(T, q, YI, P,, Y2, P2, 0): Yl q, pl p2= O}.

Through (B, 0) there is a two-dimensional stable and a two-dimensional unstable
manifold. We show that for j large, A(s) approaches close to (B, 0) near the stable
manifold at (B, 0) and leaves a small neighborhood of B close to the unstable manifold
at (B, 0").

Choose new coordinates so that in the new coordinates, (2.1), (2.3) with e =0
become near (B, 0),

Xl--- --lXl - gl(aT), X= -A2xz + g(7),

(4H.6)
Yl g3(9), Y g4(7),

Z A3Z + g3(97), Z-- h4Z2 + g6(97),

Here, rl=(Xl,xz, yl,y2, zl,z2, O) and g,(r/)=O]]Tl] for each i. Moreover, h,>O for
each i, and if r/[[ is sufficiently small and 0"=< 0 < 0o, then

gl(Xl, X2, 0, 0, 0, 0, 0) g2(x1, X2, 0, 0, 0, 0, 0) --0,

(4H.7) g3(O, O, Yl, Y2, O, O, O)= g4(O, O, Yl, Y2, O, O, O)=0,

gs(0, 0, 0, 0, Zl, Z2, 0) g6(0, 0, 0, 0, Z1, Z2, 0) 0.
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In the new coordinates (B, 0) (0, 0, 0, 0, 0, 0, 0). Choose 60> 0 so that (4H.6), (4H.7)
hold for /[[ <- 6o. For 6 < 80, let

N {7" [Xll<=8,[x21<=8,lZl[<-80,[z21<-80, YII2<= 8(11z112+ 1), 0"_<- 00}.

Here, YII2= Y+Y and Z1 -- Z2.
We show that if 8o is suffciently small, then for each 8 < 8o, trajectories can only

leave Na through the sides Iz, I- o or Izl o. To prov this we show that on the other
sides of Na the vector field given by (4H.6) points into N.

If Xl= 8, then x’- -Alx14-g(/) <0 for 8o sufficiently small. If xl -8, then
x-- --AlXl 4- g(/) > 0 for 8o suffciently small. A similar analysis shows that if
then the vector field given by (4H.6) points into N.

Now supppose that YII- (llzll + ). Let

n (0, O, 2y, 2y2, -282zl, -282z2, O)

be a vector outwardly normal to Na at /. If x is the vector field given by the right side
of (4H.6), then

n .x 2ylg3(*/) 4- 2y294(*/) 282A3z 282A4z22- 282zlgS(/) 282z296(l) < 0

if 6o is suciently small. This is what we wished to prove.
For < o, t E " I,1 o or Izl o N.W have shown that any solution

of (2.1), (2.3) with e 0 can only leave N through Ea. By continuity of the solutions
of an ordinary differential equation with respect to a parameter we conclude that for
each 6 ( 6o there exists e such that if 0( e ( ea and (z) is a solution of (2.1), (2.3)
which lies in N for some z, then (z) can only leave N through Ea.

We have shown that lim F(z) (B, 0). Hence, for each 6, F(z) N for z
suciently large. Another way to say this is that for each 6, A(s) Na for s suciently
close to s2. This implies that given 6, there exists Ka such that if ) K, then A(s) Na
for some s. Now (z) C2 as z for each e ) 0. Therefore, if ) K, then A(s)
must leave Na. Choosing Ka larger, if necessary, we conclude that if k)Ka, then
A(s) leaves Na through Ea. Let 6 1/6o. For ) Ka, choose s so that A(s) Ea.
Then {A(s)} will converge to a point Ao Ea. Howewr, E6 lies in W(,o, the
unstable manifold of (2.1), (2.3) with e=0 at the point (B, 0) for some 0 (0", 0o).
Let s3 sup {s ) s2: A(s) (B, 0) for some 0}, and choose o) s3 so that A(o) Ao.
Note that o lim s. Let 0. 0(s3). We have now shown that (s) B for s2 s s3
and A(s) W(,a. for s (s3, o).

We must now analyze what happens for s ) o. Let F(z) be the solution of (2.1),
(2.3) with e 0 such that (0)Ao. From Lemma 3.5 and the remark following it,
there exists a critical point Ko of (2.1), (2.3) with e=0 and 00. such that
lim (z)= Ko. We shall prove that Ko (C, .). This will complete the proof of
Proposition 4H.6. From the definitions it is clear that . *.

We assume that (z) (T, q, Y, p, Y2, P2, O)(z). Because the Y component of
B is zero, and Y(z) is nonincreasing (Lemma 3.4), it follows that Y(z)0 for all z.
Hence, (T(z), Y2(z)) satisfies the equations

(4H.8) T"- a, T’ + YA( T) O, Y a, Y- Yf( T) O,

lim+ (T(z), Y2(z))=(Q,2), and lim (T(z), Y2(z))(r, r2) for some r, r2. Of
course, we wish to prove that (r, r2) (Q 2Q2, 0).

For Q T ( T2,f2( T) O. Hence, while Q T(z) T2, T(z) satisfies T"- O. T’
0. Integrate this equation from - to z to find that T’ O.(T-Q) O. Hence, T(z)
is strictly increasing while Q T(z) T2. This implies that r T2. This, however,
implies that r2 0.
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Integrate the second equation in (4H.8) for -< z < c to obtain

O, - Y2f2( T) dz.

Integrate the first equation in (4H.8) for -c< z < to obtain

-O.(r Q) -Q2 f Y2f2(T) dz -20. Q2,

or r --Q1 + 2Q. The proof of Proposition 4H.6 is now complete.
We are now ready to complete the proof of Theorem 1. From Lemma 4H.5, either

T/, Y-) (Q1,2) or T/, Y-) (Q1 + 2Q2, 0). We have already seen that if T/, Y-)
(QI+ 2Q, 0), then the proof of Theorem 1 is complete. So assume that (T/, Y-)=
(Q1,2), and consider Proposition 4H.6. Note that y(s) for s <-s=< s2 corresponds to
a solution of (1.11), (1.12) with 0 0. From the definition of 01, we conclude that
01> 0. On the other hand, y(s) for S3SS4 corresponds to a solution of (1.13),
(1.14) with speed 0". From the definition of 0 we conclude that 0"> 012. Because
0> 0* we have that 0> 012, and the proof of Theorem 1 is complete.

5. Distinct diffusion constants. We briefly describe how to prove Theorem 1 for
the case of distinct diffusion constants. The major difference in the proof is the derivation
of the a priori bounds. For the case of equal diffusion constants we constructed an
isolating neighborhood N. This gave us the desired bounds because the solution had
to lie in N. In [11] we derive the a priori bounds for the case of distinct diffusion
constants.

Once we have the a priori bounds, the basic outline of the proof of Theorem 1 is
the same. The key idea is the geometric construction described in 2. Proposition 2.1
is proved by defining a homotopy between the equations with equal diffusion constants
and those with distinct diffusion constants. There is some difficulty here because for
the case of equal diffusion constants, we assume that 01 -0o in (2.3), whilethe a priori
bounds for distinct diffusion constants only hold for 0>0. For this reason, the
homotopy is carried out in two steps. First we assume that the diffusion constants are
equal, and continue the solution of (2.1), (2.3), (2.4) with 0 <0 to a solution with
01 > 0. We then fix 01 and then homotopy the diffusion constants. These continuations
are quite technical, and are carried out in [11, 51 and 6].

Acknowledgment. I thank R. Gardner for carefully reading the original manuscript
of this paper. His many suggestions greatly helped to simplify and clarify the proofs.
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SOME EXPLICIT FORMULAE FOR THE SINGULAR VALUES
OF CERTAIN HANKEL OPERATORS WITH FACTORIZABLE SYMBOL*

CIPRIAN FOIAS, ALLEN TANNENBAUMt, AND GEORGE ZAMES

Abstract. In this paper a determinantal formula is written that allows one to compute the singular
values of Hankel operators, the L-symbols of which are of the form nw for w H rational and m H
inner. (All of the Hardy spaces are defined on the unit circle in the usual way.) This is related, moreover,
to some problems from control and systems theory.

Key words. Hankel operator, compressed shift, discrete spectrum, singular values, H-optimization

AMS(MOS) subject classifications. 47A20, 93B35

1. Introduction. In the past few years there has been a substantial literature devoted
to the computation of the norm and, more generally, singular values of Hankel
operators, the L-symbol of which is of the form rw for w H rational and tn H
inner. (All of our Hardy spaces will be defined on the open unit disc D following the
standard conventions of [9].) A partial reference list of this work can be found in the
monograph [5].

A strong motivation for studying this problem comes from control engineering,
e.g., from H-optimal sensitivity theory, and from Hankel norm approximation prob-
lems in system design. (Once again we refer the interested reader to [5] for the relevant
physical background.)

This paper is based on the authors’ previous work [2]-[4] and [10]. We put these
ideas together here, and write an elementary procedure for the computation of the
singular values of the above operators based on a determinantal formula, which we
derive in 3 (see (3.8)).

More precisely, let us take our point of view from [8] and [9]. Given rn H
inner and nonconstant let H2mH2 denote the orthogonal complement of-mH2 in
H2, and let P: H HZt) mH2"-: H denote the orthogonal projection. Given w H,
Mw: H2 H2 denotes the operator induced by multiplication by w. We now set
w(T) := PMw H. In particular, T := PSIH for $ H2 - H2, the unilateral right shift. T
is called the compressed shift.) Then it is completely standard to show [7] that in order
to solve the aforementioned Hankel singular value problem, we can equivalently find
the singular values of w(T).

In point of fact, the more general problem we solve in this paper is the rather
explicit computation of the discrete spectrum of operators of the form w(T)w(T)*,
where T Co(l) and w H is rational. Recall from [9] that a contraction T on a
Hilbert space H is of class Co(l) if T" 0 and T*" 0 strongly, and the operators
(the squares ofthe "defect" operators) I- TT* and I- T* T have rank 1. Such operators
appear in great abundance in mathematics and in a number of physical problems. See
the recent treatise [6].
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Although the methods we employ in this note are basically operator theoretic,
there is an important algebraic constituent as well, which allows us via a determinantal
formula (see (3.8) below) to explicitly determine certain invertible elements of the
noncommutative ring of operators C[ T, T*]. We believe this is the main mathematical
contribution of this paper.

Hopefully, some other uses will be found for our methods, both from the theoretical
and applied points of view. In particular, we believe it would be very interesting to
digitally implement some of the formulae given in 3.

2. Problem statement and preliminary results. As we noted in the Introduction,
we are interested in determining the discrete spectrum of w(T)w(T)* for we H
rational, and T the compressed shift associated to the nonconstant inner function
tn H. Recall that the discrete spectrum of a bounded self-adjoint operator B, denoted
by rd(B), consists of the isolated points of the spectrum tr(B), which are eigenvalues
of finite multiplicity. For such an operator B, the essential spectrum (denoted by ire (B))
is the complement of O’d(B in the spectrum tr(B). (See, e.g., [6] for a more detailed
discussion.) We should also mention that for the compressed shift T, we have that
trd (T) tr(T) (3 D (the eigenvalues of finite multiplicity), while for the essential spec-
trum we have re(T)= r(T)OD, where D denotes the open unit disc and 0D the
unit circle (see [6], [9]).

Now in order to avoid some (minor) technical difficulties we will assume
throughout this paper that w is not a constant multiple of a Blaschke product. Indeed,
in the event w is a constant times a (finite) Blaschke product, all of the "s-numbers"
of the Hankel associated to rhw will be equal to IIwll when deg m> deg w (see [1],
[6]). Thus the interesting case of irrational tn is easily solved. Moreover, the case of
deg m _-< deg w can be handled using classical Nevanlinna-Pick interpolation theory.

We now express w p/q as a ratio of relatively prime polynomials, and we set
n := max {deg p, deg q}. For p R, let

eo := q(7") I--5 w(r)w(r)* q(7")* q(r)q(r)* ---p(r)p(7")*.

We can clearly write

Po C,sTkT*s

k,j--O

for some constants Cs with the property

(1) Cs C;k.

For z C, define

(2) Ckp(Z, ) := CzkU
k,j =0

and note that

Next p2 tr(w(T)w(T)*)
4 T, T*) Pp.

if and only if Oo(4,,(T,T*)). Further
Crd(W(T)w(T)*) if and only if 0 rd (4)p(T, T*)), and similarly for ire.

We now will prove some preliminary lemmas that we will need in order to make
some reductions in our computation of trd(W( T)w(T)*). Our first result is Lemma 2.1.
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LEMMA 2.1. T V+ F where V is unitary, and the rank of F is finite. Moreover
O-e( V) re( T) o-( T) OD.

Proof. Set

V:= T(I-
where

(a(R)b)c:=(c,b)a

for a, b, c 6 H := H2@mH2,/x(sr) := if(re(st) m(0)), and/x,(’) := 1 m()m(O). Then
it is easy to check that V is unitary, rank F _-< 2, and ere (V) re (T) r(T) f’l 0D (since
V and T differ by a finite rank perturbation). M

Since we have assumed that w is not a constant times a Blaschke product, we
see that

(3) ch lOD O.

Set 4oo(sr):= &o(sr, sr) for sr cOD (the unit circle). Then we have Corollary 2.2.
COROLLARY 2.2. Oeo’e(Po) if and only if {eOD" 4o() =0In (T) e .
Proof From (2.1) we get that Po 4’0 T, r*) oo(V) + Q, where Q is a finite

rank operator. Thus from the fact that V is unitary and our above discussion, we see

’e(Pp) ’e(Cop( V)) Op(’e( V)) {)Op(")" " cr( T) f’l OD},
which immediately implies our result. [3

Remark 2.3. (i) Corollary 2.2 implies that in order to determine if p2
rd(W(T)w(T)*) we can always assume that

(4) {sr OD" 4)o0(sr) 0} CI r(T) .
(ii) Let Pess := Pess(w(T)) denote the essential norm of w(T) (i.e., the distance of

w(T) to the space of compact operators on H). Then we can show that [6], [9]

Pess sup {I w(h )l 2" A O" (T)}

sup {[w(A)[2: A is a singular point of m on OD}.
Notice that if p > Pess, then automatically the assumption (4) given in (i) is satisfied.
Moreover, the points in the set o(w(T)w(T)*)(3 (Pss, ce) are precisely squares of the
singular values of the operator w(T). These points are part of the discrete spectrum
of w( T)w( T)*.

In summary, we have shown in this section that the computation of the discrete
spectrum of w(T)w(T)* amounts to determining whether zero is an eigenvalue of
finite multiplicity of the operator 40 T, T*) C[ T, T*] for given p R, where bo enjoys
the properties (1)-(4). This is precisely the problem that we solve in the next section.

3. Main results. In this section we will formulate and prove our theorem on the
computation of the discrete spectrum of operators of the form w(T)w(T)*. From our
discussion in 2 we are reduced to the following kind of operator theoretic-problem.

Let

4, (z, ) Cz (z C)
k,j=O

be a polynomial with the following properties"
(i) 4(z, if)= &(z, ), i.e., Ckj Ck (O<----j, k <- n).
(ii) & IOD 0. Set 4o(sr) := &(sr, ), sr e OD.
(iii) {sr OD" 4o(’) 0} fl o-(T) .
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Now set

A := 4 T, T*) CkjTkT*j.
k,j =0

From our arguments in 2, we need to find a computable procedure for determining
whether 0 crd(A). This will be done via a determinantal formula given in (3.6) and
(3.8). For convenience, we now state the following reformulation of (2.2).

LEMMA 3.1. 0 : tre (A). Equivalently 0 trd (A) if and only if 0 tr(A).
Proof. This follows immediately from (2.2) and property (iii) above. [q

Now in order to give our determinantal formula we will first have to compute the
action of A on an element g H := H2mH. Accordingly, let

g=go+gl+" (OD),

rg g_lff+ g_2-+
Then

Tg P(2g) g m(srJ-lg_, +... +
T*Jg ffJg -(go/"" / (gj-1)

for j-> 1, and where P" L- H denotes orthogonal projection.
Consequently,

Ag= CkjP(kT*Jg)
k,j=O

j-1

CkjP(k-jg) E Ckj E glPk-j+’

k,j =0 j>O /=0

k-j

o()g- Y. Cjm , g_,k-)-!
k>j l=

j-k-1., Ckj E gl{--k-l- E
k<j 1=0 j>O

k-j+l>O
j>l

Ckjglpk-j+

(5)

(6)

(7)

Set

o({)g- i g_tm Ckj{k-j-l
l= k-j>--!

n--1 n--1

gl Ckj-V-k-1 E g
I=O j-k>l I=0

E
k+l>--j>

k+ l-j.

;() := E c--’
k-j>_l

(l<_-l<_-n),

) - :-- E Ckj"-k-

j-k>l
(0-< I-< n- 1),

,,() := E CP
k+lj>

(0=<l=<n-1)

E Ckj(P(+’-JP1))()
k+ l>--j>

E
k+lj>

Ckj[k+’-JtI,({) m(k+l-J-’tZ,,-, +’’" + ,,-(k+/)+j)]
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where

(8) /x,._j := rhj forj->_ 1.

(We are setting m(’)= Y--o m".)
We can now summarize our above computation by Lemma 3.2.
LEMMA 3.2. We have for g H that

n--1 n--1

(9) Ag qbog g_lm g, gl,
I=1 /=0 /=0

where o, , +
l, and 1 are explicitly given from (ii), (5), (6), (7), respectively, above.

Remark 3.3. Notice from (3.1) that 0 (A) if and only if there exists g H, g 0
such that Ag =0. From (3.2) we can compute the action of A on g. We assume from
now on that Ag =0. Then by (3.2) (for Ag 0), we have that

(10) og g_lm+ gl(+l).
/=1 /=0

Now define

(11) (z):= CkZ"+k-j (z C).
k,j =0

Then multiplying (10) by srn, we can easily deduce that

(12)
n-1

q(z)g(z) g_lm(z)ch[(z)z" + Y’, gl(d/-(z)+ z"4)l(Z))
/=1 /=0

for z r e OD, where

(13) -(z):: 2 Ckz"+t+k-j
j-k>!

for zC.
We now make a technical assumption in order to simplify our exposition. This

assumption of genericity will be removed when we state our final result in (3.8).
Assumption 3.4. All the zeros of ff are distinct and different from zero.
We now come to the following result.
LEMMA 3.5. Under assumption (3.4), there exist zl, Z2, "’’, 2pD, , 2,.., qeOD\tr(T), 2p+q=Zn, such that q(z)=a(Z-Zl) (Z-Zp)(Z-1/)

..(z-1/p)(Z-l)’..(Z-q) for some 0.
Proof From properties (i) and (ii) at the beginning of this section we have that

zZnq(1/) z2. Ck(1/)"+k-
k,j =0

--kjZn-k+j

k,j =0

k,j=O

From (ii), q 0. Denote by st1, ’2,"" ", Srq the zeros of q on OD. From our above
computation it follows that if q(Zo) =0 for zoeD with ZOO0, then q(1/o) =0 also.
This yields the representation of 0. Finally tr(T) by (iii) for j 1, , q. [3
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We are almost done! Indeed all the functions in (12) are analytic in a neighborhood
of D except o(T)f"lOD. This allows us to set Z=Zl, z2,’’’, Zp, l,’’’, q in (12)
obtaining

n--1

(14) g_lm(Zr)+(Zr)Zr ’’[- gl(-[(Zr)+Zrd/)l(Zr))=O forl_--<r=<p,
/=1 /=0

(15) g_rn(s)(s)+ E gl(q-[(s)+ ’S’dl(s)) =0 forl--<--s--<--q
1---1 /=0

Now multiplying (10) by ’"m(’), we see

(16)
n--1

["o](Z)(nqg)(z)= g-l["47](z)+ E
/=1 /=0

where z " OD and all the functions are analytic in $. Note that even though this
equation has been derived on OD, it is valid on the complement of D if we replace
by 1/z for [z[> 1.

Now set

(17) q-(z):=("4)(z)= E Ckj’+j-k+l (l=</=<n)
k-j

and

4,,(z):=U’(rh4),)(z) (0-</=< n-l)

(18) Y’,
k+l>--j>

Ckjn+j-k-l[( m(z) m(O)) (n-k-l+J+ll.t,.,_l

+" + 5"X,,_(+)+)]

for z sr e OD. Once again 4,[(z), q,l(z) admit analytic extensions to the complement
of D if we replace ff by 1/z for ]z[ > 1.

Moreover for 1 <- r_-<

(19) oZ Z l O.

(Notice we are setting 4o(Z):= oh(z, 1/z) for zC.) Then from (16) we see that for
l <-_ r<=p,

(20) -1" g z ( "[-" l[l =0.
/=1 /=0

(We are setting nq(z) := m(1/ff) for [z[> 1.)
Finally we note that if g_, g,-1 0, then from (3.2) we have that 4og 0

(note we have taken g such that Ag 0), which by property (ii) above implies t-hat g 0.
We now come to the final point in our computations. Namely the above argument

shows that 0e r(A) if and only if the characteristic determinant of the 2n equations
in the 2n "unknowns" g_,,..., g.-1 is zero. We can write this determinant quite
explicitly. Indeed in order to do this, let us introduce the notation

01(1) OR (1)
(21) M(OI," ", OR

01(N OR(N
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for functions 01,
distinct for 1,

(22)

"’’, OR well defined in a neighborhood of :,..., N with the
N

Using this notation, our preceding arguments prove the following theorem
THEOREM 36 Under Assumption 34, 0 6 tr(A) if and only if

M-I M+ 1det N- N+ 0

h// _M/,

where

(23) M-:= M(znmck+ z +
,,’’’, mbl;Z,’",Zp),

(24) m+ := M(q+ z"cko, ", q--i + z"ck,_ z,, ., Zp),

(25) M.:=M(q+ q-’l/el,... 1/ep)

(26) M+ := M(qo+ z- mbo, q_, + z-rhbn_,; 1/,,

N- and N+ are defined as in (23) and (24) by replacing Zl, Zp with 1, q.
Proof Write the characteristic determinant of the system of equations in (14),

(15), (20)! [-]

Remark 3.7. We will now eliminate Assumption 3.4 in Theorem 3.6. Note that if
the roots of q are not distinct perturbing q by e, e a suitable sufficiently small number,
will assure that the corresponding does have distinct roots different from zero.

Before stating our result, we will need to extend the definition of M in (21) to
the case where the have multiplicities. Indeed, we set

(27)

01(1) 02(71) 0R(I
0’l(l) 0(,) 0(,)

0-() 0-’()
where i has multiplicity Ni for i= 1,..., S in M, and the functions 0,. ., 0R are
analytic in a neighborhood of ,. ., s. (For 0 analytic, 0N) denotes the derivative
of order N.)

Then taking e- 0 in our above argument, we easily get the following corollary.
COROLLARY 3.8. In complete generality (i.e., without Assumption 3.4), we have that

O r(A) if and only if the determinant (22) is zero where we use the definition (27) of
M in (23)-(26) above, and each root of q(z) is counted according to its multiplicity.

Remark 3.9. (i) The determinantal formula (22) gives us an explicit expression
for determining the invertibility of the operator A C[ T, T*]. Moreover from our
discussion in 2, we can now also find ra(w(T)w(T)*). We will apply this to an

example in 4.
(ii) We should also note that the multiplicity of zero as a root of det M (in (22))

is its multiplicity as an eigenvalue of A. Moreover, from (10) we have a formula for
the corresponding eigenvectors. Hence we have a general procedure for computing the
multiplicity of the singular values of w(T) and for the corresponding Schmidt vectors.
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4. Example. In this section we illustrate via an example some ofthe computational
issues involved in the determinantal scheme for computing the singular values of the
operators w(T) that we have discussed above. We are convinced that it will be possible
in the near future to implement on a computer the formulae discussed in 3, so that
hopefully these ideas can become of practical use for some applied problems.

Let w(z)= z2t- 1, and let m H be a nonconstant inner function. We want to
study the singular values of the corresponding operator w(T). First note that w I1 2,
and w attains its maximum at + 1. If + 1 e ere(T) (i.e., if m is singular at + 1), then all
of the s-numbers of w(T) will be equal to two. Consequently, we will assume for now
on that +1 ere(T), and Pess:’-Pess(w(T)) <2. We will study the invertibility of Po
(notation as 2) for p contained in the interval (Pess, 2).

The computation of the determinantal formula for the singular values of w(T) in
(Pess, 2) is now quite elementary following the arguments of 3. Indeed using the
notation of 2 (see (11)), we have that

We can calculate that in the interval of interest all of the roots of Oo(z) lie on OD and
are distinct. The exact formulae for these roots are 1 eiO/2 2 -ei/2, ’3 e-i/2
4 -e-i where

px/1 p:z/4
0 := arc tan

(1_p2/2) (0< 0 < r/2).

(Notice that 3 ’1, ’4-- 2")
If we now follow the recipe of 3, we see (the computations actually were quite

easy!) that the singular values of w(T) in the interval (Pess, 2) may be derived from
the determinant of the following 4 4 matrix:

(28) M=[N- N+]

where

-(1/p2)m(,) -(1/p2)3m() 1N-:=
--( 1 / p2) ff42m (if4) --( 1/p2) r43m (if4)

-(1/p2)(1 + ff,(ff)) -(1/pe)(ff + ff(ff,(ff)- m(ffl)N,))--(1/P)(1+ ,(4)) --(1/p2)(4+ ff(ff4,(4)-- m(ff4)))

(Recall that .(ff)= 1- m()m(O), and m := dm/dlc=o.)
Notice that in this formula m appears as a "parameter," and that, in general, the

size and complexity of the matrix given in (22) above only depends on the "weighting"
function w. We checked (28) for the trivial case of m(z)=z, and got (of course) the
obvious answer that the unique root of det M in (0, 2) is 1.

In conclusion, the determinantal formula (22) offers a very general theoretical
procedure for the computation of the discrete spectrum of operators of the form
w(T)w(T)* for both rational and irrational inner functions m H. The writing of
appropriate software for actually carrying this out should make a very interesting
project.
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A FUNDAMENTAL INTEGRAL RELATION OF
SCATrERING THEORY*

MARGARET CHENEY’, JAMES H. ROSE, AND BRIAN DEFACIO

Abstract. This paper concerns three-dimensional scattering and inverse scattering for a variety of
time-reduced wave equations. The main result is an integral relation that relates the wavefield to the scattering
data. A rigorous derivation of this integral relation is given for a specific class of linear, scalar wave equations.
Three specific examples of wave equations to which these results apply are then considered: the Schr6dinger
equation with complex potential, the wave equation with variable speed, and the acoustic equation with
variable density and speed. Finally, three consequences of the integral relation are considered. First, this
equation is used to derive a generalized optical theorem for the above-mentioned class of wave equations.
Second, the relation’s implications for long wavelength scattering are discussed. Third, this equation is
shown to lie at the heart of certain inverse scattering methods.

Key words, scattering theory, inverse problems, optical theorem, Marchenko equation

AMS(MOS) subject classification. 35P25

1. Introduction. In 1980, R. G. Newton published two exact three-dimensional
inverse scattering methods for Schr6dinger’s equation [1]. Recently [2], one of these
methods has been generalized to apply to scattering from an inhomogeneous medium.
This may be an important step towards solving the multidimensional inverse problem
for acoustic, elastic, and electromagnetic scattering.

The method mentioned above proceeds in two steps. First a linear integral equation
is used to compute the wavefield everywhere from the scattering data. Then the
properties of the scatterer are inferred from the reconstructed wavefield. The frequency
domain version of the integral equation just mentioned is the subject of this paper.

These frequency domain integral relations relating the wavefield to the scattering
data have been developed in a number of contexts. For obstacle scattering, such a
relation was found by Lax and Phillips [3]. For quantum scattering, a similar relation
appears in Schmidt [4] and in Newton [5]. A very similar integral relation was found
by the authors [6] for scattering governed by a hyperbolic equation closely related to
the Schr6dinger equation. The authors found [2] that essentially the same integral
relation holds for scattering of waves in inhomogeneous media.

The fact that all these integral relations are identical is rather surprising. It suggests
that they reflect something common to scattering problems. Indeed, in a recent letter
[7], the authors have derived this integral relation on physical grounds for a wide class
of scattering experiments. Scattering experiments in this class were assumed to be
governed by a variety of linear hyperbolic wave equations, but exact conditions on
the equations were not stated.

In this paper, we give a careful mathematical derivation of the integral relation
for a specific class of three-dimensional scattering experiments. This derivation has a
number of advantages over the derivations of [4], [5], and [6]. First, the proofs of [4]
and [5] are worked out only for the Schr6dinger equation, whereas our proof holds
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for a wide class of wave equations. It is especially hard to see how to generalize the
argument of [5] to other equations because that argument depends heavily on the use
of spectral theory. Many interesting equations cannot be considered as eigenvalue
equations in a natural way. The earlier work of the authors [2] is applicable to a fairly
wide class of equations, but the proof in [2] required smoothness assumptions on the
scatterer. This is quite a drawback, because many of the applications of inverse
scattering deal with imaging discontinuities (e.g., an object imbedded in a solid). The
proof in this paper is valid for discontinuous scatterers.

The various proofs in this paper are carried out in the frequency domain. The
Fourier transform of the integral relation to obtain a time-domain equation will be
only briefly mentioned. Our use of the frequency domain underlines a continuing
tension in the development of inverse scattering theory. The theory is most transparent
in the time domain where causality appears naturally. However, the mathematical
development is simpler in the frequency domain where considerably more is known.

The structure of this paper is as follows. In 2, the problem is discussed and the
physical picture is explained. Section 3 contains a derivation of the integral relation
mentioned above. In 4, several wave equations which arise from different classes of
physical problems are discussed as examples. In 5, the integral relation is used to
obtain various results. First we show that it leads to a straightforward proof of a
generalized optical theorem for these wave equations. Then we show that it leads to
certain results in the long wavelength scattering limit. In particular, we show that the
long wavelength phase for acoustic wave scattering satisfies certain symmetry condi-
tions. Finally, 6 contains applications of the integral relation to inverse scattering
problems.

2. Physical picture and statement of results. We assume that the scattering is
governed by the equation

(2.1) (V
Here V- is the Laplacian on R n, k is a real scalar, and V is a linear operator satisfying
certain hypotheses below.

In defining scattering solutions of (2.1), it will be useful to consider the operator
(V2+ k2). For the time being, we take its domain to be H2, the space of functions with
derivatives up to order two in L2. Although we will ultimately be interested in real
values of k, it is helpful to consider V2+ k2 also for complex k. For nonreal k, V2+ k
maps H onto L and has a bounded inverse [8]. We denote the inverse by Go
(V+ k2)-. For real k, Go is no longer bounded as a map from Le to H2. However,
V2+ k still has fundamental solutions or Green’s functions. We denote by G-(G)
the fundamental solution which in a certain sense (to be specified later) is the limit
of the kernel of Go as k approaches the real axis from the upper (lower) half-plane
[9]. Specifically for n 3 we have

(2.2) G(k, r)=-(47rr) -1 exp (+/-ikr)
where r is the length of for in R3. We will use (2.2) to obtain an integral equation
for solutions of (2.1).

We are especially interested in scattering solutions of (2.1); thus we are interested
in solutions which for large behave like plane waves exp (ik. ,) propagating in
direction g,, where is a unit vector in n. We therefore define the scattering solutions
q+/- by the integral equation

(2.3+) tp:(k, g’, 2) exp (ik.. )+ 1- G:(k, 1-)7l)(V4,+/-)(k, , fi) dfi.



1092 M. CHENEY, J. H. ROSE, AND B. DEFACIO

(The spaces in which the solutions q lie will be discussed later.) In what follows we
will also use the symbols GSV to mean the integral operator of (2.3+). Moreover, we
will assume below (and, in fact show for a certain class of V’s) that (2.3+) has a
unique solution q+. Physically, this means that the system responds in a well-defined
way to the incident plane wave.

In many cases, expanding (2.3+/-) for large ]1 shows that the interaction of the
incident plane wave with the scatterer gives rise to a spherically spreading wave. For
example, for n 3, q+ can be written asymptotically as

A(k, , ) ll -2)(2.4) p+(k, , )-exp (ik. )+ e + O([xl

Here and : denote the direction of incidence and scattering, respectively, and A
denotes the scattering amplitude. For n--3, the scattering amplitude is given by the
formula 5

(2.5) A(k, g,, g,’) --- exp (-ik.. fi)( V+)(k, .’, fi) dfi.

Sections 3 and 4 require only definition (2.5) of the scattering amplitude. Its relation
(2.4) to the physical picture is irrelevant to the mathematics in these two sections. The
goal of this paper is to prove, for n 3, the following relation between q/, q-, and A:

(2.6) 6+(k, e*, ) 6-(k, , ) +-- 2A(k, ’, )6-(k, ’,) d’,

where S denotes the unit sphere in 3. After proving (2.6), we will consider some of
the conclusions that can be drawn from this equation.

3. Proof of (2.6). In this section, we prove (2.6) for scattering governed by an
operator V which satisfies conditions (HI) and (H2) (uniqueness and decay, see below)
for n 3. Since (HI) and (H2) are rather abstract, the question then arises, for what
operators V do (HI) and (H2) hold? Theorem 3.1 gives a specific class of operators
for which (HI) and (H2) hold. As we will see in the examples, this class includes
several physically interesting wave equations.

We define the weighted L2 space on R

t2’ { u: (1 + lYl2)/2u t2}
and the weighted Sobolev space H"’, which is the space of functions with derivatives
up to order rn in L’.

THEOREM 3.1. Suppose V is given by

(3.1) V(f)= a(k,Y) 0-
=, oxf(Y)+ b(k, Y)f(Y),

where the coefficients satisfy the following conditions:
(a) For almost all , the aj and b are entire functions of k.
(b) For each complex k, there is some e > 0 such that for some a with 0 < a < 4,

is finite and

(1 + ]12)"+ b(k, )12]7 1 dy]

(1 + Il)"+lb(k, Y)I d- 0 as 1371- c.
-1<1

(This hypothesis will be satisfied if b(k, ) is locally in L2 and is o(11-"-) as Il- c.)
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(C) For each j 1, 2,..., n and each complex k, there is some fl with 0</3 < 2
such that for the above e,

sup ffl
is finite and

(This hypothesis will be satisfied if aj(k, ) is bounded and is o(1 1 as .)
(d) The operator V2- V+ k2 H L: is invertiblefor some k in the set {k: Im k > 0,

k [0, c)}.
Then for almost all real k, V satisfies the following:

(HI+)
(H2)

(uniqueness) I G- V is invertible on H2,-s for s n/2 + e/ 2.
(decay) For some e > O, V maps H’-’ into L:’ for s n/2 + el2.

A similar statement holds if Im k > 0 in (d) is replaced by Im k < 0; the conclusion (H 1 +)
is then replaced by

(H1-) I-GV is invertible on H’- for s n/2 + el2.
Remark. As we will see in the examples, it is often easy to show that hypothesis

(d) is satisfied. It does not appear to be known whether hypotheses (b) and (c) always
imply (d); there are examples of differential operators with no resolvent set (see [10])
but they are not of the form considered here.

Proof We will show that the operator GoV is compact on H2’-s for s n/2+ e/2.
This fact plus condition (a) allows us to apply the analytic Fredholm Theorem [10],
[11] to I-GoV in the upper-half k-plane. The analytic Fredholm Theorem implies
that one of two things must be true about I-Go V; either

(i) I-GoV is invertible nowhere in Im k-> 0, or
(ii) I- GoV is invertible in Im k >= 0, except possibly on a discrete set in Im k > 0

whose limit points on the real axis are of Lebesgue measure zero. Thus I-G-V is
invertible for almost all real k.

We will use hypothesis (d) to rule out alternative (i).
We will prove compactness by the following argument. First, Agmon [9] has

shown that for Im k_-> 0, Go is a bounded operator mapping L2,s into H2,-s for s > 1/2.
We need only show that V: H:’- L2,s is compact. Thus we will prove (H2) in the
process of proving (HI+).

First we consider the last term of (3.1). Condition (b) is precisely the condition
guaranteeing that the operator of multiplication by (1 +lxl2)n//Zb(k, x) is compact as
a mapping from H2 into L2 [12]. In other words, b is compact as a mapping from H2

to L:’"+. Moreover, by the following argument, b is compact from H:’ to L2’s+n+

for any s. The operator of multiplication by (1 + IX12) s/2 is bounded from H2’ to H2,r-s

and from L:’r to L2"r-s for any r. Multiplication by b can thus be considered as the
composition

H2,s H2--- L2,n+ L2,s+n+e.
/]X12)s/2 b / [x]2) -s/2

Since the composition of bounded operators and compact operators is again compact,
this shows that b is compact as a mapping from H2’ to L’S+’/. For s n/2+ e/2,
b H’-- L2" is compact.
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A very similar argument works for the other terms in (3.1). We consider instead
the composition

H, H1,s H--> L2,n+e L,+’+.
a/ox (l/lxl2Y/2 aj /lxl2)-s/2

Again condition (c) is precisely the right condition to ensure that the map a H - L2’"+

is compact 12].
We have now shown that G0V is compact on H2’-S for s n/2+ el2. Now we

must rule out alternative (i) of the analytic Fredholm Theorem. For this we use
hypothesis (d). Note that (d) is a statement about invertibility on L2, not on H2’-S.
We show now that for the k in hypothesis (d), I- GoV is invertible on H2’-. We do
this by an argument similar to that in [9]. We will use the identity

(V2 q- k2) -1 (V2 V q- k2) -1 (V2 q- k2) -’ V(V2 V q- k2) -1

which we rewrite using Go (V+ k2)- and G (V- V+ k2)- as Go G-GoVG or

(3.2) Go ( Go V) O.
This identity is valid for values of k for which both (V2+ k2) and V2- V+ k2 are
invertible as maps from H to L2. In particular, hypothesis (d) asserts that there is at
least one k for which (3.2) holds. At this k, the similar identity Go G-GVGo or

(3.3) Go G(I- VGo)

also holds. Since I- VGo maps L2 into L2 and since the range of Go is all of H2, (3.3)
shows that G maps L2 onto H2. Equation (3.2) then shows that I-GoV maps H2

onto H2. Therefore (I-GoV)H2"- must contain all of H2. However, since GoV is
compact, the range of I-GoV in H2,-s is closed. Since H2 is dense in the range of
I- GoV (in the H2’- norm), it must be true that the range of I-GoV is all of H2’-.
I-GoV is therefore invertible on H2’-S.

The condition (HI+) is useful for working with (2.3+). In particular, condition
(HI+) means that for f in H2’-s, the integral equation

h =f+ f G: Vh

has a unique solution h in H2’-. In particular, equations (2.3+) each have unique
solutions in H2’-. The scattering solutions q+/- are therefore well defined. Since q+ is
used in the definition (2.5) of the scattering amplitude A, condition (HI+) should be
satisfied whenever A is used.

We note that V is assumed to be independent of the boundary conditions of the
problem in 2; in particular it is independent of the variable

LEMMA 3.2. Suppose conditions (H 1 +) and (H2) hold for n 3. Then A defined
by (2.5) is bounded.

Proof Write the integrand of (2.5) as the product exp (-ik.. 37)(1 / 112)-/2 times
(1 / Il)S/2(vq,+)(k, ’, ) for s 3/2 + e/2 and apply the Schwarz inequality. By condi-
tion (H2), (1 + 112)/- V4,+ has finite L norm. I-1

PROPOSiTiON 3.3. Suppose conditions (HI+) and (H2) hold for n 3. Then

Is A( k, , P.’) exp ik. ) d.

(3.4)

ik
+(k, g,’,))-exp(ik$’. 2)- ag(k,l-.l)(V4,+)(k, .’,) d.
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Proof We use (2.5) in the left side of (3.4). By Lemma 3.2, the iterated integrals
converge absolutely, so we may interchange the order of integration. We compute the

integral as follows. We write Is2 exp (ik.(Y-fi))d in polar coordinates with the
polar angle measured from the direction Y-97. We can then carry out the integration
explicitly" the result is

IS 8’7’1"2[2exp [ik. (2-fi)] d= --- G-(k, 1-971)-a;-(k,

Finally, we use (2.3+) to obtain (3.4).
THEOREM 3.4. Suppose conditions (HI+) and (H2) hold for n 3. Then

(3.6) 0+(k, ’, )= q-(k, ’, )+- A(k, , ’)q-(k, , ) d.

Proof Our plan is to obtain an equation similar to (2.3+) but with the plane wave
replaced by exp [ikg. ]+ ik/2r A(k, ., .’) exp (ik. ) d.. We will compare this new
equation with (3.4); from the uniqueness of the solution of equations such as (2.3+),
we will conclude (3.6).

First we multiply (2.3-) by (ik/27r)A(k, , .’) and integrate with respect to

ik f A(k, e", g)O-(k, e, ) dY
27r Js2

(3.7)
ik
| A(k, , g,’)exp (ikg,. ) d

27r Js2

A(k, ., ’) I G(k, I-l)(-)(k, , Y) d da

We next interchange the order of integration in the last term of (3.7). This is valid
because the following estimate shows that the iterated integral converges absolutely;
first we use Lemma 3.2 to obtain

(3.8)
IIs IA(k, , g)llG(k,l,-l)ll(VO-)(k, ,)1 dd.

=< 4r
s:maxs: A I I 371-11(v,-) (k, , )1 d.

The right side of (3.8) can easily be shown to be finite by using condition (H2) as in
the proof of Lemma 3.2.

Upon interchange of the order of integrals in (3.7), we obtain

ikf A- ikls iklfs
(3.9) 2- s =- 23 exp+-- G-d 2A(Vd/-).

Next we write (2.3-) with ’ substituted for Y and add (3.9) to the result. We obtain

-( k, ’, )+-f- A(k, , ’)tp-(k, e, ) de

(3.10)
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Since V is linear and is independent of ’, we pull V outside the bracket in the last
term of (3.10). We note that by Lemma 3.2, the inhomogeneous term exp (ik’. )/
ik/2r s A(k, , ’) exp (ik. ) d is in H2"-s. By hypothesis (H1-), the solution of
(3.10) is unique; we obtain (3.6) by comparing (3.10) to (3.4). ]

4. Examples. In this section, we show that (2.6) holds for three physically relevant
equations.

Example 1. The Schr6dinger equation. Here we consider the case in which V is
the operator of multiplication by a complex-valued function

V()=U()/iW(),

where U and W are real-valued functions satisfying hypothesis (b) of Theorem 3.1.
Equation (2.1) then becomes the Schr/Sdinger equation

(4.1) (V2+ kZ)q U + iW)b.

Equation (4.1) with nonzero W is commonly used to model many-body systems in
which there is attenuation. For example it is used in the optical model for scattering
from nuclei [13].

In order to show that (3.6) holds for almost all real k, we must check hypothesis
(d) of Theorem 3.1.

LEMMA 4.1. Suppose V is in L2(3). Then for Im k> vll(327r2)-, I-GoV is
invertible on L2.

Sketch of proof The square of the Hilbert-Schmidt norm [10] of GoV can be
explicitly computed for Im k>0. It turns out to be [[vI1(322 Im k)-. Thus for
Imk>llvll(327r)-1, the Hilbert-Schmidt norm of Go V is less than one, so
(I-GoV)- can be constructed by iteration [10]. [3

COROLLARY 4.2. Suppose V is in L and satisfies condition (b) of Theorem 3.1.
Then for Im k> vll(32r2)-’, (v2+ k- V)" H- L is invertible.

Proof We consider the operator G Go(I- GoV)-. It is well known [8] that for
Im k > 0, Go maps L2 onto H2. This fact and Lemma 4.1 imply that G maps L2 into
H. By arguments similar to the one above (3.2), it can be checked that G is the inverse
of (V2/ k2- V).

We have proved the following result.
THEOREM 4.3. Suppose V is in L2 and satisfies condition (b) of Theorem 3.1. Then

(2.6) holds for almost all real k.
In fact, if V is real-valued, then it is known [9] that (HI+) holds for all nonzero

real k, and consequently (2.6) holds for all nonzero real k.
Example 2. The wave equation with variable speed. Here we consider the equation

(4.2) [V2+ kZe-2(Y)]b(k, ) =0,

where c-2(:f)- 1 satisfies hypothesis (b) of Theorem 3.1. In this case, V is the operator
of multiplication by k2(c-2() 1). In order to conclude that (2.6) holds for almost
all k, we must check hypothesis (d) of Theorem 3.1.

We note that it is easy to show that for c-2( )- 1 in L2, I-GoV is invertible on
L2 for small Ikl. (The Hilbert-Schmidt norm of Go V can be shown to be small, and
(I-Go V)- can be constructed by iteration 10].) We then define the operator G:L-
H2 by G Go(I-GoV)-. If (1-GoV)- exists, then G exists and is the inverse of
V2- V+ k2. (See the argument above (3.2).) Hypothesis (d) of Theorem 3.1 is thus
satisfied, and we can conclude that (2.6) holds. We have proved the following theorem.

THEOREM 4.4. Suppose C-2(’)--1 is in L(R3) and satisfies hypothesis (b) of
Theorem 3.1. Then for almost all real k, (2.6) holds, where V= k(c-2( )-1).



AN INTEGRAL RELATION OF SCATTERING THEORY 1097

We note that c-2 has not been assumed to be real-valued, positive, or smooth.
However, if c-2 satisfies the conditions of Theorem 4.4 and, in addition, is strictly
positive, it is known that conditions (HI+) actually hold for all real k [9], [14], so in
fact (2.6) holds for all real k.

Example 3. The acoustic equation. The acoustic equation governs the propagation
of pressure waves in a fluid [15]

(4.3) [V2 p-iVp. V + k2c-2] p( k, ) 0

where p(k, ) is the pressure at , p() is the density, and c() is the speed of
propagation. We will assume that for some po, p()- po and c-2(:)- 1 are functions
of compact support with two continuous derivatives and that p() and c2() are
positive. Thus c-2(:) 1 and Vp/p automatically satisfy hypotheses (b) and (c) of
Theorem 3.1. Again we must check that hypothesis (d) is satisfied.

We note that (4.3) can be written

[-cpV p-’v k](k, ) 0.

It is shown in [16] that the operator -cp p- on H is unitarily equivalent to a
self-adjoint operator. Therefore the spectrum of-c2p p-r is contained on the real
axis; this shows that -cp p-- k is invertible for all complex k except possibly
k on the real and imaginary axes. Thus we have shown the following theorem.

THEOREM 4.5. Suppose that for some po, p(E)- Po and c-(E)- 1 are functions of
compact support with two continuous derivatives and that p(E) and c(E) are positive.
Then (2.6) holds for almost all real k. (Here V=-p-Vp V+ k2(c-2-1).)

We note that when p is constant, (4.3) reduces to (4.2). The argument of Example
3, however, requires stronger conditions on c-.

5. Consequences of the integral relation (2.6). Some of the consequences of (2.6)
are discussed in this section. First we show that if the linear operator V satisfies (H 1 +)
and (H2) and also has compact support (in a sense described below), then a generalized
optical theorem holds for the scattering amplitude.

Next, we discuss some simple consequences of the generalized optical theorem
in the long wavelength limit. In particular, for certain scatterers such as those in
Example 3, we assume the scattering amplitude can be expanded in a power series
about k 0

A A2k2 + iA3k3 +"

The generalized optical theorem implies certain symmetry relations for the Aj.
First we use (2.6) to derive a generalized optical theorem for scattering governed

by (2.1). The derivation involves using (2.4) in (2.6) and letting I1-, To be sure
that (2.4) holds, we assume that the operator V has compact support

(H3) There is some radius R>0 such that XRV=O, where XR(:) 1 if I1> R
and zero otherwise.

We also need the analogue of (2.4) for p-:

(5.1)

where

b-(k, e, )=exp (ik. :)+ B(k, :, P.) exp (-ikll)/ll+ o(l1-2)

B(k, e", ,’)= ---- exp (-ik. y)( V-)(k, ’, .) d..
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THEOREM 5.1. Suppose V satisfies (HI+/-), (H2), and (H3) (for n= 3). Then

ik I .’ ") de".(5.3) A(k,-., .’)-B(k, ., .’)=-- A(k, .", )B(k, .,
Proof. We substitute (2.4) in (2.6), and multiply by ]x. This results in

A(k, x ) exp (ikl2)= B(k, , ) exp (-iklx)+ A(k, ’, ) exp (ik’. ) d’

(5.4)

+2 A(k, e, )B(k,

where we have used Lemma 3.2. Next we consider the second term on the right side
of (5.4). This term we denote by I. We write the integral in polar coordinates with
e’=(0, e

, lo  Io A(k, (0, ) ) exp (ikl cos 0) sin 0 dO d.2

In (5.5) we integrate by pas, obtaining

I= A(k,

2 A(k, (0, ), ) exp (i11 cos 0) dO d.

We next apply the method of stationary phase 17] to the 0 integral of (5.6); this shows
that

(5.7) I A(k, ,
We use (5.7) in (5.4), divide by exp (-ikl2), and let I1. n simple relabeling of
variables gives (5.3).

We note that (5.3) simplifies if V(-k)= V(k). In this case, (2.3) together with
hypotheses (HI) show that

(5.a +(-,-, -(, e; .
This, in turn, when used with (2.4) and (5.1), shows that

(5.9 (, , ’ a(-, ,-’.
Equation (5.3) then becomes

(5.0 a(, , ’-a(-,-,-’= a(, ", ’a(-,-,-" ",

where - has been relabeled
We obtain even fuher simplification of (5.3) if both g(-k) g(k) and g=

hold. (Here the bar denotes complex conjugate.) However, first we note that when
V= V, (2.3) plus hypothesis (HI) show that

(5. -(, , +(,-, .
Equations (5.8), (5.11), and (2.4) can then be used [5] to show that

(5. a(, , ’ a(-, , ’.
Finally, (2.3) and (2.5) can be used [5] to derive the reciprocity relation

(5. (, , ’= a(,-’,-.
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When equations (5.12) and (5.13) are used in (5.10), the result is the generalized optical
theorem which is well known for some wave equations (e.g., the Schr6dinger equation
and equations governing electromagnetic scattering [5]),

(5.14) A(k, , ’)-A(k, ’, ) =-- A(k, ", ’)A(k, ", ) d".

Most derivations of the optical theorem rely on unitarity, but the derivations in
this paper do not. In particular, note that (5.3) differs from the usual generalized
optical theorem for dissipative systems.

Next we consider wave equations and scatterers (see Examples 2 and 3) such that
at long wavelength the scattering amplitude may be expanded about k- 0 as

A(k, , ,’) A(, ’)k2+iA3(, ’)k3+ A4(, ’)k4

(.5)
+ ias(Z .’)ks+O(k6)

where A2, A3," are real functions. Substituting (5.15) into (5.14) and equating orders
of k leads to the following consistency requirements:

(5.16) a2(, .’)= a2(-., -’),

(5.17) a3(, ,’)=-a3(-’ -,’),

(5.18) A4(, ’)-- A4(-’ -’),

1 I(5.19) As(, ")+ As(-g’,-’) =- d2"A2(P.’’, g’)A2(g’", g").

Note that these relations do not follow solely from reciprocity. For a number of
circumstances (5.17) implies that A3((’, ’)=0. This is important in practical problems
because it allows signals from different transducers to be matched together properly.
This will be discussed in more detail in the next section.

6. Applications to inverse scattering. In this section we will discuss the applications
of (2.6) and (5.15)-(5.17) to inverse scattering. First we will show that (5.17) can be
used in an important phase retrieval problem. Then we will show how (2.6) can be
used to find V from A. Finally, we conclude with a few remarks on other applications
to inverse scattering.

The phase retrieval problem arises as follows. In applications of inverse scattering
theory to experiments (e.g., various forms of imaging), the scattering amplitude is only
known in a corrupted form. Generally it is necessary to solve various preliminary
problems in order to obtain the scattering amplitude from measured data. Due to
measurement error and difficulties in the precise mathematical modeling of the physical
process, it often happens that the scattering amplitude can be found only up to a phase
factor which depends on the directions of incidence and scattering. Proceeding without
correcting for this unknown phase factor leads to "blurring" in the image produced
by the inverse scattering algorithm. See 19] for a discussion of the physical difficulties.

Consequently the following problem, which is an idealization of the physical
system just discussed, is of interest. Suppose we know the corrupted form A of the
scattering amplitude A, where

(6.1) A(k, , ’)= A(k, , .’)exp [ikr(., ’)],

r being a bounded, real function that is otherwise unknown. Then the problem is to
recover A given A. In general this problem is impossible to solve, since both A and- are unknown.
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However, let us further suppose that the governing wave equation satisfies (5.15)-
(5.17). In addition, let us suppose that the scatterer is known to be symmetric with
respect to the origin. We show below that Aa(e", .’) vanishes, A2((’, ’)= A(e", P.’) and

(6.2) A(k, e", 8’)= Ae(k, , ’) exp [-ikA(8, 8’)/A(e", g,’)].

Here we have expanded the right-hand side of (6.1) as a power series in k, which
implies that A can be expanded as

(6.3) a(k, , ,) 2k A2(e, g,’) + ik3A(e, ’) + (k4),
where the expansion coefficients are real.

We show (6.2) by noting that the inversion symmetry implies that A(k, , ’)=
A(k, g,, ’) and consequently that

(6.4) A3(, ")- A3(-e", -.’).

Comparison of (6.4) and (5.17) shows that A --0. NOW expand both sides of (6.1) in
a power series in k and equate coefficients of corresponding powers of k. We obtain
A2 A and " A/A. Substitution of these results in (6.1) and rearrangement yield
(6.2).

Equation (6.2) solves the phase retrieval problem: it shows how the true scattering
amplitude can be recovered from the corrupted one.

Equation (2.6) can also be used to attack the inverse scattering problem. This
problem is to determine V from A(k, e, e’). One difficulty in using (2.6) for this is that
(2.6) contains two unknowns q+ and q-. In order to obtain an equation with only
one unknown, it is generally necessary to Fourier transform and use domain of
dependence results to separate 0+ and O-. This procedure results in an integral equation
for the wavefield in terms of the scattering data.

Specifically, the theory goes as follows in the Schr/Sdinger equation case. We
denote the Fourier transform of q+ by

(6.5) u+/-(t, , :) (27r) -1 f exp (-ikt)q+(k, , ) dk

and the Fourier transform of A(k, , ’) by

(6.6) R(t, , ’) (27r) -1 f exp (-ikt)A(k, , ’) dk.

In this notation, the Fourier transform of (2.6) is

(6.7) u+(t’’Y)=u-(t’’Y)-(27r)-lffs2 (t-r,’,.)u-(r,’,Y)d’dr,

where the dot denotes differentiation with respect to t. We note that u + satisfies the
hyperbolic equation

(6.8) (V2-0, V)u+ 0

together with the condition that for large negative times, u+(t, , Y)= 6(t-. ). By
domain-of-dependence results for (6.8), when V is real, u + satisfies

(6.9) u+(t,,Y)=O for t<.Y.

In addition, by (5.8),

(6.10) u-( t, ., :) u+(-t, -, )
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and therefore

(6.11) u-(t, ,)=0 for t> ,. .
Writing u + us and taking (6.10) and (6.11) into account, (6.7) for > . Y becomes

(6.12)

Newton has shown [1], [20] that (6.12) is a Fredholm equation that can always be
solved. We thus obtain u /s, and from it, V can be obtained via the formula [1], [21]

(6.13) V(Y) =-2. Vus+( Y, , Y).

For more details concerning this method of solving the inverse scattering problem for
the Schr6dinger equation, the reader is referred to [1], [6], and [20].

It is natural to try a similar procedure for solving the inverse scattering problem
for the wave equation (Example 2). For this equation, the inverse problem is to recover
c(:f) from A(k, , ’). Again we start with (2.6) which is Fourier transformed [14] to
obtain (6.7). The next step is to use causality; for the wave equation, (6.9) holds only
when c(Y) =< 1 for all Y. Thus we obtain (6.12) only under the hypothesis that c(Y) =< 1.

Equation (6.12) is no longer a Fredholm equation, and little is known about it.
Nevertheless, if it can be solved for u /, then c(Y) can be recovered as follows. We
know from geometrical optics that

(6.14) u+(t, ., )= z(, )6(t-s(, :f)) + (less singular terms).

If u + is known, then s(g’, ) is known; c(Y) is related to s by

(6.15) c-2() IVs(g’, Y)l 2.
For more details concerning this method of solving the inverse scattering problem for
the wave equation, the reader is referred to [2].

The wave equation inverse scattering problem can also be attacked with (2.6)
directly. Equations (4.2) and (2.6), together with

(6.16) V(Y) V2[(+(k, ’, .g) exp (ik..))/k2]k=O,
form a system of equations whose simultaneous solution solves the inverse scattering
problem. This system of equations can be attacked by an iterative method; preliminary
numerical results indicate that this method converges for some problems. More details
about this can be found in [23] and [14].

Finally, relation (2.6) for the wave equation can also be used together with various
approximations. For example, if k2V is small, we expect to recover from (2.6) the
Born approximation and inverse methods based on it. Similarly, if k is large but V is
small, then we expect that geometrical optics should be useful and that the rays should
be nearly straight. Some such approximate schemes have been worked out in [22].
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A SINGULAR LIMIT PROBLEM FOR A VOLTERRA EQUATION*

RICHARD NORENt

Abstract. Concerning the solution u(t, c) of the equation

u’(t)+ [a(t-s)+c]u(s) ds--O, u(0)=

weaker sufficient conditions are found for o SUpo=<c__<l lu(t, c) dt< than were previously known. In
particular the assumption (- 1) ka k(t) >- 0, > 0, k 0, 1, 2, , is replaced by the assumption a is nonnega-
tive, nonincreasing, convex and -a’ is convex for > 0.

Key words. Volterra equation, L1, completely monotone, nonnegative, nonincreasing, convex

AMS(MOS) subject classification. 45

1. Introduction. Concerning the solution u u(t) u(t, c) of the equation

(1.1) u’(t)+ [a(t-s)+c]u(s) ds=O, t>0, u(0)=l, (’ tt)
we prove the following theorem.

THEOREM 1. Let a(t) satisfy

(1.2) a L1 (0, 1) is nonnegative, nonincreasing, convex and
-a’ is convex on (0, ); 0= a()<a(0+)=<,

and

(1.3) f logu
uA(u)

du<c,

where A(u) o a s ds. Then

(1.4) sup lu(t,c)]at<.
Oc=<l

Define (’)=--o e-i’a(t) dt= d(’)-i’O(’), where the integral exists for Im ’<0, is
extended by continuity to (Im r=< 0, " 0) and C1(0, c).

In [7], (1.4) is proved for the completely monotonic function a(t) o e da(x)
where it is assumed that the nondecreasing function a(t) (0<= <) also satisfies

dx
(1.5)

xa’(x)
< o for some Xo > 0.

The proof depends on the decomposition of u into a completely monotonic term plus
an exponentially decaying term as given in [6] and on obtaining certain estimates
uniformly in 0 =< c -< 1.

Received by the editors September 22, 1986; accepted for publication August 10, 1987.
t Department of Mathematical Sciences, Old Dominion University, Norfolk, Virginia 23508.
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In our proof of Theorem 1 we use techniques similar to those used in [1] and the
following inequalities. Assuming (1.2),
(1.6) 2-3/2A(z-1)<-l(z)l<-4A(z-), ’>0,

(1.7)
1 AI(Z-)_-<- O(z) <- 12AI(z-) ’>0 Al(X) sa(s) as
5

(1.8) I’(z)l _<- 40Al(Z-1), I"()1 _-<6000 r2a(r) dr,

(see [1, (4.1), (4.3), (4.2), and (5.3)]),

(1.9) lu(t,c)l<-l, 0-<_t<, 0=<c

(see [3, Thm. 2] and [8]. The number x/ appears in [3] instead of 1 because of a
typographical error). Note that (1.6)-(1.9) all hold without the assumption -a’ is
convex except for the second inequality in (1.8).

In [1], [4], [5] the inequality analogous to (1.4),

sup [uh(t)[ <dt
1-----h

is obtained under the assumption (1.2) for the problem

;ouh(t)+h [a(t-s)+d]u(s) ds=O, ua(0) 1,

with d fixed and nonnegative.
For (1.4) to hold it is necessary that a(t) LI(0, ) (see [7, p. 200]) but not

sucient as the completely monotonic function a(t)= (1-e-)/t shows (see [7, 4]).
Clearly, (1.3) implies that a LI(0, ).

The conditions (1.3) and (1.5) are similar. Thus if a’(x)= (-log x) for 0< x < x0,

q > 0, then a(t) behaves like - logq as , as the following two calculations show.
First, we have

Io’ Io r, ot-1 1ogq e dx < - e logq (t/x) dxN - e logq (t/x) dx
dO

=oe-"(-logy)qdyNa(t), xg<t.

Also for 0 < e < xo, we have

Ioo dy+ e-Y’a y) dya(t)= e-yt(-logy)q ’(

- e logq (t/x) dx + e-’ e-t(y-)a’(y) dy
o

M - e-(llogq l+llogxl) dx+e-’ e-%’(x+e) dx
dO

NM t- logq e-X(l+llogqxl)&+e-’t e-(u/t+e) du
Xo--)t

N M3 - logq + e-’t e-(u + e) du
o

<--_ M4t- logo for > max ,1 (M, M2, M3, M4, constant),
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where the first inequality uses x yt, the second inequality uses (x + y)q <= 2q(xq + yq)
for x, y, q > 0 and y- x + e, the third inequality uses integration by parts, the fourth
inequality uses the fact a is positive and nondecreasing and > 1, and the last inequality
uses the fact that a LI(0, 1) if and only if x cr(x)x-2 dx < o, and therefore

Ixe-U(u + e) du e e-X(x) dx <.
In this case (1.3) and (1.5) both hold if and only if q> 1. Also, a(t)=F(p)t-p

corresponds to a’(x) xp-l, p >0 and (1.3) and (1.5) both hold if and only if0<p < 1.
For completely monotonic a, condition (1.5) rules out purelyjump functions a, whereas
(1.3) does not.

2. Proof of Theorem 1. By [9, Thm. 2] we have o lu( t, c)l dt < o for c_-> 0. We
will prove that

sup lu(t,c)-u(t, 0)Idt<,
0-----cl

which implies (1.4) by the triangle inequality. Let D=-D(’r)=-d(r)+ir, D(r, c)=-
D-icr-1. By [1, (4.32)], we have the representation

(2.1) =Im e i’ icr------- 2icr-lD’ c2r-2D’ l
D % c)

+
DD ’, c e + De-T-r, ) J dr

Im + + + I+Ie+I3] dr t>0,
1/t

where e and K are constants that will be defined in the next paragraph.
To estimate the right-hand side of (2.1) we need lower bounds for [D(r, c)[ (and

for ]D ID(t, 0)). We first note that (1.7) and a L’(1, ) imply that, for some e > 0,

and then by (1.6) (for 0 < r e, 0 c 1)

ID(, c)l= 6() + (c- + 0()-)6() + (c- + 0()/2)
T 2max(cr I8(r)l/4}max(c A(-)/32}.

That is

2.3) Io(, c)max (c- A-)/}, 0<< , 0< c<

Also by (1.6) we see that there exists a constant K > max {1, e} so that

(2.4) ID(, c)l - 1, K.

We will use these estimates with (2.1) to prove that

sup lu(, c) u( t, 0)1ft), > 1/,
0cl

where l/f(t) dt <. This together with (1.9) will complete the proof. The function
f that we use is defined by

[D(r,c) D’] }D(r, c) - dr7ru(t, c) 7ru(t, 0) Im e
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(Here and for the rest of the paper M denotes a constant whose exact value may
change each time it appears.) A simple calculation that uses the Fubini Theorem and
(1.3) shows that ./f(t) dt <.

Let t> 1/e. By (2.3) and (1.8) we have

Im e +/2+/3] d- -<--- A(._l)+A2(._1)
M f It

7"-1

A( "F
-I dr

M I du
<--f(t).

uA(u)-

Now we integrate by parts and use (2.3) and (1.8) to obtain

{{I } 1 {ceite
-2 eit2c

Im eiI1 d" Im )-(-c--D(1/t, c)2lit

+ 2 e,,, 7"--3C CT"-2_Dr(_..T_ C),
1/, D(r, c)2

+ dr
O(7", c) ]

<- 1 +A(t) + dr
lit

[1 1 If du]M +ta(t)+- 1/ a(u)
<-f(t).

e i.rtThe terms -Im {1/t 1/, (I2 + I3)dr} are treated in exactly the same way.
Again we integrate by parts, then use ID(r,c)l>=ch(r)>-m>O (m constant),

e =< -=< K, and (1.8) to obtain

{lf K } 1 {ceiKtK-2ceite
-2

Im ei’Ii d" Im D(K,c)S-D(e,c)2

+2
O(’, c)2-- O(r, C) ]

M
_-<

t2 _-<f(t).

The terms -Im {1/t i i"(I2+I3) dT} are also treated in this way.e
Finally we integrate by parts and use (2.4) and (1.8) to obtain

Im e dr < + )2 + )3
dr=F 7

M
--< ?_ --<f(t).

The terms Im {1/t e i"(I2+ I3)dr} are treated in this way also. This completes the
proof.
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A LOTKA-McKENDRICK MODEL FOR A POPULATION STRUCTURED
BY THE LEVEL OF PARASITIC INFECTION*

R. WALDSTTTER?, K. P. HADELER’, AND G. GREINER

Abstract. A population is subdivided into classes of noninfected and infected individuals. The latter
is structured by a real variable measuring the level of infection. Birth, death, and immigration of parasites
are modeled by a diffusion operator, birth of hosts by a Lotka-McKendrick birth law. The resulting evolution
equation is treated by semigroup methods. The generator is interpreted as a self-adjoint operator with a
one-dimensional unbounded perturbation.

Key words, epidemics, one parameter semigroups, self-adjoint operator

AMS(MOS) subject classifications. 92A15, 47A55, 47B25

1. Introduction. The classical epidemic model of Kermack-McKendrick and its
extensions (SIR, SIS, etc.), formulated in terms of ordinary differential equations,
describes the development of an epidemic disease under three important assumptions.
(1) The individuals are classified as infected or noninfected; there is no subdivision
of the infected population according to degree of illnesss, degree of infectivity, number
of parasites. (2) The disease is transmitted by direct contact between individuals. (3)
The parasite population is acquired at one instant.

For many infectious diseases these assumptions are quite appropriate. Many
diseases caused by bacteria and viruses that are or at least have been widespread in
human populations are transmitted by direct contact; the parasite population is acquired
at one instant and is large and unstructured. On the other hand, in diseases caused by
macroparasites, in particular helminthic diseases such as onchocerciasis, the parasite
population within one host contains few individuals that are acquired at different times
and die at different times. Typically in the life cycle of these parasites, there are states
in intermediate hosts; these hosts may act as vectors for the larvae of the parasites or
the larvae are acquired from the environment.

Anderson and May [1], [2] have designed and investigated models for such
diseases with the assumption of a finite number of parasites per host. In [1], [2], and
successive papers, a priori assumptions have been made about the distribution of
parasites within hosts; moments of such distributions have been introduced into
ordinary differential equations which then could be investigated by phase plane
methods. In [3] and in subsequent papers, it is assumed that the parasite population
within a host is governed by a birth and death process with the killing of the host.
With a linearity assumption, this model leads to first-order partial differential equations
for generating functions.

If the number of parasites per host is large but fluctuating according to birth,
death, or immigration of individual parasites, it appears justified to introduce a
continuous variable x _-> 0 measuring the size of the parasite population within a host
and to model the development of the host and parasite populations by a diffusion
equation.

* Received by the editors April 3, 1987; accepted for publication August 13, 1987.
? Lehrstuhl fiir Biomathematik, Universit/it Tfibingen, Auf der Morgenstelle 10, D-7400 Tfibingen,

Federal Republic of Germany.
$ Mathematisches Institut, Universit/it Tiibingen, Auf der Morgenstelle 10, D-7400 Tiibingen, Federal

Republic of Germany.
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The typical diffusion approximations for birth and death processes on a half-line
x_-> 0 yield differential operators with a singularity at x 0. Then the solutions of the
evolution equation tend to infinity for x 0. In epidemiological terms: all individuals
are infected, though many to a very low extent. Such models have at least two
disadvantages. (i) There is no well-defined class of "susceptibles" or "noninfected."
Such a class can be defined only by arbitrarily prescribing a level of infection below
which the infection is considered negligible or tolerable. (ii) The offspring of individuals
of any parasite load should be noninfected (so-called vertical transmission is excluded).
This requirement is difficult to realize if there is no mass at x- 0.

For these reasons in the announcement [5] the following approach has been
chosen. There is a class of definitely noninfected individuals and a class of infected
individuals that are classified according to the level of infection x _-> 0. In other words,
we have introduced a distribution on the half-line x >-0 together with a point mass at
zero. Furthermore, we assume that the distribution of infected individuals is continuous
on x_->0.

We assume that, apart from stochastic birth and death of parasites, the hosts
acquire parasites according to a conservation law

u,=((x)u)

where 4 is a function describing the presence of parasites in the environment and the
reaction of the host.

It turns out that with these assumptions the structure of the model is essentially
determined.

If we want to interpret the model as a diffusion approximation, the assumptions
of a class of noninfected and of a distribution of infected continuous at x 0 may
lead to technical difficulties. It seems unavoidable in modeling a population structured
by a continuous level x of infection that difficulties of interpretation arise near x- 0.

The nucleus of the model is a diffusion equation on a half-line associated with
an ordinary differential equation. This situation is similar to diffusion in a long narrow
tube connected to a reservoir. Such diffusion and heat conduction problems lead to
self-adjoint operator equations in suitable spaces. Hence it is not surprising that
methods from the theory of self-adjoint operators are useful for the present model.

A complete discussion of the model should comprise the proof of existence and
uniqueness ofthe initial value problem, the characterization of stationary ("persistent")
solutions and their stability, and, furthermore the quantitative behavior of the solutions
for some realistic choices of the parameters.

Compared to these goals the results of the present paper are somewhat modest.
We show that the linear part of the model, for a constant infection rate, has a solution
in some suitable Hilbert space. The mathematical approach to this linear problem
seems sufficiently novel and interesting to present here.

In [10] it has been proved that the evolution equations preserve positivity, i.e.,
nonnegative initial data give rise to nonnegative solutions for t_-> 0.

2. Description of the model. In a first step we describe the variables and parameters
of the model. Let be the chronological time and x the individual parasite load or
the level of infection of a host. Let u(t, x) be the density of infected hosts at time t, i.e.,

U( t, x) dx

is the number of infected hosts at time with a level of infection between x and x2.
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Let U(t) be the number of noninfected hosts at time t. Then

(1) P(t)= U(t)+ u(t, x) dx

is the total population size of hosts at time t. The model assumes a distinction between
noninfected hosts and hosts with a very low (x 0) level of infection. It would not be
justified to require U(t) u(t, 0), since U is the size of a compartment and u(t, 0) is
one value of a density.

Let the functions k(x) and l(x) describe the stochastic birth and death within the
parasite population, k(x) is the diffusion rate, and l(x) is the drift coefficient of the
diffusion process governing the change of the level of infection within hosts. The
function k(x) is positive; the function l(x) can assume either sign.

The function q3(t, x) describes the rate at which new parasites are acquired by
hosts with infection level x at time t. Of course q3(t, x)>= 0. We shall assume that q3
can be represented as q3(t, x) q(t)4(x), where the function 4(x) describes the reaction
of the host and the function q(t) depends on the presence of infected vectors. The
latter quantity will in turn depend on the average parasite load of the population.
Similarly the function ,43o(t) is the rate at which noninfected hosts acquire parasites.
For reasons of symmetry we write q3o(t) q(t) bo with the same q(t) as before. Here
bo=> 0 is a constant.

The parameter y enters the boundary condition of the diffusion equation at x 0.
It is the rate at which infected hosts at low infection rates lose all their parasites and
become noninfected.

So far the parameters mainly describe the changes of the parasite population
within the hosts. The dynamics of the host population has yet to be specified. Let
/x(x) > 0 be the mortality of an infected host at a level of infection x, and/Xo> 0 the
mortality of noninfected hosts. Let b(x)>=0 be the fertility of infected hosts of level
x, and bo=> 0 the fertility of noninfected hosts.

Finally, the acquisition (immigration) function q is not prescribed a priori, but
given implicitly as

q f(w),

where f is a given function modeling the dynamics of vectors (e.g., insects transmitting
the disease),/3 is a positive contact rate between hosts and vectors, and w is the average
parasite load (w could be a more general functional of the population).

As described above, the population is governed by two equations of the form

(2a) u, k(x)ux)x + l(x)U)x q( t)( ch(x)U)x tz(x)u,

(2b) U=(bo-tzo)U-q(t)coU+yu(t,O)+ b(x)u(t,x) dx.

These two equations are coupled by the transition parameter 3/ in (2b) and by a
boundary condition of the form

(3) aou(t, 0)+ alUx(t 0)+ a2U(t)=0.

The coefficients in the boundary condition are uniquely determined up to a common
factor. If/x(x) 0,/Xo= 0, b(x)=O, bo=0 then a conservation law must hold:

(4) d--t U( t) + u( t, x) dx O.
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notation by

(10)

Then the equations read

U (k(x)Ux), + l(x)u)x tz(x)u,
(11)

U, boU + b(x)u( t, x) dx + yu( t, 0),

(12) Ux(t, 0)= o-u(t, O)-KU(t).
This system describes an evolution equation in a product space X Y , where Y
is some function space on /. The right-hand side describes diffusion on a set P U [0, ),
where P is a compartment. It also contains a Lotka birth law. The diffusion part can
be interpreted as a self-adjoint operator in various ways, the Lotka part (as its
finite-dimensional analogon, the Leslie matrix) is definitely nonself-adjoint and must
be interpreted as a nonself-adjoint perturbation. This concept can be carried through
in various ways depending on how the right-hand side is split into a main part and a
perturbation. In the following we apply a Liouville transformation to achieve the
normal form for the diffusion part.

The Liouville transformation is defined as follows. Define the function

(13) fl(x)= k(s) -1/2 ds;

bo bo-/Xo- pbo,

K Obo/k(0),
, t(0) + (0)]/k(0).

MODEL FOR PARASITIC INFECTION

If u(t, x) converges sufficiently fast for x- oo then (4) implies

-q(t)dpog+yu(t,O)+ [k(x)ux+l(x)u-qg(t)dp(x)u]xdx

-o(t)6oU + 7u(t, O) k(O)u l(O)u + o(t)ck(O)u O.

Thus the desired boundary condition at x--0 is

(6) k(O)u + l(O)u qg( t)6(O)u yu -o( t)6oU.
The most natural boundary condition at x-- is

(7) u(t," 6 L’(0, ).
However the mathematical discussion of the initial value problem is simpler in an
appropriate Hilbert space setting. This Hilbert space is specified later.

The initial condition reads

(8) u(0, x) Uo(X) for x => 0, U(0) Uo.
The transmission law is given by q- flf(w), where

o xu( t, x) dx
(9) w

U( t) + Jo u( t, x) dx

As announced earlier, we shall restrict our attention to the linear part of the problem,
i.e., we consider (2), (6) for a constant 0.

3. Transformation to normal form. For the following arguments we can neglect
the biological interpretation of the coefficient functions and introduce a condensed
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then the new independent variable y fl(x). Let x a(y) be the inverse transformation.
Then define the function p p(y) by

(14) O(y)=exp - (k(s)+2*[(s))k(s)- ds

Then the new dependent variables are introduced by

The function w satisfies

u(t,x)=p(y)w(t,y),

(15)

where the function p is defined by

1
k,,x(X)

1 k(x) 1 x(X) 4(16) P’Y’=4(-- 16 k(x) 2

Then functions w and u satisfy the equation

(17)

with

U=-W.

w,(t, y) Wyy(t, y) -p(y)w(t, y),

1 /2(x)
4 k(x)

w2(t, y) dy m(x)uZ( t, x) dx,

(x).

to obtain

and then

which gives

insert

Ux), ufl + uflxx

u, k +(k+kx+ [)u+(-)u,llyy

tl [W, Uy pWy d- pyW, Uyy pWyy d- 2pyWy d- pyyW

xWyy "4" k2x2P--Y.- Tx Wy
p

+ ( kfl2x PY--Y-Y + kxflxPY+ k[3xxflY + T[3xflY+ x ) w.
P P P P

The special choice of/3 produces fix k-l/2, flxx---1/2k-3/2kx, and thus

w,= Wyy+(2Py+l--k )O 2
-/kx+k-/ Wy

4r ( Pyy-k!k-1/2kxPY-+- k-1/2Py-i- x ) w.
p 2 p p

The proof is well known and will be reproduced only for the convenience of the reader.
In

u, (kux)x + lu)x-Iu

kuxx + kxu, + lux + lxu
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The special choice of p annihilates the coefficient of the first derivative and produces
the potential p given in (16).

Define the new coefficients

(19) /(y) b(a(y)p(y))V’k(a(y)),

1 k(0) (0)
(20) 6 o’4"-t4 2’
(21) 4k(0).
We write again u instead of w. Then equations (2) and (6) assume the form

(22a) u, Uy-p(y)u,

foU oU+-- b(y)u(t, y) dy+--yu(t, O)

(22b) (u(t, 0)- U(t))+(bo+)U(t)

+- b(u(, + s u(, o,

(23) uy(t, O)= (u(t, 0)- U(t)).

We have shown the following proposition.
PROPOSITION 1. ere is a one-to-one correspondence between the solutions of (11),

(12) and (22), (23). If the solution of (11), (12) is in L(O, ), then the solution of (22),
(23) is in L(O, ).

4. Existence of solutions. Define the Hilbe space X L2(0, ) x C with the inner
product

(24,

In X define the operator L by

(25)

with domain

-u(O)-,u/

Of course D(L) is dense in X. We easily verify that L is symmetric and that the
following identity holds:

(27) (L(]), (]))=-lu(0)-UI2- Io lu’12dy f? plul2 dy.

Here is the appropriate place to introduce the qualitative properties that we require
for the coefficients. We assume that there is a real constant Co such that

(28) -k"(y) <= Co, k’2(y)/k(y) <= Co, ’(y) <= Co for all y => 0.

Then there is a constant c such that

(29) p(y) >= c for all y -> 0.
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We also assume that t is nonnegative, i.e.,

(30) 4k(0) 1/2(t(0) o(0)) + 1/4k’(0) _>- 0.

Hence the operator L is bounded above with constant c. Finally we assume/ L(0, oo).
PROPOSITION 2. The operator L is essentially self-adjoint.
In the proof we use the following results ([9, II, 182, 184]).
THEOREM A. Let H be a complex Hilbert space and A with D(A) a symmetric

operator that is strictly positive definite. Then the following are equivalent:
(i) A is essentially self-adjoint;
(ii) im A is dense;
(iii) ker (A*)- {0};
(iv) A has exactly one self-adjoint extension bounded below.
THEOREM B. Let u L()o such that Au L()o in the distributional sense.

Define sgn u L by

0 ifu(x) =0,
(sgn u)(x)

u(x) [u(x)1-1 if u(x) O.

Then, in tke distributional sense,

Alu _-> Re [(sgn u) Au].

Proof of Proposition 2. The expressions , b, used in this proof have not the
same meaning as in (2).

Define the functional on C(R) C by

(31) l(q, th) ’(0) c((0) 6).

Define = L-(1-c)/, D()= D(L). Then/_ is strictly negative. In view of Theorem
A it is sufficient to show ker(*)={0}. Thus suppose (u, U)X such that
((, b), (u, U))a+ 0 for all (, b) D().

Choose any fixed (1, b) C(R)C such that l(, bl)=l. For (, b)
C(I) C define

(32)

Then, trivially

and

Hence

On the other hand,

(33)

where

(34)

(, ,I,)= (, 4,)-t(, 4,)" (,, 6,).

(, 4,)= (q,, ,I,)+ t(, 4,)" (,,

(, )1+ D(/).

((0, )l.+, (u, u)).+ o.

{L(qt, )n+, (u, U))m= l(q, ,). :,

:--(/(q,, bl)]+, (u, U))+
does not depend on (q, 4’).
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Now extend the functions u and p to all of R by defining u 0 and p c- 1 for
x < 0. Then

(35) (o"-(p+l-c)o, u)+d’o(O)U-(d+l-c)cU=(o’(O)-do(O)+d’b).

Now derivatives are taken in the sense of distributions. Then (35) can be written
in the form

(36) (q,u"-(p+l-c)u+6"U6o+6+d’6o)R=((d’+l-c)U+6)

where, as usual, Boq o(0), 3o =-o’(0).
Hence, in the sense of distributions, the following two equations hold:

(37a) u"- (p + 1 c)u + d’U6o + 6’o + d’6o O,

(37b) (t+ 1 c) U+tsc 0,

or, replacing U from the second equation,

c(1- c)
(38) u"-(p+ 1 c)u +sc+o O.

t+l+c

Now define

(39) ,(x) max (x, 0)

and define its derivatives (in the sense of distributions) H(x)= ,’(x) (the Heaviside
function), H’(x)= u"(x)= go(X), and H"(x)= 6’o(X).

Then (38) reads

(40)

where

u"-(p+ 1- c)u + H"+," 0,

(1 -c)
(41) =t+l-c
or

(42) (u + h)"-(p+ 1 c)u =0,

where the function h is defined as

(43) h(x) H(x) + ’v(x) (x" + 1 ).

Then h(x) 0 for x -> 0.
Since the functions p and u are both in L2(R)loc, the function A(u + h)= (u + h)"

is in Ll(N)loc. Hence Kato’s inequality (Theorem B) can be applied:

0=sgn (u+h)[(u+h)"-(p+ 1-c)u]

=<]u+ hi"- sgn (u+ h)(p+ 1- c)(u + h) + sgn (u+ h)(p+ 1-c)h,

sinceh=0forx=>0andp=c-1 forx=<0,

0 <-]u + hi"-(p + 1 c)lu + h

<-Iu/hl"-Iu/hl,

(44) (I A)[u / h[ 0.
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Since u L2(R) and h is of polynomial growth the function ]u+h] is a tempered
distribution (i.e., a continuous linear functional on the Schwarz space 9(R)). The map
I- A is a bijection on () with inverse given by

1 I_e-lX-Yf(y)dy forf(I).(I-a)-lf(x) =-
It follows that (I-A)- is positive on (N)’; hence (44) implies ]u+hl0. Thus
u + h 0. On the other hand, by definition, h 0 for x 0 and u 0 for x < 0, and
thus u 0, h 0. Consequently also 0 and U 0. Thus (u, U) 0 as desired.
Proposition 2 is proved.

By definition the closure L of L is a self-adjoint operator. Trivially also L has
the upper bound zero. By the spectral mapping theory [(I-E)-lll - for > 0.
In view of the Hille-Yosida Theorem the operator L is a generator of a contractive
Co-semigroup T(t), O.

From [9, Thm. X. 52], it follows immediately that the semigroup is holomorphic
of angle /2.

Define the operator L1 with D(L)= D(L) and

(45 (b0+s+- b(yu(y y+ - u(o

Pooso 3. e operator L is L-bounded with L-bound O.
Proof (cf. [6, IV., Ex. 1.8]). Let u e C(N+). Then for any x, y 0 and r > 0 the

following equality trivially holds"

(46) u(x) r+-x x- 1 +
"(r) drdsdz.=u()+ u(+r)+- u

Choose a, b such that b a 0, b a r > 0. Assume a x, b. Then x[ r and
thus

1 y+

"(r) dr ds dzlu(x)l 21u(y)l + lu(y + r)l +- u
y

(47) N2u(y)+lu(y+ r)l+- [u"(r)-p(r)u()] d ds dz
r y

1 Y+rffyz+- p()u() a as az
oy

Now integrate over y from a to b and apply the Cauchy-Schwarz inequality

(48) rJu(x)JNllul}+r2llu"-pull+r p2(s) as Ilull.

Hence

[u(x)[<--_ r p2(s) as [lull+

In particular, for x 0

(49) lu(o)l c, / c=llu"-pull,
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where

(50) Cl =rr+ r p2(s) ds c2= r2x/.

Of course c can be made arbitrarily small.
Since/ L2(0, ), we have

(51) (,(x)u(x) ax

Hence for the operator L1 the following inequality holds:

Define

(53)

Then

{c u + c= u"-pu II} +

Since/3 can be made arbitrarily small, the operator L1 is L-bounded with L-bound 0.
Now we can define the extension L1 of L from D(L) to D(L). Assume (u, U)

D(L) and let (un, Un) D(L) be a sequence with (u,, U,) (u, U). Then, in view of
(54), the sequence L(u,, U) is a Cauchy sequence. Its limit is defined as L(u, U).
Trivially this definition is independent ofthe choice ofthe sequence. Hence the operator
L with domain D(L) is defined. Finally define the operator A with D(A)= D(L) by
A=L+L1.

For the last step of the existence proof we use the following two theorems ([6, p.
497 ff], [8, p. 8]; see also [7]).

THEOREM C. Let L be the generator ofa quasibounded holomorphic semigroup and
let L1 be an L-bounded operator with L-bound O. Then L+ L1 is the generator of a
quasibounded holomorphic semigroup.

THEOREM D. Let A with domain D(A) be the generator ofa holomorphic semigroup
T( t) on a Banach space X. Then for every initial value Uo6 X the Cauchy problem

d
mu(t)=Au(t), u(0) Uodt

has a unique solution u(t) which is continuous for >= 0, continuously differentiable and
u(t) D(A) for t> O. This solution is given by u(t)= T(t)Uo.

If Uo D(A) then u CI(I+, X).
The immediate consequence of these theorems and of Propositions 1, 2, 3 is the

following theorem.
THEOREM 4. The Cauchy problem (22), (23) has a unique solution for initial data

in L(O, o) C, and the Cauchy problem (2), (3), with p constant, has a unique solution

for initial data in L(O, o) C, with weight function m given by (18).
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EXISTENCE OF SOLUTIONS OF THE SIMILARITY EQUATIONS FOR
FLOATING RECTANGULAR CAVITIES AND DISKS*
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Abstract. The differential equation f"+Q[Aff"-(f’)2]=fl (0_-<A<, Q>0, fl real) (’=d/dx) for
0=<x= with boundary conditions f(0) =f(1) =0, f"(1)--f"(0) + =0 is considered. Existence of at least
one solution of this two-point boundary-value problem is proved under various hypotheses, and some
qualitative properties of this solution are established. The main tools used are shooting arguments and the
Schauder fixed point theorem.

Key words, existence, similarity equations, nonlinear two-point boundary-value problem
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(1)

1. Introduction. We consider the differential equation

f’"+ Q[Aff"- (f,)2] =/3 (0 <= A <, Q > 0,/3 real)

(’ ddx) for 0 <- x <- 1 subject to the boundary conditions

(2) f(O) =f(1) =f"(1) f"(O) + 1 O.

In this paper we prove existence of at least one solution ofthe two-point boundary-
value problem (TPBVP) (1)-(2) under various hypotheses, and we establish some
qualitative properties of this solution. The results are as follows.

THEOREM 1. For each given fl (0, 1) and each A >- 0 there exists at least one Q > 0
such that (1) subject to the boundary conditions (2) having at least one solution.

THEOREM 2. IfA 2, then for each Q > 0 there exists at least one real number fl,
with 1 > fl > 1-1/4Q, such that the problem (1)-(2) has a nonnegative, convex solution.

THEOREM 3. IfA 1, then for each Q > 0 there exists at least one real number
with 1 > fl > 1-Q such that the problem (1)-(2) has a nonnegative, convex solution.

Remarks. If Q=0, then for any A (1)-(2) has the unique polynomial solution
x(x-1)(x-2)/6 corresponding to/3 1. The conclusion of Theorem holds for any
A > 0, although for the model described below A >- 1.

The TPBVP (1)-(2) arises from a reduction by similarity of the boundary-layer
formulation of the Navier-Stokes equations for the distributions of velocity in a low
Prandtl number fluid zone in the shape of either a floating rectangular slot or a floating
circular disk [2], [3 ]. Here "floating" means that two opposite surfaces ofthe rectangular
cavity are free surfaces and that the two opposite surfaces of the disk are free. The
flow in the low Prandtl number fluid (liquid metal or silicon) is contained by the lateral
solid surfaces and surface tension. A temperature gradient caused by radiation heating
is assumed to exist on the free surfaces. This gradient from the hot midline (center for
the disk) to the cold solid walls (wall) drives the flow. The floating zones are assumed
to be in a microgravity environment, as on the space shuttle, so that the force of gravity
may be neglected. The physical coordinates (x, y) and velocities (u, v) for the slot are
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FIG. 1. (a) The coordinates (x, y) and velocity components (u, v) for a floating slot. One quarter of a

cross-section is shown. (b) The coordinates (x, y) and velocity components for a floating disk. One quarter of
a section made by a bisecting plane is shown. The surface deflection is exaggerated in both figures.

shown in Fig. l(a). For the slot, if (a) the temperature distribution varies as Co+ g(7)
(x/L)" (1/2< m <2), (b) the similarity variable is chosen to be =y/8(x), and (c)
(u, v)=(clx(2"-)/3f’(), (-c2f’(q)+c3f(q))x(’-2)/3) (where the ci are suitably
chosen positive constants), then, provided 6(x) const. (x/L) 2-")/3, the x-acceler-
ation equation leads to (1)-(2) with A (m + 1)/(2m 1) and Q
2(d/L) Re m(2m 1)/3. Here Re is the Reynolds number. For convenience we rename

7 by x in this paper. For the disk, if /= x/d and (u, v)=(-clf, e2rf’), where the ci
are positive constants, then f satisfies (1)-(2) with A 2. The physical coordinates
(x, y) and velocities (u, v) for the disk are illustrated in Fig. l(b).

Numerical solution [2], [3] of the TPBVP (1)-(2) has led to the bifurcation
diagrams shown in Figs. 2(a) and (b) for A 1 and A 2, respectively. The references
to two-cell flow and three-cell flow in Figs. 2(a) and (b) are related to the number of
zeros of f’(x) on (0, 1). If f’ has but one zero, then the u-component of velocity in
Figs. l(a) and (b) changes sign once in each half-zone, which corresponds to a flow
with one cell in each half-zone. But if f’ changes sign twice on (0, 1), then u 0 twice
in each half-zone, and there are three flow cells, half of the middle one lying in each
zone. We have verified only a small portion of the information represented in these
diagrams. For the solutions we have found, f’ always has but one zero on (0, 1).

We prove Theorem 1 using a topological method introduced by Hastings in [1].
We prove Theorems 2 and 3 using the Schauder Fixed Point Theorem [4]. The proof
of Theorem is given in 2, and the proofs of Theorem 2 and 3 are given in 3.

2. Proof of Theorem 1. We divide the proof of Theorem 1 into several lemmas.
In the proof, for a given/3 (0, 1), we let f(x; Q, a) be the solution of (1) satisfying

(3) f(0; Q, a)=if(0; Q, a)+ =0, if(0; Q, a)= a;

we define four subsets of points (Q, a) in R2
+ (0, ) (0, ) as follows"

$1- {(Q, a) If(l; Q, a)> 0}, $2 {(Q, a)[f(1; Q, a)<0}
(4)

$3 {(O, a) If"(1; Q, a) > 0}, $4 {(O, a) If"(1; Q, a) <0}.
Our proof is based on Hasting’s Lemma 3 in [1] and an additional argument in [1,
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FIG 2. Bifurcation diagramsfor a floating slot (problem (1)-(2) with A 1) and thefloating disk (problem
(1)-(2) with A=2)" /3 versus Q 10-3. (a) The slot" (b) the disk.

pp. 106-107]. His lemma is: Suppose Si (i=1,’",4) are open sets of R2+ with
$1 f3 $2 and $3 f’)$4 . Further, suppose there are components Pi c Si such that
P1 f3 P4, P 71P3, P2 f’) P3, and P2 f-) P4 are not empty. Then S S 13 $2 t.J $3 U $4 R+.
If P2 (3 P3 is not empty, then Hastings’ lemma applies. However, we are not able to
determine whether or not P2f’)P3 =. If P2fq P3 =, we follow Hastings [1, pp.
106-107] to construct and use a nonempty, unbounded, connected subset Wc $212 $3
to show that for each/3 (0, 1) the complement of S in R2/ contains at least one point
(Qo, c0) that corresponds to a solution of (1)-(2). We observe that several times in
the sequel we use the same symbols Pi for a component of S and for a subset of that
component. For brevity, we denote solutions of (1)-(3) simply by f(x), suppressing
their dependence on Q and c.
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It is obvious that Si (i= 1,..., 4) is open, S f3 S2 --, and $3 f3 $4 . We first
prove that S is not empty and that, if a > 1, then f is positive everywhere on (0, 1).

LEMMA 1. Ifa> 1 and 0</3 <1, thenforanyQ>O, (Q, a)S1 (S #),f’(x)>=O
on [0, 1 ], andf is monotonic increasing, on (0, 1).

Proof Choose a > 1 and 0</3 < 1. Then f(0)f"(0)-< 0, and

(5) f’" >- fl + Off’) >- > O

as long as ff"<-O. Integrating (5) twice and using (3), we find that

(6) f’(x) >= x2/2 x + > x2/2+ (-x + 1) > 0.

Consequently, if a > 1, then f’> 0 so long as ff" <- O. Thus f’(x) >- 0 for 0_-< x <- 1. If
not, f’(x) < 0 for some x e (0, 1). Then there exists an Xo, the first zero of f’ at which
f"(Xo) < 0 and f(xo) > 0. We claim that ff"<= 0 on (0, Xo). If not, since f> 0 on (0, Xo)
there is an x3 e (0, Xo) with f"(x3) 0 and f’"(x3) < 0, which is impossible. Hence, ff" < 0
on (0, Xo) and f’(xo)=0, which contradicts (6). Thus, f’(x)>-O on [0, 1], and since
f’(0)=a> 1, f(1)>0. [3

We next prove the following.
LEMMA 2. Each of $4, $1 f3 $4, and $2 f3 $4 is nonempty.
Proof If Q 0, then f"(1; 0, a =/3 1 < 0. Let

f(1; 0, a) > 0; and if c < a, f(1; 0, a) < 0. By continuity of solutions of (1)-(3) in Q,
the conclusions of Lemma 2 now follow.

Remark. What we have actually proved in Lemma 2 is that there exist components
Pi S (i= 1,..., 4) such that P fq P4 and P2 (q P4 are not empty.

In order to show that the union of the four S is not all of Rz
+, we use two

additional lemmas, Lemmas 3 and 4 below. Finally, as indicated in the Introduction,
topological arguments (Hastings ]) will be used to complete the proof of Theorem 1.

LEMMA 3. The set W2 {(Q, a)]Q>0, a>max {(6/Q) /3, (4/Q)/2}}c $3.
Proof By (5) and the hypothesis of the lemma,

f’"=>/3 + O(f’)2 >/3 + Oa/4
as long as ff"<=O and if(x)> a/2. Then integrations give

(7) f"(x) > ( + Oa-/4)x- 1

and

(8) f’(x) > 1/2( + Qa/4)x x + a.

Since ce > (6/Q),/3, (fl 4- Qa2/4)x-x + ce > 2a/3 for x [0, 1]. Iff(x) > 0 andf"(x) =<0
for x [0, 1], then f’(x) > eel2 for x [0, 1]. Otherwise there must be an interval [0, x*)
such that if(x)> a/2 on [0, x*) and f’(x*)=a/2, which is impossible since
(6/Q) 1/3, which implies f’(x)>=2a/3 on [0, x*). By (7), however, if f(x)>=O and
f"(x)<=O for x[0, 1],f"(1)>(fl+Qa/4)-I >/3>0 since a>-(4/Q)l/2>o, which is
a contradiction. Thus there must exist an x. 6 (0, 1), such that f"(x.) > 0, which implies
that f"(1) > 0, because wherever if(x) O, f’"(x)

LEMMA 4. The set W {(Q, a) Q > O, 0 < a < fl/64} c S (_J $3.
Proof Let Q and a be given in W1. Iff(1) < 0, (Q, a) S, and we are done. We

shall therefore consider the following cases.
Case 1. f(1)->0 and there exists an x (0, 1) such that f(x*) <0. Then it must

be that f"(1) > 0. Otherwise, f"(1) -< 0 and f(1) -> 0 would imply that there would be
an Xl (x, 1) such that f"(Xl) =0 and f’"(x)<0, which is a contradiction of the
differential equation (1) at x. Therefore, (Q, a) $3.
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Case 2. f(1) >_- 0 and f(x) >-_ 0 on [0, 1).
Iff’(1) _-< 0, then f’(x) <-_ 0 for all x [0, 1 ]; otherwise there is an x where f’(x) 0

and f’"(x) < 0, which is a contradiction as above. Hence f’"(x) >- Q[f’(x)]2 + >- for
all x [0, 1]. We consider two subcases.

(i) There is an x2 (0, 1/4) such that f"(x)=-]/3. In this subcase,

x2+l/2fm(x) dx f’ x2 -}- -ft(x2) /,
and hence f’(x +1/2) > 1/2/3 +f’(x2) fl > O, which is a contradiction.

(ii) f’(x)<--/3 for all x (0, 1/4]. In this subcase,

f’(x) <- -x+ a (x (0, 1/4])
so that

f(x) <- -(/x2/8)-1t- olx x(-x/8 v /3/64).

Hence f(1/4) < 0, which contradicts the main hypothesis that f(x) _-> 0 on [0, 1). Therefore
f"(1)>0, and (Q, a)eS3.

Case 3. f(1) < 0. In this case (Q, a)
An important consequence of Lemma 3 is that $3 has a nonempty component P3.

Moreover, there is a component P1 of $1 such that P1 gl P3 # . To see this, consider
the quarter-plane

Wo {(Q, a)lO> Oo, a> 1}.

By Lemma 1, Wo c S. But S f3 S . By Lemma 4, Wo must contain points in a
component P3 of $3, and P f-i P3 # .

In like manner, by Lemma 4, we conclude that W contains at least a subset of
a component P2 of $2; hence by Lemma 2 P2 f-I P4 # .

Using Lemmas 1-4 and the last paragraph, we can sketch portions of the four
sets Pi as shown in Fig. 3. If we now define W= W1 U W2, an argument essentially
identical to the one in [1, pp. 106-107] completes the proof of Theorem 1. (The reader

max {(6/Q),/3, (4/Q)l/2}

Wlc S2 (.J S3

FIG 3. The sets S1, S3, $4, and S J S

a=l

=/3/64
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should identify our W, P1, P2, P3, P4, Sl, S2, S3, and S4 with Hastings’ W, R1, Q1,
Q2, R, T, $1, S, and T4, respectively.)

3. Proofs of Theorems 2 and 3. We begin with the proof of Theorem 2. Let Q > 0
be given and fixed. It is sufficient to prove

(9) f(a)(x) + 2Qff’"= 0

has a solution satisfying the boundary conditions (2). Let

D-{f[f Ca[0, 1],f(0)=f(1)= 0,-1 =f"(O)<-_f"(x)<=f"(1)=O,

and O<=f(x) on [0, 1]},

where C2[0, l] is the Banach space containing all real-valued functions f twice con-
tinuously differentiable on [0, 1] with [[f[I sup (If]) +sup ([f’[) +sup (If’l) over [0,1].
Then

(i) D is a closed, bounded, convex subset of C[O, ]. Ifwe integrate the differential
inequality for f"(x) twice and use f(1) =f(O) =0, we find that -1 <-_ -x + a <-f’(x) <-_ a

(a >0 since if a =f’(O) < O, O-_<f(x) <0,and O<-f(x)<-ax<-_1/2, where 0< a =f’(0)-<_
which is a contradiction).

(ii) D contains nonzero elements; for example, x(x- 1)(x 2)/6 D.
We now define a mapping T with domain D as follows. For f D, T(f)=f*,

where f* satisfies

f*() + 2Qff*"’= O, f*(O) =f*(1) =f*"(O) + 1 =f*"(O) O.

We will show that T is well defined, maps D into D, and is compact. Then Schauder’s
Fixed Point Theorem [4] will apply to T; and, for each Q > 0, the fixed point will be
the desired solution of (1)-(2).

For any given f D, the unique solution and its derivatives are given by the
formulas

(10) f*’"(x)=cew(x),

(11) f*"(x) c e w(’) ds 1,

(12) f*’(x) c e w(s) ds- 1 dv + af,

Io’ {Io }(13) f*(x)= cew(s) ds-1 dvdu+afx,

where

(14) w(x) -2Q f(t) at

and

(15) 1 < c =f*’"(0) e w(s) ds <-s-Q1--e

by (10) since 1/2 >-f(x), and af=f*’(O) is uniquely determined bythe conditionf*(1) =0,
namely

}(16) olf 1 c ew() ds dv du.
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The above formulas show that f* Tf is well defined and continuous for f D.
Since 1/2 >=f(x) >- O, Q/[1-e-]>=c=f*"’(O)>=f*’"(x)>-f*’"(1)>O by (10), (14), and
(15), and f*’" is decreasing for x increasing. Further, -1 <f*"(x)<-O, and f*" is
increasing for x increasing. From (16) it follows that ay <- 1/2. Integrating the inequalities
for f*" and using the boundary conditions satisfied by f*, it follows that 1/2-> asx >-
f*(x)>-O and -l <- -x q- af f*’(x) <- af <- 1/2. Hence, f* D.

We next show that T is compact, namely, that T(K), the closure of T(K), is
compact for every closed, bounded subset K of D. Let K be a closed, bounded subset
of D, and let {f} be a sequence of functions in K with images {f*} under T. Then
If,*"l <-- Q/[1 e-], [f*"[-< 1, If,*’l--< 1, and [f,*l <-- 1/2 on [0, 1] for each i. Therefore, the
f*, f*’, and f*" are equicontinuous on [0, 1 ]. Hence, by the Arzela-Ascoli Theorem,
there exist a subsequence {f,*()} of {f} and age T(K) such that [[f,*(-g[I-0 as
ieo. Thus T(K) is compact. Hence, by Schauder’s Theorem [4], T is a compact
operator from D into D, and there exists a fixed point fo of T, which by (10)-(16) is
a solution of the TPBVP (1)-(2) for the given Q>0, and for which /3=
f’"(O)-Q[f(O)]Z=f’"(1)-Q[f(1)]. By (15), < c; and, since 1/2>_-f(x)_->0, by (10),
f’"(1) _-< 1. Moreover 0 <f(0)< 1/2. Therefore, 1 >/3 > 1- Q/4. This completes the proof
of Theorem 2.

In the proof of Theorem 3, we again use the subset D of C2[0, 1], with the usual
C-norm, used in the proof of Theorem 2. Recall that D is closed, bounded, convex,
and nonempty, and that, integrating the inequalities for f"(x) and using f(1) =f(0) 0,
we obtain the bounds -1 <-f’(x)<-- and O<-f(x)<-1/2x<-_1/2. In the case considered A= 1
so that the differential equation (1) is: f’"+ Q[ff"-(f,)2] =/3. The map T from D into
C[0, 1] now is the following: Tf=f*, where f* is a solution of the linear TPBVP

(17) f*(’+Qff*’"-Qf’f*"=O, f*(O)=f*(1)=f*"(O)+ 1 =f*"(1) 0.

Note that f*((1) =0 for a solution of (17) since f(1) =f*"(1) =0. To show that T is
well defined we use a backward shooting method to solve the related second-order
TPBVP

(18) H"+QfH’-Qf’H=O, H(0)=-I, H(1)=0.

Then we shall set f*" H, and integrate f*" twice, using f*(0)=f*(1)=0 to determine
f*’(0) so that f* will lie in D.

Let H’(1)= h. We differentiate (18), multiply both sides by the integrating factor
exp [w(s)], where

w(s)=-0 f(t) dr,

and integrate both sides from one to x, using the boundary condition H"(1)=O
(f*((1) 0 implies H"(1) 0). The result is

I(19) g"(x) e w(s)= Q f"(s)g(s) e w(’) ds.

Therefore if h < 0, H(x)> 0 for x near one, and hence H"(x)> 0 near one. Indeed,
by (19), H"(x) > 0 so long as H(x)> 0. Thus (19) and A < 0 imply that H(0)> 0. Since
we want H(0)---1, we proceed further. If h--0, then H=0 (the solution of the
backward linear initial value problem is unique). Consequently, we try h > 0. Then
since H(1) 0, H(x) < 0; and, by (19), H"(x) < 0 for x close to one. Now we conclude
from (19) that H"(x) < 0 so long as H(x) < 0. Thus H(0) < 0. Indeed, H"(x) < 0 on
(0, 1) implies H’(x)-> h on [0, 1]. Integrating this inequality from zero to one and
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using H(1)= 0, we obtain H(0)_-<-A. Thus for h 1, H(0)_-<-I. Since H is a solution
of a linear initial value problem (going backward from one), H is continuous in h.

Therefore, since for h =0, H(0) =0, and for h 1, H(0)_-<-I, there must be a ho on
(0, 1] such that H(0) =-1, as desired. Moreover, for H’(1)= ho, H’(x)->-ho> 0, since
H"(x) < 0 on (0, 1). Thus H"(x), -H’(x), and H(x) are negative on (0, 1). Therefore,
H(x)=f*"(x) monotonically increases on [0, 1] and -l<-H(x)=f*"(x)<=O for x
[0, 1]. By repeated integration of (19) from one to x, we can choose f*(1)=0 and
f*’(1) so that f*(0) 0. Then, integrating -1 <_-f*"_-< 0, we obtain the bounds on f*’
and f* required forf* to lie in D. Since the TPBVP (18) is linear, the function H =f*"
satisfying (18) for h ho is unique and depends continuously on f. It follows that
f*-Tf is unique and depends continuously on f. Consequently, T is a continuous
map from D into D. That T is compact would follow from uniform bounds on f*’",
f*", f*’, and f*. We have established these bounds except for a uniform bound for
[f*"’(x)[. We have a lower bound for H’ =f*’", namely H’(1)= ho>0.

The parameter Q > 0 is given and fixed. Differentiating (18), we see that H’"+
QfH"- Qf"H 0; and hence H’"= Qf"H QfH >- O. Therefore, 0 -> H"(x) >- H"(O) on
[0, 1]. From (18) we conclude that H"(0)=-Qf’(O)>-_-Q/2; hence 0--> H">--1/2Q, and
-1/2Qx + c <- H’ <-_ c, where c H’(0) =f*’"(0). Now, H(0) -1 implies that -1/4Qx2 + cx
l<=H<-_cx-1. Applying H(1)-0, we find that -JQ+c-l_-<0 or l+c<-zQ, and
c- 1 _-> 0. Thus, since 1 -> ho > 0, ]H’] If*’"[ --< 1 +zQ.

We now can assert that T is compact as a map from D into D. Schauder’s Theorem
[4] thus applies to T, and there exists a fixed point fo D which satisfies the TPBVP
(17). Integrating the differential equation of (17) from zero to x yields

f’’ + O[fof’- (f)2] =/3,

where =f’d’(O)-Q[f’o(O)]Z=f’d’(1)-Q[f’o(1)]. Since this solution lies in D, 0<
f(0)_-<1/2. We also proved that f’(1) =fo*"(1) > 1. Thus 1 >/3> 1-Q. This completes
the proof of Theorem 3.

Acknowledgments. We most sincerely thank Professor S. P. Hastings for his interest
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EQUATIONS SURQUADRATIQUES ET DISPARITION DES SAUTS*
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Abstract. The following question is answered : Under which conditions on f can the solutions of
Ex" = f (t, x, x'), 8 infinitesimal, have jumps, and under which conditions will they never have jumps? To do
this a nonstandard approach is used called "la methode du plan d'observabilité," which was introduced in
[SIAM J. Math . Anal ., 17 (1986), pp. 533-559] . The results are applied to explain the vanishing of a lirait
cycle and also the disappearance of the solution for some boundary value problems .
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Nous nous interesserons ci-dessous aux solutions x(t) d'une équation différentielle
du second ordre singulièrement perturbée

(1)

	

rx" =f(t, x, x')

où E > 0 est un nombre fixé infinitésimal et f une fonction interne définie dans ~3 est
suffisamment régulière pour que l'équation différentielle possède la propriété
d'existence et d'unicité des solutions .

On sait que les solutions de cette équation adoptent alternativement l'un ou l'autre
des deux comportements suivants :

D'une part un comportement qu'on peut qualifier de lent, correspondant à des
phases pendant lesquelles la vitesse reste limitée et donc au cours desquelles la solution
x(t) a une ombre continue x o(t) . Dans ce cas, en tout point t où elle est dérivable,
l'ombre satisfait l'équation réduite f (t, x, x') = 0, obtenue en remplaçant r par 0 dans
l'équation .

D'autre part un comportement quasi-discontinu correspondant à des phases
pendant lesquelles, la vitesse atteignant des valeurs non limitées, la solution "saute"
brutalement d'une phase lente à une autre phase lente .

Dans un article récent [3], nous avons montré de quelle façon on peut étudier,
pour la plupart des équations (1), les sauts des solutions, leur origine, leur extrémité,
leur épaisseur. Dans le présent article, nous nous proposons de préciser quelles
conditions doivent être vérifiées par f pour rendre possible la présence de sauts dans
les solutions et de quelle façon, lorsque ces conditions ne sont pas remplies, ces sauts
peuvent être amenés à disparaître totalement, les solutions ne pouvant plus avoir alors
qu'un comportement lent .

Le problème de la disparition des sauts a été rencontré pour la première fois
probablement en 1952 par Coddington et Levinson [1] dans l'étude du problème aux
limites

EX" = -x ' -x .3

x(0)=a,

	

x(1)=b.

Ces auteurs observèrent que pour a b ce problème n'a pas de solution, si £ est choisi
infinitésimal . Il est facile de voir qu'aucune solution gardant un comportement lent
sur tout l'intervalle de temps [0, 1], ne peut convenir (car pour une telle solution on

* Received by the editors October 22, 1986; accepted for publication August 24, 1987 .
1 Université de Paris X, UFR SEGMI, 200 Avenue de la République, 92001 Nanterre Cedex, France .
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a -x'( t) - x i3 ( t) = 0, et donc x'( t) = 0, c'est-à-dire x( t) presque constante) . L'absence
de solution à ce problème aux limites était donc un signe de rareté des sauts pour les
solutions de cette équation, ce qui a pu paraître étrange compte tenu des seuls cas
bien connus à l'époque, à savoir les cas où f est indépendante de x' ou linéaire en x' .

Cette énigme trouva son explication quelques années plus tard (1960) dans un
article de Visik et Liusternik [6] où il est montré que, lorsque f se comporte, en tant
que fonction de x', comme une puissance x'8, pour x' tendant vers l'infini, il est
nécessaire que s soit inférieur ou égal à 2 pour que les solutions puissent présenter
des sauts .

Nous nous proposons de retrouver ce résultat, et de l'étendre à une classe très
générale d'équations (1) (où f ne se comporte pas nécessairement comme une puissance
de x'), et surtout d'en donner une interprétation géométrique par l'intermédiaire de
la méthode du plan d'observabilité [3] . Nous verrons également le parti qu'on peut
tirer d'une bonne connaissance du processus de disparition des sauts dans l'étude de
problèmes à un ou plusieurs paramètres .

1. Quelques définitions. Voici quelques définitions, introduites pour la plupart
dans [3], qui nous serons utiles pour la suite :

DÉFINITION . Soit v° 0 limité, et soit F : [v ° , +oo[- [W une fonction interne, de
classe S °, continuement dérivable et nulle part infinitésimale . On dit que F est le type
de croissance de f pour les v positifs s'il existe deux fonctions internes a (t, x) et r(t, x, v )
continues et de classe S ° telles que, pour tout t et x limités, on ait

f(t, x, v) = a(t, x)F(v)+r(t, x, v) pour tout v v° et
r(t, x, v)! F(v) = 0 pour tout v non limité .

La fonction a (t, x) est la mantisse de f pour les v positifs .
DÉFINITION . Soit f (t, x, v) une fonction ayant le type de croissance F(v) pour

v y0 . On dit que f est surquadratique pour les v positifs si on a

j

	

v dv/F(v) < +oo.
vo

Remarque. On définirait de la même façon les type de croissance et mantisse pour
les v négatifs ainsi que le fait d'être surquadratique pour les v négatifs .

Exemples . Les équations (1) de la forme ex" = a (t, x)x' + b (t, x) (équations
quasilinéaires) correspondent à une fonction f ayant pour type de croissance (positif
et négatif) F(v) = v (non surquadratique) .

Les équations de la forme ex" = a (t, x) x' 2 + b (t, x) x' + c (t, x) correspondent à une
fonction f ayant pour type de croissance (positif et négatif) F(v) = v 2 (non sur-
quadratique) .

Cependant une fonction f ayant pour type de croissance F(v) = v 2 log v n'est pas
non plus surquadratique .

Par contre l'équation ex" _ -x' -x r3 dont nous avons parlé cidessus, correspond
à une fonction surquadratique puisque son type de croissance est F(v) = v 3 .

Remarque. Dans la suite nous supposerons toujours que l'équation différentielle
(1) est définie par une fonction f ayant un type de croissance pour les v positifs ainsi
que pour les v négatifs (ces deux types de croissance seront presque toujours identiques
dans les exemples) . On se limitera également, sauf mention contraite, au cas des vitesses
positives, celui des vitesses négatives s'en déduisant facilement .

DÉFINITION . Un instant standard t° sera dit singulier pour l'équation
ex" = f(t, x, x') s'il existe un intervalle standard [x 1 , x2 ], tel que pour tout x E [x 1 , x 2 ],
a(t° .x) = 0 .
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DÉFINITION. On dit qu'une solution x(t) : I --> l1 (qu'on supposera toujours limitée)
présente un saut sur l'intervalle [t 1 , t2 ] c I si, sur cet intervalle, la vitesse x'(t) est non
limitée et si x(t 1 ) x(t 2 ) . Si t o est la partie standard commune de t 1 et t2 , on dit aussi
que x(t) présente un saut à l'instant t0 . Enfin un saut à l'instant to sera dit singulier si
to est un instant singulier pour l'équation et si l'intervalle standard [x 1 , x 2] sur lequel
a (t0 , x) = 0 rencontre l'intervalle [x(t 1 ), x(t2)] . Sinon, le saut est dit régulier.

2. La géométrie des sauts : les plans d'observabilité . Pour étudier les sauts des
solutions d'une équation (1), on pense généralement à un changement d'échelle de
temps . En effet un saut étant un passage presque instantané (t1 = t2 ) d'une position
x(t1 )) a une autre position (x(t2 )), il est naturel d'imaginer qu'un changement d'échelle
de temps doit permettre, en "étalant" le saut dans le temps, d'en faciliter l'étude . C'est
l'idée de départ de la plupart des études classiques [4], [5] . Malheureusement, si les
changements de temps auxquels on pense aussitôt, tels que T = t/8, ou T = t//, se
révèlent efficaces pour certains types d'équations (1), comme par exemple lorsque f
est indépendante de x' ou linéaire en x', ils ne conviennent pas pour l'étude des sauts
pour la plupart des autres équations .

La méthode du plan d'observabilité [2], [3], envisage l'étude des sauts d'un point
de vue différent. Il consiste à remplacer l'équation (1) par le champ de vecteurs
lent-rapide de l~3

r e=
1,

x' = v,

ev' = f (t, x, y),

et à étudier les portions de trajectoires de ce champ qui correspondent aux sauts de
l'équation initiale. Avec ce point de vue géométrique (Fig. 1) il apparaît aussitôt que
pour étudier les sauts, qui n'ont pas d'ombre à l'échelle initiale puisqu'au cours du
saut v est non limité, il est naturel de faire un changement d'échelle, de vitesse cette
fois. On pose v = h ( Vie) et on cherche à déterminer h en fonction de f de telle sorte

FIG. 1 . Le champ de vecteur 7/' associé à l'équation (1) est presque vertical hors du halo de la surface
lente S et aussi longtemps que l'ordonnée v reste limitée . On a représenté une trajectoire de : elle présente
une portion lente contenue dans le halo de S, deux portions verticales et un saut contenus dans le halo du plan
t = to au cours desquels la trajectoire passe presque instantanément de la valeur x(t 1 ) à la valeur x(t2) avec
une vitesse non limitée.

Après changement d'échelle de vitesse v = h ( V/ e), le saut reste d'ordonnée limitée. Son ombre est contenue
dans le plan d'observabilité t = to et elle satisfait l'équation (*) .
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que le champ obtenu à la nouvelle échelle soit, après division de ses composantes par
la quantité h ( V/ e ), un champ presque standard intégrable (voir ci-dessous la
démonstration du théorème) . On constate que si f a pour v v o le type de croissance
F(v), il suffit de prendre pour h la solution de l'équation différentielle h' = F(h)/h
telle que h(0) = y0 . A la nouvelle échelle, un saut à l'instant to a pour ombre la courbe,
contenue dans le plan t = t 0 , d'équation

x

(*)

	

V(x) = V(xo)+

	

a(to , ) d
xo

où a (t, x) est la mantisse de f. Les plans t = to dans lesquels viennent se "ranger" les
ombres des sauts à l'échelle (x, V) sont les plans d'observabilité des sauts [2] .

Notons encore que, pour les sauts singuliers, le plan d'observabilité n'est pas
l'échelle adhéquate, puisque, a (t, x) s'annulant pour t = t0 , les sauts ont tous pour
ombre à cette échelle des droites horizontales V(x) = Vo (Fig . 2) . Donc si une trajectoire
issue d'un point de coordonnées limitées à l'échelle initiale présente un saut singulier,
V(x) reste infinitésimal tout au long du saut . L'examen des trajectoires des plans
d'observabilité ne permet donc pas, dans ce cas, de décrire les sauts (origine et extrémité,
par exemple) ni même de prouver leur existence .

3. Disparition des sauts .
THÉORÈME . Soit f (t, x, v) une fonction ayant pour type de croissance pour v > 0 la

fonction F(v) . Supposons F(v) surquadratique et posons Vo = e foi vdv/F(v) . Alors
tout saut x(t) de l'équation différentielle ex" = f (t, x, x') doit satisfaire à la fois :

(a) V(x(t)) = V(x0)+J a(t o , ) d,
(b) V(x(t)) Vo ,

où V(x(t)) est défini par x'(t) = h(V(x(t))/e) avec h'= F(h)/h et h o = vo .
COROLLAIRE . Aucune solution d'une équation différentielle (1) pour laquelle f est

standard et de type de croissance surquadratique ne peut présenter de saut régulier .
Preuve du théorème. La preuve s'appuie sur la remarque suivante : l'équation

différentielle h' = F(h)/h, permettant de déterminer un changement d'échelle h(w)
convenable, a des solutions globales, c'est-à-dire définies pour toutes valeurs de la
variables w, si et seulement si F n'est pas surquadratique . Au contraire, lorsque F est
surquadratique, la solution h(w) de cette équation telle que h(0) = vo est définie sur
l'intervalle [0, w 0 [ où wo = fo v dv/ F(v) et elle tend vers +00 quand w tend vers
w0 = Vo / e .
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F. DIENER

FIG . 2 . Dans le cas d'un saut singulier, la surface S est asymptote au plan t = t o entre x(t i ) et x(t2) . A
l'échelle du plan d'observabilité, le saut a une ordonnée infinitésimale entre ces deux abscisses .



Effectuons le changement d'échelle v = h ( V/ E ) . Le champ v se transforme en

f t' = 1
x'= h(V/E),

(V'=f(t, x, h(V/E))/h'(V/E)

qui a mêmes trajectoires, lorsque v ( = h ( VIE)) est non limité (et donc non nul) que
le champ :

t'=1/h(V/E),
V x' =1

V'=f(t, x, h(V/E))/h(V/E)h'(V/E)

qui est presque égal, lorsque v est non limité, au champ standard de composantes
(0, 1, a (t, x) ), en vertu des hypothèses surf et h. On en déduit, comme dans le cas où
f n'est pas surquadratique [3], que les ombres des trajectoires satisfont l'équation (a) .
De plus, comme h n'est, dans le cas surquadratique, définie que sur l'intervalle [0, V0/e[,
seules les portions de trajectoires de V pour lesquelles V reste inférieur à Vo sont les
images de trajectoires du champ initial (Fig . 3). D'où l'inégalité (b) .

EQUATIONS SURQUADRATIQUES
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(b)
Fio . 3 . Ombres des sauts dans le plan d'observabilité . (a) Cas où f n'est pas surquadratique. (b) Cas

où f est surquadratique (Vo= e f ô v dv/F(v)) .

Preuve du corollaire. C'est une conséquence immédiate du théorème. En effet
dans le cas où f est standard, wo = f vdv/ F(v) l'est également et donc Vo = Ewo
est infinitésimal . De l'inégalité (b) il résulte donc que, à la nouvelle échelle, on a
V(x(t)) 0. Or si x(t) est un saut régulier à l'instant t0, a(to, x) reste appréciable (i .e .,
non infinitésimal), ce qui est impossible compte tenu de l'égalité (a) .

Commentaires. (1) Le corollaire ci-dessus pourrait être reformulé en termes plus
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(2) Les résultats ci-dessus ne disent rien sur l'existence éventuelle de sauts sin-
guliers lorsque f est surquadratique . En fait, de tels sauts peuvent fort bien exister,
comme l'a montré Howes par exemple [4] aussi bien dans le cas surquadratique que
dans le cas contraire. Leur étude complète reste à faire .

(3) Le corollaire ci-dessus est une nouvelle formulation, dans un cas un peu plus
général, des résultats de Visik et Liusternik. Mais, comme ceux-ci, il donne de la
disparition des sauts, lorsque le type de croissance devient surquadratique, l'impression
d'un phénomène discontinu : si le type de croissance n'est pas surquadratique, toutes
les trajectoires standard du champ de composantes (0, 1, a (t, x)) sont ombres de sauts,
s'il le devient, aucune n'est plus l'ombre d'un saut de l'équation initiale . En réalité, la
disparition des sauts lorsque f devient surquadratique, est progressive . Mais pour s'en
rendre compte, il convient de prendre en considération également certaines équations
non standard intermédiaires : plus précisément celles qui sont surquadratiques mais
pour lesquelles wo = fô°° v/ F(v) dv est non limité . L'étude de familles à un paramètre,
proposée au paragraphe suivant, illustrera ce mécanisme de disparition progressive .

4. Exemples de bifurcations liés à la disparition des sauts . (a) Considérons la
famille d'équations autonomes à un paramètre suivante

rx"+(x2 -1)x'W+x=0
où x'désigne la fonction impaire de x' égale à x' s quand x' 0 (étudiée dans [2],
[3]) . Les trajectoires du champ V associé se projettent, puisque l'équation ne dépend
pas du temps, sur celles du champ de vecteurs du plan

x' = v,
sv' _ (1- x 2 ) v is ' - x.

Le type de croissance FS (x) = vs est surquadratique si et seulement si s > 2 . Lorsque
s =1 (équation de van der Pot) il existe un unique cycle limite vers lequel tendent
toutes les trajectoires, à l'exception du point stationnaire x = v = 0. Au contraire lorsque
s est standard et strictement supérieur à 2, les trajectoires restent, en vertu du commen-
taire (1) ci-dessus, équivalentes à leurs ombres à l'échelle initiale : il en résulte qu'il
ne peut y avoir de cycle limite dans ce cas . Comment et pour quelle valeur du paramètre
le cycle disparaît-il?

Dans le plan d'observabilité (x, V), où V est défini par v = h(V/ r) comme
précédemment, les sauts, s'ils existent, ont nécessairement pour ombre les courbes
d'équation

x
V(x) = V(xo ) +

	

(1_ 2 ) d
xo

ou bien encore
V(x) = x - x3/3 + K, K constante .

D'autre part, dès que s est supérieur à 2, il convient de ne considérer que les
portions de ces courbes dont l'ordonnée ne dépasse pas, en valeur absolue,

V0 = rwo = E

	

v/ v s dv = rvo-s/(s -2) .
vo

On peut choisir vo =1. Le cycle limite, qui doit nécessairement, s'il existe,
atteindre la vitesse V = 2/3 (et V = -2/3) comme l'indique la Fig . 4, n'existe qu'à la
condition que s/ (s -2) » 2/3 ; en d'autres termes, il disparaît, en "éclatant" à l'infini,
pour une valeur s o telle que

F. DIENER

so =2+3E/4 .



s-2/E=0

EQUATIONS SURQUADRATIQUES

vwJ
Mais auparavant, alors que le cycle était un attracteur global (excepté pour le point
stationnaire) pour s 2, il existe, dès que s > 2 certaines trajectoires qui ne tendent
plus vers le cycle mais qui tendent vers l'infini . Le nombre de ces trajectoires augmente
progressivement avec s jusqu'à la disparition du cycle .

(b) Le second exemple concerne non plus une bifurcation de portrait de phase
mais la disparition de la solution d'un problème aux limites lorsque le type de croissance
de l'équation devient surquadratique .

Considérons le problème aux limites suivant :
= xx

x(-1) = a,
x(1)=b.

Comme pour l'exemple historique évoqué en introduction, il est facile de voir qu'aucune
solution de l'équation, lente sur tout l'intervalle [-1, 1], ne peut satisfaire à la fois les
deux conditions aux limites, sauf éventuellement si a b, car les solutions lentes sont
presque constantes (x' nul) . Donc lorsque s est standard et strictement supérieur à 2,
ce problème ne peut avoir de solutions si a b. Par ailleurs des études classiques [5],
[4], ou l'examen des sauts dans leur plan d'observabilité, montrent qu'il existe une
solution lorsque s = 1 et même plus généralement lorsque 0 < s 2 . Que peut-on dire
du problème posé lorsque s est supérieur et équivalent à 2?

Dans le plan d'observabilité (x, V), où V = h (v/ 8) comme précédemment, les
sauts, s'ils existent, ont nécessairement pour ombres les courbes d'équation

v
s~2

s - 2/ a appréciable

FIG. 4

FIG . 5

Ixxo

s-2/E=+00

V(x) = V(xo) +

	

d

ou bien encore V(x) = x 2/2 + K, K constante (Fig . 5). D'autre part, dès que s est

\I\1I/II
t\\///

s>2,0« (s-2)/E«+00 .

1133



1 134

Vo = ~wo = r

F. DIENER

b` - a2 = -2e/(s -2)

4b
b'-a'=2e1(s-2) IIIJ2 e	 z

I''iiiiiilÎ~lllllllllllllll~

	

EZ

FIG . 6

supérieur à 2, il convient de ne considérer que les portions de courbes dont l'ordonnée
ne dépasse pas, en valeur absolue,

o
v/v s dv = Evô-s/(s-2) _ r/(s--2) pour v0 = 1 .

Il est alors facile de voir à quelles conditions sur a et b il est possible ou non de
joindre, en longeant une parabole d'équation V = x2/2 + K, un point d'abscisse a à
un point d'abscisse b sans dépasser l'ordonnée r/(s -2) . Plus précisément, pour s fixé,
strictement supérieur à 2, le problème aux limites posé possède une solution si et
seulement si a et b appartiennent à la région hachurée indiquée sur la Fig . 6 . Cette
région tend à recouvrir le plan tout entier lorsque s tend vers 2 et tend à se réduire à
la diagonale a = b lorsque s croît au-delà de 2 .
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SINGULAR SELF-ADJOINT STURM-LIOUVILLE PROBLEMS.
II: INTERIOR SINGULAR POINTS*
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Abstract. The second-order Sturm-Liouville operator

ly [-(py’) + qy]l w

is considered over a region (a, b) on the real line, -c_< a < b =< o, on which the operator may have a finite
number of singular points. By considering over various subintervals on which singularities occur only at

the ends, restrictions of the maximal operator generated by in L2w(a, b) may be found which are self-adjoint.
In addition to direct sums of self-adjoint operators defined on the separate subintervals, there are other
self-adjoint restrictions of the maximal operator which involve linking the various intervals together in
interface-like style.

Key words, singular, Sturm-Liouville, boundary condition, operator adjoint

AMS(MOS) subject classifications. 34A30, 34B05, 34B10, 34B20, 34B25

1. Introduction. This article is an extension of the work of Everitt and Zettl [2],
which dealt with the problem of finding self-adjoint operators of the form

ty [-(py’)’ + qy]/ w

with one interior singular point, or possibly over two disjoint intervals, using singular
Naimark boundary forms [8]. We use the equivalent concrete boundary representation
discussed in [5] and consider finitely many singular points, or perhaps finitely many
disjoint intervals.

The extension to many singular points or many disjoint intervals is done with
relative ease because we use the explicit Fulton-type boundary forms exhibited in [3],
[5], [6] for singular ends. By using these concrete forms, not only are direct sum
self-adjoint operators easily exhibited, but also self-adjoint operators whose boundaries
are linked together are explicitly described. We also bypass the abstract and rather
difficult to use Naimark boundary forms found in [8].

We assume that the terminology of limit-point and limit-circle ends is familiar to
the reader. Classic descriptions may be found in [1], [4], [9], as well as many other
books on differential equations. Essentially limit-point means that the differential
equation

-( py’)’ + qy hwy, Im h 0

has only one independent solution that is square integrable in any local region
containing the singular point. Limit-circle implies that all solutions are locally square
integrable for all A near the singular point.

Regular endpoints may be thought of as benign limit-circle points.
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We can without loss of generality assume that the interval (a, b),
in question is decomposed into four sets of subintervals"

(1) {/})1. Considered on/, is limit-point at both ends.
j.(2) { j}j=l. Considered on J, is limit-point at the left end, limit-circle at the
right end.

(3) {Kj}P=I. Considered on K), is limit-circle at the left end, limit-point at the
right end.

(4) {L}=I. Considered on Lj, is limit-circle at both ends.
DEFINITION 1.1. We denote by DM the collection of those elements y satisfying

the following"
2(1) yeLZw(Ij),j=l,...,m, yeLw(Jj),j=l,...,n, yeLw(Kj),j=l,...,p,

L2w(Lj), j= l, q.
(2) y is differentiable almost everywhere in each Ij, Jj, K, L. (py’) is locally

absolutely continuous in each/, J, Kj, L.
2(3) ly exists in each /, J, K, L by 2, and lye Lw(I), j= 1,..., m, lye LZw(J),

j=l,...,n, lyeLw(Kj),j=l,...,p, lyeLw(Lj),j=l,...,q.
DEFINITION 1.2. We define the operator L4 by setting LMy ly for all y e DM.
The underlying Hilbert space is, of course,

p q

n Y L2w(/)@ E 2 2 2Lw(Kj) E LwLw(Jj) E O) (Lj).
j=l j=l j=l j=l

2. Green’s formulas. In order to properly look for restrictions of LM, Green’s
formula for each of the regions/j, Jj, Kj, L must be developed. It is by using the sum
of these that the restrictions through boundary conditions can be developed.

Let us consider/j, and let (a,/3) be a subinterval of/ with neither a nor/3 an
end of/. It is an easy computation to show that if y, z e DM, then

[$(L4y) -(L4z)y]w dx p[yg’- y’e]l

Likewise it is well known that as x approaches a limit-point end, p[y’-y’5] approaches
zero. In this case, therefore,

[(LMy)-(LMz)y]wdx=O, j= 1,..., m.

Now replace / by J. If J=(a,/3), then as a approaches a, p[y’-y’]
approaches zero; but as /3 approaches fl, it does not necessarily approach zero. A
closer look is required. Note that p[y’-y’] can be written as

Let 0, 4 be solutions of ly 0 satisfying p(04’-0’4)= 1. Then

If this is inserted in the middle of the preceding product, the result is

(W(z, o), W(z, 4,))/0/
\ 1 W(y,

where W(f g) p(fg’-f’g).
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Furthermore, since both 0 and b are square integrable near flj, the terms W all
have finite limits as/3 approaches flj. (Use Green’s formula, or see [7].) Hence Green’s
formula over J becomes

fj,

[(L4y) -(LMz)y]w dx O(z, O), Q(z, dp))(0 -Io)( Q(Y’ O) )1 Q(y, oh)

where Q replaces W to indicate the limit has been taken as fl approaches .
If the interval is K, rather than , then it is the lower limit as a approaches a

that remains. With the limit-circle case holding at the lower end, therefore,

{(LMy)--(LMz)y]w dx=-(Rj(z, 0), R2(z, b))
R2(y, b)

where R replaces W to indicate the limit has been taken as a approaches aj.
Finally if the interval is L2, limiting terms at both ends remain. If S indicates a

limit at , and T a limit at a, then

[e( (]x (s(, 0, s(,
c, s(,

Green’s formula over all of (a, b) is the sum of these. If we let {.,. denote the
inner product over H,

( g)= E #fw dx + gfw dx fw dx + fw dx,
j=l l j=l =1 j=l

then summing the previous expressions, we get the following theorem.
THEOREM 2.1. Let y, z DM. en,

(Ly,z)-(y, LMz)= (Q(, 0), Q(z, ))(01 -10) ( Q(y’ 0,)
2 ((, o, (, 0(, o
= Qj(y, )

=1 1 S;(y, )

= 1 0 (y, )
This is Green’s formula over all of (a, b).

3. General boundary conditions. The sums involved in Green’s formula may be
more eciently handled by the use of additional matrix notation. Let B(y), B(z), and
J be defined as follows:

B(y)=(QI(y, 0)... Q(y, O),Rl(y, O) Rp(y, ), SI(y, O) Sq(y, ),

l(y, 0)... (y, 6))
() (Q(z, 0)... Q(z, 6),R,(z, 0)... R(z, 6), Sl(Z, O) S(z, ),

rl(Z, 0)... (z, 6))
Here 0 and terms alternate, giving first Q, then R, then S, then T terms.
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where

J1 0 0 0

0 J3
0 0 J4

consists of n blocks of

consists of p blocks of -J. J3 is like J1, but consists of q blocks. J4 is like J:, but
consists of q blocks.

THEOREM 3.1. Green’s formula for y, z DM is

(Lwy, z)-(y, Luz)= B(z)*JB(y).

General boundary conditions involve linear combinations of terms Qj, Rj, Sj, T,
or, more concisely, combinations of the entries in B(y). These are introduced by matrix
multiplication.

Let M be an r x (2n + 2p + 4q) matrix, rank M r. Let N be a (2n + 2p + 4q r) x
(2n + 2p+ 4q) matrix, rank N 2n + 2p+ 4q-r. Let (M) be nonsingular.

Likewise let P be an r x (2n + 2p + 4q) matrix, rank P r. Let Q be a (2n + 2p + 4q
r) x (2n + 2p + 4q) matrix, rank Q 2n + 2p + 4q r. Assume also that

THEOREM 3.2. Green’s formula for y, z Du is

(Luy, z)-(y, LMz)= [PB(z)]*[MB(y)]+[QB(z)]*[NB(y)].

The proof consists of substituting for J, and carrying out the matrix multiplication.

4. Restrictions of LM, self-adjointness. We are now in a position to restict LM by
the imposition of boundary conditions.

DEFINITION 4.1. We denote by D the collection of those elements y satisfying
the following:

(1) y DM;
(2) MB(y) O.
DEFINITION 4.2. We define the operator L by setting Ly ly for all y D.
DEFINITION 4.3. We denote by D* the collection of those elements z satisfying

the following:
(1) z DM;
(2) QB(z)=O.
DEFINITION 4.4. We define the operator L* by setting L*z lz for all z in D*.
We have abused notation here because traditionally L* denotes the adjoint operator

in H. We clear this up immediately.
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THEOREM 4.5. The adjoint of L in H is L*. Likewise the adjoint of L* in H is L.
Proof It is well known that the form of the adjoint of L is (see [6]). Green’s

formula shows that if MB(y)=0, while NB(y) is arbitrary, then QB(z)=0.
Conversely, the operator with form lz and domain D* is clearly contained in the

adjoint of L. So the adjoint is L*.
We show that (L*)* is L in the same way.
There are parametric forms for the boundary conditions as well. In order to

characterize self-adjointness, these forms are used here.
We have

where A is arbitrary. If this is multiplied by -J(P*, Q*), then since j2_-I,

or

B(y) -JQ*A.

This parametric boundary condition is equivalent to MB(y)=0.
Likewise, if

B(z)*(P*, Q*) (r*, 0)

where F is arbitrary, then postmultiplying by -() J yields

B(z) =JM*F

as the adjoint parametric boundary conditions, equivalent to QB(z)=0.
THEOREM 4.6. L is self-adjoint if and only if r n +p + 2q and MJM* =0.
Proof If L is self-adjoint, then the number of boundary conditions for L and L*

is the same. Hence 2n + 2p + 4q-r r. Furthermore, z must satisfy the D boundary
condition, so

MB(z) MJM*F 0.

Since F is arbitrary, MJM* =0.
Conversely, if r n +p+ 2q and MJM* =0, then the number of boundary con-

straints is the same. Further, since

we have

and reversing the order,

-J(P*’ Q*)
N I
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This implies -MJQ*= 0. This further implies that there is a nonsingular matrix C
such that Q*= M’C* or Q-CM. Thus QB(y)=O and MB(y)=O are equivalent
boundary conditions.

In view of the connection made in [5], the following statement can be made.
THEOREM 4.7. LetMbe an n +p + 2q) (2n + 2p + 4q) matrix satisfying MJM*

O. Then L, defined by Definition 4.2, is self-adjoint. Conversely, if L is a self-adjoint
differential operator which is a restriction of L4, then there exists a matrix M, with the
above-mentioned properties, such that the domain of L is restricted by MB(y)= 0 as in

Definition 4.1.

5. Examples. Let us assume that m 0, n 2, p 0, q- 0. Suppose that (a, b)
consists of (0, 2) with an interior singularity at x 1. Suppose further that is limit-point
at 0 and 1+, but limit-circle at 1- and 2. Thus J1 (0, 1), J2 (1, 2), and

B(y)= (QI(y, 0), QI(y, dp), Q2(y, 0), Q2(y, 4))) r.
Simple separated boundary conditions are given by MB(y)=0, where

0 0 7

where , , % are real,+0, + 0. This problem is equivalent to the
direct sum of two self-adjoint problems, one on (0, 1-), one on (1 +, 2), joined together.

A new problem in which the intervals are mixed together would be generated by

M=( 1 2310 1 )"
Here, the intervals cannot be separated.

As a second example let m 0, n 1, p 0, q 1. Suppose that (a, b) consists of
(0, 2) with an interior singular point at x 1, being limit-point at 0, limit-circle at
1-, at 1+ and at 2. Thus J1 (0, 1), L (1, 2). Then B(y) is given by

B(y)=(QI(y, 0), QI(y, ), Sl(y, O),S2(y, ), T(y, 0), TI(y, ))
A general set of self-adjoint, mixed boundary conditions is given by

M= 1 3 4 3 5

4 6 8 7 11

We close with two classic examples. First consider the Legendre operator

ly (1- x2)y’) ’.

are limit-point, and no boundary conditions are required at those points. 1 from
either side are limit-circle, however. Thus here, m=0, n= 1, p=l, q=l, J1
(-, -1-), K (1+, ), and L (-1+, 1-).

H= L2(-m,-1)@ L(1, )@ L2(-1, 1).

Boundary terms B(y) are given by

B(y)=(Q(y, 0), Q(y, ),g(y, o),g(y, &),S(y, O),S(y, ), L(Y, 0), L(Y, ))
where 0= 1 in all intervals, =ln((x-1)/(x+l)) on (-m,-1) and (1,), but
=ln((l+x)/(1-x)) on(-1,1).
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With J diag (J, -J, J, -J),

(LMy, z)--(y, LMz)= [PB(z)]*[MB(y)]+[QB(z)]*[NB(y)]

provided (P*, Q*)() =J.
Self-adjointness occurs when MJM*= 0. The simplest case is that of separated

conditions. Since M is 4 x 8, let mll= m23 m35 m47 1, with mij 0 otherwise. The
four boundary terms produced are Q(y, 1)=0, RI(y, 1)=0, Sa(y, 1)=0, TI(y, 1)=0,
which are satisfied by the Legendre polynomials. The projection onto the last component
(in L2(-1, 1)) generates the self-adjoint boundary value problem traditionally associ-
ated with the Legendre polynomials.

The Laguerre operator

ly=-eX(xe-Xy’)

must be considered on L2(-, 0; e-X)@ L(0, oo; e-X). It is limit-point at +, limit-
circle at 0+. Hence m 0, n 1, p 1, q 0. J (-oo, 0), K(0, ).

With A 0, we choose

0=1, = (e/)d, x>0,

0=1, 4) (e/)d, x<0,

to define boundary conditions.

and

B(y)=(Q(y, 0), Q(y, ), R(y, 0), Ra(y, ))’r

Then if (P*, Q*)() J,

(LMy, z)--(y, LMz)= [PB(z)]*[MB(y)]+[QB(z)]*[NB(y)],

and self-adjointness occurs when MJM*= O. For example,

M=
1 0 1

generates a mixed self-adjoint operator on L(-oc, O;
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ASYMPTOTIC SOLUTIONS OF A HAMILTONIAN SYSTEM
IN INTERVALS WITH SEVERAL TURNING POINTS*

HARRY GINGOLD? AND PO-FANG HSIEH:

Abstract. The global asymptotic decomposition of a Hamiltonian system icY’= H(x)Y, as e0+, is
studied. Here H(x) is a Hermitian matrix analytic on I =[a, b] where a could be - and b could be .
Furthermore, I may contain several turning points with various orders of this system. A complete decomposi-
tion for the asymptotic solutions is also given.

Key words, global complete asymptotic decomposition, Hamiltonian system, several turning points,
asymptotic solutions

AMS(MOS) subject classifications, primary 34E20; secondary 34E15

1. Introduction. In the study of a given ordinary differential system, the process
of reducing it to a simpler system by an analytic transformation is an important first
step. This is also true for a system of linear equations depending on a parameter in a
singular way, such as

(1.1) eY’= A(x, e) Y, ’= d/dx,

where e is a small real parameter and Y and A are n x n matrices. If the eigenvalues
of the leading coefficient A(x, O) coalesce on its domain of definition, the simplification
process at the coalescing points, as e - 0, is usually valid only in a small neighborhood
of each of such points. The points where the eigenvalues of A(x, O) coalesce are called
"turning points" or "transition points" of the system (e.g., see Hsieh [7], Sibuya
[14]-[16], and Wasow [19]-[21]). Thus, it is necessary to find the connection formulas
if we want to study the global behavior of the system (e.g., see McHugh [9], Olver
[11], [12], Sibuya [17], Turrittin [18], Wasow [20], [21], and references therein).

The purpose of this paper is to provide a global complete asymptotic decomposi-
tion, as e- 0/, of the matrix Hamiltonian system

(1.2) ieY’=H(x)Y, v/Z--l,
where x is a real variable, e is a parameter given in Go=(0, Co), Y and H(x) are
n x n matrices; H(x) is a Hermitian matrix analytic on I =[a, b]. Here a could be
-c and b could be . Furthermore, the interval I may contain several (but finitely
many) turning points with various (finite) orders. Such differential systems are relevant
to problems in quantum mechanics. The methods presented here and in previous
articles (Gingold [2] and Gingold and Hsieh [5], [6]) assisted in constructing a
counterexample to the adiabatic approximation theorem in quantum mechanics (see
Gingold [3]). This theorem can be found in textbooks on quantum mechanics, such
as Liboff [8] and Messiah [10]. The complete asymptotic decomposition of solutions of
(1.2) to be given here is instrumental in the proof of a modified so-called adiabatic
hypothesis. Moreover, it sheds more light on the relation between transition and
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degeneracy in time-dependent self-adjoint Hamiltonian systems (see Gingold [2]-[4]
and Gingold and Hsieh [6]).

2. Main theorems. In order to formulate our theorems, let
{Al(x),A2(x),’’’ ,,(x)} be eigenvalues of H(x) with multiplicities nl, n2,"’, n
(n + n2+" "+ n= n), respectively. Moreover,

(2.1) Aj(x) ,k(X), (j k) for x on I.

The point x= Xo on I such that Aj(Xo) Ak(xo) for some indices j and k (j k) is
called a "turning point," or a "transition point," of the system (1.2). The order of zero
of ,(x)- Ak(X) at a turning point x Xo is called the order of that turning point with
respect to the pair of eigenvalues (A, Ak). It is allowed that I may contain several
turning points of (1.2) with various orders.

It is noteworthy that the eigenvalues {A(x), ,2(x),"’, A(x)} of H(x) are real
and analytic on L By a theorem of linear algebra due to Rellich [13] there exists a
unitary matrix U(x) nonsingular and analytic on I such that

(2.2) U-(x)H(x)U(x) A(x)l,,,A2(x)l,,2" "Ao-(X)I,.,,,

/:j by j identity matrix.

Let

(2.3) Y- U(x) V;

then V satisfies the following equation:

(2.4) ieV’= { U-(x)H(x) U(x)- ieU-(x) U’(x)} V.

Before we state our theorems, let

U-’(x)H(x)U(x) A,(x) A2(x),(2.5)

where

(2.6) h,(x) 2t,(x)I,,, A(x) 2t(x) ..(R). .(R) 2t(x)t..
Also denote the partition of the second part of the coefficient of (2.4) according to
that of (2.5)

(2.7) -iu-l(x)U’(x)= [R(x) R12(x)]R21(X) R22(X

Namely, Rll is nl n, R2 is nl (n n), R21 is (n nl) hi, and R22 is (n nl)
(n n). Also, let

(2.8) R(x) [ 0 R_(x)]R2(x) 0

and

(2.9) B,(x, t)-- AI(X) + IR11(x), B2(x e)= A2(x) + eR22(x).

Thus, (2.4) can be rewritten as

(2.10) ieV’= {[BI(x t3)) Bz(x, e)]+ eR(x)} V.

We shall prove the following theorem.
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THEOREM 1. There exist a positive constant e (0 e go) and an n x n matrix

P(x, e) analytic on I x G, such that the transformation
(2.11) V- W[In / P(x, e)]

reduces (2.10) to

(2.12) ieW’= {BI(X 6)( B2(x 6)} W,

where Bj(x, e) are the matrices given by (2.9).
Furthermore, P(x, e) satisfies

(2.13) lim P(x, e)-0 as e tends to 0/.

We shall prove this theorem in 3-5.
Applying Theorem 1 (o--1) times, we can get the following theorem.
THEOREM 2. There exist a positive constant e2 (0 e2 go) and an n x n matrix

13(x, e) analytic on I x G2 such that the transformation
(2.14) V= W[I + P(x, e)]

reduces (2.4) to

(2.15) ieW’= {Bl(X, e)@ Bz(x, e)@. "03 B(x, e)} W

where Bj(x, e) are n x n matrices (j 1, 2,. ., o’), analytic in I x G2, satisfying

(2.16) /j(x, 0)= A(x)I, (j 1, 2,..., tr).

Furthermore, (x, e) satisfies

(2.17) lim/3(x, e)=0 as e tends to 0+.
By the result of Theorem 2, we can obtain the following theorem.
THEOREM 3. Let a be afixed point on L The system (1.2) has a fundamental matrix

(2.18) Y(x, , e)= U(x)E(x, a, e)(x, a)[I, + (x, e)]C

where U x is the unitary matrix given in (2.2),

E(x, a, e) El(x, a, e) E2(x, a, e)... E,,(x, a, e)(2.19)

with

(2.20) Ej(x,

(2.21) (x, a)= xlt(x, a)@xlt2(x, a)@...@(x, a);

2(x, a) is an n2 x n2 unitary analytic matrixfunction on I x G, (j 1, 2,. , or) P(x, e)
is the matrix given in Theorem 2, and C is a suitable n x n constant matrix.

This is a theorem pointed out in Gingold [3]. Its proof will be given in 6.
Remarks. (1) Unlike other decomposition methods (e.g. Sibuya [14]-[16] and

Wasow [19]) where the coefficients of the simplified equation are computed in the
process, we can tell the coefficients Bl(X, e) and B2(x, e) of the simplified etuation
(2.12), i.e., those given by (2.9), from the original equation (2.4). Similarly, Bj(x, e),
(j 1, 2,..., o,) in (2.15) are the corresponding block-diagonal entries of (2.4). As is
to be seen in 6, E2(x, c, e) and xtt2(x, a) (j= 1,2,..., r) can be obtained directly
from solving the differential equations involving the corresponding block-diagonal
entries of (2.4).
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(2) Unlike U(x), which is obtained by finite algorithms from the given system
(1.2), j(x, a) are obtained as solutions of certain differential equations, or as a set
of infinite series.

3. Preliminary reduction. In order to prove Theorem 1, let Z(x, a, e) denote the
fundamental matrix of the simplified system (2.12) satisfying

(3.1) ieZ’= {Bl(X, e)B2(x, e)}Z, Z(a,

where a is a fixed point on L
From (2.10), (2.11), and (2.12), we know that P(x, e) should satisfy the differential

equation

(3.2) iP’= Z-1RZ(I, + P),

or, equivalently, the integral equation

(3.3) P(x, e)= -i z-l(s, , e)R(s)Z(s, o, e)[I + P(s, e)] ds.

Define the integral operator

(3.4) MP=-i z-l(s, a, e)R(s)Z(s, a, e)P(s, e) ds,

and let

(3.5) Po MI.
Then, the integral equation (3.3) can be rewritten as

(3.6) P Po + MP.
In order to have a better estimate of the kernel of this integral equation, we take the
second iteration of (3.6), namely,

P= Po+MI + M2p,(3.7)

where

(3.8)
J Z-’(s, a, e)R(s)Z(s, a, e)

z-(, , (z(, , P(, s,

or, by the change of order of integration,

(3.9)M2p z-l(s, c, e)R(s)Z(s, a, e) as z-l(t, a, e)R(t)Z(t, a, e)P(t, e) at.

0 z-lR1222](3.11) Z-1RZ--
Z-IR21Z1 0

then

Put
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and

[z-lR2Z2P21Z-1R1222P22](3.12) Z-1RZp
ZlR21ZlP11 ZlR21ZlPl2

Thus, by (3.7), (3.9), (3.11), and (3.12), we have the following decoupled equations
for P, (j, k 1, 2):

Pl,(X, e)= Z-’(s, a, e)Rl2(S)Z2(s, a, e) ds

Z’(t, a, e)Rzl(t)Z,(t, a, e) dt
(3.13)

-[" ZI(s, a, e)R,2(s)Z:(s, a, e) ds

Z’(t, a, e)R2,(t)Zl(t, a, e)nll(t, e) dt,

P(x, z-i(s, , Rl(SZ(s, , ds

(3.14) + Z-(s, a, e)R(s)Z(s, a, e) ds

Z(t, a, e)R2(t)Zl(t, a, e)P(t, e) dt,

P(x, z;(s, , R(sZ(s, , ds

(3.15) + Z;’($, o, e)R21($)Z,(s o, e) ds

Z-’(t, a, e)R,2(t)Z(t, a, e)P,(t, e) dt,

P22(x, 8)= ZI(s, 0, E)e21(S)Zl(S , 8) ds

zTl(t, ce, e)R,2(t)Z2(t, a, e) dt
(3.16)

" ZI(s, a, e)R2,(s)ZI(s, a, e) ds

Z-’(t, a, e)R,2(t)Z2(t, a, e)P22(t, e) dt.

We shall prove that there exist the solutions Pk of (3.13)-(3.16), respectively, satisfying
the required properties described in Theorem 1. It is noteworthy that these decoupled
equations (3.13)-(3.16) are analogous to the scalar equations obtained for a two-
dimensional system used in Gingold [2].

4. A .fundamental lemma. In order to prove the existence of the solution Pk of
(3.13)-(3.16) we must have certain estimates of the magnitude of the kernels in their
respective integrals. For this purpose, we must invoke a lemma of ours proved recently
in [6].

LEMMA 1. Let there be given an integral expression

(4.1) J(a, b) r(s, e) exp ie- p(rl) dq ds, a <- a <= b,
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where r(x, e) is in the class CI(I eo) andp(x) is real analytic on I x o. Furthermore,
assume the following"

(i) p(x) may vanish at some points of I, but it is not identically zero in I.
(ii) r(x, e) is uniformly bounded on I G
(iii) Both r(x, e) and r’(x, e) are absolutely integrable over Ifor e in Go.
Then, there exist positive constants K, % and (0 < y < 1, 0 < eo) such that

(4.2)

Remark. As defined in [6], the zero points of p(x) on I are called the turning
points of the integral expression J(a, b).

To simplify the notation, let

(4.3) n n, n n n

In the notation of (3.10) and (3.9), Z(x, a, e) and Zz(x, a, e) satisfy the following
initial value problem:

(4.4) ieZ [A(x) + eR(x)], (a, a, e) I, j 1, 2.

Put

(4.5) (x, a, e)= ,(x, a, e)(x, a, e), j= 1,2,

where (x, a, e) satisfies the equation

(4.6) ie Aj(X)lj, lj(a, a, E) I, j 1, 2.

Since A(x), (j 1, 2) is diagonal in the form of (2.6), we have

(4.7) (x,a,e)=exp{-ie-lfA(s)ds}, j=l,2.

Fuahermore, 2(x, , e) satisfies the conditions

(4.8) i [l(x, a, e)R(x),(x, a, e)]2, 2j(a, a, e)= I.
By the assumptions of A(x) and Rj(x), we know that (x, a, e) are in the class of
C on IIx G (e.g., see Coddington and Levinson [1]). Thus, the entries of
(x, a, e) are also absolutely integrable (j= 1, 2).

Now, by (4.5), let

(4.9)
r(jk))

=1,2,...,, u=l,2,’’’,k (j=l,2).

Since are diagonal and are in the form of (4.7), we know that rk) are finite
sums of the terms of the form

(4.10) r(jk), (jk).up(X, a, e) exp ie- P(jk).o(S) ds
p=l

where each of p(k),o(X) is one of the difference of the diagonal elements of A(x)
and those of A(x), or vice versa. (k,o(X, a, e) are products of the elements of,
Rk, and 2k. Thus (k),o(X, , e) are analytic and bounded for I x Go. Fuhermore,
(k),o(X, , e) and their derivatives, with respect to x, are absolutely integrable on L
Therefore, every element of the matrix ZRJkZk satisfies the assumptions of Lemma 1.

Now, let I1" denote a suitable norm of a matrix. By the use of Lemma 1 and the
discussion above, we have the following lemma.
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LEMMA 2. For each pair (j, k) (j, k 1, 2) there exist positive constants Kjk, dk,
and ejk (0 < dk < 1, 0 < ek <- Co) such that

(4.11)

for all a and x on L and 0 < e < ejk.

5. Completion of the proof of Theorem 1. By applying Lemma 2 to (3.13}-(3.16),
we know that for each pair (j, k) (j, k 1, 2) there exist a positive constant Kk and a
positive function jk(e) such that

(5.1) lim (e)=0 as e tends to 0+,
and

(5.2) k jk(e) + jkek k for x on I and 0 < e < ejk.

Now, choose el sufficiently small such that

(5.3) e min {ek lj, k 1, 2}

and

(5.4) ke<l forj, k 1, 2.

Thus, each of the equations (3.13)-(3.16) defines a contraction mapping for x on I
and e in G,. Therefore their solutions k exist and, fuhermore,

(5.5) I111 %()/(1 %), j, k= 1,2.

Hence, each of k satisfies the relation (2.13), and Theorem 1 is proved.

6. Proof of Theorem 3. In order to prove Theorem 3, let

(x (x ,(x

(6.1) _iU_I(x)U,(x)= [RI.(X). 2(x): 2(x).

where k(X) are n x nk matrices (j, k 1, 2,..., ). Then,

(6.2) (x, )= x(x)I, + (x).
Also, let (x, a, e) be the solution of

(6.3) iw n(x, ), (, , )= ,.
Then the fundamental matrix (2.15) is given by

(6.4) W(x, a, e)= { Wl(X, a, e) W(x, a, e). . W(x, a, e)}G,

where G is an n x n constant matrix. Similar to (4.5), let

(6.5) (x, , )= (x, , e)%(x, ),
where E(x, a, e) is given by (2.20). Namely, it satisfies

(6.6) ieEj hj(x)E, E(a, a, e)= I,.
Since E(x, a, e) is in the form of (2.20), j(x, a) satisfies the equation

(6.7) i R(x)%, %(a, a)= I,.
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Observe first that, for an analytic unitary matrix U(x), U-l(x)U’(x) is anti-
Hermitian. By the facts that the independent variable x is real and the operations of
differentiation and conjugate transposition are commutative, we have

(6.8)
U-1U’]* u-l{ U(u-l) U}]* -[(U-I) U]*

U*[( U-1)’]* U-1 Ut.

Thus, by (6.1), Rss(x (j= 1,2,..., r) are Hermitian. Therefore, by (6.7), Ws (J
1, 2,..., r) are unitary. Hence, Theorem 3 is proved.

7. Concluding remark. By repeating the iterations of (3.6), we have the infinite
series expansion for the matrix

(7.1) P X M"I,,.

As pointed out in [2], by a similar estimate as that given in Lemma 2, there exist two
constants K and d (0 < d < 1), such that

(7.2) JIM"I,, [[-<_ K"e "a, v l, 2, 3,’’’

for all x on I. Thus the series (7.1) represents a generalized asymptotic expansion.
Moreover, it is possible to extract from the series of (7.1), an asymptotic series in the
sense of Poincar6 wherever it exists (compare with [2]).

Note added in proof. By (2.4), (2.14), (2.15), (2.16), and (6.2), the matrix I, +
13(x, e) satisfies a differential equation similar to (6.7). Thus, I,, + fi(x, e) is unitary.
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EXTREMAL PROBLEMS FOR EIGENVALUE FUNCTIONALS II*

DAVID C. BARNES

Abstract. This paper is actually the fourth in a series of works [SIAM J. Math. Anal., 16(1985),
pp. 341-357, 1284-1294; 18(1987), pp. 933-940] whose overall purpose is to develop some variational
and approximation theory for eigenvalue functionals. These functionals are defined by the eigenvalues
of differential operators, of the general form /(.) AN(.). We assume the operators (.) and (.)
have coefficients that depend on some real valued function (or functions) p(x) taken from a class C.
When subject to appropriate boundary conditions, the eigenvalues A become real valued functionals
of p. The functionals are defined on the class C, and are denoted by An (p). In this work we show a new
way to apply the classical theory of variational calculus to the problem of maximizing or minimizing
a function of two (or more) such eigenvalues (An(p), #re(P)). We then give an extensive application
of the example (u, v) min{u, v} to a three-dimensional version of the strongest column problem.

Key words, strongest column, eigenvalue, extremal problem

AMS(MOS) subject classifications. 35P15, 49A99

1. The general theory of extremals for functions of eigenvalues. Con-
sider a vibrating string having density function p(x) with fixed end points. Its char-
acteristic frequencies of vibration are determined by the eigenvalues (p) of the
system

(1) y" + ,p(x)y 0, y(0) y(1) 0, 0 < x < l.

There will be an infinite sequence of eigenvalues/1 (t0) -- /2(t0) -- /3 (P)

__
". Several

works [21],[13],[9] have considered the problem of maximizing and minimizing the ratio
,I(P)/,2(P). Theorem 1 below, with (u, v) u/v, can be used to easily reproduce
the extremal conditions used in those works.

Suppose a number of such strings (and perhaps some rods as well) are all vibrating
together and that they each have density function pi(x), length li and eigenvalues
n(P). The fundamental frequencies of vibration A and the total mass M of the
system are now determined by

li

h min{A1 (pi)}, M pi(x) dx.

One might want to minimize A subject to a given mass constraint. In a similar way,
consider a single large load, being supported by several columns of length l and total
volume V. The critical buckling load of each column is determined by an eigenvalue
problem similar to (1). To maximize the load-carrying capacity of the structure, one
would want to maximize the sum of all of the first eigenvalues for each of the systems.

We will now give a general theory of the extremals for functions of eigenvalues
(n, #m). We will assume, whenever necessary, that the problem under study does
actually have an extremal function, denoted by p* (x). Methods used by Barnes [6] or
Holmhker [11] could, perhaps, be used to give proofs of that assumption.

Received by the editors March 2, 1987; accepted for publication October 10, 1987. This
research was supported by the Northwest College and University Association for Science (University
of Washington) under contract DE-AM06-76-RL02225 with the U.S. Department of Energy.

Department of Pure and Applied Mathematics, Washington State University, Pullman, Wash-
ington 99164-2930.

1151



1152 DAVID C. BARNES

1.1. The necessary conditions. Consider differential operators (-), M(.) of
the general form

m m

i=o j=o

The operators will be linear in y but may be nonlinear in p. Here, the function p
ranges through some class C, and the coefficient functions fi and g. depend on x as
well as the function p(x). We shall use the abbreviated notation fi[p] fi(x, p(x)) for
the various coefficients that are assumed to satisfy appropriate smoothness conditions
and so on. For more details, see [20],[4].

We will be concerned with generalized eigenvalue problems of the form

(2) (p, y) A(p, y), Up(y, p, A) O, p 1, 2, ..., 2m.

We will assume that rn > m’ >_ O. The boundary conditions Up may also depend on
the values of p at x 0 or l, as well as the eigenvalue parameter A.

Now, suppose that two distinct eigenvalue problems of the form (2) are given, so
we have four operators, i(.) and i(’), each with coefficients depending on p E C.
The twoeigenvalue equations are

(3) 1 (t0, Y) ’Jl (P, Y),

Suppose that (I)(u, v) is a given function of u, v. The major problem considered in this
work is the following.

Problem 1. Let C be a given class of functions p(x) and let An(p), #re(P) be
eigenvalues of (3). Find that function p*(x) that maximizes (minimizes) the
functional (I)(An (p), #m (P)) for all functions p C.

The eigenvalues for.these systems are functionals defined on the class C of func-
tions p(x). Let p* be a fixed function in C and suppose that it is smoothly imbedded
into a family of functions pe(x) so that po(x) p*(x). Using methods given by
Barnes [5], we obtain the following theorem.

THEOREM 1. Given functions p*, pe , let y* and y be eigenfunctions for (2),
corresponding to eigenvalues A(p*) and A(pe). Define a functional g(p) on the class
C by

Define boundary terms BT1, BT2, and BT3 by the following equations:

((p*,y),y*) BT1 + (y,(p*,y*) ),
(.M(p*,y),y*) BT2 + (y,(p*,y*) ),

((p,y*),y*)- ,*((p,y*),y*) BT3- J(p).

Suppose that y* is normalized so that

(i(p*, y*), y*) 1,

Finally, define a functional K(p) on by

K(p) )* + BT1 ,*BT2 + BT3- J(p).
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Then

+
* + BT1 A*BT2 + BT3- J(pe) + O(e2).

Thus, the two functionals K(p) and A(p) are tangent to each other at p p*. That
is,

K(p*) A(p*), and, at p p*, 5K .
The term O(e2) is given by

where A(.) (.) -(.)*.
It frequently happens that the boundary terms can be calculated in a simple form

that is independent of the eigenfunction y. If that is so, then Theorem 1 shows that
p* is an extremal of A(p) if and only if it is also an extremal of the functional J(p).
Now J(p) is a classical functional defined on C, and classical methods can be used
to find its extremals. This was the essential idea used in the works [3],[4]. To apply
these methods to Problem 1, we first use Theorem 1 to construct the two functionals
Ki(p) associated with the eigenvalue problems (3). The solution of Problem 1 can
then be found using the following theorem.

THEOREM 2. Suppose that (u, v) satisfies the Lipschitz condition

I(I)(Ul, Vl) (I)(u2, V2)I

__
L( I?l u21 - IVl v21 }

and that y*, z* are eigenfunctions of (3) corresponding to A(p*) and #(p*). Let KI(p)
and K2(p) be the functionals corresponding to (3) defined by Theorem 1. Then the two
functionals (I)((p),#(p)) and O(KI(p),K2(p)) are tangent to each other at p p*.
That is,

(A(pe), #(pe)) (K1 (pe),K2(pe)) + O(e),
(I)(2(p*), #(p*)) (KI (p* ), K(p* )),

5(A(p), #(p)) 5(gl (p), g2(p)) at p p*.

The proof of this theorem follows immediately from Theorem I and the inequality

I((p), #(p))-(g (p), gu(p))l <_ L( IA(pe)-gl(pe)l-}-I(p)-g2(pe)[ } O(eU).

It follows that p* is an extremal of (I)((p), #(p)) if and only if it is also an extremal
of the classical functional (I)(KI(p),K(p)). We may now proceed to find p* using
well-known methods. Incidentally, this theory requires only that the function (I) sat-
isfy a Lipschitz condition, not that it be differentiable as other treatments of the
problem have assumed. This is especially critical for the example (I)(u, v) min{u, v}
considered below.

2. The strongest column in three dimensions. An interesting problem, with
a long history (see, for example, [16],[8],[12],[18],[14],[2]) is to design a column having
a given length and volume, so that, when subject to an axial compressive load, the
critical buckling load is as large as possible. We will now investigate this problem
allowing certain kinds of three-dimensional variation in its cross-sectional shape, and
allowing for three-dimensional supports of the end points. Suppose the column lies on
the x axis, has length l, is perpendicular to the y-z plane and, at x 0, is attached to
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a crankshaft using a journal bearing. The crankshaft is the y axis. Thus, the column
is pinned in the x-z plane but it is clamped in the x-y plane. Suppose that it is pinned
in both planes at x 1.

Let Px be a cross, section of the column, taken by a plane parallel to the y-z plane
at a distance x from it. We will need the two moments of inertia Iy() and Iz(P)
of the cross section defined by

Iy(P) =//D z2 dy dz, Iz Px =// y2 dy dz.

The critical buckling load in the x-y plane is determined by the second eigenvalue A,
of the system [91,[21

u" + ,z.’"’ u o, u(o) + u’(0) o, u() 0,

while the critical buckling load in the x-z plane is determined by the first eigenvalue
#1, of the system

z" + (pX) 0, z(0) 0, (t) o.

For now, we will only consider buckling in these two planes. In 2.4 we will consider
diagonal planes.

We will suppose that, at any given x, the shape_of the cross section P is deter-
mined by using some given geometrical figure, call it , such as a circle or square, and
applying to P a stretching factor, a(x) in the y direction, and b(x) in the z direction,
to obtain the cross section Px. So, for example, if P is a circle, then P will be an
ellipse; if/) is a square, then P will be a rectangle. The quantities a(x), b(x) are
nondimensional variables.

We will assume, for convenience and without loss of generality, that the two
moments of inertia of P satisfy I (P) Iz (P) 1. Indeed, if this were not true, then
we could first stretch P one way or another to make it true, and then simply multiply
a(x) and b(x) by appropriate constants and still maintain the same size and shape for
the column.

We will now map P onto Px using the stretching transformation y a(x),
z b(x). We see that

Iy(Pz) f/p y2 dy dz a3(x)b(x)/ dd= a3(x)b(x).

Similarly, Iz(Px) a(x)b3(x). Thus, we obtain the equations

(4) y" + a3(x)b(x
y O,

(5) z" + z 0,
a(x)b3(x)

(o) + ’(o) () o,

z(0) () 0.

We use the following notation: A(x) is the area of Px, A is the area of P, V is
the volume of the column, and V VIA. It follows that

fo(6) A(x) dy dz a(x)b(x)A, a(x)b(x) dx .
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In order to avoid certain difficulties with singular points [6], we will also assume that
constants H1, H2, H3, H4 are given and that the functions a(x), b(x) are constrained
by the conditions

(7) 0 < HI <_ a(x) <_ H2, 0 < Ha <_ b(x) <_ H4, 1H1H3 < Y < lH2H4.
We let C denote the class of all piecewise continuous function pairs (a(x), b(x)) satisfy-
ing (7). The eigenvalues of (4), (5) are real valued functionals of the pair (a(x), b(x)),
and we denote them by An(a, b), #re(a, b). The critical buckling load in the x-y plane
is determined by ,2(a,b) and in the x-z plane by #l(a, b). If we want the strongest
column, then we need to maximize the minimum of the two.

Problem 2. Let A2(a, b) be the second eigenvalue of (5), and let #l(a, b) be the
first eigenvalue of (4). Find (a*(x), b*(x)) E , that maximizes the functional

min{A2 (a, b), #l(a, b)}
over all (a, b) E C.

We will assume that a solution (a*(x), b*(x)) of Problem 2 exists.

2.1. The necessary conditions for the strongest column. Suppose that we
are given extremals (a*(x), b* (x)) for Problem 2 and let y*, z* be the corresponding
eigenfunctions of (4), (5). To obtain the necessary conditions, we first use Theorem 1
to calculate the functionals Ki(a, b) finding,

(8)
Kl(a, b) 2A y*2(0) a3(x)b(x

K2(a, b) 2# tt z.2 dx.

We now use Theorem 2, with (u, v) min{u, v} to transform Problem 2 into
the following more easily understood problem.

Problem 3. With g, K2 defined by (8) find (a* (x), b* (x)) C, that maximizes
the functional

min{gl(a,b), g2(a,b)}

over all (a, b) C.
In most cases, the extremal (a*, b*) will be such that A #. If not, we could

shave a little mass from one side of the column and paste it onto the other, thereby in-
creasing its overall strength. The only time this is not possible is when the constraints

Hi interfere with this possibility (if, for example, a*(x) H1 for all x). Although it
could be easily done, we will not give the details of the analysis in such degenerate
cases since, with any reasonable choice of Hi, a little working space would be left over.
It would require consideration of various cases, in which we take either a(x) Hi or
b(x) =_ Hi and, one by one, optimize over the other function. Such problems have
been dealt with extensively before. Thus we will assume that K1 (a*, b*) K2(a*, b*).
This relationship can now be used to transform Problem 3 into the following form.

Problem 4. Find (a* (x), b* (x)) C, that maximizes the functional K1 (a, b) over
all (a(x), b(x)) C satisfying the additional constraint gl (a, b) g2(a, b) 0. That
is,

# z,2 " y,2 dx O.2A y*2(0) 2# + a(x)b3(x a3(x)b(x
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This is one example of a class of rather ordinary problems in calculus of
variations. Generally, they are of the following form.

Problem 5. Find p* (x) so that J(p) fo Fo(x, p(x)) dx is a maximum subject to
the constraints,

Fi(x, p(x)) dx for i- 1,2,3,...,N and h

_
p(x) <_ H.

The solution of such problems can be obtained using the method of Lagrange
Multipliers. See, for example, the books by Hestenes [10] or Troutman [20] for the
following theorem.

THEOREM 3. Let F(x, p) be continuous and let p* (x) be a solution of Problem 5.
Then there exist constants 7o - 0 and 71,72,’", 7N, not all zero, such that for all

(9)
max {7oFo(x, p) + 71F1(x, p) +... + 7NFN(X p))}

h<_p<_H

7oFo(x,p*(x)) + 71Fl(x,p*(x)) +... + 7NFN(Z,p*(x)).

Conversely, if a function p* (x) and constants 70 > O, and 71,72,’" 7N exist satisfying
(9) and if the conditions

Fi(x,p*(x)) dx h

_
p*(x) <_ H

hold, then p* (x) solves Problem 5.
We will use the converse part of Theorem 3 and methods similar to those used

in [3],[4] to solve Problem 4. Using p (a,b) and selecting convenient values for
the Lagrange Multipliers 7i we find, after a bit of manipulation, that the extremal
condition for (a, b) as a function of y, z can be obtained as the solution of the following
elementary minimum problem.

Problem 6. For any given y, z >_ 0, find the values of a, b that minimizes the
function r(a, b) defined by

y2 Z2

r(a, b)-- + - + ab,

over all (a, b) in the rectangle H1

_
a

_
H2, H3 <_ b

_
H4.

The minimizing point for r is uniquely defined and is a continuous function of
y, z. Thus we can express the extremal condition for Problem 4 in the general form

(10) a $1 (y, z), b S (y, z).

More precisely, the values for $1 (y, z) and S(y, z) that minimize r are selected from
the following five possibilities.

If the minimum is inside the rectangle, then solving Or/Oa 0 and Or/Ob 0
simultaneously gives

(11) a /2y:/z, b= /2z/y.

If the minimum is on the bottom or the top of the rectangle, then either b H3 or
b Ha and solving Or/Oa 0 gives

(2) a--max{H1, min{H2, Cz2+v/z4-F12b6y2/v/bU}}.
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If the minimum is on the left or right edge then either a H1 or a H2 and solving
Or/Ob 0 gives

(13) b=max{H3, min{H4, /y2+v/y4+12a6z2/a2}}.
Now (10) can now be inserted into (4), (5) to obtain a pair of nonlinear second-

order differential equations for y, z which we write in the vector form

(14) ’= ( (x, ), where (y, yp, z, zp), y’ yp, z’ zp.

The solution of this system will then give a(x), b(x), using (10).
2.2. The numerical solutions. The equations (14) are, for the most part, nu-

merically well behaved. In order to begin the solution of (14) we need four boundary
conditions at x 0. We choose two parameters yo and z and use the given boundary
conditions (4), (5) to obtain the four initial conditions

0, ).
x--0

The three values Yo, z, and A are then used as shooting parameters to satisfy the
two boundary conditions at x and the volume condition (6). This gives a system
of three equations in three unknowns of the form () 6 where

s a), P(s) P

The numerical solution of this problem was quite straightforward. Some canned sub-
routines from the standard computing package CMLIB were used. The initial value
problem (14) was solved using DEBRKF and the subroutine SNSQE was used to solve
the three simultaneous equations/() -g. A simple FORTRAN program was writ-
ten, which defined the equations, called up the subroutines from CMLIB and output
the results. Some computer-generated plots of the extremals are given in Fig. i where
the curves are labeled as follows" 1 is b, 2 is ab, a is a, 4 is z, 15 is , 6 is 1/(aba), and
7 is 1/(aab). An artist’s visualization of this three-dimensional shape is also given in
the left-hand side of ig. 2. The other two columns are the optimal shapes for other
boundary conditions. The middle one is when both ends of the column are supported
by journal bearings where the shafts are at right angles to each other. The one on
the right is when both ends are supported by journal bearings having the two shafts
parallel to each other.

The only real difficulty with the method was that a very good first guess (some-
times to within a0 percent or so)had to be used for in order to get convergence from
SNSQE. Depending on the accuracy of the first guess (if it produced convergence),
it would generally require less than g0 to 60 seconds of CPU time on a VAX-11/750
computer to get the solution when using 100 mesh points.

SNSQE works by simply minimizing the norm of/. This sometimes gave erro-
neous solutions for which the norm was locally minimized but was not small. There
were also invalid solutions having a very small norm, but either y or z had too many
zeros in the interval. Occasional difficulties arose with the calculation of y2/z and
z2/y near x where both vanish. In this case, it was easy to simply recognize that
we should have a(x) H and b(x) H3.

Figure 2 was drawn by Jack Snowden.
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i00- 8O
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4O

FIG. 1. Graphs for the clamped-pinned-pinned-pinned column with H1 H3 .3, H2 H4 oo, 1,
y(0) .2519, z’(0) 1.596, A 5.023, Y .5.

FIG. 2. The shapes of some strongest columns using a square for D.
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2.3. Discussion of the solutions and generalizations. Many results in the
literature (for example, [11,[2 and the references given there) use arguments involving
rearrangements to prove certain kinds of symmetry relationships for the solution of
some extremal eigenvalue problems. Although, the shape of this column (given in
the left-hand side of Fig. 2) is not at all symmetric, it is interesting to note that,
for most choices of Hi, the computed values for the eigenfunction z were observed to
satisfy the relation z(x) z(1- x) to within a few percent. In a similar way, if x*
is the interior zero of the eigenfunction y then the symmetry relations y(x* x)
-y(x* + x) and y(1 x) y(x* + x) are "almost" satisfied. Considering the strange
and nonsymmetrical shape of the column on the left side of Fig. 2, it is, on the one
hand, remarkable that the eigenfunctions displayed such a high degree of symmetry.
On the other hand, this is the optimal shape, so a nearly symmetrical buckling mode
is to be expected. In fact, it was observed that the solutions y, z became more and
more symmetric as H1, H3 0 and H2, H4 ---* (x3. It also appeared that the graph
of the cross-sectional area a(x)b(x) was smooth at the points near x 1/2 where the
other functions had corner points.

There are many different combinations of boundary conditions that could be
imposed on the column besides those considered so far. It could be either clamped,
pinned, or free in either the x-y plane or in the x-z plane at either x 0 or x I.
The extremal condition (10) is the same in any case. The only difference occurs in the
boundary conditions to be imposed on y and z. Figure 2 shows the optimal shapes
for some other possible combinations of boundary conditions.

Suppose we consider the example where the column is pinned in all directions at
both x 0 and x 1. Let us also take H1 H3 0 and H2 H4 oc.2 Because
of the symmetric nature of the problem, the extremals will satisfy a(x) b(x) and
y z. The extremal condition (10) reduces to a3(x)b3(x) 4yz, the singularities
have canceled out, and, using A(x) .a(x)b(x), we see that A3(x) 43y2. When
y is properly renormalized, this is the same extremal condition used by Keller [12].

It is interesting to note that if H1 > 0 and H3 > 0 are fixed, then H2 and H4 will
not impinge on the extremal shapes if they are large enough. That is, the computed
values for the extremal solution a(x), b(x) will automatically satisfy a(x) < H2 and
b(x) < Ha for all x, so we can take H2 Ha oc. Also, if H2 and Ha are fixed
and if the eigenfunctions y, z do not have a common zero, then the lower bounds H1
and H2 will not impinge on the extremal shape if they are small enough. A proof of
these statements can be based on (11)-(13). Another way to think about this is to
hold all the bounds Hi fixed and change V. If V is small enough, then H and H4
will not impinge. If, however, V is large enough and if, in addition, y, z do not have
a common zero, then H1 and H3 will not impinge. If, however, y, z have a common
zero, then H1 and H3 will always impinge. In any of these cases, at least one of the
constraints will always impinge.

2.4. Buckling in other planes. We now propose to consider buckling in some
plane other than the x-y or x-z planes. Suppose that P is a very thin rectangle with
its axis inclined at an angle of 7r/4 to the x-z plane. In this case the column will
clearly not buckle first in either the x-y or x-z planes as expected. We must take care
of this possibility by imposing some further restrictions on the geometry of P.

Let Po be a plane containing the x axis including an angle 0 between Po and the
x-z plane. Let I(x, O) denote the moment of inertia of Px about a line through its

2 One must, however, be careful when using H1 H3 0. There are unexpected problems
associated with such things [6].
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centroid and perpendicular to Po so that

I(x, O) lID rs dy dz, r lY sin 0 z cos 0 I.

It follows that

I(x, O) a3(x)b(x)sins 0 + a(x)b3 (x) coss 0 aS (x)bS (x) sin 20/f
In order to rule out the case of the inclined thin rectangle considered above, and
others like it, we will simply assume that satisfies the condition, ffdd O.

This could be.easily achieved by rotating P in the y-z plane and then renormalizing
it so that Iy(P) Iz(P) 1. It follows that the moment of P is 1 with respect to
any line and that I(x, O) a3(x)b(x)sins 0 + a(x)b3(x)coss 0. Now we see that if 0
moves from 0 to r/2 then I(x, O) is a monotonic function, moving between the two
values a3(x)b(x) and a(x)b3(x).

Suppose the column buckles in the Po plane and let w(x) be the displacement in
the buckled state. At x 0 the boundary conditions on w should be intermediate
between being pinned and clamped. Such conditions are given by

w(0) (1 a)w"(0) + aw’(0) 0, o.

The number a E [0, 1] measures the "hardness" of the support for the column at
x 0 in the P0 plane. It is a function of 0 so that, a a(0). We now introduce
the bending moment v I(x, O)w" and, using the equations given by Barnes [2], we
obtain the boundary conditions and the eigenvalue problem for the determination of
the buckling load in the P0 plane

A
(15) v" + -IxT/, v)"’

v 0, aI(O,O)[v(O) + v’(0)] A(1 a)v(0) v(l) O.

Note that the eigenvalue h occurs in both the boundary conditions and in the differ-
ential equation. In order to ensure that the solution of Problem 2 determined above
really is maximal, we need to guarantee that the column will buckle first in the x-y
and x-z planes and not in any Po plane. To do this we select a value for a ao(O)
so that the second eigenvalue A of (15) is equal to the optimal value A*, determined
above. That is, we make the support as hard as is necessary. Then, ao(O) will define
the lower limit on a for which these solutions are really the optimal ones. It would
be simple enough to calculate this value in any given example using (15).

These observations show one way to deal with buckling in the Po plane. Another
way would be to optimize over each plane Po for any given support function a(O). We
leave that problem for the interested reader to pursue.
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Introduction. This paper is a continuation of a previous work [3] and solves some
of the problems left open therein. The numbering of the sections and formulas follows
that given in [3]. As in the first part, operators of type (,) are considered; see formula
(1.1) and subsequent lines in [3]. The particular factorizations discussed are always
of type (1.3)-(1.4); it is tacitly assumed that these factorizations are global on the
specified interval: [3, p. 162, line 5]. Disconjugacy on a closed interval [a, b], -<_- a <
b _-<+ (closed in the topology of the extended real line), is meant in the sense given
by Definition 3.5. Besides the symbol Dn(a, b) (see Definition 2.1), we use the symbols
Dn[a, b), D,(a, b], and D,[a, b], all of whose meanings are obvious. It must be kept
in mind that the three relationships L Dn(a, b), L D,[a, b), and L Dn(a, b] are
equivalent to each other [6, Lemma 2.3]. On the other hand, L D,[a, b] is in general
a stronger property than L Dn(a, b); for example, the operator d"/dt belongs to
D,(-, +c) but not to D,[-c, +]. The following definition can be useful.

DEFINITION. The symbol D,[a, b] denotes the set of all the operators L Dn(a, b)
such that L has the properties stated in Theorem 3.3.

The locutions "one" or "essentially unique" (in quotes) are used to mean "one
apart from constant factors" when referring to a function, a set of functions, or the
coefficients pi of a factorization (1.3). C.F. is used instead of canonical factorization
for the sake of brevity.

6. Factorizations of second-order operators. We discuss some nonobvious results
concerning second-order operators that clarify the main results in the following sections.

A. A description of all the possible factorizations. Given a linear second-order
operator

(6.1) L2u=-u"+al(t)u+ao(t)u; ai-Lloc(a,b) (i=1,2),

we shall describe all its possible factorizations on (a, b) of type

(6.2) L2u =p2[pl(pou)’] VU ACl(a, b)

for some suitable strictly positive functions pi(t), i= 1, 2, 3.

* Received by the editors December 8, 1986; accepted for publication (in revised form) October 10,
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C.N.R.-G.N.A.F.A.

? Dipartimento di Matematica, Universit della Calabria, 87036 Rende (Cosenza), Italy.
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THEOREM 6.1. If L26 D2(a, b), then for each solution Uo to L2u--0 strictly positive
on (a, b), there exists a "unique" factorization of type (6.2) such that po(t) 1 / Uo(t).
The coefficient Pl in this factorization is given by

(6.3) pl(t) pod(t) exp a(’) dr with tofixed in (a, b),
tO

while p is obviously given by p2( t)= 1/poPl. In particular all the factorizations of the
operator u"+ q (t) u, q Lo(a, b), are given by

(6.4) u"+q(t)U=-uo(t U2o(t) u0(t)>0 on (a, b).

Proof Our simple argument completes the standard one used to show the existence
of a factorization (6.2) (cf. [1, p. 6] or [7, p. 316]). If (6.2) holds true, the function
Uo(t)-= 1/po(t) must be a solution strictly positive on (a, b), whence it follows that all
the possible factorizations can be obtained by considering all the possible choices for
Po. When Po has been fixed, we infer from the identity (6.2) that

Lzu Op[p(pou)’]’ 0

if and only if

(6.5) p(t)[po(t)u(t)]’= constant Vu such that L2u O,

where the constant obviously depends on the choice of u. To derive Pl from (6.5) let
us suppose that u is any solution independent of 1/po (otherwise u( t) c/po( t) and
(po(t)u(t))’-- 0). In this case Liouville’s formula gives

W u(t),po(t =Aexp al(’) d-
to

where A constant 0 and t, to (a, b). On the other hand, direct calculations give

1 ) (pou)’
W u(t),po(t p

whence

(I )(6.6) (pou)’-Apo(t) exp a(-) d-
to

From (6.5), (6.6) it can be inferred that, up to a constant factor, Pl is given by
(6.3).

B. Examples: Constant coefficient operators. In order to illustrate the theorem we
consider the operator

(6.7) L2u u"+ Au’+ Bu where A, B are real constants.

Let rl and r2 be the complex roots of the characteristic equation r2+ Ar + B O.
When r and r2 are not real, then L2 is only disconjugate on sufficiently small intervals
of , while when both r and r2 are real then L2 is disconjugate on (-, +o) and
hence on any interval of . Let us limit our investigation to those cases where the
roots are real.

First case. AZ-4B 0. The operator is

A2

(6.8) L2u u"+ Au’+ u.
4
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(6.9)

(i) If we choose (a, b) (-co, +co), then L2 has only "one" factorization, namely

Lzu =- e-A/Z)’[(eA/2)’)’]
which, by Theorem 2.1, is necessarily a double C.F. of type (I).

(ii) If we choose (a, b)# then, besides (6.9), L2 admits of an infinite number
of factorizations which are given by

e-(A/2)t [ ( e(a/2)tU t](6.10) L2u =-- (a +fit)2

o + fl o + fl ]

where a, fl are such that c + fit > 0 on (a, b). Hence it can be seen that on any fixed
interval (a, b), L2 has an infinite number of essentially different double C.F.s of type
(II).

Second case. A2 4B > 0. Assuming that rl < r2, we have the following three types
of factorizations:

(6.11) L2u =- eq’[er2-q)’(e-r2’u)’] on (-co, +co),

which is of type (I) at -co and of type (II) at +co;

(6.12) L2u =-- er2t[e(q-r2)t(e-qtu)’] on (-co, +co),

which is of type (II) at -co and of type (I) at +co;

(6.13) L2u=--
e(q+r2)t

O eqt + [3 e r2t e(7,7); a e rl’ + e re’

where a, /3 are such that a eq’+fle2’>0 on the chosen interval (a, b). Hence,
corresponding to all the possible couples a, /3 > 0, we obtain an infinite number of
factorizations valid on any interval (a, b), all of which are double C.F.s of type (II)
on (a, b), including the case (a, b) (-co, +co).

C. Theoretical results. The above examples provide a good illustration of the
following general results.

THEOREM 6.2. Let L2 D2( a, b ).
(I) The following properties are equivalent:

(i) Lz D2[a, b];
(ii) L2u 0 has only "one" solution Uo that is strictly positive on (a, b);
(iii) L2 has only "one" factorization on (a, b) of type (1.3)-(1.4), which is

necessarily a double C.F. of type (I).
(II) L2 is disconjugate on [a, b] if and only if it has infinitely many essentially

different double C.F.s of type (II).
In the case where L2 D2[a, b], we can give a complete description of the various

types of factorizations by relating them to a mixed hierarchical system of solutions.
THEOREM 6.3. Let L2 D2[a, b] and let (31, 3) be the mixed hierarchical system

of solutions to L2u 0 such that

31 << 32, -+ a,
(6.14)

32 << 31, -> b.

Then"
(I) L2 has a ("unique") factorization on (a, b) ofform

(6.15) Lu p Pl

which is the C.F. of type (I) at a.
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Similarly L2 has a ("unique") factorization on (a, b) ofform

(6.16) Lu q q

which is the C.F. of type (I) at b.
(II) If is any solution to L2u 0 of type

(6.17) t(t) atl(t)+fl2(t) (a, fl =positive constants),

then L2 has a ("unique

(6.18)

") factorization on (a, b)

L2u=- r rl

which is a double C.F. of type (II).
Proofs of Theorems 6.2 and 6.3. It is known that the operator L2 is disconjugate

on (a, b) if and only if Lu 0 has a solution Uo that is strictly positive on (a, b). Two
contingencies can arise: there exists only "one" strictly positive solution on (a, b) or
there are two linearly independent such solutions (hence infinitely many, essentially
different such solutions). Now the claims in Theorem 6.2 directly follow from Theorem
6.1 by considering that, for a second-order operator, each factorization is a C.F. at
each separate endpoint. In order to prove Theorem 6.3, note that the two functions
al, 2 are strictly positive on (a, b) [3, Lemma 5.5]; hence, by Theorem 6.1, L2 has
"unique" factorizations on (a, b) of form (6.15), (6.16), and (6.18). Let us examine
(6.15), which implies that Lu 0 has a solution v(t)= l(t) io 1/pl, with to arbitrarily
fixed on (a, b). As v and tl are linearly independent, the first relation (6.14) implies
that al o(v), t--> a. This in turn implies that

lim J 1 I, 1
+oo, i.e., +oo.

ta Pl Pl

The claim about (6.16) is similarly proved. Factorization (6.18) implies that t2u 0
has a solution w(t)= (t)tto 1/rl. On the other hand, both (6.14) and (6.17) imply
that is a solution with maximal order of growth at both a and b; this means that
for any solution u to Lu 0 both limt_a u(t)/(t) and limt_b u(t)/(t) exist as finite
numbers (=0 or S0). Hence we infer that both limits

W(t)
im ft 1

to[t-)b] [t-)b]

exist in R. This means that 1/r < +CX3. [’]

In the subsequent sections we investigate to what extent the contingencies described
in Theorems 6.2 and 6.3 hold for nth order operators. In 7 we show that-Theorem
6.2(1) directly extends to nth order operators. In 8 a sufficient condition for the
existence of a double C.F. of type (II) is given. Section 9 shows that the results in
Theorem 6.3, when literally extended to the nth order case, are completely false. For
the sake of completeness we now state a refinement of Theorem 6.2 which is interesting
in the context of this section but admits of no extension to the nth order case.

PROPOSITION 6.4. Let the operator L:, defined by (6.1), be disconjugate on (a, b)
and define

(6.19) Al(t)--- exp al(’) d-
to
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for somefixed to a, b ), the particular choice ofto being immaterial. Then to the properties
listed in Theorem 6.2(I), the following can be added"

(iv) L2u 0 has a solution Uo with no zeros both in a neighborhood of a and in a
neighborhood of b and such that

f dt f dt
(6.20)

A( t)U2o( t) Al(t)U2o(t) +"

If this is the case then L2u-0 has a "unique" solution Uo satisfying (6.20); it
coincides with "the" solution Uo strictly positive on a, b) and is such that

t-* a,
(6.21) Uo << Ul,

b,

for any solution U linearly independent from Uo. The "only" global factorization ofL
on (a, b) is

[Al(t)U2o(t)(uU )’(6.22) L2U=-Al(t)Uo(t) VuACI(a, b).

The easy proof can be based on Theorems 3.3 and 6.2 and is left to the reader.
Some explanations on the statement are needed. It is a classical fact that if L is
nonoscillatory at a b]--which is the case if and only if it is disconjugate on a one-sided
neighborhood of a b]--then there is a "unique" solution ua Ub 0 in a neighborhood
of a [b] such that

(6.23) A(t)u](t)- +o, A(t)u(t) +

(see Hartman [4bis, p. 355]). If ua and u both exist it can happen that u u even
if L2 D2(a, b). Proposition 6.4 provides some characterizations for the contingency
u--u to occur and completes the results in Hartman [4bs, Thm. 6.4, p. 355].

7. Operators that admit of only "one" factorization. This section proves the follow-
ing conjecture made in [3, 3, p. 165]" the operators described in Theorem 3.3 are
those that admit of only "one" global P61ya-Mammana factorization.

THEOREM 7.1. If L D,(a, b) then to the properties listed in Theorem 3.3 the
following can be added"

(2)bi. L has only "one" factorization of type (1.3)-(1.4) on (a, b).
(4)his. If U, 19 are any two nontrivial solutions to Lu =0 such that u o(v), a,

then the relation u o( v), b, also holds true. By interchanging the roles of a and b a
similar result is obtained.

(5)bs. If U, V are any two nontrivial solutions to Lu =0 such that u--- cv, - a, (for
a suitable constant c 0), then the relation u---czv, b, also holds true or another
suitable constant c 0).

The roles of a and b can be interchanged.
Proof The inferences (4)bis ==> (4) and (5)bis(5) are obvious.
(4):=>(4)bis. Let (ua,..., u,) be some fixed double hierarchical system to Lu =0

on (a, b), i.e.,

(7.1) u << u2 << << u, both as - a and as b.

The hypothesis on u, v implies that there exist two indices j, k {1, , n}, j < k,
such that

U CjUj, - a,
(7.2)
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where c, Ck are suitable constants. From (7.1) and (7.2) we infer that u << v both as
ta and as tb.

(5)=>(5)bis. Let (ul,"" ", un) and (vl,..., vn) be two fixed double hierarchical
systems; hence

1,l Ogi)i, --> a,
(7.3)

ui--- flirt, b,

where a,/3 are nonzero constants. On the other hand, for a suitable couple of indices
j, k{1,..., n} we have the relations

(7.4) u auj, a, V’ flVk, a (a, fl # O).

The hypothesis u c v, - a, implies that j k, and from (7.3) and (7.4) we infer
that u c2 v, - b.

(2)bis:=>(2). It is obvious from Theorem 2.1.
(2)(2)bi. This is true for n 2 (see Theorem 6.2). Assume that n =>3 and that

(7.5) Lu P,[P,-I( (pou)" ")’]’

is any global factorization of L on (a, b). We shall prove that (7.5) is necessarily a
double C.F. of type (I) on (a, b). As a first step we show that the contingency cannot
arise: a 1/pl < +c. If it did arise the two solutions

1 1
Uo(t)

po(t)
and Ul(t)

po(t) Pl

would verify the relation u << Uo as t- a and also as b (by property (4)his). But this
is impossible since

lim mb
1 1

> 0 (possibly=
,-.b Uo(t) P Pl

It thus follows that , 1/p +c.
Now we want to show that J, 1/p--+ (i 1,. , n- 1). If this were not the

case, there would exist a number k {1,..., n- 2} such that

(7.6)
1 1
--=+, i=l,...,k, <+.
Pi Pk+

Let us consider the (k + 2) solutions

I’ ffk-’ i=l k,Uo( t)
po( t)’

ui( t)
po( t) Pl Pk

u+,(t)
po(t) pl p

for some fixed a, a < a < b. From (7.6) we infer that

(7.7) Uo << Ul << << /’/k, - a

and also as t- b, by property (4)bis. From (7.7) we infer at once that

’l Ul(t)
lira

Pl t-,b Uo( t)
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Hence it is legitimate to use l’H6pital’s rule in evaluating the following limit:

lim
u2(t) 1 1 1 1

lim lim
t--->b Ul (t) t-b Pl pl t-,b P2

As the limit on the left-hand side is +oo, by (7.7), we derive jb l/p2--+o0.
By iterating the procedure we can show that

b

+oo, i= 1,. ., k.(7.8)
P,

As a conclusive step we investigate the asymptotic behavior, as --> b, of the ratio
Uk+/Uk by two different methods giving rise to a contradiction.

First method. Relations (7.8) allow us to iterate l’H6pital’s rule in evaluating the
following limit:

limUk+’(t)={mb 1 1 1 1 I
t->b Ilk(t) Pl Pk Pl Pk

(7.9) lim
t--> b

1 tk-, 1

P2 Pk

1
lim A > 0 (possibly A +c).
t-->b Pk+l

Second method. By a similar procedure, using (7.6), we can show that

1
lim

U+l(t)_
i 0,

t--->a Ilk(t) m Pk+I

and hence, by property (4)bis that limt_.b Uk+(t)/uk(t)=0. This contradicts (7.9) and
shows that the contingency (7.6) cannot arise; thus the proof is complete. [3

Remarks. (1) Properties (4)bis (5)his mean that the asymptotic behavior of a
solution with respect to another solution is the same at both endpoints. (2) Property
(2)bis has a certain historical interest. From some of the early work on factorizations,
Frobenius [2], Ince [5, p. 125], and others, we get the distinct impression that these
authors unconsciously believed that P61ya-Mammana factorizations were not only
valid for any operator (which is false; see Theorem 1.1), but also "unique" (which is
again false). This naive conviction led Ince to an inconclusive proof. We refer the
interested reader to the introduction in [4], which provides a more detailed historical
analysis.

Example. If L is the constant coefficient operator (4.1), considered on the whole
real line, then L /,[-o, +oo] if and only if its characteristic equation has a root of
multiplicity n, say A. If this is the case then the only "one" global factorization of L
on (-oo, +oo) is given by

(7.10) Lu eXt(e-Attl) (n).

8. Double canonical factorizations of type (II). To extend the result in Theorem
6.2(II) to nth order operators the most natural approach would be to ascertain the
existence of infinitely many double C.F.s of type (II) by proving the natural extension
of Theorem 6.3 to nth order operators. But, as shown by the simple operator d3/dt
(see 9), all such natural extensions are completely false! Hence the legitimate suspicion
arises that not every operator L D,[a, b], n> 2, has double C.F.s of type (II). On
the other hand, there exists one particular case when this contingency is trivially true:
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this happens when L is disconjugate on a larger interval than [a, b], say (a e, b + e),
e > 0. In this case each factorization of L oftype 1.3)-(1.4) on (a e, b + e is obviously
a double C.F. of type (II) on (a, b) as the coefficients Pi are continuous and strictly
positive on the compact interval [a, b]; hence 1/pi < +, i=0, 1,..., n. In this
section we give a less trivial sufficient condition for the existence of at least one double
C.F. of type (II) by imposing a restriction on the nature of one endpoint. We have as
yet no counterexample for the general case and the question still arises whether any
operator L D,[a, b], n > 2, has a double C.F. of type (II), or even an infinity of them.

A. Extension of disconjugate operators. We give some preliminary results concern-
ing the extension of a disconjugate operator to a larger interval.

LEMMA 8.1. Let L be an nth order operator oftype (.) on an open interval a, b) R.
If L is disconjugate on an interval a, fl a, b l, then there exists a positive number e

such that L is disconjugate on (a e, fl + e) c (a, b). (Agreement: cr e ce if a a;
fl + e b f fl b.)

Proof. Coppel [1, Lemma 7, p. 93], outlines a proof when L has continuous
coefficients. In its full generality Lemma 8.1 follows easily from nontrivial results by
Levin [6, 3]. First, let us suppose that fl < b and prove that there exists el > 0 such
that Le D,[a, fl + e]. Suppose, if possible, that L D,[a, fl + e] for each e > 0; as
L e D,[ a, fl by assumption, it follows that fl, where 8 denotes the point conjugate
to a on the right (see the definition in [6, p. 70]). Now Lemma 3.3 [6, p. 71] implies
that L D,[a, fl], which contradicts our assumption. Extensions to the left of the
endpoint a and beyond both endpoints are similarly proved. [1

DEFINITION 8.1. For a given operator L of type (,) on some interval (a, b) the
endpoint a b] is called a nonsingular endpoint if a > -oo b < +oo] and the coefficients
a(t), i= 1,. ., n, in the representation (1.1) are such that

(8.1) a, eL(a,a+e) [a,Ll(b-e,b)]
for some e > 0. Otherwise the endpoint is termed singular.

As an immediate corollary of Lemma 8.1 we obtain the following.
LEMMA 8.2. Suppose that L D, (a, b) and that b is a nonsingular endpoint for L.

Then, in whatever manner we extend the coefficients a( t), i= 1,. ., n, of the representa-
tion (1.1) to the interval (a, +c) by means offunctions di Loc(a, +c), there exists a
number e > 0 such that the operator L, defined by (1.1), where the coefficients ai s are
replaced by di’s, is disconjugate on (a, a + e). (The number e will of course depend on
the particular extension chosen.)

Similar versions of Lemma 8.2 are to be found for cases where a is nonsingular
or both a and b are nonsingular.

B. Double C.F.s of type (II). Where second-order operators are concerned the
property of having infinitely many double C.F.s of type (II) has no relationship to the
nature of the two endpoints. This property holds when both endpoints are nonsingular
or when only one is nonsingular (see the factorizations of the operator d2/dt2 on any
interval - R [3, p. 162]), or when both endpoints are singular as shown by

(8.2) u"+-u’ (at+)2 u

at2 + fit cr + fl/t
(c, fl > O)

on the interval (0, +).
For nth order operators, n > 2, we shall show the existence of a double C.F. of

type (II) when the nature of the endpoints is restricted; the result has been stated
without proof in [3, p. 164].
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THEOREM 8.3. IfL Dn(a, b) and if at least one endpoint is nonsingular then to
the properties listed in Theorems 3.1 and 3.2 the following can be added"

(8.3) L has a double C.F. oftype (II) on (a, b).

Proof Let us suppose for the sake of argument that b is a nonsingular endpoint.
We have only to prove that if L D,[a, b] then (8.3) holds. By Lemma 8.2 there exists
an extension of L, say /, which is.disconjugate on some interval (a,/), /> b. Let~ to
be any number such that b < to < b. As L D,[a, to], Theorem 3.1 implies that L has
a C.F. on (a, to) of type (II) at a. On the other hand, the coefficients of such a
factorization are continuous and strictly positive on (a, to). Hence if we consider this
factorization on the interval (a, b) only, we see that it is a double C.F. of L of type
(IX). [3

9. Counterexamples. The following proposition shows that a direct literal
extension of Theorem 6.3 to nth order operators fails to hold true.

PROPOSITION 9.1. Let L D[a, b] and let (tT1, ., tTn) be the mixed hierarchical
system

(9.1)
tT1 << << tT,, - a,

l’n (< "<< /-1, -- b.

Then"
(1) L admits of global factorizations in the following forms"

(2) Factorizations of Cype (9.2) or (9.3) are in general not unique’’ (hey can even
be infinitely many) and they are not necessarily all C.F.s a some endpoint.

(3) f a() a()+a(t) (, >0), then L admits of global factorizations in
the form

(9.4) Lur r-i r

but it can happen that not even a single factorization (9.4) is a C.F. at some endpoint.
Proo By Lemma 5.5 we may suppose that the functions ,. ., are strictly

positive on (a, b). The second relation (9.1) then implies that the ordered n-tuple
(u,. , u) (, , ) satisfies condition (1.2) on (a, b); see [6, Thm. 2.1]. From
this we infer that for some suitable choice of the constants e 1, the ordered n-tuple
(v,..., v) (, e,..., e) also satisfies (1.2) on (a, b). This in turn implies
that the ordered n-tuple (w,..., w) (, e,. ., e__, e) also satisfies
(1.2) on (a, b). Now the existence of factorizations of forms (9.2), (9.3), and (9.4)
follows from Theorem 1.1. The other claims in the statement follow from an inspection
of the factorizations of the operator da/dt on (0, +); see the next proposition.

PROPOSITION 9.2. All the factorizations of the operator d3/ dt are of the type
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where B(t) denotes, apart from a nonzero constant factor, a generic solution to u’"= 0
strictly positive on the chosen open interval -(9.6) B(t)=Co+Clt+C2t2 (ci=constant);

while A( t) is defined by

(9.7) A(t) (flCo- aCl) + 2( yCo- ac2)t + (yCl-/3c2) 2

and depends on three arbitrary constants a, fl, y which, when B( t) has been fixed, are
subject to the restriction that A( t) > 0 on -.

In particular we explicitly mention the following factorizations on (0, +o):
(1) Apartfrompositive constantfactors all thefactorizations on (0, +o) with B(t) =-

are

(9.8) u’"=-((u’)’)’,

(9.9) u’"=-(t+c)-l[(t+c)2((t+c)-lu’)’] ’, t>0 (c=constant>=O).

(2) All the factorizations on (0, +) with B(t)= are (positive constant factors
apart)

(9.10) u’"=--- 2 t>O,

(9.11) u’"------- t>O,

t(t+c)
(t+c t>O (c=constant>O).

(3) All thefactorizations on (0, +oe) with B(t)= t+ c (c > O) are (positive constant

factors apart)

(9. ’"
(+c[ ,

>o.t2+c \t2+c
Remark. Factorizations (9.8)-(9.12) on (0, +c) prove the claims in Proposition

9.1(2), while factorizations (9.13) prove the claim in Proposition 9.1(3).
ProofofProposition 9.2. The proof is easy only if appropriate devices are employed.

The object is to find all the possible factorizations

(9.14) u"’=- Pa[P2(Pl(pou)’)’]’

valid on some open interval -c N. If (9.14) holds on -, then Po must be of the form

1 1
(9.15) po(t) 2 =B(t)CO -- C + c2

where B(t)> 0 on ft. Once P0 has been chosen, p must be such that the function
d-/p(’) with to arbitrarily fixed on -, is a solution to u’"--0. Hence[1/po(t)],

1 f’ dr

po( ,op(,
+ +

and

1

p,(t)
-[(B(t))-’(ce + Jt + Tt2)]

-(B( t))-2B’( t)(a +t + yt) + (B( t))-’( + 2yt) (B( t))-2A(t)
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whence

(9.16) pl(t)-
B2(t)
A(t)

Once Po and Pl have been chosen we shall show that P2 is uniquely determined
(up to constant factors). Let us first evaluate the differential expression

(9.17) (A(t))-2{[A’(t)B’(t) A( t)B"( t)]u A’( t)B( t)u"

+A(t)B(t)u"}.

On the other hand, by using the explicit expressions for B(t) and A(t), as given
by (9.6) and (9.7), we get

A’( t)B’( t) A( t)B"( t) 2( yc c2)B( t)

and, substituting into (9.17), we obtain

(9.18) (p(pou)’)’=- (A(t))-2B(t)L(u)
where L(u) is the differential operator defined as

(9.19) L(u)=-A(t)u"-A’(t)u’+2(yc-flc2)u,

which satisfies the relation

d
(9.20) d-- L(u) a( t)u’".

By using (9.18) and (9.20) we now evaluate the differential expression

[p2(p(pou)’)’]’= [P2( t)(a( t))-2B (t)L(u)]’
d

(9.21) =[P(t)(a(t))-ZB(t)]’L(u)+pz(t)(a(t))-ZB(t)-d L(u)

[P2( t)(a( t))-2B(t)]’L(u) + p2( t)(a( t))-’ B( t)u’".

From this we immediately infer that identity (9.14) can hold on ff if and only if

p2(t)(A(t))-2B(t) constant on -,
whence (constant factors apart)

A2(t)
(9.22) p2(t)-

B(t)

To complete the proof of Proposition 9.2 a few words concerning (3) must be
added. When we choose B(t) 2 + c (c 0) on some interval then, constant factors
apart, A(t) must take either the form

(9.23) A(t) 2+2At- c (A constant), or

(9.24) A(t)=t.

As c > 0 the polynomial (9.23) has a positive zero for any choice of A; hence it
can never be strictly positive on (0, +). Thus, if we are interested in factorizations
valid on (0, +o), the only admissible choice for A(t) is (9.24).
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We draw the reader’s attention to the fact that the operator d3/dt3, as ensured by
Theorem 8.3, has double C.F.s of type (II) on (0, +c). However these C.F.s are not
oftype (9.5) with B(t) 2 + c (c > 0); the admissible choices for the couple (B(t), A(t))
are in fact a little more involved.
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ON THE CONVERGENCE OF INTERPOLATED ITERATION METHODS*

ERICH NOVAK

Abstract. Convergence proofs are presented for the two iterations f,,+(x)=oAf,(x)+(1-a)f,(x),
0< ce-< and f,+(x)=(Af(x))t .f,,(x) -, 0</3-<_ 1. Here A are special integral operators arising in the
nonlinear elastic deformation of circular membranes and plates.

Three problems are studied. In the first the fixed points Af=f are identical with the solutions of the
circular membrane problem for uniform lateral load and (dimensionless) radial edge tension S, where it is
shown that both methods converge, with arbitrary choice of the starting function fo >- S, provided ce and/3
are suitably chosen.

The second problem concerns annular elastic membranes under the action of axisymmetric surface
load and several types of edge boundary conditions. It is shown how the first iteration method can be used
to obtain statements on the existence of positive solutions.

In the third problem, Af=f represents the solutions of the circular plate bending problem for uniform
lateral load. A conjecture concerning the first iteration method due to Keller and Reiss is proved.

Key words, approximation of fixed points, nonlinear integral equations, nonlinear elasticity

AMS(MOS) subject classifications. 45G10, 47H17, 73C50

1. Introduction. Consider the iteration method xn+l =f(xn) for finding a fixed
point of f The condition If’(x)l_<- R < 1 is sufficient for convergence of the iteration
method. Ostrowski [8] showed that when 1 > R >=f’(x) >- r, then the interpolated
iteration

(I) Xn+l Of(Xn)-k-(1--tX)Xn

converges for the (optimal) choice a 2/(2-r-R) to the unique fixed point of f.
In their work on nonlinear bending of a circular elastic plate, Keller and Reiss

[6] proposed the same iteration for solving a nonlinear integral equation Af=f
equivalent to the plate bending boundary value problem, that is,

(I’) f,+l aaf, + (1 a)f,.

They argued heuristically that (I’) can be expected to converge if the spectral radius
of aA’f+ (1-a)I is less than 1, where I is the identity and A’f is the Fr6chet derivative
of the operator A at the point f Their conjecture that (I’) always converges if cr is
suitably chosen was demonstrated numerically by extensive computations [6], but a
rigorous proof has never been obtained. We remark, however, that the local convergence
of (I’) easily follows from the results of Kitchen [7]. The iteration (I’) has also been
applied successfully in [9] and 10] to the simpler problems of nonlinear deformation
of circular and annular elastic membranes.

In a different context, Amann [1] considered the iteration (I’), where A is an
operator that corresponds to certain Hammerstein type equations. Prior to Amann,
the iteration (I’) has been used by Zarantonello [11].

THEOREM 1 (Amann [1]). Let H be a real Hilbert space, F: H--> H Lipschitz
continuous in each bounded set and monotone, i.e., (Ff Fg, f- g) >= 0 for f, g H and
let K H H be linear, continuous, self-adjoint, and positive, i.e., Kf f) >- 0 for f H.
Then the equation

(1) f+KFf=g or f=g-KFf:=Af

Received by the editors April 21, 1986; accepted for publication (in revised form) August 6, 1987.
? Universit/it Erlangen-Niirnberg, Mathematisches Institut, Bismarckstrasse 11/2, D-8520 Erlangen,
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with g H, has a unique solution f* H. Furthermore, the iteration method

(I’) fn+l aAfn + (1-

fo H, converges tof* for all a > 0 with 0 < a < to provided Ceo is chosen sufficiently small.

2. The circular membrane under uniform load.
2.1. The convergence of the iteration (I’). Consider a circular elastic membrane

subject to a uniform normal pressure and radial edge traction within the nonlinear
F6ppl-Hencky theory of small finite deflection. Then the radial stress is determined
by the following boundary value problem:

(2) y"+3y’/x+2/y2=O (0<x<l)

and

y’(0) 0, y(1)=S>0.

These equations are equivalent to the integral equation

(3) f(x)= S+ k(x, t)q(t,f(t)) at

where q (t, u) u -2 and

(x-2-1)t for t_<_ x,k(x,t)= (t_2_ 1)t3 for > x.

For more details concerning these equations, see Dickey [3], Callegari and Reiss [2],
and Weinitschke [10]. Clearly each solution fs of (2) or (3) satisfies fs* >- S. Hence (3)
is equivalent to

(1) f+KFf=g or f=g-KFf:=Af

where g=S, Ff(t)=.-Max(S,f(t)) -2, and Kh(x)=ok(x,t)h(t)dt. Applying
Theorem to the Hilbert space H which is given by the weighted Lz-norm Ilhll
(1o h(x)Zx dx) /2, we obtain the following result.

THEOREM 2. The boundary value problem (2) has a unique solution f*s and the
iterative method

(I’) f+, ceAf, + 1 x )f,,

fo H, converges for all c > 0 which are sufficiently small.
Next we propose to replace the iterative method (I’) by

1-/3(II) f,+ (af,)/3 f fo>= S,

where/3 > 0 is chosen sufficiently small.
We shall prove that this method also converges to the solution fs. Numerical

calculations of Weinitschke [10] show that (II) converges faster then (I’), especially
for small values of S > 0.

2.2. Some preliminary lemmas.
LEMMA 1. Let S>0 and Ms {f C[0, 1]IS <-_f <= S+ 1/4S2, f monotone decreas-

ing}. Then A(Ms)
_
Ms.

Proof This is an immediate consequence of the fact that A is an antitone operator
in the sense that Af>- Ag for any f-< g.
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Next consider a sequence f. in Ms, and set g. log f.. Then the following
statements are equivalent:

(i) f. is uniformly convergent, limf. =f;
(ii) g. is uniformly convergent, lim g. g logf.

This implies that the iteration (II) is equivalent to logf.+l =/3 log Af. +(1-/3) logf.,
which can be written as

(II’) g,+l fl,g, + (1 fl )g,,

where g log (A(exp g)). We find again that (/s)- ]/s, if we define

//s f C[O, 1]llog S=<f=<log S+-5 ,fmonotonedecreasing

Calculating the Frchet derivative of A, we find

(.,’g)h(x) =-2 1 k(x, t)o( t, exp g(t))h(t) dt
S + Ilo k(x, t)o(t, exp g(t)) dr"

LEMMA 2. Let g Ms. Then we have the estimate

II’g II-<- 2. (1 + 4S3) -1,

where I1" is the operator norm with respect to the sup-norm in C[O, 1].
Proof Calculating II’gll, we find

II’gll sup
2 k(x, t)o(t, exp g(t)) dt

x[o,1] S + k(x, t)o( t, exp g( t)) dt

2. (1- t2)t(exp g(t)) -2 dt

S+ (1-t2)t(exp g(t)) -2 dt"

Since IIA’gll is maximal for g log S, we have [I,’gll-< [IA’(log s)l 2" (1 +4s3)-1.

2.3. The convergence of f.+ = Af.. An immediate consequence of Lemma 2 is the
following theorem.

THEOREM 3. The iterationf,+ Af, convergesfor all S with 4S > 1, that is, S > 0.63.
This result is a slight improvement of [3] mentioned earlier. However, it is known

from [10] that the simple iteration f,+l =Af, converges even for S>0.5609. This
improvement was achieved by replacing the sup-norm by a weighted sup-norm.
Theorem 3 says that A is a contraction with respect to the metric

d(f, h)- sup Ilogf(x)-log h(x)l
xe[0,1]

if 4S3> 1. We may also improve the result of Theorem 3 by using a weighted norm
for A

xE[O,1]

h(x)
w(x)

w(x)>0,

which amounts to taking sup I(logf(x)-log h(x))/w(x) as a metric for A. Computing
the operatornorm of A’g with respect to the weighted norm we obtain with exp g
f Ms, g Ms,

II’gllw- sup f 2k(x, t)o(t,f(t))w(t)
xCo,ll w(x)(S+ I k(x, t)o(t,f(t)) at)

dt.
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Since the function af(t)-2/(b + cf(t)--), a, b, c > 0 is increasing with decreasing f, we
have

=< 11,’ log Sllw sup
8 foto. w(x)(4s + x) k(x, t)w( t) dr.

Similarly as in [10], we attempt to find an optimal weight w so asto make II,’(og s)ll <
for s > So> 0. Thus we wish to have

(x,( (x -g x := -a (4sg + .
We omit the calculations which lead to the value =0.1842 and eo 0.491. Thus we
arrive to the following result.
To 3A. e simple iteration f+ Af converges for all S> 0.491.

Z4. Te eergeee f te terfi (II). We consider operators of the form

where

Lf(x) f G(x, t)f( t) dt

b(x)c(t) for x =< t,
G(x, t)

b( t)c(x) forx>t,

with the following assumptions" b, c C[0, 1] are nonnegative and c(x)= g(x)b(x),
with a nonincreasing function g. We need the following lemma.

LEMMA 3. The operator L is positive-semidefinite, that is, (Lh, h)>-O for all
h L2[O, 1 ].

Proof Let h be a ditterentiable function and set B(x)= o b(t)h(t) dt. It follows
that

Io’io Io’;oG(x, t)h(x)h( t) clt clx 2 c(x)b( t)h(x)h( t) clt clx

2 g(x)b(x)h(x)B(x) dx,

and since (1/2B2) ’= Bbh, we obtain

(Lh, h)= g(1)B2(1) g’(x)B2(x) dx eO.

Now we consider a weighted L-norm

Ilhll- h(x)p(x) dx

where p is a positive weight. If the mapping L=’g, g e ls is given by Lh(x)=
I G(x, t)h(t) dr, then L*h(x)=I G(t,x)p(t)’p(x)h(t) dt and IILII =(,max(LL*))1/2
( G(x, t)p(x): p(t) dt dx) 1/. The quadratic form that is related to L is given by

Lh. h G(x, t)h(t)h(x)p(x) dt dx.
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If/3 ]0, and L flL + (1 fl) I, then

IIL II-< (/IILII /(1-)/2/(1-/) C)/,
where

C =sup Lh. h/h. h.
h0

If C < 1 then Lt is a contraction for all/3 > 0 that are sufficiently small. With L A’g,
f(t) (exp g(t)) -2 and l(x) (S + k(x, t)(exp g(t)) -2 dt)- we have

G(x, t)= {-2/(x)(1 t2)tf(t), X t,
-2(1-x2)’x21(x)f(t)t3, x> t.

The mapping L A’g has the form

Lh(x)=-2 b2(t)c2(x)h(t) dt-2 bl(x)cl()h() de

L2h(x)+ Llh(X),

where

b2(t) =f(t)t3, c2(x) (1 x2) x21(x),

b(x)=l(x), c(t)=(1-t2)tf(t).
The related quadratic functional may be written as Lh. h L2h" h + Llh" h. Using
Lemma 3 we see that L2h. h is negative-semidefinite, if b2/(c2p) is monotone increasing.

LEMMA 4. In the case p(x) x the quadraticfunctional Q(h) L2h" h is negative-

semidefinite for all S > 0 and g Ms.
Proof We have to show that H(x)= b2(x)/(c2(x)p(x)) is increasing

f(x)xS(S+ k(x, t)f(t) dt) f(x)(S+ k(x, t)f(t) dt)
H(x) ="

(1-x2)x 1 -x

yields

2x
H’(x)=-2x-3 t3f(t) dr+ (l_x2) (1- t2)tf(t) dt,

which is nonnegative if f=> 0 is increasing. As the function

X
4

N(x) bl(X)p(x)/ c(x) f(x)(l-x)(s+I k(x, t)f(t) tit)

is not increasing we cannot conclude that Lh. h is negative-semidefinite. We assume
that f(x)= (S + k(x, t)r(t) tit) -2 with a positive increasing function r. As in Lemma
4, it follows that f(x). (1 -x2)2 is decreasing. Since (S+I k(x, t)f(t) dt) is decreasing
too, the function N is increasing at least in those subintervals where X4(1--X2) is

icreasing. Hence N is increasing in [0, x/]. Now we approximate L by a mapping
L such that ((h)= lh" h is negative-semidefinite. We define L1 by

Llh(X -2 bl(X)Cl( t)h( t) dt,

where

f)(x)= b(x)
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for x e [0, 3 and

l(x)=cl(x)’p(x).(b’P(/)) for x >.\ Cl

Clearly blp/c is increasing on [0, 1] and Q is negative-semidefinite by Lemma 3.
Furthermore, we have

th" h
<-_ El II.c sup

hO h’h

Hence

c2<=4 ()l(X)- bl(X))2c(t)gp(x)" p(t) dt dx.

The integral is maximal for f const and e- 0, and we get

I Ix ( 4c----<4
1 -x x4 (1 t)2t2xS: dt dx.

A computation of the integral yields about 0.6, and thus we have proved the following
theorem.

THEOREM 4. Assume that > 0 is sufficiently small. Then the iteration method

f.+l(X) (Af.(x)) f.(x) (-t),
S > O, fo >-- S, converges to the unique fixed point fs of A.

The convergence follows from the contraction lemma with the metric

d(f, g)= (logf(x)-log g(x))x dx

3. Nonlinear boundary value problems for the annular membrane. We consider here
an annular elastic membrane under the action of axisymmetric surface loads and
uniform radial edge stresses or displacements, again within the F6ppl-Hencky theory.
This leads us to consider four different boundary value problems for the nonlinear
differential equation

y" + 3y’/x + 2RZ(x)/y:Z O, 0<a<x<l,

where R is nondecreasing with R(a) =0. We refer to [4], [5], or[9] for a more complete
description of this problem. By means of appropriate Green functions, these problems
can be written as integral equations of the following form"

(4) f(x)= g(x)- k(x, t)go(t,f(t)) dt.

We are interested in positive solutions of (4) and observe that in all four cases the
following conditions are fulfilled:

(i) go: [0, e, oo[ is Lipschitz continuous for every e > 0;
(ii) go(t, .):/ is nondecreasing for each t[0, 1];
(iii) The kernel k is continuous, symmetric, and positive semidefinite, i.e.,

lio

k(x,t)h(x)h(t)dtdx>-_O forallhL2[0,1];

(iv) g is continuous.
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Under these conditions, a positive solution of (4) does not always exist. Although
in many cases it can be decided by means of a priori estimates whether a positive
solution exists, such a decision is not always possible (see [5]). The following theorem
shows that the positive solution of (4) (if it exists) is unique. For a different proof,
see [4]. Moreover we give a method how to decide whether a positive solution exists
and how to construct it. We always assume that the conditions (i)-(iv) are satisfied.

THEOREM 5. Let e > 0 and A L2[0, 1 --> L2[0, be defined by

Then

Af(x)- g(x)- k(x, t)q(t, Max (f(t), e)) dt.

(i) A has a unique fixed pointf (which is continuous);
(ii) f can be obtained by means of the iteration

(I’) f,+ aAfn +(1 a)fn,

where fo is arbitrary and a > 0 is sufficiently small;
(iii) Equation (4) has a positive solution f* with inff*_> c if and only if the fixed

pointf ofA fulfills fc >--c. In this case we have f* =f for all e <-_ c;
(iv) The positive solution f* of (4) is unique (if it exists).
Proof. Statements (i) and (ii) follow from Theorem I with H L2[0, 1] and A A.

The continuity of f follows from the fact that g and k are continuous. If f* is a
solution of (4) with f* _>- c > 0, then Af* =f* for all e _-< c. Hence we have f* =f for
e _-< c and therefore f _-> c. If, on the other hand, c > 0 and fc -> c, then we have Afc =fe
for all e-< c and f =f (e-<_ c) is a positive solution of (4). Assume that f and f2 are
positive solutions of (4). Then fl and f2 are solutions of Af=f for e_-<

Min (inff, inff2), and hence fl =f.
4. Iterative solution for the nonlinear bending of circular plates. We study a thin

circular elastic plate subjected to uniform lateral pressure within the nonlinear theory
of von KS.rmfin. According to Keller and Reiss [6], the resulting boundary value
problems can be reduced to an equivalent integral equation of the form

(5) f(x) --al(f" 62(f2))(x)+ g(x):= Af(x),

where

with

and

Gf(x) g,(x, t)f(t) dt, i=1,2

gi(x, t)
+ x

+t x

for t<--x,

for t>x

g(x) yx(1 x2).

The constants/zi and y satisfy/1---1,//,2 > 0, and 2’ > 0, where 2’ is proportional to
the applied pressure.
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The existence of a unique solution of (5) was proved in [6] for a restricted range
of 3’. More precisely, it was shown that the simple iteration f,/l Af, converges for
3’-< 3’0 but diverges for 3’ >-3’1, where numerical estimates for 3’0 and 3’1 were given.
The following theorem proves the conjecture of Keller and Reiss [6], described in the
Introduction, and at the same time yields the existence of a unique solution for arbitrary
large positive values of 3’.

THEOREM 6. Equation (5) has a unique solution f* and the iteration method

(I’) f,+l aAf, + (1- a)f,,

fo H L2[0, 1], c>0 sufficiently small, converges and lim,_oof, =f*.
Proof We define F" H-+ H by Ff(x) =f(x) G2(f)(x). Let f, h H L2[0, 1].

We have

IIa(fZ)-a=(h2)ll-II G2(/2- h2)ll-< c. II/2- h2111
c. (If- hi, If+ hi) --< c. II/- hll" II// hll=

for some c > 0, and hence

lIFT- Fhll IIfG=(f) hG=(h=)ll=
<- fG(f2) fG(h2)112 / fGz( h) ha2( h-)112
<-- Ill=" c f- h I1=" f+ h I1= / f- h II=" c. h I1@

c. [If- h[I 2 ([[fll2" 11/+ hllz/ Ilhll).
Thus F is Lipschitz continuous on bounded sets of H. Because of

F’f(h)(x) h(x)G2(f2)(x)+f(x)G2(2fh)(x),

we get

(F’f(h), h)= h2(x)G2(f2)(x) dx+ f(x)h(x)G(2fh)(x) dx.

It follows from Lemma 3 that G is positive, and hence (F’f(h), h) 0 and F is a
monotone operator. Since G1 is (again by Lemma 3) positive we can apply Theorem
1 and the proof is complete.
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RICCATI MATRIX DIFFERENCE EQUATIONS AND DISCONJUGACY OF
DISCRETE LINEAR SYSTEMS*

CALVIN D. AHLBRANDT’ AND JOHN W. HOOKERS

Abstract. Disconjugacy criteria analogous to well-known results of W. T. Reid for linear differential
systems are obtained here for the linear vector difference equation

-A(Cn_Ax,,_I) + Anx O,

where An and Cn are real symmetric (or complex hermitian) matrices. The coefficients Cn are assumed to
be nonsingular, but Cn and An are not assumed to be positive definite. Disconjugacy is defined in terms of
the concept of conjugate intervals. A discrete Riccati matrix operator is defined, which plays a central role
in the discussion of disconjugacy. This work extends and generalizes earlier work of the authors.
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1. Introduction. Consider a linear vector difference equation

(1.1) l[x]n -A(Cn_Axn_I) + A,,xn O, n 1, 2, 3," ",

where {An} and { Cn} are given sequences of r x r real symmetric (or complex hermitian)
matrices, xn is an r x 1 vector, and A is the forward difference operator Axn Xn/l xn.
Discrete-time linear systems and related discrete matrix Riccati equations arise in
discrete linear optimal control and filtering problems (cf. Vaughan [24], Kalman 14],
and Kwakernaak and Sivan [15]). This paper extends results obtained by the authors
in [2] and [3] for the scalar case of (1.1) with real coefficients an and cn, cn>0. Some
of the arguments used in [2] for the scalar case, which depend on the assumption
c, > 0, do not generalize to the vector equation (1.1), so different techniques are used
here, and we do not assume that Cn is positive definite. Principal solutions of (1.1)
were discussed by the authors in [1] under the assumption that An and C, are positive
definite for all n.

We will make use of the related matrix difference equation

(1.2) L[X], -A(Cn_,AXn_,) + anx, O,

where Xn is an r x r matrix for each n.
Recent oscillation results concerning the vector or scalar case of (1.1) appear in

[2], [3], [7], [9]-[13], [16], [17], [23], where (1.1) is sometimes given in the alternative

three-term recurrence relation form

(1.3) ,l[x]n -Cnx,+ Cn-lXn-1 -- B,x, 0

with Bn Cn + Cn- + An, n 1, 2, 3, . A general discussion of the scalar case of

(1.3), including basic results on oscillation and boundary value problems, has been
carried out by Atkinson [4] and Fort [6].

Similarly, (1.2) may be expressed as

(1.4) L[X]n =-CnXn+- Cn_,Xn-, + B,X, O.
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For integers M and N, with 0 < M < N, a solution of (1.1) on the interval [M, N] is
a sequence x={x,} of real or complex r xl vectors, defined at least for n=
M- 1,. ., N+ 1, and satisfying (1.1) for n M,. ., N.

In 2 below, the concept of disconjugacy is defined for (1.1), along with the
notions of self-conjoined solutions of (1.1) and prepared or isotropic solutions of 1.2).

In 3 we then proceed to formulate and prove a discrete version of the well-known
variational results of Reid [19], [20], which give several conditions equivalent to
disconjugacy. Extensive use will be made of solutions of the related discrete Riccati
equation

(1.5) R[W], =0,

where R[ W] is the discrete matrix Riccati operator defined by

R[ W]. W.+, + A. + W.( W. + Cn_l)-1 Cn_

This operator and the operator L[X] defined by (1.2) will be seen to be related by the
matrix identity (where denotes conjugate transpose)

X’,,L[X],, X’.R[ W],X,
analogous to that which holds for differential systems (cf. Reid [19, p. 740], [20, p.
667]). For an extensive discussion of the relationship between Riccati matrix operators
and associated linear systems in the continuous case, see Reid [22].

2. Definitions and preliminary results. We include here for ready reference the
following elementary properties of the forward difference operator:

(2.1) A(a,,b,,) a,,Ab,, + (Aan)bn+l a,+lAbn + (Aan)b,,,
N

(2.2) E Aa, aN+l- at,
M

and the resulting "summation-by-parts" formula

N N

(2.3) Z a, Ab,, aubN+l aM-,bM E (Aa,,_,)b,.
M M

Given a sequence C {C,} of hermitian matrices, we introduce a "bracket func-
tion" defined for complex vector or matrix sequences u and v as

(2.4)
{u, v}, u;C,_Av,_-(C,_Au,_)’v,

=u._,C._,v.-u’C._v._1"

Note that the bracket function satisfies

(9..5) {u, v}=-{v, u}’

as well as the following property.
LEMMA 2.1. Let A and C be hermitian sequences. Then for any vector solutions u

and v of (1.1), { u, v}, is constant, andfor any matrix solutions U and Vof (1.2), { U, V},
is constant.

Proof By use of the assumptions that A, and C, are hermitian, it is readily verified
for solutions of (1.1) and (1.2) that A{u, v},--=0 and A{U, V},.=-0, respectively.

DEFINITION. Vector sequences u and v are conjoined (Reid [19]) if {u, v},=-O.
A vector sequence u is self-conjoined if {u, u}.-= 0, i.e., if

(2.6) u;_C,_u, u,C,_u,_, n 1, 2,....
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Similarly, a matrix sequence X is called prepared (Hartman [8]), or isotropic (Coppel
[5]) if {X, X}n 0, or, equivalently, if X’_I Cn-iXn is hermitian for every n.

Note 2.1. If the coefficients An and Cn in (1.1) are real symmetric matrices, then
{u, u}n is real for every real solution of (1.1). Thus every real vector solution is
self-conjoined by (2.5) and, in particular, satisfies (2.6). The identity (2.6) is used in
the proof of our main theorem. This is the main reason for restricting our attention
below to real solutions and real coefficients. Otherwise we must consider self-conjoined
vector solutions instead of real vector solutions and symmetric matrices must be
replaced by hermitian matrices.

In order to formulate our main theorem, we need a discrete analogue of the
concept of disconjugacy. While this has been introduced in various ways by different
authors (cf. Hartman [7] and Peterson [18]), we will use here a notion of conjugate
intervals. It is natural to speak of conjugate intervals, rather than conjugate points,
for a solution u of a discrete equation, since the discrete analogue of a zero of a
solution of a scalar differential equation may be either a value n such that un 0 or
a pair of values (n, n + 1) such that UnUn/ < O.

DEFINITION 2.1. For positive integers M and N, with M< N, (1.1) is called
disconjugate on M- 1, N] if the real interval M- 1, N] contains no pair of conjugate
intervals. Distinct real intervals [p, p + 1) and q, q + 1) (where p and q are integers in
[M- 1, N- 1 ]) are called conjugate intervals if there exists a real vector solution x of
(1.1) such that

’Cpxp <0 and xtqCqXq+l<O,(2.7) Xp +

with Xp+ O, xq+ O, and xn not identically zero for n in the interior of the smallest
interval containing p, p + 1) and q, q + 1).

3. Disconjugacy criteria. We are now in a position to state discrete analogues of
several of Reid’s disconjugacy criteria [19, Thm. 2.1], [20, Thm. 5.2], [20, Thm. 5.1].
In order to simplify the details in the proof below, we restrict ourselves to.real vector
and matrix solutions of (1.1) and (1.2), and we assume the following condition:

(3.1) An and Cn are r r real symmetric matrices for all n.

Our theorem could equally well be stated for complex solutions, under assumption
(3.1), or for complex coefficients, i.e., An and Cn complex hermitian matrices. The
proof is the same in outline for these cases, and we will point out some of the
modifications which would be needed.

We assume also the following nonsingularity condition:

(3.2) Cn is nonsingular for n 0, 1, 2,. .
TrEOREM 3.1. Assume conditions (3.1)-(3.2). Let M and N be positive integers

with M < N. Then the following conditions are equivalent:
(i) If u is a real vector solution of (1.1) on [M, N] with u’_Cl_ut <=0 and

u O, then

unCnun+>O forn=M,. .,N-1.

(ii) If v is a real vector solution of (1.1) on [M, N] with v’_Cu_vu <=0 and
vu_ # O, then

vn’ Cnvn+l > O for n M -1, N- 2.

(iii) Equation (1.1) is disconjugate on [M-1, N].
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(iv) There exists a prepared matrix solution X of (1.2) on [M, N] with

X’n_lCn_lXn>O forn= M, N.

(v) There exists a sequence Wofsymmetric matrices, definedfor n M, , N+ 1,
with Wn + Cn-1 > 0 for n M, , N, satisfying the Riccati matrix equation

(3.3) W+l-A= Wn(W+C_I)-Ic_I, n=M,...,N.

(vi) The quadratic form J2 defined by
N

(3.4)
M

is positive definite on the class of real vector sequences with

We note that with modifications in the proof, conditions (iv) and (v) can be
replaced by the following inequality conditions:

(iv’) There exists a prepared matrix solution X satisfying the inequality
XL[X],0 for n M,. ., N, with

--1 Cn-lXn

(v’) There exists a sequence W of symmetric matrices with W, + C,_1 > 0 for
n M,. , N, satisfying the inequality

w.+- a. W.( W. + C._l)-’ C._,, n M,. ., N.

As a corollary to the theorem we also have the following result.
Coaoeav 3.1. Each of the conditions (i)-(vi) above implies the strengthened

Legendre condition

B,=A,+C,+C,_>O forn=M,. .,N-1.

This is most easily proved by assuming condition (iv). Then equation (1.2) written
in the form (1.4) yields

x; c.x.+l + x; C._lX._l X;B.X..

Since X satisfies condition (iv), the corollary follows immediately.
The fact that B, > 0 is indeed a discrete analogue of the strengthened Legendre

condition of the calculus of variations is discussed in [3, p. 14] where it is shown that
the quadratic form J of (3.4) may be written as

N

J[n] L (n;n.n.-n;_,C._ln.- n;C._ln._l).
M

The matrix associated with this quadratic form is the block tridiagonal matrix

--CM

T
--CN-2

--CN-2 BN-
In view of condition (vi), we are led immediately to a second corollary.

COROLLARY 3.2. If the nonsingularity condition (3.2) is satisfied and T is positive
definite, then all of the conditions (i)-(vi) hold.
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For a Sturmian comparison result along the lines of Proposition 10 of Coppel [5],
we need only compare tridiagonal matrices 3 to the above matrix T in order for
disconjugacy to be preserved.

COROLLARY 3.3. Suppose " is of the same form as T with Bn and Cn replaced by
B, and C,, where C, and Cn both satisfy the nonsingula.rity condition (3.2). If the system
(1.1) is disconjugate on [M-1, N] and ’>= T, i.e., T- T is positive semidefinite, then
L[x] 0 is disconjugate on M 1, N]. In particular, if C, Cn for n M, , N 2,
and >-Bn for n- M,..., N- 1, then disconjugacy of (1.1) implies disconjugacy of
L[x] =0.

Before proceeding to the proof of the theorem, we need three lemmas.
LEMMA 3.1. Let X be a real matrix sequence, with X, nonsingular for n

M-1,..., N, and let W be defined by the Riccati transformation

(3.5) W, C_lAXn_l)X-!1, n M, N+ 1.

Then Wn + Cn_l is nonsingular and W satisfies

(3.6) X’,L[X]n X’,R[ W],X, for n M, ., N,

where R[ W] is the Riccati difference operator defined by

(3.7) R[ Win Wn+ .qt_ Wn Wn + Cn_l)-1Cn_1.4- A,,, n M, N.

Furthermore, if X is a prepared sequence, then W, is symmetric for n M, N+ 1.

Proof Given X and W as stated, we have

(3.8)
L[X]. -A(Cn_,AXn_,) + A,,X,, -C,,AX,, + Cn_lAXn_ ’]- A,,X,,

Wn+lX "-Jv WnXn_ ..4;- a,,x,,, n M, ., N.

Thus, for n M,. ., N,

(3.9) X’L[X]. X’.(- W.+, + W.Xn_,X-’ + An)X..

Now (3.5) may be written as

(3.10) W, qt.. Cn_l-. Cn_lXnX-ll, n M, N+ 1,

SO W "4t-Cn_ is nonsingular for n M,..., N. From (3.10) we obtain Xn_lX-1---

(Wn + Cn_l)- C,-1. Substituting this into (3.9) yields (3.6). Equation (3.10) may also
be written as

(3.11) Wn + Cn-1 (Xtn-1)-l(xtn-1 Cn-lXn)X-l-1,

so if X is prepared then W,+Cn_, and hence W, also, is symmetric for n=
M,... ,N+I.

LEMMA 3.2. Ify is a vector sequence defined for n =p- 1,..., q + 1, then

q q

E (Ayn-1)’ Cn-lAYn-1 -t- y’A.y.] y’q CqAyq Y-I Cp-lAYp-, -- E y’l[y]n.
p p

Proof Consider the summation-by-parts formula (2.3) written in the form

q q

E (ASn-1)Tn=STq+I-S;-1T;-ESnATn
p p
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Application of this formula with S, y’,, Tn C,_IAy,_I yields

q

E [(Ayn-1)’Cn-IAyn-1 +Y’,,AnYn]
p

q

y’CqAyq Y’-I Cp_iAyp_ +2 [-y’,A(C,,_Ayn_a) + y’,Any,,].
P

Since l[y]n =-A(Cn-aAyn-1) + Any,, this proves the lemma.
LEMMA 3.3. Suppose u is a real (or self-conjoined) solution of (1.1) on [M, N],

and for integers p and q satisfying M 1 <- p < q < N, let

p+l<-n<=q,
T}

O, otherwise.

Then Jz[r/] as defined by (3.4) satisfies

(3.12) Cpup+ -}-J2[n]- Up uqCqUq+l.

(Note. If u were not real (or self-conjoined), the expression u’Cpup+l in (3.12)
would be replaced by u’+Cpup, as in (3.17) below.)

Proof (p + 2 <-q). From the definition of 7, we have

q+l

S2[’i] 2 [(A’n-1)tCn-lA’n-1 nt" rl’anrln]
p+l

(3.13) (an.)’Ga.. + 7;+lAp+, p+l -{-

q-- [(AUn_l)tCn_lAUn_l -- u’,Anun].p+2

Also, since u is a solution of (1.1), Lemma 3.2 implies

q

[(AUn_l)tCn_lAUn_l -" u’,,Anu,] u’qCqAuq u’pGAup.
p+l

We rewrite this as

(3.14)

q

2 [(Aun-1)tG-1Aun-1 -}- u’.A.u.]+(au)’Gau +
p+2

=u,’Gau.- u’. Gau..
Then substitution from (3.14) into (3.13) yields

(3.15)
J2[ /] (Av)’Gary + ;+Av+ /v+ +

+ uqCqAuq- u;CpAup-(Aup)’CvAup U;+IAp+lUp+I.

Now

(3.16) T]p+l Up+l, m’r]q ’?’]q+l--?f]q --Uq, m?/p TIp+l--T]p Up+l

and use of these relations in (3.15) gives us

Cquq+ -+- Cpup.(3.17) J2[n] Uq Up+l

By Note 2.1, this yields the desired result, for q >_-p+ 2.
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For the case q =p + 1, the sum from p+2 to q in (3.13) vanishes, and (3.13),
(3.16), and (1.3) together then imply

[n]:’ Cu.+ + + C.+u.+Up+l Up+lAp+llp+l Up+l

Bqtlq U’ Cquq+ -1
t- Cpl,lpUq q /,/p+

which completes the proof.
We now proceed to prove Theorem 3.1, in the following order" (iv)(v)(vi)

(i) (ii)(iii) (iv).
Proof of eorem 3.1. (iv)(v). Assume that X is a prepared matrix solution of

(1.2) on [M, N], with

-1C-X,>O forn M, .,N.

Then X is nonsingular for n M- 1,. , N, and by Lemma 3.1, W as defined by
(3.5) satisfies

XL[X],=X’[w]x o, n M, N.

Therefore R[ W], =0 for n M,. , N, from which (3.3) follows. Fuhermore, since
X_C,_X, > 0 for n M,..., N, it follows from (3.11) that W, + C,_ is positive
definite for n =M,..., N, and W, is symmetric for n =M,..., N+I. Thus (iv)
implies (v).

(v)(vi). Let W be a matrix sequence satisfying (v), and let be a vector
sequence defined for n M-1,. ., N, satisfying

_
0=. We substitute A

from (3.3) into (3.4) to obtain

N N

M M

Since
_

=0=, we have

N N-1 N

(3.9) E n; w+,n E n’ w.+,n. E n_, wn_,
M M-1 M

so the second sum on the right in (3.18) may be rewritten as

N

(3.e0) E In’ wn_._, n.w.(w. +c._,)-’c._,n.],
M

while the first sum on the right in (3.18) may be expanded as

N

(.2) L [n’c. ln.-n’c.-,n.-,-n’ c. n.+ c._ n. ,]n--1 --1 n--1
M

Adding (3.20) and (3.21) we obtain

N

J[n]=2 {n[C.-,-
M

(.22)
+’._,(w. + c._,)n._l nC.-ln.-1

Now

Cn_ Wn( W ..4- Cn_l) -1Cn_ [I- W,,( W,, + Cn_l)-l]Cn_l

[( W .-Ji- Cn_l) Wn] W .-Jr- Cn_l)-1Cn_

Cn_l( Wn .qI- Cn_l)-l Cn_l
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so (3.22) becomes
N

J2[ T] S {’ltnCn_l(Wn-’[-Cn_l)-lCn_lT]n-J-T]tn_l(Wn---Cn_l)’n_l
M

(3.23)

By use of the symmetry of W. + C,,_, this may be written in completed-square" form
as

N

(3.24) J[ r
M

where

Thus J2[ /l >- 0. Furthermore, if J2[ 0 for some sequence / with /M-I 0 /N,

then bn =0, n M,..., N, i.e.,

C,,_, n, W,, + C,_,)rI,,_,, n M, N.

Since r/M- =0 and C,_ is nonsingular, this implies that r/, =0 for n M,..., N.
Thus J2[ r/] is positive definite, as claimed.

(vi) ==> (i). Assume J2[r/] is positive definite on the given class of sequences r/, and
let u be a real vector solution of l[u] 0 with

(3.25) u4_ =<1CM-lUM 0 and uM0.
For p M 1 and M < q < N, define r/as in Lemma 3.3, i.e., ft. u. for p + 1 =< n <- q
and r/, =0 otherwise. Then r/M UM 0 and r/M_ =0= r/N. Thus Jz[r/]> 0 and by
Lemma 3.3,

0< y[] u’_,c,_,u, + uCu+,
(3.26)

’Cquq+ forq M,.-. N-1</’/q

Thus (vi) implies (i).
(i) :> (ii). Assume that (i) holds. Let U be the real matrix solution of L[U]--O

satisfying

UM- O, UM I.

By Lemma 2.1, U is prepared, since { U, U}M 0. For every nonzero constant vector
z, the solution u of l[u] 0 defined by u, U,z satisfies

lgtlVl_l CM_ UM Z UtM_I CM_ UMZ O,

and UM UMz z O. Hence, by (i), u’, C,u,+ > 0 for n M, N- 1, so

U’,C,U,+I>O forn=M,...,N-1,

i.e.,

U’, C,_ U,>O forn=M+l N.--1

Thus U satisfies condition (iv) on the interval n M + 1, , N. Since we have already
proved that (iv) implies (vi), it follows that the quadratic form defined by

N

(3.27) J*[r/] [(Ar/,_I)’C,_IAr/n_ +
M+I

is positive definite on the class of vector sequences r/ which satisfy
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Now let v be a real vector sequence of (1.1) satisfying the hypothesis of condition
(ii), i.e.,

V-ICrq-lVN <- 0 and /)N-1 0.

Application of Lemma 3.3 with M-1 replaced by M gives

0 < J*[ Vp+ Vq =p < q < N,

for r defined by

v,, p+l-< n<-q,
r/=

0, otherwise.

In particular, for q N-1, we have

Cpv+v’_ C_,v< Cv(3.28) 0<

forM<-p<N-l,i.e.,forp=M,...,N-2. ByNote2.1, Vp+l =vpCpvp+iforall
p, so (3.28) gives us

(3.29) O< vpCpvp+, p= M, N-2.

Finally we must show that (3.29) also holds for p M- 1. But, if not, then v is a real
solution of (1.1) with

v’-I CM-VM <- 0

and, from (3.29), VM # O, SO by condition (i), v’-i CN_I VN > 0, contrary to our assump-
tions about v. Hence (i) implies (ii).

The proof that (ii) implies (i) is the dual of the preceding argument. We omit the
details.

(ii)(iii). Assume (ii). Then (i) also holds, and we actually prove here that (i)
implies (iii). We must show that the interval M- 1, N] contains no pair of conjugate
intervals. By (i), [M- 1, M) is not conjugate to any other interval [q, q+ 1) in [M-
1, N].

Suppose that two intervals p, p + 1) and [q, q + 1) are conjugate for some p and
q with M _-< p < q-< N-1. Then (1.1) has a real vector solution y satisfying

(3.30) Cqyq+ < O,y’p Cpyp+ < 0 and Yq

with y, 0 on [p + 1, q] (which may be a single point, if p + 1 q). Let

{Yo,P+I<-n<--q,r/
otherwise.

Then by Lemma 3.3 and condition (3.30), J*[r/] as defined in (3.27) satisfies

(3.31) J*[ r/] y’pCpyp+ + yqCqyq+ < O.

But, as in the preceding proof, J*[r/]>0, a contradiction. Thus (i), and hence (ii),
implies (iii).

(iii)(iv). Let U be the matrix solution of (1.2) satisfying

(3.32) UM_ O, UM Z

Then, as in the proof that (i) implies (ii), U is a prepared solution, and for every
nonzero constant vector z, the solution u U,z of (1.1) satisfies

UtlVI_I CM_ gM O, l,lM O.
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Hence, by assumption (iii), there is no interval [p, p+ 1) in [M, N] conjugate to the
interval [M- 1, M), so

(3.33) utnCnbln+l > O, n m, N-1.

CnUn+l ztSince u, U, C, U,+lZ, it follows that

(3.34) UtnCnUn+l>O, n=M,. ,N-l;

hence U, is nonsingular for n M,. ., N.
Let V be the solution of (1.2) with

(3.35) VN =0, VN_I=(U’NCu_I)-1.

Since disconjugacy on [M- 1, N] implies (i), and (i) implies (ii), then by an argument
similar to that leading to (3.34) we obtain

V’C,V.+I > O, n M-1, N- 2.(3.36)

Also,

{ Un, Vn} { UN, VN}-- UtN_ICN_I WN UtNCN_I VN_
(3.37)

UtNCN_I( UtNCN_I) -1 -I;

hence by (2.5), for all n for which U, and Vn are defined,

(3.38) { Vn, U,} -{ U,, V,}’= I.

Now let X be the solution of (1.2) defined by X, Un + V,. Then X is a prepared
solution, since

(x.,x.}={u.+ v., u.+ v.}={u., u.}+(u., v.}+{v., u.}+{v.,

=0-I+I+0=0.

We must show that

(3.39) X’,,_l C,,_IX,, > 0

First, for n M, we note that

SO

(3.40)

Then

forn=M,. .,N.

I { UM, VM } UtM_ CM_ VM UtlvI CMI_ Vl4_ CM_1VM_

CM- VM- L

XtM_ICM_IXM UtM_I"Jf VtM_I)CM_I( UM- VM)

Vtlvi_ CM- UM -- VM VtM_ CM_ -[-- VtM_ CM_ VM
I + WM-1CM-1VM > 0

by (3.36), so (3.39) holds for n M.
For n N, using (3.34) and (3.35) we obtain

XtN_l CN_IXN UtN_I ..of. VtN_I)CN_,( UN ...1_ VN
UrN CN_ UN -at- VtN_l CN_ UN
UtN_I CN_1UN 4- CN_1UN)-1CN_I UN
U-IC-1U + I > O,

so (3.39) holds for n N.
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Finally, suppose that M < k < N, and let a be an arbitrary unit vector. We must
show that

(3.41)

Let

ol’Xtk_l Ck_lXkOl > O.

U,,a, M-l<=n<-k-1,
(3.42) ft, V,,a, k <= n <=N+ 1.

Then by definition of U and V, r/ satisfies

(3.43)
r/M- UM-la =0, rlN =--VNa =0,

"riM UMOl. o1, O, A ,riM_ "qM "riM-1 0.

We will show that J[r/] as defined in (vi) satisfies

(3.44) 0 <= J_[ r/] a’X’_, Ck-,Xka + a’{ U, V}a a’X’_,Ck_,Xka 1,

from which (3.41) follows.
Consider the prepared solution U of (1.2) determined by the initial conditions

(3.32). This solution satisfies (3.34), which we rewrite as

(3.45) Utn_l Cn_1U > O, n M + 1,. ., N.

Thus U satisfies condition (iv) on the interval [M + 1, N]. Since (iv) implies (v) there
exists a symmetric sequence W defined by

(3.46) W, (C,_A U,_) Ull, n M+ 1,. ., S+ 1,

with W,/C,_l>0for n=M+l,...,N, and

(3.47) W.+I-A, W,(W,+C,,_I)-Ic,_I, n=M+l,...,N.

Since our sequence r/defined by (3.42) fails to have r/M 0, the argument used above
in (v)(vi) to show J2[r/] positive definite does not hold here, and we must treat
J2[r/] somewhat differently in this case. Using (3.43) we obtain

N

Jz[n] a’CM_,a + a’AMa + E [(ATln-l)tCn-laTln-I / n;A.rl.],
M+I

so, by substitution for A. from (3.47),
N

J2[r/] a’CM_,a + a’AMa + E (ATln-l)tCn-lATln -1
M+I

(3.48)
N

+ E [n’.(w.+,- w.(w.+c._,)-’c._,)n.].
M+I

NOW
N N-1

2 Tltn Wn+lTln E Tltn Wn+l’?’ln / TltN WN+ITIN --TltlVI WM+ITIM"
MI/! M

By a shift of indices in the sum on the right, and use of r/N 0, this becomes
N N

5 "ot an+lTn 2 "Otn--1 Wn?i.- TtMWM+ TM.
M+I M+I

From (3.43) and (3.46) this yields
N N

(3.49) E r/’W.+lr/.n 2 ntn -1WnTln-1 -ol’(CMAUM)UIOl.
M+I M+I
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Using (3.49), we write the second sum on the right in (3.48) as

N

E (Ttn-lWnTn-l-7/tnWn(Wn’t-Cn-1)-lCn-lnn)-lt(CMAUM)U Ol

M+I

while the first sum on the right in (3.48) can be expanded as

N

E (tnCn-ln-tnCn-ln-l-’ltn-lCn-ln’gvTtn-lCn-ln-1)
M+I

Substituting (3.50) and (3.51) into (3.48) gives us

J2[ r/] a’[ CM-1 + AM --(CM A UM) U]a
N

(3.52) + E {Ttn[Cn-1 Wn(Wn’-fn-1)-lCn-1]’On
M+I -- tn-l( CVn -Jl- Cn-l)n-l "ltn Cn-l Tn-l tn-I Cn -i

The same steps that led from (3.22) to (3.24) now yield

(3.53)
N

J2[’rl]-- o’[CM-1W AM -(CMAUM)Ut]-F E b(Wnff-Cn_,)-’b,
M+I

where

Cn Cn_ln Wn -- Cn_l)’n_lWe will show that the first term on the right in (3.53) equals zero. Since UM =/, we have

(3.54) CM- +AM (CM A UM)U CM-1 + AM (CMUM+I- CM) BM CMUM+I,

where, as in (1.3) and (1.4),

BM CM -t- CM-1 -t- AM.

Now L[ U] 0, so from (1.4) we know

--CMUM+ CM_ UM_ -[- BMUM O.

Since UM- =0 and UM I, this becomes

--CMUM+I -- BM O.

Thus it follows from (3.54) that the first term on the right in (3.53) equals zero, so

N

J2[T] E Ctn(Wn -Cm-l)-lCn 0"

If J[ r/] 0, then b. 0, n M + 1, , N, i.e.,

Cn_11n Vfzn + Cn_l)n_l, n=M+l,...,N.

Since tin 0 and W, + C,_ is nonsingular for n M + 1, , N, (3.55) implies r/M 0,
contrary to (3.43). Thus J2[ r/] > 0. Let u, U,a and v, V,a, n M 1, , N+ 1,
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SO that (3.42) may be written as

Thus

M-l <=n<-k-1,
n -vn, k=< n-< N+ 1.

M-l<=u<=k-2,
At/, -vk uk_l, n k- 1,

-Av., k<n<N,

and J2[ r/] becomes
k-1

J[]= y [(aU_I)’C._aU._I+UAu]+(--V--U_)Ck_I(--Vk--Uk-1)+VAkVk
M

(3.56)
N

+ E [(Av,_,)’C,_IAV,_, + vA,v,].
k+l

Application of Lemma 3.2 to the two sums on the right in (3.56) yields

k-1

J2[] u_ Ck-laUk- H-1 CM IAUM-1 + E u’. l[u].
M

(3.57) + vC_v + VCk_U_ + U_C_Vk + U_C_Uk_ + vAVk
N

k+l

But u and v satisfy/[u] =0 and/Iv] =0, and also u_ =0= v, so (3.57) reduces to

J[v] u_,C_l U u_,) + vC_,v + vC_,U_l

(3.58) + u_C_lV + U_ c_,u_, + vAv vC(v+, v)

u_ C_ u + u ,C_ v + v(v+ C_,u_,-

Since v is a solution of (1.3), this becomes

(3.59) J[v] u_Ck-u + u_C_v + vC_Uk_ + vC_v_.

The last term in (3.59) equals V-Ck-Vk, by Note 2.1, and (3.59) may thus be rewritten
as

(3.60) J2[V] a’( U_C_U+ U_Ck_ Vk + VCk_ Uk-l+ V-ICk-1Vk)a.

Now for the solution X U+ V of (1.2), we have

(3.61) X_ Ck- Xk U_Ck_ Uk + U_ Ck_ Vk + V_ Ck- Uk + V-Ck-1Vk
Also, from (3.38),

(3.62) { Vk, Uk} V_Ck- Uk VCk- Uk- L
and combining (3.60), (3.61), and (3.62), we see that

J[] a’(x_, c_,x -{ v, u})a

a’x_ c_ xa-1
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since a was an arbitrary unit vector. Since J2[r/]>0, it follows that X’k-lCk-lXk is
positive definite, which completes the proof of the theorem.

Note added in proof. A referee has raised the question of conditions equivalent
to disconjugacy on [M-1, ). The following result gives a set of related, but not
equivalent, conditions.

COROLLARY 3.4. Assume hypotheses (3.1)-(3.2). Thefollowing conditions are related
by (c) ==> (fl) ==> (3,) :=> (6).

(c) Equation (1.1) is disconjugate on M 1, c).
(fl) The matrix solution Un defined by Ut_l=0, Ut I has U’C, Un+I>O, n=
o.

() There exists a sequence W of symmetric matrices with W, + C,_1 > 0 for n
M + 1,. , satisfying (3.3) for n M + 1, .

(6) Equation (1.1) is disconjugate on M, o).
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SAMPLING BANDLIMITED FUNCTIONS OF POLYNOMIAL GROWTH*
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Abstract. Two new versions of the sampling theorem extended to functions whose Fourier transform
is a generalized function are given. One involves a correction by means of an arbitrary polynomial and the
other involves (C, a)-summability. The best approximation to nonbandlimited functions of polynomial
growth by functions whose transform has compact support in the Sobolev norm is found.
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1. Introduction. The sampling theorem for bandlimited signals is the name usually
given to the formula

(1.1) f(t) Y f(nT)
sin r(t nT)

o-(t nT)

where T 7r/o" is the sampling period. "Bandlimited" means the Fourier transform
F(w) off(t) is zero for Iwl> .

This theorem is well established for F(w) which are L2 functions, and goes back
to Whittaker [8], but was developed and exploited by Shannon [7] much later.
Subsequently it was generalized in a number of different directions [2], in particular
to f such that F(w) is a generalized function with compact support [1], [3]-[5]. In
this work we shall extend it further in this direction.

Such functions f belong to Lr the space of functions on R square integrable with
respect to the measure dmr (1 + t2) dt, r 0, 1,. .. Following [3], we denote by
Br(o-) thosef L2r which are bandlimited to [-tr, tr]. These functions are also, by the
Schwartz-Paley-Wiener Theorem, entire functions whose restriction to the real axis is
of polynomial growth. Hence we shall refer to them as bandlimited functions of
polynomial growth.

Several versions of the sampling theorem for bandlimited functions of polynomial
growth have appeared. The first were due to Campbell [1] and to Pfaffelhuber [5].
The former deals with signals f(t) whose Fourier transform F(w) has compact support
in the interior of the interval (-tr, or), where S(t)= S(t) is an appropriate smoothing
function used to obtain convergence in (1.1).

Pfaffelhuber showed that the generalized sampling theorem can be extended to
the case where F(w) has support in the closed interval I-or, o’]. He replaced (1.1) with
the expression

(1.2) f(t)=qN(t)coso’t+ 2 (f(nT)-qN(nT)(-1)n)
Nsintr(t--nT)

o’( n T)

where N is the order of the generalized function F(w) and qv(t) is an appropriate
polynomial of degree -<N-1.

Lee [4] replaced the cos o-t by e ia‘, [al =< in (1.2), and thus was able to replace
qN(t) by the Taylor polynomial off(t) for a =0.

* Received by the editors September 18, 1986; accepted for publication (in revised form) October 1,
1987. This research was supported in part by National Science Foundation grant DCR-8504620.

t Department of Mathematical Sciences, University of Wisconsin, Milwaukee, Wisconsin 53201.
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Hoskins and De Sousa Pinto [3] generalized both results by replacing cos trt and
eit by an arbitrary bandlimited function r/(t), 7(0) 0, whose Fourier transform is a
measure with support in [-tr, r].

In this work we shall first generalize Lee’s result in a different direction, to
polynomials other than the Taylor polynomials. We then show that for certain such
polynomials the sampling expansion converges in Lr and obtain the best approximation
to f L by a function g Br(tr). Finally we give a version of the sampling theorem
for bandlimited functions of polynomial growth having the same form as (1.1) except
that convergence is replaced by (C, a)-summability.

2. Sampling expansions with polynomials correction. In this section we prove a
sampling theorem for bandlimited functions of polynomial growth which involves an
arbitrary polynomial of the same degree as the order of F(w), the Fourier transform
offi We shall use the convention that F is of order r iff Lr, that is, that F is given
by an rth order differential operator applied to an L2 function. We shall consider
polynomials of the form

k k

(2.1) P(t)= H (t-a)"9, 2 m= N,
j=l j=l

possibly complex.
LEMMA 2.1. Letf(t) be a signal in BN(cr) such thatf(i)(as) =0, i=0, 1,. ., m 1,

1, 2, , k. Then, with P given in (2.1),

(2.2) f(t) . f(nT) P(t-----) sin o(t nT)
P(nT) cr(t nT)

where the convergence is uniform on bounded subsets of the complex t-plane.
Proof We first note that BN(Cr) is closed under translation. Hence f(t)/P(t) may

be obtained by repeated division by and translation. Accordingly let 4,(t) B/(cr),
1 =< K =< N, 4,(0) 0, and o(t) 4(t)/t.

By the Schwartz-Paley-Wiener Theorem, 4 is an entire function of exponential
type =<0-, and since BK(cr)c L, d/(t)/(t2+ 1)//2 L2(E1). Since the exponential type
of an entire function depends only on its Taylor coefficients, it follows that (t) is
also entire of exponential type <-or. Moreover, o(t)/(t2+ 1)(/-1)/2 L2(E), and hence
q (t) B:_I(O’).

We return now to our original f(t) and conclude that f(t)/P(t) Bo(r) L(R).
By applying the sampling theorem for L2 functions to h(t) =f(t)/P(t), we obtain (2.2).

Remark 2.1. Among the interesting cases for (2.1) are the following:
(i) P(t)=(t-a) rv"

(ii) All a distinct, P(t)=Hs (t-as);
(iii) P(t)=(t2+ 1) M, N=2M.

Each gives us a different application.
The first gives us Lee’s result with Taylor’s polynomial but at an arbitrary point

instead of zero. Case (ii) is an interpolation result that is particularly useful when the
values of f are known only at a discrete set. We state it as follows.

COROLLARY 2.2. Let P(t)=HjI (t-aj) where all aj are distinct, f(t) Bu(cr); let
Lu(t) be the polynomial that interpolates f at the points (al,""", alv). Then

f(t)-Lr(t)= , (f(nT)-LN(nT)) P(t) sincr(t-nT)
=-o P(nT) or(t- nT)

Case (iii) is useful when we want to obtain convergence in the sense of L2r.
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3. Convergence and approximation in L2,. In this section we deal with convergence
in L2 of the sampling expansion of bandlimited signals of polynomial growth. We use
a form of P(t), the polynomial in (2.2), which is particularly simple and which enables
us to remove the restrictions on f(t). Since Br(tr) is a proper subspace of L, we may
consider best approximations in the former to an arbitrary element in Lr.

We should note that the Fourier transform maps L2 into the Sobolev space H
isometrically. See Rudin [6] for details. This latter space is composed of distributions
of the form F=(1-D2)NG for r=2N where GL2(I).

PROPOSrrION 3.1. Let N be a positive integer and let f B2rv(o’); then there exists
a polynomial P(t) of degree 2N-1 such that

[ t2+l ]rVsino.(t_nT(3.1) f(t)-P(t) sin crt= Y, f(nT) T2
n=- n + 1 o’( nT)

where the series converges in the sense of LN and uniformly on compact sets.

Proof. There is a polynomial d(t) of degree -<2N-1 such that f(t)-d(t) has
N-fold zeros at +i. Then by Lemma 2.1,

[ t2+l ]Nsino.(t_nT)(3.2) f(t)-d(t)= Y [f(nT)-d(nT)] Tn + 1 tr( nT)

This series is easily seen to converge in the sense of L2N since s,(t)=
sin tr(t- nT)/tr(t- nT) is an orthonormal sequence. The Fourier transform of d (t) is
of the form

2N--1

(3.3) D(w)= aj6)(w),
j=0

and hence has a Fourier series on (-or,

(3.4) D(w)

with coefficients c,=d(nT)= O(n2U-1), which converges to the periodic extension
D*(w) for real w. But D*(w)=(1-Dw)UG*(w) where Dw is the differentiation
operator and

Cn iwnT 0").(3.5) G*(w) Y
(1 + n2T2)

e L2(-o-,

Let G(w)= G*(w)x(w) where X is the characteristic function of [-or, tr]. Then G is
in L2(1) and its inverse Fourier transform g(t) is given by

(3.6) g(t)= d(nT) sin r(t nT)
(1 + nZT2) tr(t-nT)

where g 6 L2(R). Therefore (1 + t2)Ng(t) Lu and the series

l+t2 ]Nsintr(t-nT)(3.7) d(nT)
1 --T2] o-(T- nT)

converges to (1 + t2)Ng(t) in the sense of L2. Since D*(w) has support on 0, +2tr,
+4tr, , it is locally equal to zero on open intervals excluding these points. Hence
G* is a classical solution to (1--D2)Ny=o on (cr/2,3cr/2) and on (-3tr/2,-cr/2)
and is locally a C function at w +or. Since it is also periodic, it follows by repeated
integration by parts that

(3.8) d(t) -- (1-D)UG(w) e iw’ dw=(1 + t2)rVg(t)+ P(t) sin crt.
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The result for best approximation in L2p in the proper norm is somewhat more
complex than in L2.

PROPOSITION 3.2. Letf Lp, g(t)=f(t)/(t-+ 1)P; then the best approximation to

f among y B2p(Cr) is obtained for

(3.9) Yo (/2+ 1)P(g(t), sin trt] +
crt ] j=0 j=0

where ao, ap-1, bo, bp_l depend on f.
Proof. Let F(w) and G(w) be the Fourier transform off and g, respectively. Then

F(w)=(1-D2)PG(w) and G L2(1). We split up G into three mutually orthogonal
functions as follows: first we let

G=Gx+G(1-X)

where X is the characteristic function of [-r, r]. We then take G1 GX and G2 to be
the projection of G( 1 2’) on to the subspace of L2(R 1) spanned by functions ofthe form

wke-WH(w--r), wkeWH(--w-cr), k=0,1,...,p-1

where H(w) is the Heaviside function. We take 63--G(1-2")-G_ which is clearly
orthogonal to Ge. Hence we have a decomposition

O G + 02 + G3
into mutually orthogonal functions.

We now let yB2p(O). Its Fourier transform Y has a decomposition Y=
(1-D2)P(ZI+Z2+Z3) and the norm of the difference is

(3.10) IIf-yllv=]]G,+G+G3-Z,-Z-Z3ll
But since (1-D2)p(z2+z3)=O on (-cx3,-o-)U(o-,cx3), it follows that Z_+Z3 is a
polynomial of degree =<p 1 times e on (r, ), and hence Z3 0 for w > 0-. A similar
result holds for -0-> w. Hence (3.10) is minimized by choosing Z1 G1 and Z G,
i.e., the inverse Fourier transform Yo of

Yo (1 D2)v 61 + 6)
is the best approximation. It is

p--1 p--1

yo(t) (1 + t2)p-I(G2")+ -1 E a,5n(w-r) + -1
=0 =0

where the coefficients an and bn involve the value of G2 and its derivatives at w +o-.
This gives us the theorem.

4. (C,)-summability. In this section we shall consider a version of (1.1)
appropriate for bandlimited functions of polynomial growth which, however, involve
(C, a) Cesaro summability instead of pointwise convergence. That is, we shall show that

N sin r(t nT)
(4.1) f(t) lim Y C,,f(nT)

-.o n=- o(t-nT)

where

N,n AN_Inj/AN, Ak k

This is the same weight used in (C, a)-summability in Fourier series [10a, p. 77]. This
result is closer to the original formulation than those considered in the previous sections.
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We suppose that f(t) is a bandlimited function of polynomial growth with F(w)
having support in [-o-, o-]. We shall need a characterization of such F in terms of
piecewise continuous functions. It is similar to that in [3] and could be derived from
it.

The space of generalized functions with compact support is denoted by ’ ’ is
a subspace of S’, the space of all tempered distributions, and thus each element is a
finite order derivative of a continuous function of polynomial growth. We use this for
our characterization.

LEMMA 4.1. Let F ’ with support in [-tr, or]; then there exists a piecewise
continuous function G fg’ with the same support as F, an integer p, and constants

Co, , cp_ such that

p--1

(4.2) F(w) DPG(w)+ 2 Cirri(w)
i=0

Proof We begin by observing that each F e S’ has an antiderivative in S’, F(-1).
Since F =0 on (-ce, -tr)U (or, oo), F(-l is constant on these two intervals and we may
assume without loss of generality that F(-l)(w) =0 on (-oe,-r). Let al F(-l)(w) on
(tr, oe). Then

F(-l)(w)-aiH(w),

where H(w) is the unit step function, is zero on (-oo, -tr) U (r, oo) and hence belongs
to ’. We repeat this argument (p-1) times to obtain an element

W
p-1 a2wP-2

G(w)=F(-P)(w)-al (p_l)!H(w) (p_2)!H(w) apH(w)

in g’ with support in [-o-, or]. But for p sufficiently large F(-p) is a continuous function,
and hence G(w) is continuous except at 0. The pth derivative of G is the expression
given in (4.2).

We now turn to (C, a)-summability of the Fourier series of F(w). We need the
following.

LEMMA 4.2. Let qt(w)= eiWtxt_,,=l(w), 6Nl, and let q* be its periodic extension.
Then the Fourier series ofthe pth derivative ofq is uniformly C, a -summable on closed
subintervals of (-Tr, 7r) for on bounded sets when a > p.

Proof The fact that DPq*(w) has a Fourier series which is (C, a)-summable at
each w (-Tr, 7r) follows from a classical theorem 10b, p. 59] since the pth derivative
of q* exists at each such w. The same proof gives uniform convergence provided w
is restricted to an interval [-Tr+ e, 7r-e] since the pth derivative of q,* is uniformly
continuous in this interval.

We now use these lemmas to obtain (C, ce)-summability of the Fourier transform
of F6 g’.

THEOREM 4.3. Let F6 ’ with support in the interior of (-Tr, 7r); let f(t)=
1/27r(F, e-iwt) and f(t)= 1/27r(F, o’) where cr(w) is the (C, a) mean of the nth
partial sum of the Fourier series of eiWt. Then

f’(t)-f(t)

uniformly on bounded sets.
P-1 ci5 where F has support in the sameProof. By Lemma 4.1, F=DPG+i=o

interval as G. By Lemma 4.2, we have

<DPG, trot) <G, DPcr,)(-1) p o<G, D" e’w’>(-1)P=<DPG, eiWt>,
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and, similarly for (gt(W) iw,=e

((i), O.:t O.:t(i)(0)(__ 1 )i ._> qgi)(0)(_ 1 )/__ ((i),
COROLLARY 4.4. Letf(t) be a bandlimitedfunction ofpolynomialgrowth bandlimited

to I-or’, or’]. Then for each r > or’

f(t) f(nT)
sin tr(t n T)

o’(t nT)

where convergence is in the sense of C, a )-summability for some a > p.
This is a restatement ofthe theorem with a change of scale from [-r, r] to [-r, or].
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Abstract. The aim of this paper is to generalize the results of Regev [Adv. in Math., 41 (1981), pp.
115-136] and to simplify the proofs by deducing them from the Central Limit Theorem of probability theory.
The generalized results also yield a method for calculating certain multi-integrals, some of which seem

highly nontrivial.
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1. Introduction. Let k > 0 be an integer and fl > 0 a real number. For integers
n-, the asymptotic behavior of the sum

S((n) E d,
AAk(n)

where Ak(n)={A (A1,’’’, Ak)7/klA1 ->-’" >---- Ak >---- 0, A1 +’" "+Ak n} and d isthe
number of standard Young tableaux of shape A, was studied in [12].

This was essentially done as follows. We began with a family {Ak(n, P)}ou (see
5) of subsets of Ak(n), chosen so that for each fixed p, and each A in Ak(n, p), the

d, and hence the d, could be evaluated asymptotically as n . The sums of d
over A in Ak (n, p), converging to S(n) as p , were then approximated by ceain
integrals from which we obtained the asymptotic values of the S(n).

Examples of such sums, having their origin in combinatorics and in algebras that
satisfy polynomial identities, are given in 5 (see also [2]).

In this paper the set Ak(n) is replaced by

Ak(n)={a=(al," ", ak)CklO," ", kO;

We denote

and we study the asymptotics of sums of the form

for ceain functions f: U eo A(n)N.
In 5 we show that these latter sums generalize the sums S(n).
In 2 we state the main result for these generalized sums, the proof of which is

given in 3 and 4. In paicular, in 3 we reduce the proof for arbitrary > 0 to the
case 1, and this case we treat in 4 using the Central Limit Theorem of probability
theory.
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The approach of this article is much simpler than that of [12] and it allows us to
deduce a general theorem about the asymptotics of such sums. All asymptotics of
related sums known to us are particular cases of that theorem. Our general results also
yield a method for calculating certain multi-integrals, some of which seem highly
nontrivial. In 5 we give illustrative examples of such applications.

Recently, Macdonald found some very interesting identities that involve certain
multi-integrals [7]. The evaluation of these integrals is done by the Selberg formula
[15]. Some of the integrals evaluated in 5 constitute partial generalizations of these
"Macdonald" (or "Mehta") integrals but it seems that their evaluation cannot be
obtained from the Selberg integral.

2. The main result. For positive integers k, n we write

Ak(n) {ot= (al, ak) e 7/k al >--O, ak=>O;

Ak LJ Ak(n).
nO

For t= (al,"" ", ak) in Ak(n), let

c

and c() (Cl," "’,

Given a real number O > 0 we write

and

Ak(n, p)= {t Ak(n)[C(t) Ck(p)}.

DEFINITION. A function h’Ak- is defined to be permissible if
(i) There exists a polynomial p(x)-p(xl,’’ ", Xk) such that for all n and all t

in Ak(n)

Ih(t)l <-_

lim h(t)= 1.
otAk(n,p)

(ii) Given p > O,

By this we mean the following: given e > 0, there exists an integer N N(e, p) such
that if n _-> N then

]h()-ll<e

for all t 6 Ak(n, p).
Throughout this article, for functions f" Ak- [, g .k_. , and y a real number

the notation

f(ot) g(c(o)) n /, ot in Ak(n),

means that there exists a permissible function h" Ak --> ff and real numbers 0 > O, No > 0
such that for n _-> No and all t in Ak(n)

If()- h(ot)g(c(ot)) nl < n’-.
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For technical reasons we introduced the above relation rather than the conven-
tional -: recall a, b, if lim_ (a/b) 1. The results of subsequent sections include
the fact that iff(t) g(c(o)), n , then

E f(ot E g(c(ot))" n ’.
A Ol. A O

Remark. Let p(xl,’’’, Xk) be a polynomial. By choosing p large enough, the
integral

[]k\ Ck (p

[p(Xl,""", Xk)l exp (-E x2) d(k)x

can be made arbitrarily small. This is the only fact about p(x) which will be used in
the sequel (see 4).

For this reason, one could weaken the condition that p(x) is a polynomial, by
requiring that p(x) be a function which satisfies the above property.

The main result of the present article is as follows.
THEOREM 1. Let 3’ be a real number and

f Ak -> R, g [k

be functions such that g is continuous almost everywhere and

f(ot) g(c(o)) n v, o in Ak(n).

Then for [3 > 0 real

lim f(t) n-’+(1/)(t-l)(k-)k-t"
A

k(1/2)k
ld_...d_Xk__O k-l

g(x)

x exp (-1/2k(x21 +... + X2k)) dx,’’"

whenever the integral on the right exists.
In 3 we reduce the proof of Theorem 1 to the case fl-1, which we in turn

handle in 4 using the Central Limit Theorem of probability theory.
We will also encounter the following easy variants of Theorem 1.
Variation 1. In the situation of Theorem 1, let D be a fixed domain in k and let

D( n) {o Ak(n) c(ot) D}.

A simple modification of the proof of Theorem 1 yields

lim 2 f(o n-V+(1/2)(t-l)(k-1)k-t"
GAk(n)D(n)

() (1/2)fl(k-1)k(1/2)k f f g(x)
X+. .+Xk 0 k-

(Xl,""" ,Xk D

x exp (-1/2flk(Xl +... + X2k)) dXl’’" dXk-1
whenever the integral on the right exists.
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Variation 2. In the situation of Theorem 1 we assume further that the g
g(xl, , Xk) is a function of the differences xi- xj, i, j 1,. , k. We may argue as
in Lemma 4.3 of [12] to obtain

g(x) exp (-1/2flk(x2 +... + Xk)) dx, dXk_,
.%.Xk._0

k-l

=2f’"fg(x) exp(-1/2flk(x21/’"/x:))dx,’"dx.

Given the result of Theorem 1 we thereby have

lim 2 f(ot n-V+(1/2)(t3-1)(k-1)k-tan

x exp (-1/2flk(x +... + Xk)) dx,’’’ dXk

whenever the integral on the right exists.
We conclude this section with some illustrative examples of the types of functions

we encounter in the proof of Theorem 1 and its applications.
We remark that a product of permissible functions is itself a permissible function.
Example 1. For --(l,’’’,k) in Ak(n) write aj=(n/k)(l+cjk/x/), j=

1,. ., k, as above and suppose aj->_ 1, j- 1,..., k. If n is large enough it is easy to
verify that

(2 + ck)-’ <= (1 + c;k//-) <= k.

It follows that the functions h(J)’Ak- and (J)’Ak- given by

h()(o) 1 + cjk/x/, otinAk(n), j=l,...,k,

kT(J)(t) (h(;)(t)) -’, ot in Ak(n), j= l, k,

are permissible.
Example 2. For b a real number, one form of Stirling’s formula is given by

F n + b + x/U e-"n"+bv/-, n .
Write

F(n + b+ 1)= hb(n)’- e-"n"+’x/-ff

and

h,(t) h1,, (-), t=(al,’’’,c) in Ak, j= l, k.

Clearly the h., j 1,. ., k, are permissible functions.
Example 3. For oAk(n) and cj(t) as before, ai-qi=[c(at)-ci(ot)]x/-, and

a,-%+j-i-[c(oz)-c(ot)]x/: here h(t) 1, and I[a,-a+j-i]-
[c(ot)-cj(tx)]x/-ffl=]j-il< (’/z)- for any 0< 0<1/2 and n large enough.

Moreover, let r=1/2k(k-1) and choose an ordering {x-xjll<=i<j<-_k}
{y,... ,y}. Let M(x-xli<j)=M(y,... ,Yr) be any monomial in the x-x.’s of
degree d. Clearly, M(a-ooli<j)=[M(c(ot)-c(o)li<j)]" n d/2, and it is easy to
check that M(a-a +j- ili <j)[M(c(ot)-c.i(ot)]i <j)]n d/2.
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For example, Dk(Xl,’’’,Xk)’-’I-Ii<j (Xi--Xj) is of degree r; hence

Dk(al + k- 1, a2+ k-2, ak) Dk(C(Ot)) n r/2= Dk(al, ak) (see 5).

3. Reduction to the case/3 1. In this section we show that the proof of Theorem
1 may be reduced to the case/3 1. By Carlson’s theorem (see for example [3, p. 153,
9.2]) it suffices to prove Theorem 1 for/3 a positive integer. To pass from this case

to the case/3 1 we show, with notation as in 2, the following proposition.
PROPOSITION. Let fl be a positive integer. For 3’ a real number and

f:Ak-),

functions such that g is continuous almost everywhere and

f(o) g(c(ot)) n , ot in Ak(n)

we have

f(ot) n-V+(’/2)(k-1)(t3-1)k-t" 6t3(k) 2 f*(a) n-Vk-"
Ak aA(fln)

where

and

((3)(k) (x)(k- )(/3-)

(k-1)/2k 2) k(/3

f* Ak - satisfies

f*(a) g c(a) n , a in

We divide the proof of the proposition into two lemmas.
For a positive integer and =(,..., c) in A(n) we denote by the

where

((o/)(k) ()(k-1)(/-l)

fl k-)/2k 1/2) k(,O-

and

h (ol3 Ak

is a permissible function.
Proof. In particular, for t Ak(n), since 0! 1!= 1, we may assume that aj_-> 1.

Applying Stirling’s formula as in Example 2 of 2, respectively, to (n!/al!’’’ ak!)
and ((n)!/(al)!’’’ (flak)!) we deduce that as no

_" h()(k)n(-/2

n!

011!.
h (ol3 ot t (ol3 k n 2 k (13 ( ( _fl_n )(). ()

element (fla ", ak of Ak(n ).
LEMMA 1. Let fl be a positive integer. For t (al, , ak) in Ak we have as n
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where

13)(k) ()(k-1)(13-1)(k-1)/2
and h) is a permissible function.

To conclude the proof ofthe lemma, we apply Example 1 and the remark preceding
it in 2

j=l

We now note that to each a (a,..., ak) in Ak(n) we may associate a unique
a=a(a)=(a,..., ak) in Ak(n) satisfying

a a <a+, j=l,...,k-l,

a=n-(a+" .+a,_).

Each a in A(n) is associated in this way to exactly - elements of A(n).
We can easily check that as n

c(a) c((a)), j=,...,k,

in the notation of 2.
With the correspondence a =a(a) above we show the following lemma.
LEMMA 2. For all a in A(fin

where () and h is a permissible function.
Proo The lemma follows on applying Stirling’s formula as in Example 2 of 2

to both sides of the above equation, and from Example 1 of 2 and the remark
preceding it. The main point is that the distance between and is uniformly
bounded for all in A(n).

The proposition now follows after applying Lemmas 1 and 2, being careful to
note the remarks preceding Lemma 2.

If Theorem 1 holds for 1 we may apply it to the right-hand sum of the
proposition to deduce the result of Theorem 1 for a positive integer, and hence, by
the remarks at the beginning of the section, for all real > 0.

4. Proof ofe eore ie ese 1. By the results of 3 it suces to consider
the case 1. This case is a straightforward application of the Central Limit Theorem
of probability and its proof is due to Gideon Schechtman.

Let e, 1,. , k, be the vector in N with ith coordinate 1 and zeros elsewhere.
We introduce random variables X,... ,X that take values in the set {e,..., e}
with probability

1
P(X=e) , i=, ,n, j ,. ,.

For et in Ak(n) we have

P(XI+"" "+X, () (n) k-".
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In this setting, the sum

ozAk(n)

equals n-VE(f(X1 +... +Xn)) where E stands for expected value.
On the other hand, consider the expected value E(g((1/v/-)(Vl +. + Vn))) where

the

are independent random variables with expected values zero We remark that if, for
1, , n, we write i (yl, , Yk) then Yk -(Yl +" + Yk-1). We may there-

fore apply the Central Limit Theorem (see, for example, [4, Problem 6, p. 241]) in
k- 1 dimensions with expectation matrix F E (yiyj) i, j 1, , k- 1 to deduce that

lim g (+...+)

det-F -g(x(u)) exp(-uF-ut) du

where u= u ., Uk-)

x x(u) (x, ., x) (u, ., u_, -(u +... + u_)).

Now, if ij, li,jk,

(1 1/k, 1/k) with probability 1/k,
(y,, y) (- 1 / k, 1 1 / k) with probability 1 / k,

(- 1 / k, 1 / k) with probability 1 2/k.

Hence E(y,, y)=(2/k)(1-1/k)(-1/k)+(1-2/k)(1/k)=-l/k2. Similarly E(y.)
(k 1)/k2. It therefore follows that

det F k-k, F-1 koF=,
-1 k-1 1 2

xj.2 Thereforeand ur-lut kjk=l

i.l’n E g (Y1 +’" "+Y,)

kk/2 g(x) exp -- x dx,...
i=1

Xk --(X -1I-" .-- Xk_l)
It is now straightforward to verify that as

f(o) g(c(o)) n , o in Ak(n),

we have

limSk(n)=limE g (Y+...+Y,)

so that Theorem now follows immediately in the case/3 1.
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5. Applications. The applications we give here require the following theorem,
which follows from our main theorem and is almost equivalent to it (Ak t_J n_->o Ak(n);
1).

THEOREM 2. Assume f:Ak-l satisfies f(A) g((A)) n and g(Xl, xk) is
continuous almost everywhere. Then

f(A)d-----(2--) (1/2)fl(k-1)

AAk

k(1/2)t3k2. T-(1/2)(fl-1)(k-1)-(fl/4)k(k-1)

XI-I-’"+ ---0

Xl...X

Proof. It is well known that

dA--(), k-II -Ii(lm--lm+J-ll"J).m=lj= Am+j

As in Examples 1 and 2 of 2 we have

k
and

hm+j n
Am Am+j +j C l Cm+ (1 /r-

SO

m=l j=l /m +j
D(c(A))" n-(8/4)k(k-1). k(/2)k(k-1).

The proof is now a straightforward use of Theorem 1.
Remark Theorem 2 clearly indicates that the maximum of the d, A e Ak(n), is

def
obtained for A eAk(n, p) Ak(n)f-lAk(n,p), for some p>0 ( 2).

We do have a rigorous algorithmic proof of this fact (see 16]). The corresponding
A can then be found as in [1].

For further applications, the following corollary is very useful.
COROLLARY. Let f:Ak -> and assume f(h) g(c(h)) n , where g(Xl,""" ,Xk)

is continuous almost everywhere. Let dn- A(,f(h)d, n- 1, 2,. , and assume

d c. n p k c a constant ).

Then p y zk k 1 and

Xl-l-" "-b =0

Xl...x

g(x) D:(x).exp -- x d(k-1)X (2r)(k-1)/2.C.

Proof The proof follows by equating the asymptotics of d, with that of
;AK(n)f(A)dx, which is given by the above theorem. [3

To apply this corollary, one usually constructs a series {X,}, X. is an S, character,
such that for a fixed k and for all n, X, YA(,f(A)X.

If f and d, deg X, satisfy the above assumptions, then y and the integral are
determined.
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Example 4. The sums S)(n)=EAk(,,)d.
r =0, g(x)= 1 and by Theorem 2 we have

Here f(A) 1 (constant),

S(k n (__) (1/2)t( k-1)

k(1/2)k2 gl-(fl/4)k(k-1)-(1/2)(fl-1)(k-1), kn

f...f [DK(X) exp(--(j X]))] d(k-1)x.
Xl+...+x =o
Xl ...:X

This agrees with (F.2.10) of [12].
Example 5. Evaluate

XI +" "-b =0

x...--Xk

(Dk(X))2 e-(k/2)llxlld(k-1)X J2(k) ( k)
As a special case of the corollary we now determine J2(k). (This is a special case

of the Mehta integrals [8],

XI+’" "+X -0

(Dk(x))2z e-(k/2)llxll2d(k-1)X-- J2z(k).

These can be evaluated by the Selberg integral [7].)
Let Sk(A) denote the number of the k-semistandard tableaux. It is well known that

Sk(A) Dk(t(A ))/Dk(k, k- 1, , 1)= IF(l) F(k)]-1" Dk(t(A)).

The identity kn=f,aeAk(n) Sk(,)d, can be deduced from either the Knuth-
Robinson-Schensted correspondence, or from the S,-character g, Ya(,) Sk(A)g.
It is known that g, is the character of the natural (permuting coordinates) action of
S, on V", dim V= k; thus deg X, k". It follows from the corollary that Jz(k)=
F(1)... F(k). x/-k-. (1/k) k2/2. Thus by Variation 2

(Dk(X))2 e-k/2llxll2d(kx j! ,,/-k.
j=l

Example 6. Let p, , denote the inner (Kronecker) product of the S, characters
q,,. Note that no formula (or a "rule") is (yet) known for calculations (decomposing)
q.. Define

X. =( Y X.(X)$s. (restrict to S.).
AAk(n+l)

By [11],

/Ak2(n)

where f: Ak is some function which is unknown, except for the case k 2. It would
be very interesting to find whether or not f(t) has the following.

Property (a) There exists y such that f(t)g(c(t)) n v.
(b) g(x,..., Xk:) is continuous almost everywhere
Note. When k 2, f does satisfy that property. We discuss that case later
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Assuming now that f does satisfy that property, we obtain by Theorem 2 that

n’Y-(1/4)k2(k2-1), k2n,

where

Ik(g) Ik g(x,, ", Xk) Dk(X) exp ---- (x +... + x2) d(k-)x.

Xl+...+xk2=O
12"" Xk2

On the other hand, since deg X. aAk(-+l) dEa, hence

kk2 tl-(k2-1)/2 k2(n+l),

where .2(k)=(1/2r)k2-1" J2(k), J2(k) as in Example 5. Equating, we deduce the
following.

General case. Let

X. =( Xx (S) X;, ) , s. f tx X,
A EAk(n+l) /z EAk2(n)

and assume f(/z) satisfies the above property; then

Ik JE(k) 2/ k2-2k+l k-k2(k2-1)+2

Also, we must have 3/= y(k) 1/4(k2 1)(k2 2).
The case k 2. It follows from [9] and [6] that

f(/x (c, c2) c2 c3) c c4)" N//- 3,

where e c(/z). Thus

Xl%-.- --{- X4 0

XI’’’X

(X X2)(X2 X3)(X X4) U (Xi- Xj)" e -2(x2+’’’+x) dx dx2 dx
l=ij4

Remarks Ik determines the codimensions of the kk matrices [14], [6] and
12 =/4 was therefore calculated in [13, Appendix]. This was a long and complicated
calculation by recursive methods, in which a computer was also used; a sketch of it
occupies three pages in [13]. Later, William Beckner showed us a very elegant calcula-
tion of I22, which could occupy about two printed pages. The above should be viewed
as an "algebraic" (and almost effortless) calculation of 122. For a higher number (->3),
f(/z) and g(c(/z)) are unknown, but any conjecture about these can be tested by the
above general case.

Example 7. Let @l(n)--AAt(n) Y/()XA as in [10].
The case l= 3. By(4.2) of[10] deg qta(n)---(1/)2. x/3. 1In. 3",while Ya(A)

min {hi- A2, A2- A3} + 1 min {Cl(A)- c2(A), c2(A) Ca(A)}" x/.
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Thus, by the corollary,

The case/=4. Here deg 4(n)---(1/x)2. 24 (1/v/-)3. 4".
Define

g(Xl,’’", X4)

1 1

" (X X2)(X2 X3)(X X4) --7 [min (x,- x2, X X4)

(X X2 X3 + X4) if x- x >
X 22 X + 24

1
Z (x2- x3)[min (Xl- x2, x3 x4)

(X2 23 + [min (x- xz, 23 -- X4)]) if X2 X
X X2 X + X4

By Theorem 5 of [5], we have Y4(A) g(cl," ", c4) %//--3, where c=c(A). Thus,

fll g(xl,’’’, x4)D4(x)’e-:(x+’’’+x) d(3)x

Xl+-..+x4=O

(2/) 24=

Example 8. Young’s rule and the Littlewood-Richardson rule for the outer
products of Sn-characters provide many "combinatorial" indentities; these yield quite
interesting integrals. We demonstrate this below

Let n m2, h (n +x/if, n -x/if) - (2n) and define ,,3n XA +X(n)’--- X(n+x/-,,n-x/-ff)
)X(.) (outer products). By Young’s rule,

X3n 2 X E f(tz )X..
/z (/z 1,/z2,/z3)t--(3 /x A3(3

/x => +v/-ff/x2-> -v/if-->/x

Write txj=(3n/3)+cj; then /zl=>n+x/-ff->/x2->n-x/>-/x3 if and only if

Cl -> 1/x/--> c2=> -1/x/--> c3. Thus

j-l, c _-> 1/x/ >- c2_-> -1/x/ -> C3,
f(/x) g(c(/x))

0 otherwise.

Clearly, g(xl, x2, X3) is continuous almost everywhere. Thus

deg X3, f[ D3(x) e-(3/2)(x2+x+x)d(-)x() %f32 n-3/2 3 n.
Xl nt-X2--X3 =0

x
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NOW,

where

(3n)deg/3n
2n

da

2n! 2x/-ff+ 1
da

n + v/-ff n x/,-ff n + x/-ff + 1

Apply Stirling’s formula; since

lim 1 +

we easily find that

1

1 v 1
deg ’3n 33n

e 7r nx/

By the corollary,

-t-x2+x 0

Xl := 1/x/>=x2

D3(x) e+(3/2)(x+x2+x d(2)x (3) 32
2,k/2 1_..,’ 2

e 7r 34e"

This example can easily be generalized to higher integrals.

Acknowledgment. We are indebted to G. Schechtman for his considerable help
with the probabilistic aspects of this paper.
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q-SERIES AND ORTHOGONAL POLYNOMIALS
ASSOCIATED WITH BARNES’ FIRST LEMMA*

E.G. KALNINS AND WILLARD MILLER, JR.

Abstract. We exploit symmetry (recurrence relation) techniques for the derivation of prop-
erties associated with families of basic hypergeometric functions. Similar methods have been used
by Nikiforov, Suslov, and Uvarov. Here we apply these ideas to find new proofs of Barnes’ First
Lemma and some of its q-analogues. We show that these integrals correspond to the weight functions
determining the orthogonality relations for Hahn, q-Hahn, and big q-Jacobi polynomials. As an-
other example of our method we introduce a biorthogonal system of rational functions whose weight
function corresponds to the q-analogue of Kummer’s Theorem.

Key words, basic hypergeometric functions, orthogonal polynomials, Barnes’ Lemma, biorthog-
onal functions

AMS(MOS) subject classifications. 33A65, 33A75, 39A10

1. Introduction. In papers Agarwal et al. (1987), Kalnins and Miller (1987),
Miller (1988), the authors have advocated the exploitation of symmetry (recurrence
relation) techniques for the derivation of properties associated with families of basic
hypergeometric functions, in analogy with the local Lie theory techniques for ordi-
nary hypergeometric functions. In particular, we have used these ideas to give simple
derivations of the orthogonality relations for the Askey-Wilson and Wilson polynomi-
als (Askey and Wilson (1985), Wilson (1980)), and, in particular, simple evaluations
of the weight function integrals that determine the normalizations of these polynomi-
als. Similar techniques have been employed by Nikiforov, Suslov, and Uvarov (1985)
and Nikiforov and Suslov (1986), but they have apparently not applied them to the
computation of contour integrals and summation formulas.

In 2 we use recurrence relations obeyed by a family of q-Hahn polynomials to de-
rive the complex orthogonality of these polynomials and several q-analogues of Barnes’
First Lemma, including those of Watson (1910) and Askey and Roy (1987, eq. 2.8).
These integrals correspond to the square of the norm of the constant polynomial 1.
Expanding one of these contour integrals by residues we obtain the real orthogonality
relations for the big q-Jacobi polynomials.

In 3 we carry out the corresponding computations for the limiting case q 1-
and obtain the classical Barnes’ Lemma, which we now see is associated with the
orthogonality of the Hahn polynomials.

In 4 we work out a simple but nontrivial example of the use of these ideas
to derive biorthogonality relations for rational basic hypergeometric functions. The
associated summation formula is the q-analogue of Kummer’s Theorem, originally due
to Andrews (1973).

*Received by the editors June 17, 1987; accepted for publication August 13, 1987.
tMathematics Department, University of Waikato, Hamilton, New Zealand.
School of Mathematics and Institute for Mathematics and its Applications, University of Min-

nesota, Minneapolis, Minnesota 55455. The work of this author was supported in part by the National
Science Foundation under grant DMS 86-00372.
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This link between recurrence relations obeyed by families of special functions,
orthogonality relations for the functions, associated contour integrals and summation
formulas appears capable of extensive generalization.

Most of the computations in the following sections were checked with SMP.

2. q-analogues of Barnes’ Lemma. We are concerned with the q-Hahn poly-
nomials

(2 1) (I)a’b’c’d(z) 30 q-n ac, ad

n 0, 1,2,...
where the basic hypergeometric functions p+199p are defined as usual by

and

ap+l ) o (al;q)m’"(ap+l;q)mxm
bp

x (51;’q-m:.. (-piin’(-q-

(a; q)o 1,

(a;q)m (1 a)(1 aq)... (1 aqm-1), m>l.

Initially we require 0 < Iql < 1, acd 7 0, and lal, Ibl, Icl, Idl < 1, but some of these
conditions can be relaxed later. The polynomials obey the fundamental recurrence
relations

(2.2A) #(a’b’c’d)d)(a’b’c’d) q1/2 (1--- -(2.2B)

where

T(a’b’c’d)(I)(a’b’c’d)--n a(lq_-:-n)(l(1ad)(1-qn-labcd)- ac) (Pn--l" (aq1/2,bq1/2,cq1/2,dq1/2)

#(a,b,c,d) =1 (1-azq-1/2)Ez 1- -- E[
Z

T(a,b,c,d) l [Ez E-1/2]
Z

and Ef(z) f(qCz). These relations follow from

q2
#(za; q)n --d-(1 adqn-1) (zaq1/2 q)n,

a
(1 qnT(za; q)n ---i- )(zaq-’ q)n-1.

q

The existence of # suggests the existence of a recurrence taking ((naq-1/2’bq1/2’cq1/2’dq-1/2)
to O(na’b’c’d). Indeed, the appropriate operator is

q2 (bq1/2,aq-1/2 ,dq-1/2,cq1/2
P

(2.2C) # ((naq- 1/2 ,bq 1/2 ,cq 1/2 ,dq- 1/2

__q1/2 (4 q-n)(1 bcqn)
((na’b’c’d) p O,

p c(1- )
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which follows from

q--ltP #*(azq-1/2 q)n (az;q)n(bcqn- 1)
c-T + (az; q)n-I (acqn-1

q2
_l)(qn_l)

q-n

Let Wa,b,c,d(Z) be a (complex-valued) weight function and Sa,b,c,d be the indefinite
inner product space of polynomials f(z) with respect to the inner product

(2.3) (fl, f2)a,b,c,d ’ fl (z)f2(Z)Wa,b,c,d(z) dZz
where C is a deformation of the unit circle Izl 1. Now consider tt ](a,b,c,d) and

/2. ]
bq 1/2 ,aq- 1/2 ,dq 1/2 ,cq- 1/2 as _ma,.,..nc,snni

P

(2.4)

Sa,,,d -- q_ 1/2 ,q 1/2 ,q 1/2 ,q- 1/2,

12" Saq- 1/2 ,bq 1/2 ,cq 1/2 ,dq- 1/2 -- Sa,b,c,d

and determine Wa,b,c,d SO that

(tzf g)aq_1/2 ,bq1/2 ,cq1/2 ,dq-1/2 (f p* g)a,b,c,d

for all f E a,b,c,d, q Saq-1/2,bq1/2,cq1/2,dq- 1/2 Condition (2.5)yields a q-difference
equation for Wa,b,c,d with solution

(2.6) Wa,b,c,d(Z)

where

(; q)(; q)(pc;z q)( qzcp;q)
c d(az; q) (bz; q) (7; q) (7; q)

(x; q)o lim (x; q)n.

This result is a consequence of the invarianee of the contour integral under the
changes of variable z q+1/2z, and the property h(qz) -h(z)/z where h(z)
(z;q)oo(q/z;q)oo.

It follows immediately that #*# is a self-adjoint operator

I*# S,b,c,d S,b,,a
and from the recurrence relations (2.2) we have

(2.7) p*poa’b’c’d):nOa’b’c’d), An= q
q-n (l_bcqn).

Since eigenfunctions corresponding to distinct eigenvalues are orthogonal we have

(2.8) (oa,b,c,d), o,b,c,d))a,b,c,d 0 for m n.

Relation (2.5) for f g 1 yields

d 1 bc

(1-
where

,,c,d (1, 1)a,,c,d.
The symmetry of the weight function in (a, b) yields an additional relation of the form
(2.9). rthermore the obvious relation

(O(,,,d) oa,,,) )a,b,c,d O,
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the explicit expression (2 1) and the property (1,pn)a,b,c,d --Illll 2 for Pn(Z)-aqn,b,c,d
(az; q)n, yield the relation

(1 ad)(1 -ac)(2.10) 111112aq’b’c’d (1 abed) 111112a,b,c,d"
Again, the symmetry in (a,b) gives an additional relation. The solution of these
q-difference equations is

(2.11) 111112a,b,c,d (abcd;q)oo(;q)(;q)
(ad; q)oo(ac; q)o,:,(ac; q)(bc; q)oo(bd; q)oo

(p’q)

where (p,q) is to be determined. In the special case a p/d, b q/cp we
can compute the (trivial)integral directly: 111112 1 Hence 2K(p,q)p/d,q/cp,c,d
(P; q)o(q/P; q)/(q; q) and we have

1 f’ (deiO;q)(qde-iOp q)o (pcei; q)
]_.

(de-i; q)
(abcd; q)o q)o cp q) (p; q) p; q)o

(2.12) (ad; q)o (ac; q) (be; q) (bd; q)o (q; q)
in agreement with Askey and Roy (1986).

Now we consider the recurrence

T(a’b’c’d) ""a’b’c’d aq1/2,bq1/2,cq1/2,dq1/2’
(2.2B) and compute the adjoint ’* 7

*(aq1/2,bq1/2,ca1/2,dq1/2) such that

(2.13) (7f g)aq1/2 ,bq1/2 ,cq1/2 ,dq1/2 (f’ T* g)a,b,c,d

for all f E Sa,b,c,d, g Saq 1/2 ,ba 1/2 ,ca 1/2 ,da 1/2" A straightforward computation yields

(2.14) 7"(aq1/2’bq1/2’cq1/2’dq1/2) ----q’z [--(1- az)(l-bz)E+ (1- -z) (1- z) E-1/2 ].
It follows that 7*v Sa,b,c,d Sa,b,c,d is self-adjoint. Moreover, the action of v* on
the polynomial basis is

(aq 1/2 ,bq 1/2 ,cq 1/2 ,dq 1/2 (1 ac)(1 ad) o(na,b,c,d(2.15) 7 (1)n_ q-} acd
This follows from

T* (aq1/2 z; q)k
acd

(1 acqk)(1 adqk)(az; q)k q-k-1/2acd
Thus

(2.16)

(1 abcdqk)(az; q)k+l.

T,Te(na,b,c,d c_(11 q_n)(1 qn- abcd)O(na,b,c,d)

d,(a,b,c,d) ()(aq1/2,bq1/2,cq1/2,dq1/2) in (2 13) we obtain the recurrenceSetting f- n g =--n-1

(217) IlO( a’b’ ’d)ll a,b,c,d
qa2cd(1 q-n)(1 qn-labcd) (aq1/2 1/2

(1 ad)2(1 ac) 2 (ypn-I dq )]12aq1/2
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2which permits us to compute the norms II(I)(na d)l12 recursively from Illllaa,...,d
Note that the norms are all nonzero. We have shown that the q-Hahn polynomi-
als {((na’b’c’d) } are uniquely characterized by their orthogonality with respect to the
complex weight function Wa,b,c,d.

Since the weight function is symmetric in {a, b} the orthogonal polynomials sat-
isfies the transformation rule
(2.18)

(q-n, qn-labcd bz ) ()
n (ac; q)n(ad; q)n ( q-n, qn-labcd, az )3(92 bc, dc q

(bc; q)n(bd; q)n 3(92 ac, ad q

Also, the action of .,(aq1/2,... ,dq1/2) determines a Rodrigues formula.
The complex orthogonality (2.8) for the q-Hahn polynomials leads to real discrete

orthogonality for the big q-Jacobi polynomials (Andrews and Askey (1985)):

(q-n, qn-l+a+++5 qx+l )(2.19) 3o2 qa+U, q+ ;q

The polynomials (2.19) are orthogonal with respect to the discrete measure with mass
points and corresponding weights (Ismail and Wilson (1982)):

x a + 5 + k 1
(qb-.+k+l; q)oo(qk+l; q)o qkqa+5-1
(qa+e+k; q)(q+e+k; q) (1 q),

(q-’i+k+l; q)o(qk+i; q) qkqa+-i(1 q)(2.20) X a + /+ k 1
(q+V+k; q)o(q+’+k; q)o

k 0, 1, 2, To obtain this result from (2.6), (2.8) we first set a qa, d
q. If Re(a, fl, %6) > 0 and there are no double poles we can expand the integral
(On, (m)a,b,c,d by residues, using the simple poles of Wa,b,c,d(Z), (2.6), at z q,+k,
Z qb+k. The result of this expansion is (2.20) with z qX. In particular, the
dependence on p cancels out.

Our approach relating orthogonal polynomials to integrals of weight functions
can be used to evaluate other important integrals. One class of such integrals can be
conveniently studied through the change of variables given in the preceding paragraph:

(2.21) a-qa, b=qfl, c q’, d- q, z qX.
This change reduces q-difference equations for the weight function to ordinary differ-
ence equations. Indeed the operators (2.2) now take the form

#(a,Z,,,5) q-[(1 qa+-1/2)1/2 (1 qX-5+1/2)x-1/2],
q-X[k

(2.22) -q-X[(1 q+) (1 q-)-k]
where g(x) g(x +

The orthogonal functions are now polynomials in q. We require that the inner
product take the form

f (q)f(q)w,,,(z)dz(I1,

where the contour in the complex z-plane will run from -i to +i so that decreasing
sequences of poles for w lie on the left and increasing sequences of poles lie on the
right. The condition that * be the adjoint of now becomes

(2.24) (#f, g)a-1/2,f+1/2,+1/2,-1/2 (f #* g)a,f,’,
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with f E S,,,5, g 6 S_1/2,+1/2,+1/2,5_ 1/2, where S,/,,5 is the space of polynomials
in qZ with inner product (2.23). The nonunique solution for w is

(2.25) wo,,v,5(x) (qZ-v+l;q)(qX-5+l;q)qZH(o,3,"/,3, x)(qZ+";q)(qZ+;q)oo
where H is an analytic function of its variables satisfying the periodicity properties

U(, , ",/, 8, x) S(a, ,’,/, 8, x + 1),

( 1 1 1 1 __)
( 1 1 1 1 1)
(11111)(2.26) =H a-,/3+,q+,8+,x+

One solution of (2.26) is

sin r(, )n(a, 3, 7, , x)
sin r(-/- x) sin r(6 x)

so that the weight function becomes

(qZ-n+i; q) (qZ-5+l; q)qZ sin 7r(/- ti)(2.27) w(,,.,5(x) (qX+.; q)o (qZ+; q)o sin r( x)sin r(6 x)"
Then the polynomials are
(2.28)

q-n, qn++B++5-1 qa+Z )(I)(n’’’5)(qz) 3o2 q+, q+5 ;q n 0, 1, 2,...

and the eigenvalue equation is

#.#(I)na,f,v,5 q1/2-V-5 (qa+5-1 q-n)(1 qO+’+n)((no,B,v,5)"
We have immediately

(q)(na 5),(i)(m. 5)). 5=0, men
and

-1/2+5-u (1-qB+)
(2.29) 11111_1/2,+1/2,+1/2,_1/2 q

(1 qa+5-1)IIl11,,,.
The symmetry of w in (,/) leads to a similar recurrence. Also, the skew-symmetry
of w in /, 6 yields a new recurrence. Finally, the orthogonality

((I) l(a 5) (i)(0( 5) --0

leads to the recurrences

[[1[[: (1 qC+’)(1 qa+5)[I 1 2
c+ 1,f,-r,5 (1

and

cz,B,/+l,5
qS-(1 qa+)(1 qf+)II1 2

(1 qa+f++5) Ila,f,,5
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with the solution

(q+Z+’+’;q)(qe-’;q) (q+’-’ q) q’
(2.30)

where M is an analytic function of its arguments, symmetric in (a,/3) and in (’7, 5),
satisfying the periodicity relations

M(a, , "7, ) M(a + 1, 3, "7, ) M(a, 3, "7 + 1, )

(1 1 1
(2.31) -M a-,/+,"7+,5-
To evaluate M we replace a by a + k, k a positive integer, and rewrite the integral
for 111112 in the form (x iy)a+k,,"l,6

1/5 [ (qa+k+6;q)(qa+k+6;q) ] (qiy-’+l;q)cx)
2r do (qa+Z++6+k; q)(qiy+a+k; q) (qiy+Z; q)

(qiU-e+x; q)qiYdy
sin( iy) sin (6 iy)

(2.32)
qV(qe-V;q)(q+n-e;q)

M(a,,(q+V; q) (q+e; q)

Notice that the right-hand side of (2.32) is independent of k and that the bracketed
quantity on the left goes to 1 as k +. From the Lebesgue dominated convergence
theorem we conclude that

1 f (qiU--+l; q)oo (qiV-6+l; q)oqiu
2- J_do (qiu+e; q)o sin r("7 y[a-( iy)

q (q6-; q)o (q1+-5; q)oo
M(a,/3, "7, 5).(qe+U; q)o (qf+e; q)o

It follows immediately that M is independent of a and/3. Now in (2.32) set k 0,
a- 1-"7,/3 1-5:

1 l qiU sin 7c("7 6)dy M("7, 6)q (1 qe-V)
(2.33) 2- c sin r- iy)sin r(5 iy) (1 q)(q; q)o

The rather elementary integral on the left-hand side of (2.33) can be easily evaluated
by residues and the resulting geometric series summed to yield M("7, 6) (q; q)o/r.
Thus

1 f_x) (qiy-.+i;q)o(qiy-5+i;q)ooqiYsinvr("7_)
2-- o (qiY+a; q)oo(qiy+Z; q)oo sin r("7 iy)sin r(6 iy)

dy

(q; q)qV (qa+f+’Y+e; q)oo (q6-V ;q)oo (q1+’-6; q)o
(2.34) -(qa+e; q)(q+; q).(qZ+’v; q).(qf+6; q)

which is Watson’s q-analogue of Barnes’ First Lemma (Watson (a9ao)).
By choosing other solutions H of relations (2.26) we can evaluate other integrals

in the form (2.30), (2.31). For example, if H cos-2 rx then M (q;q)q1/4 (1-
q1/2)/2r(qv -q). However, in general one cannot evaluate M by the simple method
we used for (2.34).
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3. The classical Barnes’ Lemma. To see the relationship between our re-
sults and Barnes’ Lemma we could, with care, let q 1- in expression (2.12) (i.e.,
at the end of our construction). However, it is more instructive to take the limit
q 1- immediately and then proceed step-by-step through the argument of the pre-
ceding section. From this point of view the functions to be considered are the Hahn
polynomials

-n, n+a+3+’7+5-1, a+x )(3.1) O(na’f’’’) (x) 3F2 a + ’7, a + ;1

n 0, 1,2,...,

where 3/5"2 is a generalized hypergeometric function:

(Ol)m... (Op+l)mZm

] 1 if m 0,

a(a+l)...(a+m-1) if m_>l.

The recurrence relations are

(3.2A) #(’Z’’)(I)("’z’’’*) (a + 1)(I)(n"-1/2’f+1/2’’+1/2’-1/2),
(3.2B)
#.(_1/2,+1/2,.+1/2,_1/2)(I)(n-1/2,f+1/2,.+1/2,-1/2) (n + a + 5 1)(n + + ’7) (i)(n,f,.,)

V(a,Z,.,)(na,,.,) --n(n + a + + "7 + 1) e,(a+1/2,f+1/2,.+1/2,+1/2)
(O + () (O -}- ’7) :n--i

(3.2D)

where

T*(a+1/2,+ 1/2,9’+1/2,5+1/2 (i)n_l(c+ 1/2,9+1/2,+ 1/2,5+ 1/2) (O + () (O + ’7) (I)(n’9"7’5)

p("’"’)= a+x- + -- -,
*("-1/2’+1/2’+1/2’-1/2) ( + x) + (- z)

+ x)(Z +
and g(x) g(x +

We define a complex inner product by

for polynomials , where the integration path is the imaginary is in the complex
x-plane. Let S,,,e be the space of polynomials with this inner product. We require
that

(3.4) (#f, g)a-1/2,+1/2,v+1/2,-1/2 (f, #*g)a,Z,v,
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for all f E Sa,/,,, g E Sa_1/2,Z+1/2,+1/2,_ 1/2. In order that (3.4) hold, the weight
function must satisfy a difference equation whose solution is (essentially)

(.) ,,,(x) r( + x)r( + )r( )r( x)
where F is the gamma function (Whittaker and Watson (1958, Chap. XII)). Here we
are using the fundamental recurrence for the gamma function

F(z + 1)= zF(z).
It now follows that #*#" Sa,,, - S,Z,, is self-adjoint with respect to this inner
product and has eigenfunctions Ona’’’"

(3.6) #*#On’/’’5 (n + a + 5 1)(n +/ + /)’’u’.
Since eigenfunctions corresponding to distinct eigenvalues are orthogonal we have

(3.7) ((na’fl’’), (ma’’’)),/,, 0, n = m.

A similar computation gives

(3.8) (Tf, g)a+1/2,fl+1/2,V+1/2,+1/2 (f, T*g),,V,5

for the same weight function and all

g S,+ 1/2,e+ 1/2,+ 1/2,,+ 1/2, f ei So,,8,,,.
Thus * is self-adjoint on S,/,, and

(3.9) v* v(I)(na’’e’’’) n n + o + 1 + "1 + 1)(I:)(na’’8’’’/’).
Setting f g 1 in (3.4) we find

(a.10) Illll
(Z + )

a-1/2,fl+1/2,-r+1/2,- (a + 5 1)Illl
Symmetry of the weight function in (a,/) and in (q, 5) gives three more such relations.
Furthermore

(I)(c’’8’’/’5)1 (ID(0"8’"/’5))c,,8,,.,/,5 O,

which, from (3.1)and (3.5), implies

(3.11) [1111 (o + "),)(o + 5) Ill II.....c-f-1,3,’,/, (0/ -[-- -[-- ")’ -" )
and also

(3.12) I[1 , ( +/ + /+ 5)I[111,,,.I1,,+1 (/+ )(’ +/)

The symmetry of the weight function in (,fl) and in (,5) gives two more such
relations. It follows that

(3.13) [[1I,,, r(+++)
where M is symmetric in (a, ) and in (, 5), and satisfies the periodicity properties

( 1 1 1 )M(a+I,,,8)=M a-,+,+,8-
(3.14) M(a, , ff + 1, 8) M(a, , , ).
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To evaluate M we replace a by a + k and q by ff + k, k a positive integer, and write
the expression (3.13) in the form

(3.15)
if? (r(a + Z + + 5 + k)r(a + k + iy)r( + k iy) )2r r(a + + 2k)r(a + + k)r( + + k)

r( + iy)r(5 iy)dy F(/ + 6)M(a, , if, 6).
From Stirling’s formula (Whittaker and Watson (1958, Chap. XII)), we have

lim
r(a + + + 5 + 2k)r(a + k + iy)r( + k iy) 2+

r(a + + 2k)r(a + 5 + k)r(z + + k)
and it follows easily that

i F2 r( + iy)r(5 iy)dy 2-(+6)F( + 5)M.

Hence, M is a constant, independent of a,/, , 6. To evaluate the constant we set
a =/ + ff 5 1/2 in (3.13) and use the reflection formula for gamma functions:

’o

dy11111_,1/2,1/2,1/2 M- 2r
coshry

Thus,

(3.16)

.... r(a + iy)r( + iy)r( iy)r(5 iy)dy

r( + )r( + )r( + )r( + )
r(+++)

This is Barnes’ First Lemma (Bailey (1935, p.6), Slater (1966, p. 109)).
m[a+,+,u+,5+) to obtain theIn relation (3.8) we set f (I)(na ’’) g n--1

recurrence

(3.17)

-n(n +a+/+ if+ 5- 1)
(. + )( + 5)

It follows that the norms of the orthogonal polynomials are nonzero and can be com-
puted recursively from Illll,,u,e. Thus these polynomials are defined uniquely by
their orthogonality with respect to the weight function w.

The symmetry of the weight function in (a,/) implies the identity

-n, n+a++ff+5-1, x+/3.1)aF2 /3+if, +5
-n, n+a++ff+5-1, x+a )(a+/)n(a+5)n3F2 "1

( +)( +) + , +
Furthermore, the symmetry of the weight function with respect to the interchanges
x -x, a 5,/ /implies

-n, n+a++’7+5-1, -x+a )3F2 o/- /, o -- ( ;1

(Z+ 5) ( -n,
(-1)n(a+/)n3F2

n+a++’7+5-1, x+5 )/+5 ;1
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4. Biorthogonality relations. We will extend the ideas of the previous sections
by considering rational functions rather than polynomials. Thus the basic object of
study will be the rational function of z

(4.1) p,b(z (az; q)n
(bz;q)n

rather than the polynomial (az; q)n of 2. Two fundamental recurrences are

_a,bq (a b_2.q-n+a 1) a b b (-b + pq-n+ a b(4.2A) lpn-1
a b Pn:2 Pn’a a-b

(4.2B)

where

and

#2pan’b (a b)(1 qn’,na,bq)t-’n--1

(1--bPz)aq Eaz(_)
b 1 pz

Iz,
a 1-bz

q
#2 -(1 bq- z)(1 bz)[Iz E-I],

Z

Ef(z)-- f(qz), If(z)-- f(z).
It is not difficult to verify that the eigenvalue equation

(4.3) tlt2I/(z)-- ,I/(z)

has the solutions

e (q-2;q2)k "b -1 q2(-q )k (az; q)2k .a,b,p q(4.4) e (z)-
k=0 (q;q)k(;q2)k (bz;q)2k

corresponding to the eigenvalues

b -e(4.5) Ae=-(1-q )(bque- pq), g=O, 1,2,
a

Let S,b,o be the complex vector space of all finite linear combinations of the functions
a,b,p{e }. Consider the bilinear form

(4.6) < f g >’b’P= fC f(z)g(z)W’b’P(Z)
dz
Z

where g S,,, w is a weight function, C is a positively oriented closed cue in the
complex z-plane and f ,b, (a space to be determined). We interpret lp as the
map

12 S’b’p 82’b’p

and try to determine w, C, and ,b,p such that the adjoint eigenvalue equation

a,b,p a(4.7) (12) e Aee ’b’p, e O, 1, 2,...

a,b,phas hypergeometrie solutions 9e where
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An evident solution is

(4.8)

^abwith @,b,p as the space of all finite linear combinations of the {e’ ’P}" The weight
function must satisfy the recurrence

W,b,p(qz (1- az)(1 z)(4.9)
Wea,b,p (Z) (1 b--a )(1 bz)"

This recurrence has many solutions, depending on our choice of the zeros and the
poles of w in the z-plane. One of the solutions with the simplest pole structure is

(4.10) W,b,(z
(bz; q)(-pz; q)o (-; q)o
(az; q)oo( qapbz;q)oo(Pz;q)oo

where we assume

(4.11) Iql < Ipl < 1, Iqal < Ipbl.

For C we take the unit circle" Izl- 1. We will adopt solution (4.10) in the computa-
tions to follow.

Note that
b _2-I

a,b,p q2(a b)(1 q-2e)(1 q(4.12) #2e Oi"(1 a-)bp

where

(4.13)

It follows from (4.3)-(4.5) that

(4.14) #lO’_bi (a2q pb) a

qa(a b)
qte ’b’, t- 1,2,

Let Sao’b’ be the space of all finite linear combinations of the {oa’b’P}. We have
the interpretation

#1" 82’b’p s:,b,p, #2 Sea,b,p .._+ Soa,b,p.
Furthermore, (#1#2)* factors as (#1#2)* ## where

__q2 ( -PZ)(lz"1= O--z (1-pz) 1- Ez),

b2q2 (1 az) bp2 (1 )
# qa2 (1 -) Ez + q-- (1- _---------Iz
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and

(4.15)

with

a,b,p0__1 (Z)’--O,

(4.16) ’b’O(z) E (q2; q2)k(aq q2 q q
k=0 bp )k (pz;q)2k+l
g =0,1,

Let o’b’p be the space of all finite linear combinations of the functions {(,b,p). Then
we have the interpretations

We now try to determine a weight function w,,,p(z) such that the adjoint relation

(4.17) < #if, g >a,b,p=< f,#lg >a,b,p

holds for all f E ,b,,, g Sao,b,p, where

o fc dz
(4.18)

A straightforward computation yields

p2bzW,b,p(z)
W’b’P(Z) aq(1 bz)(1

PUbz(bqz; q)oo (-pz; q)oo (-; q)oo
(4.10) aq2 (az; q)oo (.-q& .pbz;q)oo( q ,q)

We can similarly verify that the adjoint relation

(4.20) < #2g, f e
>a,b,p--< g,#2f >oa,b,p

holds for all f S,b,p, g 2,b,p.
It follows immediately from these adjoint relations and the eigenvalue equations

(4.3) and (4.7) that the biorthogonality relations

^a e(4.21A) < e,b,,, ,,b,p >a,b,, 0,

(4.21B) < (,b,, O,,b, >,b,p 0,

hold for all t t. Our remaining problem is to compute the left-hand sides of
expressions (4.21A), (4.21B) for t- t’.

One appropriate operator for this problem is

( b2pz) q(1-bz)(1-bqz)(l- a-)E(4.22) q(1 bqz) 1 Iz azz a2 z (1- -)
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which satisfies

f:..a,bq (a bq)
bp q2k/la2

P2k+l - 1--
bp P2k

(4.23) k 0,1,2,...

where the basis functions p,b are defined by (4.1). It follows that

(4.24) 0’b’p -q(a bq) 1

=0,1,...

and that has the interpretation

" S’b’p .a,bq,Pq-
We define the adjoint operator, :,,- ,b,p
by

(4.25) < g, f >e ,
a,bq2,pq 2:< g f oa,b,p

where g ’bq’q-:, f S2’b,p. A straightforward computation yields

(.:) c q + (1 )
(1- )o

and

q2 (1- a2q2+1’"
(4.27) (a bq) ,,ita,bq2,pq-2 bp (b2

q a (1- ab-p
Set

a,b,p 2 a,b,p e a,b,p 2 ^a a,b,p o(4.28) III/ le :< ,b,p >a,b,p, [[0 Io :< O ’b’p, O >a,b,p,
t=O,l,e,

From (4.14), (4.15), and (4.17)with f ’’P, g- Oip we have

b q2t-1a,, pq(a b)(1 q-*)(1 7(4.29)

Relation (4.20) yields the same recurrence. Expressions (4.24), (4.25), and (4.27) with
)a,bq2 ,pq-2f O’b’p g -t produce

affa,bq2,pq-2 a,b p(4.30) []-e II-- b. )llO, ’ll.
bp(a bq)2(1

I follows from hese results hat if we know []la’b’[ for all a, b, p hen we can compute
recursively expressions (4.28) for all . In general these norms will be nonzero.

Replacing pz by z in (4.6), (4.10) we have

(4.1)
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where u alp, v a/b. From the relation

< ,b,p, ,b,p >e-- 0

it is straightforward to compute the recurrence

illaq2,bq ’Pll 2
(1- aq)

la,b 2= b ’ll(1 -bq)p
or C(q2u, v, q) (1 uvq)G(u, v, q)/(1 uq/v), which implies

(4.32) G(u,v,q) (-; q2) (v,q).
(uvq; q2)

To finish the computation of (4.31) we utilize the recurrence operator

(aq-b)(4.33) r (1 az)
bz b (1 a2qz

Here,

hence

rlp’b aq(1 q-n Jt’n-2"’aq’b + (_b2 + a2q2-n) panq’b
aq

(4.34) 7P’b’p
q-2t (b --a2 q2t+ 1)

abq(1-
(_a q2 + b q2e) ffq,b,p.

Interpreting r/ S,b’p "-’e’aq’b’P we compute the adjoint r/* q,b,p ._.+ ,b,p with the
result

(4.35) rt* (aq b) (1- pz)
l az)Elz + b ( a2qz

This leads to the recurrence

(4.36)
(aq-b)

1 vpa2q) "a’b’p

Thus the relation

implies

e 1 rl >e< r* 1, 1 >a,b,p--< aq,b,p

(a2q)(b-aq) la,b 2I[laq’b’P[12e 1
b + aq ’Pile

or (qv, q) (1-qv)(v, q)/(l+qv). We conclude (v, q)- (-vq; q)oo/(q)/(vq; q)oo
where (q) is to be determined. Setting u 0, v 1 in (4.31) we find G(0,-1, q)
1 (q; q)oo(q)/(-q; q)oo, so

(4.37) 111’’’11
(-q; q)oo (; q)oo (-; q)oo

(q; q)oo (ab-p q2)oo(; q)oo

Expanding the original integral I[la’b’Plle by residues inside the circle C, we see that
our result is equivalent to the summation formula

vq,(4.38) 2(/91 uq
uvq., __1) (-q; q)oo (’; q2)oo(Uvq2;1 q2)

v (uq;q)oo(--;q)oo
This is a q-analogue of Kummer’s Theorem, first proved by Andrews (1973); see also
Andrews (1977, p. 20).
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Note added in proof. A referee points out that the system of biorthogonal
functions in 4 is a special case of a system found by J.A. Wilson in 1977 but not yet
published.
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UNIFORM ASYMPTOTIC EXPANSIONS OF LAGUERRE POLYNOMIALS*

C. L. FRENZEN AND R. WONG:I:

Abstract. Two asymptotic expansions are obtained for the Laguerre polynomial L)(x)for large n and
fixed a > -1. These expansions are uniformly valid in two overlapping intervals covering the entire x-axis.
The leading terms of both agree with the two asymptotic formulas given by Erd61yi who used the theory of
differential equations. Our approach is based on two integral representations for the Laguerre polynomials.
The phase function of one of these integrals has two coalescing saddle points, and to this one the cubic
transformation introduced by Chester, Friedman, and Ursell is applied. The phase function of the other
integral also has two coalescing saddle points, but in addition it has a simple pole. Moreover, the saddle
points coalesce onto this pole. In this case a rational transformation is used, which mimics the singular
behavior of the phase function. In both cases explicit expressions are given for the remainders associated
with the asymptotic expansions.

Key words, uniform asymptotic expansion, Laguerre polynomial, Airy function, Bessel function

AMS(MOS) subject classifications, primary 41A60, 33A65

1. Introduction. Many special functions of mathematical physics have integral
representations of the form

(1.1) I(h)= fc g(z) e;’f(z’’) dz,

where C is a contour in the complex plane, h is a large positive parameter, and f(z, t)
and g(z) are analytic functions of their arguments. For fixed the asymptotic expansion
of I(h) can often be found by the method of steepest descents, which shows that the
major contributions to I(h) come from the saddle points of f(z, t), i.e., the points
where Of(z, t)/Oz vanishes. In general, the saddle points depend on t. As varies
continuously, the saddle points may coalesce with each other, and the form of the
asymptotic expansion may change. The problem at hand is to obtain an asymptotic
expansion for large h that is uniform with respect to as ranges over a given connected
set that is not necessarily bounded. When Of(z, t)/Oz has exactly two simple zeros that
coalesce into a double zero, Chester, Friedman, and Ursell suggested, in their innovative
paper [2], the use of the cubic transformation

(1.2) f(z, t) =1/2 u3- ( t)u + rl( t),

where (t) and r/(t) are determined explicitly from the requirement that the transforma-
tion (1.2) from z to u be analytic in a neighborhood containing the two saddle points.
As a result, a uniform asymptotic expansion of the form

(1.3) exp {-Ar/(t)} [Ai (A 2/3’)A1/3 s=o -------+As(A Ai’ (A 2/3’)725 =o Bs(A )]
was obtained, where Ai and Ai’ are the Airy function and its derivative, respectively.
Airy function expansions of the form (1.3) were in fact first found by Langer [7] and
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Olver [11] in their study of asymptotic solutions to the differential equation

(1.4)
d2w
dz

{up(z) + q(z)}w

for large values of u. When the function p(z) has only a simple turning point, (1.4)
can be transformed into one which is approximately the same as the equation satisfied
by the Airy functions. For an elegant version of this theory, see the book by Olver
[13, Chap. 11].

In this paper we shall study the behavior of the integral (1.1), when f(z, t) is given
by

(1.5) f(z, t)= z- coth z.

Note that this function has two symmetrically located saddle points

z+/- + sin-lx/

and, in addition, a simple pole at z 0. As tends to zero, the saddle points coalesce
with each other and also with the pole. The simplest function which also possesses
these essential features is provided by the rational function u- A2(t)/u. Thus, instead
of (1.2), the appropriate transformation is

(1.6) z- coth z u-
A2(t)

where A(t) is to be determined. As a consequence of (1.6), we obtain a uniform
asymptotic expansion of I(,) of the form

J(2AA) _. C2k(t)
(1.7) m 2k

=o A +4(__2_A D2/,+(t)

where J, is the Bessel function of the first kind. A transformation similar to (1.6) has
been suggested by Temme [15, eq. (6.12)], but, as he points out, his argument is only
formal (cf. [15, lines 6-8, p. 313]). It is of interest to observe that expansions of this
form have also been given in the theory of differential equations. They represent the
asymptotic solutions to (1.4), when the coefficient function p(z) has a simple pole (see
[12] and also [13, Chap. 12]).

The integral (1.1) with f(z, t) given by (1.5) arises in the study of the asymptotic
behavior of the Laguerre polynomial L)(x). The best known result in this area is
probably that of Erd61yi [4]. Erd61yi put v =4N =4n + 2a + 2, and gave two uniform
asymptotic formulas for L,)(vt), as n- c, where a is fixed and nonnegative, and
is real. One formula holds uniformly for <- a and the other for >- b, where a and b
are two fixed numbers, 0 < b < a < 1. Note that these two intervals overlap and between
them cover the entire real axis. Erd61yi’s formulas were considered important results
by Szeg6 14, p. 243], and their validity was extended from a => 0 to a > -1 by Mucken-
houpt [10] through the use of recurrence relations. It should be mentioned that since
Laguerre polynomials can be expressed in terms of confluent hypergeometric functions
[13, p. 259], it is possible to derive their infinite asymptotic expansions with error
bounds directly from those for Whittaker functions given by Olver [13, pp. 412, 446-
447]. However, so far, all of these results have only been obtained from the theory of
differential equations.
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The object of the present paper is to obtain the same kind of asymptotic expansions
for the Laguerre polynomial from its definite integral representations. An attempt in
this direction was made earlier by Wyman 18], but the range of validity of his result
is much more restricted than that of Erd61yi. The method we shall use depends heavily
on establishing that the transformation (1.6) has one branch u u(z, t) that is analytic
in z and continuous in t, and that the correspondence u z is one-to-one. This can
be done in two ways. It can either be proved directly, as was done by Copson
[3, Chap. 10] and Olver [13, Chap. 9, 12], who both used the cubic transformation
for Bessel and Anger functions, respectively, or it can be obtained as a consequence
of a general theorem corresponding to the one given by Chester, Friedman, and Ursell
[2, Thm. 1]. Although it is possible to establish such a general result like the one for
the cubic transformation in [2], it will hold only locally and not globally. We therefore
find it preferable to adopt the approach taken by Copson and Olver. Indeed, it will
be shown that the mapping z 4+ u in (1.6) is actually one-to-one and analytic along an
infinite loop starting at -c, enclosing the origin, and ending at -.

Here we wish to remark that although we consider only the case of Laguerre
polynomials, the method presented in this paper is quite general. It can be applied to
many other integrals whose phase function f(z, t) has two symmetrically located saddle
points and a simple pole. Since there are functions that are expressible in the form of
an integral but do not satisfy any second-order linear differential equation, a complete
theory of asymptotic analysis requires integral as well as differential equation methods
for deriving uniform asymptotic expansions.

The present paper is arranged as follows. In 2 we first show that the Laguerre
polynomial L)(ut) has an integral representation whose phase function is given by
(1.5), and then we use the rational transformation (1.6) to reduce it to canonical form.
For -oo< =< a < 1, the one-to-one nature of the transformation (1.6) is demonstrated
in 3. The derivation of the asymptotic expansion is given in 4. In 5, we study the
case 0< b_<-t < oo, and obtain an Airy function expansion. A concluding remark is
given in 6.

2. Reduction to a canonical integral. We start with the integral representation
[14, p. 384]

(2.1) e-,,/ZLf)(x)= 1 f(+)_ { xl+e-z}2rri
exp

2 1----7 (l-e-) -le dz,

where the path of integration is the usual loop which begins and ends at -oo and
encircles the origin in the positive direction. (Note that this is not the integral used
by Wyman.) Throughout this paper we shall assume that a >-1. Clearly (2.1) can be
written as

e-X/2L(")(x) 2rr--- exp - +Nz

(2.2)

(sinh z/2) --Ig--a--1 dz
z/2

with N= n+1/2(a + 1). If we replace z by 2z and let v=4N andx= vt,-oo< < 1, then
(2.2) becomes

2- I{+’ { }(si? 2)
-a-1

(2.3) e-’/2L{fl)(vt)
2rri

exp f(z, t) z dz,
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where f(z, t) is given in (1.5):

(2.4) f(z, t)= z- coth z.

We shall represent f(z, t) by the rational function

AZ(t)
(2.5) f(z, t)= u-.

U

For this to be an analytic transformation in the regions of interest, we must have
dz/ du 0 or o. Now

dz AZ(t)
(2.6) f(z, t)u 1+ u2

and f(z, t) vanishes at z z+ and z_ in Jim z[ < zr/2, where

+i sin-1 x/7, 0=< < 1,
Z+ q: sinh-1 x/, < 0.

Since the right-hand side of (2.6) vanishes at u +iA(t), we must make z z+ corre-
spond to u +iA(t), and z z_ to u =-iA(t). This gives

(2.7)
[sin-’ v/+x/t(1 t)],

A(t)=
[sinh-1 x/-+v/t(t-1)],

0<_-t<l,

Note that our A(t) is exactly the same as Erd61yi’s q(t). In 3, it will be shown that
with this choice, the transformation (2.5) is one-to-one and analytic along the whole
infinite loop given in (2.3). Thus, changing the variable to u, we obtain

2- I+) (( A2

(2.8) e-’/ZL’)(vt) =2r--- u--h(u) exp u-
u

du,

where

(sinh z(u)]--(_)-- dz
(2.9) h(u)=\ iu) ] du

Here we have assumed that the mapping z u preserves the loop nature of the path
of integration. Note that the function h in (2.9) depends also on the variable t; thus,
h h(u, t). However, for simplicity, we shall not indicate this dependence explicitly.

3. The transformation (1.6). The properties of the mapping between z and u are
best seen by introducing an intermediate variable Z defined by

(3.1) z- coth z Z u-
A2(t)

For our purpose, it suffices to consider only the strip IIm z I_-< r/2. We first restrict
ourselves to the case 0< < 1. The half-strip {z: Re z<-0, 0=<Im z -< r/2} is shown in
Fig. 1. Its image in the Z-plane is depicted in Fig. 2. Note that as z traverses once
along the indented boundary ABCC’DEFA in Fig. 1, Z also traverses exactly once
along the corresponding curve in Fig. 2. Here we treat the straight lines C’D and DE
in Fig. 2 as distinct parts of the boundary (see [17, p. 375, lines 22-25]). Hence, by
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B C

F

FIG. 1. z-plane (0 < < 1).

c

FIG. 2. Z-plane.

D iA (t)

...J C

Theorem 4.5 in [9, vol. 2, p. 118], 4’ z-t coth z is one-to-one in the interior of the
region bounded by this curve (see also [16, 6.45 and 6.46]).

We next consider the mapping q’uZ defined by d/(u)=u-A2(t)/u. By the
same argument as above, when u traverses once along the boundary of the region
ABCC’DEFA in Fig. 3, Z goes once around the corresponding curve in the Z-plane.
Hence 0 is one-to-one in the interior ofthe region ABCC’DEFA in Fig. 3. The equation
of the boundary curve EF in Fig. 3 is given implicitly by

"tr AZ( t)s AZ( t)r--=s+ ReZ=r-
2 r2+s2 r2+ s2’

where u r + is and r < 0. Since r =< 0 and Re Z <= 0, we have, from the second equation
above, A(t)<-_ r+ s2. This together with the first equation implies that s => 7r/4, i.e.,
the curve EF in Fig. 3 remains in the region Im u >-7r/4. Also, from (2.7), we have
A(0) 0, A’(t) > 0 for 0 < < and A(1-) r/4. Hence, 0 < A(t) < rr/4 for 0 < < 1.
Therefore, for 0 < t-< a < 1, the point D in Fig. 3 is at a positive distance away from
the curve EF.
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The transformation z u is obtained by composing b -1 :Z - z and p u - Z. Since
the transformations z Z and u Z are one-to-one within the boundary ABCC’DEFA,
so is z- u. Let z x + iy and u r+ is. It can be shown by direct computation that
the real parts of z- tcoth z and u- (1/u)A2(t) are odd in x and r, respectively, and
even in y and s, respectively. Similarly, the imaginary parts of these functions are odd
in y and s, respectively, and even in x and r, respectively. Hence, the mapping of the
rest of the strip [Im z[ <_-zr/2 is deducible from Figs. 1 and 3 by reflection in the real
and imaginary axes. This establishes the one-to-one and analytic nature of the function
u(z, t) in Jim z[-< 7r/2, except possibly at z z+/- and z =0. From the above argument
(cf. Figs. 1 and 3), it is also evident that neighborhoods of these points are mapped
into neighborhoods of their corresponding images. Consequently, u(z, t) is bounded
and analytic at these points. (Note also that near z 0 and 0, we have u (1/t)A2(t)z
and A(t)---t, respectively.)

To emphasize what has been proved, we state again that the mapping z u, when
0 < < 1, is one-to-one and analytic from Jim z[ _-< 7r/2 to its image in the u-plane. The
same properties, when -< < 0, can be established in a similar manner. In the latter
case, the regions bounded by ABCC’DEFA in the z-, Z-, and u-planes are shown in
Figs. 1’, 2’, and 3’, respectively. Arguments similar to ours have been used earlier by
Copson [3, 49] and Olver [13, Chap. 9, 12.3].

We have therefore proved (2.8) for the cases 0 < < 1 and -< < 0. The fact
that (2.8) holds also at 0 follows from continuity. To show that u(z, t) is continuous
in t, we note that when z-0, u is identically zero and hence is continuous in t. For
z 0, we have u 0, as there is a one-to-one correspondence between z and u. Thus,
for z0, (3.1) is equivalent to the quadratic equation u2-(z-t coth z)u-A2(t)=O.
Since A2(t) is continuous in and the solutions of the quadratic equation depend
continuously on its coefficients, u is continuous in for -c < < 1.

It may be of interest to note that, by using Hartogs’ theorem [6, pp. 27-28] in the
theory of several complex variables, we can actually prove that u(z, t) is analytic in
both variables in a neighborhood of z -0. However, no use is made of this property
in our later analysis.

4. Derivation of the expansion. We now return to the integral in (2.8) and deform
the loop path of integration so that it consists of two straight lines along the negative
real axis and a circle centered at the origin with radius p. The radius will be specified
later, and depends on whether is close to, or bounded away from, the origin. From
(3.1) it can be shown that z(u) is an odd function of u. Thus, (2.9) implies that h(u)
is an even function. Put ho(u)- h(u) and write

where ao, o, and go(u) are to be determined. Since h(u) is even, ho(iA)= ho(-iA)
and it follows that flo O, ao ho(iA). Thus

ho( u ho( iA
(4.2) go(u)= u

u2_(iA):

Clearly, go(u) is analytic for u2 (iA)2 and has removable singularities at u=+iA.
Near u +/- iA,

u 2 ho(u)-ho(+iA)
go(u)

u+(+iA) u-(+iA)
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-
B _--sinh-lZ

FG. 1’ z-plane < 0).

B

FiG. 2’. Z-plane < 0).

E

B +iA(t)

FIG. 3’. u-plane < 0).

where either all "+" or all "-" signs are to be taken. From this, we conclude that
go(U) is analytic everywhere in the domain of ha(u). Now substitute (4.1) in (2.8), and
express the first integral in terms of the Bessel function J. To the second integral, we
apply an integration by parts. The integrated term vanishes, since z(u)--- u and dz/du
O(1) as u-->-, for fixed t. The final result is

(4.3)

2 e-’t/2L(n’)(l,’t)---’ J(’A)- 2zri
u--lhl(U)
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where

ce+l
hl(U) g’o(U)- go(u).

A similar technique of integration by parts has been used by Temme [15, eq. (6.2)].
We now digress to briefly discuss the asymptotic behavior of z")(u), for fixed t,

as u--oo, n=0,1,2,.... From (1.6) (or (3.1)), it is easily seen that z(u).--u as
u--oo. Differentiating (1.6) with respect to u, we obtain

(4.4) (1 + csch2 z)z’(u)= 1--A2(t)which in turn yields z’(u) O(1) as u -o. From (4.4), we also have, by Leibniz’s rule,

(4.5)
(l+tcsch2z)z("+l)(u)+ ( n )j= j-1

(1 + csch2 Z(JX))(n-j+I)z(J)(I,I)

(-1)"A2(t) (n+l)!
n+2

U

Since every term in the above sum is exponentially decaying, (4.5) implies, by induction,
that for fixed t,

(4.6) du,+
O n

To derive the form of the expansion given in (1.7), we repeat the procedures
indicated in (4.1) and (4.3). Thus, we define recursively

ho(u)=h(u),

h,(u) a,, +fl"+ + g,(u),
U

a+l
h,,+,(u)=g’,(u)-g,,(u).

Using induction, we can show that h,(u)= O(1), as u--oo, for fixed and for all
n => 0. From this, it follows that we also have g. (u) O(1), as u - -c, for fixed and
for n >_- 0. Furthermore, we can show that for n -> 0, gz,(U) and hz.(U are even analytic
functions, and that g2,+1 (u) and h_,+ (u) are odd analytic functions. Consequently,
we have

2n--h2n(iA), O2n+l 0

and

]2n 0, j2n+l iAh2,+l(iA).

Thus, for each n, both c, and /3, are continuous in for -oo<t< 1. Repeated
application of integration by parts then gives

(4.7)
J,+,(,A) tp/2-, (_) 2k+l

k=O
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where

()P. 1 I+’ {u( a2(t))}u--he(u) exp - u du.(4.8) ep
27ri u

To estimate ep, we recall the auxiliary function

(4.9) (z) JJ (z) if z is imaginary or 0 _-< z _-< 6,
(IJ(z)12+lY(z)12) 1/2 if z> 6,

introduced by Erd4lyi [4], where 6 is chosen so that J(z)#O when 0<lzl_-<6 and
6 > 0. Furthermore, we define

J" 1 for -r/_-< -< a < 1,
(4.10) t) [/3pl for

and define alp(t) in a similar manner, where ap and /3p are the coefficients in the
expansion (4.7), and r/ is a positive number to be chosen later. We shall now show
that for -c < =< a < 1,

(4.11)

..l(’A(t))
A(t)*

ifp is odd,

J(A(t))
A(t)

if p is even,

where Mp and Np are constants depending only on p. Recall that uA(t) in our case is
either positive or imaginary. Since ap and/3p are continuous at 0, the estimates in
(4.11) show that the error term ep has the same behavior as the first neglected term in
the expansion (4.7) near both 0 and =-oo.

An alternative bound for the remainder ep could be expressed also in terms of
the auxiliary functions E, (x) and M, (x) given in 13, Chap. 12, 1.3 for real argument
or @,(z) and ,(z) given in [13, Chap. 12, 8] for complex argument.

The proof of (4.11) is divided into separate cases: (i) 0 t a < 1, and (ii)
-<t<0. We first consider case (i). Here, 0A(t)< /4. We shall subdivide this
case into two subcases: (i)(a) 0 uA(t) 6, and (i)(b) ua(t)> 3 > 0. In subcase (i)(a),
we make the change of variable uu w in (4.8). The result is

2i f +
w hp() exp { (w

Since the last integral is bounded uniformly with respect to u and t, (4.12) gives

(4.13)

the O-symbol being independent of and ,. The estimate (4.11) now follows, when
we take into account the small-z behavior of J,/(z). In subcase (i)(b), we recall that
the curve EF in Fig. 3 is bounded away from the point D (see the second paragraph
in 3). Thus, we may take the radius p of the circle in the loop path of integration in
(4.8) to be equal to [A(t) I. Consequently, we can write (4.8) as

(4.14)
; { I [ A2’ep--- PA(t) sinTraTr r-’-lhp(-A(t)r) exp

t) l_r r dr

1
exp (i,A(t)sin O)hp(A(t) e) e- dO

2r
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By Laplace’s method [13, Thm. 7.1, p. 81], the first integral is asymptotically equal to

hp(-A(t))/uA(t); and by the method of stationary phase [13, Thm. 13.1, p. 101], the
second integral is asymptotic to

Therefore we conclude

(4.15) ep t)-hp(iA(t))O

(Note that the contribution from the first integral in (4.14) actually cancels with the
endpoint contribution from the second integral.there.) The result (4.11) now follows
from (4.15), in view of the large-z behavior of J,(z).

We next consider case (ii). Here A(t) is purely imaginary and iA(t) is negative.
We shall also divide this case into two subcases: (ii)(a) -r/=< < 0, and (ii)(b) -o < <
-r/, where r/> 0 is chosen so that ]A(t)l< r/2 for -r/-<_ < 0 (cf. (4.10)). Since the
argument for case (ii)(a) is similar to that of case (i), it will be omitted. However, we
point out that in this case uA(t) is purely imaginary and positive, and hence the roles
of Laplace’s method and the method of stationary phase in case (i) must be reversed.
In case (ii)(b), we choose the radius p of the circle in the loop integral (4.8) to be any
fixed positive number less than 7r/2 and make the substitution u =-iA(t)v. The result
is

(4.16)

(-iA(t))- 27r--i v--lhp(-iA(t)v) exp
iuA(t)

Observe that in our present case, iA(t) is large and negative, and that the saddle points
are at v +1. By using Cauchy’s theorem, we may make the circular portion of the
contour in (4.16) have radius 1. An argument similar to that leading to (4.14) and
(4.15), or a straightforward application of the saddle-point method [3, 36], then gives

1 -27r
[-iA(t)]-- hp(-iA( t)) exp {-iuA( t)}

irA(t)"

Note that hp(-iA(t)) can be expressed in terms of the coefficients O(2k and~/32k+l,
depending on whether p is even or odd. In view of the large-z behavior of J,(z), z

being purely imaginary and positive, the result in (4.11) now follows immediately from
(4.17). This completes our proof of (4.11).

The leading coefficient ao in (4.7) can be calculated as follows. Since ao ho(iA)
h(iA), from (2.9) we have

sinh z(u)] -- dz
O0 " iA

Since u iA corresponds to z z+ and sinh z+ =-t, differentiating (1.6) twice with

respect to u, we obtain

dz
2 sinh z+

du/ u=ia tA cosh z+
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Thus

{A{ -1/2 if <0.

The second coefficient/3 in (4.7) can also be computed, but the work is overwhelming.
After a great deal of computation, we find that for 0_-< < 1

aoA 1-4c
A_ + +--t-(4.19) fl=-- - 8 41-t 24

and for < 0

(4.20) 1 8 A-i/-2--i 8 4 1-t 24

where A is given by (2.7). Note that (4.20) can be formally obtained from (4.19) by
simply replacing by i.

By using a matching procedure, it is possible to obtain recursive formulas for the
coecients and . This procedure consists of re-expanding the Bessel functions
in (4.7) and comparing the results with expansions obtained by using the ordinary
steepest descent method for bounded away from zero. For some illustrations of this
procedure, see [13, Chap. 11, Ex. 7.4 and Chap. 12, Ex. 5.2].

5. Airy function expansion. We now consider the case b <, where 0 < b < 1.
Our staing point is the integral representation [5, p. 190]

(5.1) e-/L)(x) (-1)" 1

2 2i
(1 z)(-l/ dz,

where, as in (2.3), u 4n + 2a + 2. The path of integration encircles z 1 in the positive
direction, and closes at Re z +, IIm z[ constant. With x ut, (5.1) can be written
as

(5.2) e_t/)(t) (-1)" 1 e(z")(1- z)(-l/2 dz,
2 2i

where

(5.3) f(z,t) llnl+Z 1
ZL

4 1-z 2

The saddle points of f(z, t) are located at

z+=/i-1/t and z_=-v/1-1/t

if t> 1, and at

z+=iv/1/t-1 and z_=-i/1/t-1

if 0 < t_-< 1. As t--> 1, the saddle points z+ and z_ coalesce at z 0. This suggests the
use of the cubic transformation (1.2). Since f(z, t) in (5.3) is an odd function, we set

l+z 1 u
(5.4) -ln--zt=---B2(t)u.

4 1-z 2 3
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The coefficient B(t) is to be chosen so that z(u) is an analytic function of u. Upon
differentiating (5.4) with respect to u and making the correspondence u +B(t) with
z z+ and u =-B(t) with z z_, we find

B(t) i[3/3 (t)/2] 1/3, 0 < <-- 1,
(.5)

=[3y(t)/2] /3, t> 1,

where

(5.6)
/3(t) 1/2[cos-1 tl/2-/t- t2],
T(t) 1/2[(t2- t)1/2- cosh- tl/2].

Note that our function B(t) and Erd61yi’s b(t) are related via the identity BZ(t) -b(t).
The mapping between z and u is most easily constructed by introducing an

intermediate variable Z, defined by

l+z u
(5.7) -ln--zt=Z=m-B2(t)u.

4 1-z 2 3

We first consider the case > 1. The first quadrant of the z-plane is depicted in Fig. 4.
Its image in the Z-plane is shown in Fig. 5. When z describes the indented boundary
ABCC’DEFA once, the image point Z also describes the corresponding boundary
once. Here we again consider the line segments AB and BC being distinct parts of

.._1the boundary. Hence, the function :(z) zln((l+z)/(1-z))-1/2zt is one-to-one in
1U 2that region (see [16, 6.45]). The function r/(u)= -B (t)u is one-to-one in the

shaded region BCC’DEB in Fig. 6. This function has also been studied by Copson
[3, p. 110-113]. The parametric equation of the boundary curve BE in Fig. 6 is given by

(5.8) sZ-3rZ+3B2=O (s>0, r>0),

where s Im u and r= Re u. The transformation zo u is obtained by composing
-:Z z and r/: u- Z. Since z Z and u Z are both one-to-one in the region
BCC’DEB, so is z ou. The mapping of the fourth quadrant in the z-plane can be
discussed in the same manner, and the final result is obvious by symmetry.

The mappings z-Z and Z u, when 0< < 1, can be constructed in a similar
manner; they are illustrated in Figs. 4’, 5’, and 6’.

We now return to the integral (5.2). With the transformation (5.4) this integral
becomes

(5.9) e-’/L)(ut)=(-1)n" 1- I h(u) exp {u(u3 -B2(t)u)}27ri

where

(.o) h(u)=[_z(u)](_v
clz

du

and is the branch of the hyperbolic curve in the right half-plane, half of which is
given by (5.8). Note that (5.9) is first established separately under the conditions >
and 0< < 1, and then extended to 0 by continuity.

To derive the asymptotic expansion ofthe integral in (5.9), we apply the integration-
by-parts technique introduced by Bleistein [1]. First, we write

(5.11) h(u)=ho(u)=ao+floU+(u2-B2(t))go(u),



1244 c.L. FRENZEN AND R. WONG

F.

B=z+ C C D

FIG. 4. z-plane.

i

FIG. 5. Z-plane.

A B C

FIG. 6. u-plane.
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A C C’ D

FIG. 4’. z-plane (0 < < 1).

FIG. 5’. Z-plane (0 < < 1).

F

B (t) B

A

FIG. 6’. u-plane (0 < < 1).
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where ao,/3o, and go(u) are to be determined. From (5.4), it is easily seen that z(u)
is an odd function of u. Hence, h(u) is an even function of u, and h(B)= h(-B).
From this and (5.11), it follows that flo=0, ao ho(B), and

go(u)
o(U o(
/2 B

Thus, go(u) is analytic in a neighborhood of u- B, and consequently analytic in the
domain of ho(U). We now substitute (5.11) in (5.9), and express the first integral in
terms of the Airy function. The second integral can be integrated by parts; the integrated
term vanishes, since go(u) has at most algebraic growth at infinity. The final result is

oo(-1) n2’ e-’/2L((vt) Ai(v/3B2) i73
(5.12)

-() 1- fg(u) exp {v(u---f -Bu)}
The above procedure can be repeated, and proceeding in this manner we obtain

[(p-I)/2]

(-1)"2 e-’/ZL(2)(vt) Ai (p2/3B2) 2 a2k v-2k-1/3
k=0

(5.13)
[p/2]--I

-Ai’ (p2/3B2) 2k+l l-2k-5/3 "Jr-
k=0

where we define inductively, for m 0, 1, 2,. .,
(5.14) h,,(u)=a,,+mU+(u2-B2)g,,(u), hm+l(u)=g’,,(u).

It can be shown that for n >-O, h2n and g2, are even analytic functions, and that h2,+1
and g2n+l are odd analytic functions. Consequently,

a2n h2n(B), l2n+l =0,
(5.15)

fl2n 0, flzn+l=h2n+l(B)/B,

and, for each n, both an and/3, are continuous in for 0 < < oe. The remainder ep
is explicitly given by

1 1 Ihp(u) exp{v(U____f_B2u)}du"(5.16) ep vp 2"a’i

To estimate ep, we introduce the auxiliary functions

i (z) Ai (z) if z -> 0,
(5.17)

[Ai2 (z) + Bi2 (z)] 1/2 if z < 0,

and

Ai’ (z) if z_-> 0,
(5.18) ki’(z)=[[Ai’2(z)+Bi’2(z)]/2 ifz<0.

Furthermore, we define

1 if0< t< :,
alp(t)- lap] if > ,

and define tip(t) in a similar manner, where ap and tip are the coefficients in the
expansion (5.13), and : is a positive number. The behavior ofi (z) and i’ (z) mimics
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the behavior of Ai (z) and Ai’ (z), respectively. Moreover, dp and/3p have the same
behavior as ap and/3p, respectively. For large values of v and for 0 < b _-< < oo, it can
be shown that

Np i/ p (t) i .i,(lt2/3B2) ifp is odd,(5.19) <=

and that

(5.20) <- v+,/31cT(t)l Ii(2/3n=)l ifp is even

(for similar estimations, see 1 and [2]). Alternative estimates for ep could be expressed
in terms of the auxiliary functions E (x), M(x), and N(x) given in 13, Chap. 11, 2]
for a real argument or their analogues given in [13, Chap. 11, 8] for a complex
argument.

We conclude this paper with an evaluation of the leading coefficient ao in (5.13).
From (5.15) and (5.10), it follows that

(5.21) ao=[l_z(u)](,_l/Z
dz

du u=B"
2 1/t, upon differentiating (5.4) twice, weSince u B corresponds to z z+ and 1- z+

obtain

which in turn gives

(5.22)

u=B

2B

z+t2’

if > 1. A corresponding formula exists for the case 0 < < 1, and can be obtained
formally from (5.23) by simply replacing /t- 1 by iv/1 t. To calculate the coefficients
of higher terms, we can again use the matching procedure mentioned at the end of 4.

6. Conclusion. In this paper two uniform asymptotic expansions are obtained for
the Laguerre polynomial L’(x). One is in terms of Bessel functions and holds for
-c<x<= au, while the other is in terms of Airy’s integral and holds for bu<=x <
where 0 < b < a < and u 4n + 2a + 2. The leading terms of these expansions agree
with the two asymptotic forms given by Erd61yi [4] using the theory of differential
equations. Our method is based on two integral representations of the Laguerre
polynomial.

From Olver’s theory [13, Chaps. 11 and 12], it is evident that the two uniform
asymptotic expansions for the Laguerre polynomial given in this paper can also be
obtained from differential equation theory. However, there are functions which have
relatively simple integral representations but do not satisfy any differential equations.

For completeness, we also record the formula

ao (l-a)/2

(t-1)l/at3/4 ift>l

/(l-a)/2 if 0 < < 1.(1-t)l/at3/4
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Thus it is desirable to have a method using integral representations as well as one
using differential equation theory to derive uniform asymptotic expansions. The
method presented in this paper is quite general, although we have considered only the
case of Laguerre polynomials. We chose to do it this way, since in this case we could
compare our results with those given by Erd61yi.

For both Bessel-function and Airy-function expansions, we have provided explicit
expressions for the remainder terms. Despite this fact, only order estimates have been
established for them. Our method does not seem to lend itself to the construction of
numerical error bounds because of the complicated nature of the transformations
involved. Therefore the integral-theoretic method is not as complete as the correspond-
ing theory for differential equations [13, Chaps. 11 and 12], and error analysis for
uniform asymptotic expansions of integrals obtained by the rational and the cubic
transformations used in this paper remains a difficult problem yet to be resolved.
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helpful suggestions on an earlier version of the paper, and would also like to thank
the referee for pointing out several shortcomings in the original version.
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AN ANALYTIC CONTINUATION FORMULA FOR THE GENERALIZED
HYPERGEOMETRIC FUNCTION*

WOLFGANG BHRING"

Abstract. For p= 1,2, 3,.-., the hypergeometric function p+ Fp(Z) is expressed in terms of power
series in the variable 1/(z-Zo) that converge for ]z- Zol > max (IZo[ ]Zo- ll) where Zo is any complex number.

Key words, special functions, hypergeometric functions, hypergeometric series, continuation formulas,
analytic continuation

AMS(MOS) subject classifications. 33A30, 30B40

1. Introduction. Some of the analogues to the well-known continuation formulas
of the Gaussian hypergeometric function 2Fl(Z) are considerably more complicated
or are not known at all for the generalized hypergeometric functions p+l Fp(z) with
p=2,3,. .. The coefficients in the expansion of the 3F2(z) in powers of z-l, for
instance, although now known in detail [3], cannot be generalized in a simple way,
but become more and more complicated as p increases. In contrast to this behavior,
the expansion of 3F2(z) in powers of 1/(z- 1), or more generally 1/(Z-Zo) with any
complex number Zo, is of such a relatively simple type that it can easily be written
down for any p. This will be shown in the present paper.

2. The continuation formula. Our starting point is the continuation formula [4], [5]

( )_1
j=l

al, a2," ",ap+l
p+l Fp bl, b2, .., bp

p+l

z 2 CkYk(Z),
k=l

with known connecting constants Ck to be displayed below in (9) and

yk(z)=(-z)-’’, Fp+ (1, ak, l+ak--bl,l+ak--b2,’’’,l+ak--bp
p+2

1 d- ak al 1 + ak a2, , 1 + ak ap+

larg (-z)l < r.

Here the p+2Fp+l is really a p+iFp since one of its denominator parameters is always
equal to 1. As they stand, the formulas are valid provided that none of the differences
between any two numerator parameters aj is equal to an integer.

In a similar way as in [2], we now may observe that, when Izl is sufficiently large,
the series representation of (2) may be re-expanded in powers of 1/(Z-Zo) for any
fixed Zo by means of

(3)

(-z) -%-’-- (Zo-Z) 1+’,_
Z

(Zo z)-ak-" 2
(ak + n)j Zo

j=o j! z Zo/

Received by the editors May 18, 1987" accepted for publication August 17, 1987.
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(4)

Collecting the terms with equal powers of 1/(z-Zo) we then obtain

yk(Z) (Zo-- Z) -ak Y D.(ak, Zo)(Z-- Zo)-"
n=0

where

(5) D. a, Zo)
1 )(a)j I-[ P,. =1 1 + a b) a +j). _j

or, in view of

(6)
(ak +j).-j_ (_1)

(ak).(--n)j

(7)
D. ak, Zo)

(1,-n,l+ak-b,,l+ak-b2,’’’,l+ak-bp o)(ak)
(--Zo) p+2 Fp+n! l + ak-al, 1+ a-a, , 1 + a-a+

Here again the p+:Fp+ is really a +IF since one of its denominator parameters is
always equal to 1. Turning the (finite) series around [1], we may obtain a different
representation of (7) as displayed below in (10). The convergence domain of the series
(4) is determined by the finite singular points 0 or 1 of the differential equation of
which the p+lF.(z) and the y(z) are solutions. Thus we have proved the following
theorem.

TEOREM 1. If no two of the numerator parameters a differ by an integer, we have
for arg (Zo- z) < the continuation formula

F(bj) p+l Fp Z

(8)
2: ’"

p+l

Z C(Zo-Z)- Z D(a, Zo)(Z- Zo)
k=l n=O

where the connecting constants are
+’ r(j= l,j k aj ak(9)

and the power series with the coefficients
D,, ak, Zo)

(10)
(ak),,Hi=l(l+ak--bj). (al-ak-n, a2-ak-n,’’’,ap+l-ak-n)l-i-p+ p+l Up z0,_ (1 + ak a), bl ak n, b: ak n,. ., b, ak n

converge outside the circle [z-Zo] max (Izol, leo-11).
Since one of the numerator parameters of the p/l Fp in (10) is always equal to -n,

this p/ Fp is a polynomial in Zo of degree n, so that the continuation formula (8) is
relatively simple. With the choice Zo 1 it gives the desired generalization of one of
the well-known continuation formulas ofthe Gaussian hypergeometric function Fl(Z).

Also of interest is the choice Zo=1/2 since in this case the convergence domain,
Iz-l>, of the series on the right of (8) is significantly larger than it would be with
Zo 0 or Zo 1 and contains in its interior the two exceptional points z 1/2(1 +/- ix/)=
exp (+/-ir/3), which before were not accessible by power series. From this point of
view, the present paper generalizes some results of [2].
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ADDENDUM:
Oscillation Theorems for Nonlinear Second-Order

Differential Equations with a Nonlinear Damping Term*

S. R. GRACEt, B. S. LALLI$, AND C. C. YEH

This is an addendum to our previous paper [1]. For related results, we refer to
[2], [3]. Consider the following second-order nonlinear differential equation

(-(E) (a(t)d/(x(t)):(t))’+q(t)f(x(t))=O =-
where

(a) a C1[0, ) and a(t) > 0 for -> 0;
(b) p C(-oo, oo), p(x) > 0 for all x R;
(c) f C(-, c) C1(-, 0) C1(0, ), xf(x) > 0 for x # 0, and there exists a

positive constant k such that f’(x) >- kb(x) > 0 for x # 0;
(d) q C[0, ).
The following generalizes a theorem of Kusano, Onose, and Tobe [2].
THEOREM. Suppose that there exists a function pc C2([0, ), (0, o)) with 13(t)>-O

such that

(1) p( t)q( t) at:

(2) f dt
p(t)a(t-- =0,

(3) fa(t)((t))p( t)
dt < oo,

(4) f’ q(u) ; dd(u
f(u)

du < oo and
f(u)

du < oe for every e > O.

Then all solutions of (E) are oscillatory.
Proof Let x(t) be a nonoscillatory solution of (E), say x(t) > 0 for >- tl >_- 0. Let

a( t)@(x( t)))( t)
w(t) :: p(t).

f(x(t))

Then w(t) satisfies

i,(t) -p(t)q(t)+
a( t)lJ t)b(x( t)):( t) a( t)p( t)d/(x( t) )f’(x( t) (9(t))2

f(x( t)) (f(x( t)))

* Received by the editors August 3, 1987; accepted for publication December 18, 1987. SlAM J. Math.
Anal., 15 (1984), pp. 1082-1093.
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Thus

(5)
I’ I’w(t) < w(q)- p(s)q(s) ds+,, ,, f(x(s))

ds

tl

ds.

It follows from the Schwarz inequality that

a(s)(s)q,(x(sl)(s)

ll f(x(s))
as

=<(f,’ a(s)(t(s))2)’/2(fp(s) ,, (f(x(s)))2
ds)1/_

(f,a(s)p(s)O=(x(s))(#(s))2<- K ds
t, (f(x(s)))2

where K := (,S (a(t)(t6(t))2/p(t)) dt)/ is finite because condition (3) holds. Thus, by
(c), we have

w(t)< W(tl) p(s)q(s) ds+ K
a(s)p(s)O2(x(s))(#(s))2 ,/2

,, ,,

I’k a(s)p(s)O=(x(s))
f(x(s))

ds.
tl

Clearly, the sum of the last two integrals on the right-hand side of the above inequality
remains bounded above as t- oe. Thus, by (1), we have

p( t)a( t)O(x( t))( t)
lim -.
t-o3 f(x(t))

This means that there exists a t= >-t such that

i(t)<0 fort_->t2.

This and (5) imply that there exists a t => t2 such that

1 + a(s)p(s)f’(x(s))6(x(s)) ds<=
a(t)p(t)q’(x(t))(-(t))

,3 f(x(t))

The rest of the proof is similar to that of Theorem 7 in [1], and is omitted.
Remark. From condition (4), we see that our theorem and some theorems in

[2] are strictly nonlinear oscillatory results for equation (E) with 0(x)= 1, that is,
these theorems cannot apply to equation (a(t)#(t))’+ q(t)x(t)=O.
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ERRATA:
Homoclinic Orbits in Slowly Varying Oscillators*

STEPHEN WIGGINS" AND PHILIP HOLMES

Equation (3.14) is incorrect. The reason for this is that the perturbed orbits through
the points q(0, 0), q(0, 0)IIo cannot be assumed to lie on the same z level at
e-0. Rather they may lie on z levels differing by O(e). Thus it is possible for
z(, 0) z’(-c, 0) with qS(c, 0) q(-o, 0); for more discussion of this point, see
Wiggins [1988]. Therefore (3.16) for the Melnikov function should be

(1) M(0)= I_ (VH" g)(qo(t), t+O) dt-OH(Y(z))Oz I_ g3(qo(t), t+O) dt.

(2)

In Proposition 5.1, (1) should be omitted and (2) should be changed to

lim Mm/l= 1 [f?(VH.g)(qo(t),t+O)dt[[f(qo(-O))[[

OH
(Y(Zo)) I_og3(qo(t), t+ O) dt]

Concerning example (6.1), the orbits (6.9a) and (6.9b) should be on the level
z=(-y/a)x/1-(y/a) and the corrected Melnikov functions in (6.13) and (6.14) are,
respectively, given by

M=-48 -a +sin-1 b +27 2d-2x/b -+sin- b

(3)
sinh . sin-1 d

q: 2x/r/3 cos O,
sinh

d

(4)

M=-46 -+ (+ 2a

2
sin-1 b +2y 2d-2x/b(+sin- b

sinh . sin-1 d
2x/-/3 cos O.

sinh

Figure 6 is qualitatively correct; however, the details are not right and the corrected
version can be found in Wiggins [1988].

Received by the editors September 21, 1987; accepted for publication October 25, 1987. SIAM J.
Math. Anal., 18 (1987), pp. 612-629.
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ERRATA:
Restricted Quadratic Forms and Their Applications to

Bifurcation and Stability in Constrained Variational Principles*

JOHN H. MADDOCKS

The statement and proofs of Theorems 1 and 2 appearing in [1] are flawed. The
blanket assumption that ker L is closed should be added to Hypotheses H1-H3, in
which case Y( 9 (L) ker L, where 9 (L) denotes the range of L. Theorems 1 and 2
should then read:

THEOREM 1. Let the subspaces c, L(c+/-), and (-L-(c)) be closed, and let
c+/- (-1 9 (L) be dense in c+/-. Then

(2.3) dO(c (3 9) dim {[ cg+/- V) L-’( c)]\ker L}.

Remark. The hypotheses appear to be extremely restrictive, but they are valid in
several important cases that arise in applications. In particular, L(c+/-) is closed provided
L is bounded away from zero on (ker L); 9(L). Moreover, if L is bounded, (c" (3

L-(c)) is closed whenever c is closed, and the condition involving 9(L) is vacuous.
When L is unbounded and only densely defined, the hypotheses are implied if c has
finite dimension with c c 9 (L).

Proof Let denote the subspace (c+/- I"] L-( c))\ker L, and let 3 be any maximal
negative subspace of c" I"J 9. We shall prove that 0) is a maximal nonpositive
subspace of c+/- 9. Equation (2.3) is a consequence of this fact because the sum of

and @ is direct, and because

d(" ( 9) dim [)ff u3] dim.
To see that the sum is direct note that any x satisfies x c-+ ker L and Lx c.
Consequently Q(x) vanishes and therefore x . It is also clear that ker L (3 (03 c)
{0}, and that Y is a nonpositive subspace.

It remains to prove that 03 q3 is maximal, that is, to demonstrate that

(2.4) If x c- t 9 is L-orthogonal to s)j , and x 9) q30) ker L, then (x, Lx) > O.

The maximality ofP as a negative subspace implies that any such x satisfies (x, Lx) >- 0,
so we obtain maximality of 3 after reaching a contradiction on the assumption
(x, Lx) 0. Because c- V) L-(c)) is closed and is contained in c- f3 9, any x c+/- 9
can be decomposed as the sum

x--p+q, withpC+/-Clgfq[c-fqL-l(c)]+/- and q[+/-L-l(c)].

Moreover, q O)ker L, so that

if x 03ker L, then p ker L;

if x is L-orthogonal to 303 , so is p;

and, by choice of p and q,

(x, Lx)= (p, Lp).

Received by the editors January 6, 1988; accepted for publication January 11, 1988. SIAM J. Math.
Anal., 16 (1985), pp. 47-68.
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A contradiction on the assumption that there exists p # 0 ’+/-N @ N [-t-N L-1()]-satisfying the hypotheses of (2.4) and (p, Lp)=0 is therefore sufficient to obtain the
desired maximality.

The contradiction will be obtained from the construction of a vector that violates
the maximality of the negative subspace J of +/-n . Because %+/-n is dense in
+/-, a simple calculation shows that L-l()=[L(+/-fq)]+/-fq@. Consequently,
because and L(c-(q ) are closed,

c VI L-’(c))" (c (-I [L( c- V1 )]" (1 )+/- c+/- VI [L(C (1 @)]+/-)+/-

+L(+/- n @).

Thus, p %+/- (q can be represented as p u + Lv with u % and v +/- fq with
Lv # O. Then a Gram-Schmidt procedure can be used to construct a vectorf
in -(q that is L-orthogonal to 3. Here {u, i-1,..., d-(- @)} is a mutually
L-orthogonal basis of (the existence of which is guaranteed by Lemma 1), and
c ,t. Consequently, tip +f +/-(q is L-orthogonal to , for all/3 . However,
Q(flp +f) can be expanded to obtain

(2.5) 2(p, Lp)+2(p, Lv)-2(Lp, o,u,)+(f,
By hypothesis, (p, Lp) O, (Lp, ui) 0, and, because p c- with u q, (p, Ly)
(p, u + Lv)= (p, p). Therefore (2.5) can be rewritten as 2fl(p, p)+ (f, Lf). Because p
0,/3 can be chosen such that this last expression is negative, contradicting the maximality
of 19. I-1

The corrected statement of Theorem 2 is then:
THEOREM 2. Under the hypotheses of Theorem 1 and the additional assumption

that L- () is closed,

(2.6) d(+/- fq @) dim {[ +/- fq L-()]\ker L} d(L-()),
and

(2.7) d-(+/-fq)+d-(L-())+d(L-())=r-.
Remark. If L is bounded, or has finite dimension, L-() is necessarily closed.
Proof. The proof requires only minor changes to that presented in 1]. First, the

quantity.., fq(ker L) +/- should be replaced with... \ker L wherever it appears.
Second, if (L), it is necessary to add elements ofker L to the vectors v constructed
in (2.11) and (2.12) in order to guarantee that v +/-.
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ITERATES OF MAPS WITH SYMMETRY*

PASCAL CHOSSAT" AND MARTIN GOLUBITSKY$

Abstract. In this paper the elementary aspects of bifurcation of fixed points, period doubling, and Hopf
bifurcation for iterates of equivariant mappings are discussed. The most interesting of these is an algebraic
formulation of the hypotheses of Ruelle’s theorem (D. Ruelle [1973], "Bifurcations in the presence of a

symmetry group," Arch. Rational Mech. Anal., 51, pp. 136-152) on Hopf bifurcation in the presence of
symmetry.

In the last sections this result is used to show that Hopf bifurcation from standing waves in a system
of ordinary differential equations with 0(2) symmetry can lead directly to motion on an invariant 3-torus;
indeed, depending on the exact symmetry of the standing waves, one might expect to see three invariant
3-tori emanating from such a bifurcation. The unexpected third frequency comes from drift along the torus
of standing waves whose existence is forced by the 0(2) symmetry.

Key words, symmetry, Hopf bifurcation, iterates of mappings

AMS (MOS) subject classifications. 58F14, 58F27, 34C35

Introduction. Symmetries change the types of bifurcation that may be expected
in discrete dynamical systems. Typically, nonsymmetric systems generate unique
branches of new solutions at points of bifurcation while symmetric systems generate
multiple branches. Results of Vanderbauwhede [1980] and Golubitsky and Stewart
[1985] on steady-state and Hopf bifurcation in continuous systems show that certain
of these solution branches may be enumerated using only group theoretic techniques.
The first task in this paper is the translation of these results to statements about
bifurcation in the discrete dynamics of equivariant mappings. For further background,
see Field [1980], [1986].

In 1, we briefly describe the group theoretic results of Vanderbauwhede [1980]
and Golubitsky and Stewart [1985]. In 2, we apply Vanderbauwhede’s result in a
straightforward manner to enumerate certain branches of fixed points and branches
of period two orbits for equivariant mappings. We also indicate how the simplest
nontrivial symmetry (2-- {ztz 1} acting on E) may be expected to affect period doubling
cascades and lead naturally to mergings of attractors. In 3, we adapt the results of
Golubitsky and Stewart [1985] to enumerate branches of invariant curves stemming
from Hopf bifurcation of equivariant mappings. This adaptation leans heavily on
nontrivial results of Ruelle 1973]. Our contribution is really only to observe that there
is an algebraic formulation for Hopf bifurcation of equivariant maps that satisfies the
hypotheses of Ruelle’s theorem.

The second task in this paper is to enumerate the number and type of tori that
are produced when a periodic solution to an equivariant system of ordinary differential
equations (ODEs) loses stability by having Floquet multipliers cross the unit circle in
the complex plane. For example, we show in 4 that (under certain hypotheses)
standing wave solutions to 0(2) symmetric systems generate (generically) three
branches of 3-tori at such a bifurcation. The existence of this extra frequency comes

Received by the editors March 21, 1987; accepted for publication (in revised form) December 20, 1987.
I.M.S.P., Universit6 de Nice, Parc Valrose, F-06034 Nice Cedex, France. The research of this author
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from the 0(2) symmetries and is based on observations of Iooss [1986] and Chossat
[1986]. In 5, we give a general setting for the example in 4.

1. Background. Let F c O(n) be a compact Lie group acting linearly on R and
let f:R" -> n be a one-parameter family of smooth mapping commuting with F, i.e.,

(1.1) f( yx, A) yf(x, It).

The equivariant branching lemma of Vanderbauwhede [1980] and Cicogna [1981]
gives a simple algebraic condition for determining the existence of branches of steady-
state solutions to the system of ODEs

=f(x, it).

We assume that F acts absolutely irreducibly on ", that is, that the only linear
maps on " that commute with F are scalar multiples of the identity. For a subgroup
E, we define

(1.2) Fix ()- {y

Applying the chain rule to (1.1) implies that

(df)o,y=y(df)o,.

Absolute irreducibility then implies that

(1.3) (df)o,;= c(It)I.

Also observe that

(1.4) f: Fix (E) x R - Fix (E)

since of(y, It) =f(o-y, It =f(y, It for all tr E, y Fix(E). In particular, irreducibility
implies Fix (F)= {0}, and hence by (1.4)

f(0, it) 0.

Thus, there is a "trivial" solution at x 0.
EQUIVARIANT BRANCHING LEMMA. Let Z F be a subgroup. Assume that c(O) O,

c’(O) s O, and dim Fix ()= 1. Then there exists a unique (nontrivial) branch of small
amplitude steady states for f[(Fix (E) x ) 0.

See Ihrig and Golubitsky [1984], Golubitsky, Swift, and Knobloch [1984], and
Golubitsky, Stewart, and Schaeffer 1988] for applications of this result.

There is a similar result regarding Hopf bifurcation in symmetric systems. Here
we assume that the system =f(x, A) is on the center manifold. In particular, we
assume that x 2n and that

L =- (df)o, o wI,

There is the natural action of the circle group S or 2. given by

(1.5) x - exp (tL)x.

We assume that the action of F x S on 2, is irreducible. It then follows, as above,
that f(0, It)-= 0, i.e., that there is a "trivial" steady-state solution. It also follows that
the eigenvalues of (df)o, are tr(It) +/- ko(It), each of multiplicity n.
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THEOREM 1.1. Let E c F xS be a subgroup. Assume that tr(0)=0, to(0)#0,
tr’(O) # O, and dim Fix (5:)= 2. Then there exists a unique (nontrivial) branch of small
amplitude periodic trajectories with period near 2r/to(0) to Yc =f(x, A with symmetries
5:.

Note (tr, 0) 5: c F x S is a symmetry of a periodic solution x(t) to -f(x, A) if

(1.6) yx(t) x(t + O).

See Golubitsky and Stewart [1985], [1986b], Roberts, Swift, and Wagner [1986], and
Golubitsky, Stewart, and Schaeffer [1988] for a proof and applications.

We remark that in certain instances it is possible to use invariant theory and group
theory to compute the asymptotic stability of the steady-state and periodic solutions
found using the results stated above. We refer to these references for examples of this
process.

2. Fixed points and period doubling. Let g:R" x R-n be a one-parameter family
of F-equivariant mappings. We assume that F acts absolutely irreducibly on n. It
follows that x =0 is a "trivial" fixed point for g and that (Dg)o,x c(A)I. In this
section, we briefly discuss the bifurcation of fixed points (c(0)= +1) and period
doubling bifurcation (c(0) -1).

LEMMA 2.1. Let 5: F be a subgroup. Suppose that c(0)= 1, c’(0)# 0, and dim
Fix (5:)= 1. Then g(x, A has a unique (nontrivial) branch offixed points in Fix (5:).

Proof Set f(x, ,) g(x, A) x and apply the Equivariant Branching Lemma. VI
To eliminate trivialities, we assume that is an isotropy subgroup, that is, there

is an x " such that

(2.1) 5: { y F: yx x}.

The largest subgroup of F that leaves Fix (5:) invariant is N(5:), the normalizer of 5:
in F (cf. Golubitsky [1983] or Golubitsky, Stewart, and Schaeffer [1988]). It follows
that g[Fix (5:)x commutes with the action of N(5:)/;,. Now, if we assume that 5: is
a maximal isotropy subgroup (a hypothesis that is satisfied when dim Fix (5:)= 1), then
N(E)/5: acts fixed point free. It follows that when dim Fix (5:) 1, either N(5:) 5: or
N(E)/E Z2. In the latter case, the bifurcation of fixed points in Lemma 2.1 will be
via a pitchfork bifurcation, with the two new bifurcating fixed points lying on the same
group orbit (conjugacy being given by any y N(E)---E). When N(5:)= E, we expect
each new fixed point to be on a distinct group orbit.

We now discuss the case of period doubling, i.e., c(0)---1. As in the standard
period doubling theorem (without symmetry), we observe that nonzero fixed points
for the composite mapping g2 correspond to period two points for g, since the implicit
function theorem guarantees that there are no new fixed points for g. We apply Lemma
2.1 to g2 to obtain the following lemma.

LEMMA 2.2. Let 5: c F be a subgroup. Suppose that c(O)--1, c’(O) # O, and dim
Fix (5:)= 1. Then g(x, A) has a unique branch ofperiod two points in Fix (5:).

Again, we have different interpretations for Lemma 2.2, depending on whether
N(E) E or N(5:)/5: 7/2. In the first case, we expect a standard period doubling to
occur, while in the second case, the equivariance of gl(Fix (5:) x R) with respect to 2
implies that

(2.2) g(x, A -x.

To verify (2.2), note that g(-x, )t) -g(x, A ). Therefore, if x is a period two point for
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g, then so is -x. Since x and -x are in Fix (5;) and the period two orbit obtained from
Lemma 2.2 in Fix (E) is unique, it follows that g(x, A)=-x.

Remark. Identity (2.2) states that this period two trajectory is a discrete analogue
of a rotating wave; the same result is obtained by taking one timestep (iteration by g)
or by acting by the group (x--x).

We end this section with some speculations on period doubling sequences when
N(E)/E-72. As a parameter is varied, we might expect the trivial fixed point to
undergo a bifurcation to a nontrivial fixed point, as in Lemma 2.1. As we discussed
above, when N(E)/E 72, this new fixed point is formed by a pitchfork bifurcation.

Suppose now that, as this parameter is varied, each of the nontrivial fixed points
undergoes a period doubling sequence. The 7/2 action forces the period doubling
sequence to occur at the same parameter values for each nontrivial fixed point. The
simplest such example is given by the cubic polynomial

(2.3) g(x, ;t x- x3, >0
on Fix (E)xR. For/x > 0, each of these period doubling sequences seems to behave
like the simple logistic equation. This results in pairs of attractors (one for x > 0 and
one for x < 0) consisting of single orbits filling up parts of the real line, say, for x in
[a,/3] and for x in [-/3,-a].

As , is increased, a dicreases and eventually becomes negative (when A 3x//2).
This merging of attractors causes an interesting kind of chaotic behavior. Start with
an initial point Xo>0 and form the iterated sequence X,+l g(x,, A). Now form the
symbol sequence of +’s and -’s where the nth element in the sequence is sgn (x,).
In effect, we see chaotic behavior on two time scales. There is the chaotic behavior on
a fast time scale within each of the attractors ([0,/3] and [-/3, 0]) and then there is
the chaotic behavior on a slow time scale defined by the transitions between the
remnants of the two attractors.

A detailed study of the related map

h(x, A -(txx x3), /x > 0

is given in Rogers and Whitley [1983]. There, however, the primary bifurcation of the
fixed point x 0 is a period doubling bifurcation, as discussed in Lemma 2.2.

3. Hopf bifurcation. In this section, we assume that the trivial fixed point for the
F-equivariant mapping g loses stability by a pair of complex conjugate eigenvalues
crossing the unit circle. Due to the presence of symmetry, the eigenvalues may have
high multiplicity. We assume that g:R2nX2n and that (Dg)o.o has eigenvalues
e+2i, each with multiplicity n, where 0 0, 1/2.

The standard Hopf bifurcation theorem for mappings (n 1) states that if 0
3, z, , and if the eigenvalues cross the unit circle with nonzero speed, then there exists
a family of invariant circles for g(., A) emanating from the trivial fixed point x 0.
This theorem is proved using near identity changes of coordinates to put the terms of
g up to order four in normal form. This truncated normal form actually has S symmetry,
and, because of this symmetry, we can easily find invariant circles using polar coordi-
nates. Then we use scaling and normal hyperbolicity arguments to show that the invariant
circles that are present at order four persist independently of the higher order terms
in g. When resonances exist (0- , , ,-34), the normal form does not have this S1-

equivariance in the fourth-order truncated normal form (cf. Arnold [1977], 1983] and
Iooss 1979]).

We obtain a simple generalization of the Hopf bifurcation theorem as follows:
Let E c F be a subgroup with dim Fix (E) 2. Then there exists a branch of g-invariant
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circles in Fix (), as long as 0 3,
, ,-34. Just apply the standard Hopf theorem to

g[Fix (); the eigenvalues of D(g[Fix (E)) are constrained by dimension to be simple.
Remark. Assume that E is an isotropy subgroup with dim Fix (E) 2. The group

N()/ acts on Fix () by a fixed-point free action and g[Fix () commutes with this
action. (In fact, E is a maximal isotropy subgroup since the complex eigenvalues
preclude the existence of one-dimensional fixed-point subspaces; cf. Golubitsky and
Stewart [1985].) Fixed-point free actions on 2 exist only for the groups 1, 7/, (n => 2)
or SO(2). Observe that if N(E)/E- 7/, (n => 5) or SO(2), then g[Fix (E) automatically
has a fourth-order truncated normal form with S symmetry. In these cases, the
assumption 0 1/2, 1/4, , 1/4 is not necessary, as the remainder of the proof of the standard
Hopf theorem is still valid.

As in the case of Hopf bifurcation for systems of ODEs (Theorem 1.1), we can
improve on this simple generalization by looking for subgroups of F x S with two-
dimensional fixed-point subspaces. First, we define the action of S. Choose a matrix
A with purely imaginary eigenvalues such that ea-- (dg)0,o. The action of S is then
given by e ’A. Since (dg)o, o commutes with F, so does the action of S. In this way, we
have defined an action of F x S on 2..

THEOREM 3.1. Let c F x S be a subgroup such that dim Fix ()= 2. Assume
0 # , , , and that the eigenvalues cross the unit circle with nonzero speed. Then
generically there exists a unique branch of g-invariant circles emanating from the trivial
fixed point x 0 and this branch is tangent to Fix ()c 2"x at x O.

Proof. The truncated normal form h of g has symmetry group F S1. Therefore,
h :Fix () --> Fix (E), and we can find invariant circles for h, as above. At this point,
however, we cannot conclude directly from the proof of the standard Hopf bifurcation
theorem that there is a family of g-invariant circles. The difficulty is that g itself need
not leave invariant Fix (E) since g does not necessarily commute with S. However,
Ruelle 1973, Thm. 3.1] does prove a theorem sufficient to conclude that g has a family
of invariant circles, at least when certain assumptions, which are valid generically, hold.

The needed assumptions are the following:
(a) The third-order terms in h determine the direction ofbranching ofthe invariant

circles of h in Fix (E).
(b) The invariant circles for h are normally hyperbolic in the sense that the

eigenvalues of dh on the invariant circles, which are not forced by the F S action
to be unity, in fact lie off the unit circle.

In order for (b) to hold, it is often necessary to have truncated the normal form
at some high order. This order depends on both F x S and the subgroup E. Once the
invariant circles of h are normally hyperbolic, Ruelle’s Theorem 3.1 is sufficient to
prove that the higher order terms of g (which are not in normal form) will neither
destroy the invariant circles nor change their stability. [3

Example 3.2. Consider F D, (n => 3) acting absolutely irreducibly on C and by
the diagonal action on C2. As was shown in Golubitsky and Stewart [1986b], there
are three (conjugacy classes of) isotropy subgroups in D, S where the fixed-point
subspaces are two-dimensional. Theorem 3.1 implies that for D,-equivariant mappings,
we may expect three families of g-invariant circles at such a Hopf bifurcation. We
note that two of the isotropy subgroups are isomorphic to 7/2 and one to 7/3- The
normal hyperbolicity of the 7/3 circles are determined at third order, while the normal
hyperbolicity of the 7/2 branches are determined at order m where

n, n odd,
m=

(n+2)/2, n even.
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4. Bifurcation of standing waves to 3-tori. For an 0(2) invariant system of ODEs,
a symmetry-breaking Hopfbifurcation leads to two types of periodic solutions: rotating
waves and standing waves (cf. Golubitsky and Stewart [1985]). We are interested here
in the bifurcation of these periodic solutions to tori. Bifurcation from rotating waves
has been considered by Rand [1982], Renardy [1982], and Iooss [1984]. By changing
coordinates to a rotating frame, they show that rotating waves correspond to stationary
solutions and that 2-tori may be found by standard Hopf bifurcation techniques for
systems of ODEs. Moreover, the circular symmetry of the rotating waves forces the
flow on the 2-torus to be linear. Standing waves, however, have no circular symmetry
in their isotropy subgroup, and the technique of changing coordinates to a rotating
frame does not apply. Using the techniques described in {} 3 applied to a certain
Poincar6 map, we shall study here the bifurcation to tori from standing waves. In the
next section, we give a unified discussion of these two techniques when 0(2) is replaced
by a general group F.

Bifurcation to 2-tori from a branch of standing waves has been considered in the
context of degenerate, symmetry-breaking, 0(2) Hopf bifurcations by a number of
authors (Erneux and Matkowsky 1984], Knobloch 1986], and Golubitsky and Roberts
1987]). These authors decouple the normal form equations for 0(2) Hopf bifurcation
(on C2) into phase-amplitude equations and find the 2-tori by steady-state bifurcation
in the amplitude equations. Using the extra S phase shift symmetry of normal form,
it is easy to see that in normal form the flow on these 2-tori must also be linear. Chossat
[1986] uses a Lyapunov-Schmidt reduction to prove that the flow on such 2-tori is
linear even when the vector field is not assumed to be in normal form. His method is
to assume that the flow on the 2-torus has the form y(t)= R,tx(t) where x is periodic,
r/is a real parameter, and Ro denotes the action of 0 in SO(2). The original equation
is then transformed by substitution of y(t) and elimination of R,t to an equation for
x. It is this equation to which the Lyapunov-Schmidt reduction is applied, and this
idea we will use to analyze bifurcation to tori from standing waves. In 5, we will
show that, in principle, when considering bifurcation to tori from a branch of periodic
solutions in a symmetric system, one of the two techniques described above always
works. Which one will work depends on the symmetries of the periodic solution.

Consider the following system of ODEs"

(4.1) 3) F(y, A), F(0, A) =0

where yv and F’N x->N commutes with a linear action of 0(2) on s. This
action may not be faithful; we assume, however, that the kernel of the action is the
cyclic group 7/n, n _-> 1.

Let y(t) be a standing wave periodic solution to (4.1), that is, assume that the
isotropy subgroup

(4.2) E {y 0(2)" /y(t) y(t)}

is discrete and contains a reflection in 0(2). Thus E Dn. Note that standing waves
lie on the invariant 2-torus

M= {7y(t)" /e O(2)}

foliated by periodic trajectories.
We now consider bifurcation of standing waves to tori. This bifurcation is detected

by having a complex conjugate pair of Floquet multipliers cross the unit disk at e+/-2ri

where 0 # 1, , , , , . The eigenspaces corresponding to these Floquet multipliers
are invariant under E D,, and generically we may assume that D, acts irreducibly
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on the eigenspaces. The irreducible representations of Dn are either one-dimensional
or, if n _-> 3, two-dimensional.

We prove the following theorem.
THEOREM 4.1. Let x t) be afamily ofstanding wave periodic solutions to the 0(2)

symmetric system (4.1) with isotropy subgroup D,. Assume that the periodic solution loses
stability by having a pair ofcomplex conjugate Floquet multipliers cross the unit disk with
nonzero speed and assume that Dn acts irreducibly on the corresponding eigenspaces.

(a) Ifthe Floquet multipliers are simple, then there exists a branch of 3-tori emanating
from this bifurcation.

(b) Ifthe Floquet multipliers are double (which may happen generically when n >-_ 3),
then there exist three branches of 3-tori emanating from the bifurcation.

Our proof consists of constructing a D-equivariant Poincar6 map to which we
can apply the results of 3.

Remarks. (a) Such bifurcations to 3-tori occur in the interaction oftwo symmetry-
breaking 0(2) Hopf bifurcations (see Chossat, Golubitsky, and Keyfitz [1986]) and
in the interaction of 0(2) symmetry-breaking steady-state and Hopf bifurcations (see
Golubitsky and Stewart [1986a]).

(b) Normally we would expect the bifurcation of a periodic solution to tori to
produce an invariant 2-torus. The extra frequency comes from the 0(2) symmetry. As
noted above, each standing wave x(t) lies on the 2-torus M defined by yx(t) for
2’ 0(2). When bifurcation to tori occurs, we get two independent frequencies from
the "Poincar6 map" and a third independent (slow) frequency from flow transverse
to yx(t) in the group generated 2-torus M. It is here that we use the ideas of Iooss
[1986] and Chossat [1986], described above.

(c) Suppose that the standing waves are generated by Hopf bifurcation with 0(2)
symmetry from an invariant steady state in (4.1). Then the bifurcation to tori we
describe in Theorem 4.1 cannot occur in a system of differential equations posed only
on the four-dimensional center subspace. Since the hypotheses of the theorem presume
the existence of four nontrivial Floquet multipliers and periodic solutions always have
one trivial Floquet multiplier (equal to unity), such a system cannot live on a four-
dimensional manifold. In effect, the question we discuss here is: suppose that a standing
wave with Dn symmetry is formed from a symmetry-breaking 0(2) Hopf bifurcation
and suppose that we track this solution to finite amplitude; then how should we expect
this standing wave to lose stability?

(d) In models of the Couette-Taylor apparatus where periodic boundary condi-
tions in the axial direction are assumed, the transition from wavy vortices to modulated
wavy vortices is an example of the bifurcation considered in Theorem 4.1.

Proof of Theorem 4.1. Let x (t) be the one-parameter family of standing-wave
solutions to (4.1) with periods 2r/toa. Write the Floquet equation

de(4.3)
dt La (t). y

where

La(t)=(DxF)x(t).a.
We assume that (4.3) has a Floquet multiplier a(A) of multiplicity two where a(0)=
e2i and 0 1, , 3, 2,

, . We also assume

d
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We know that :(t) is always a solution to (4.3) yielding a Floquet multiplier
equal to unity. Similarly, the 0(2) equivariance of F implies that Jx(t) is also a
solution to (4.3) yielding another Floquet multiplier equal to unity where J is the
infinitesimal generator of the SO(2) action.

In order to eliminate this extra "trivial" Floquet multiplier, we look for solutions
to (4.1) of the form

(4.4) y(t) R,,x(t)
where R denotes the action of b SO(2) on R v, and / is a real parameter. As
mentioned above, this trick is used in Chossat 1986] and, in a slightly different context,
in Iooss [1986]. The system (4.1) now becomes

(4.5) y F( y, A rIJy.

Observe from (4.4) that periodic solutions of (4.5), (y(t), rt), correspond to

quasiperiodic solutions of (4.1), x(t).
Next we define our Poincar6 map. Let 4,(yo, A, r) denote the one-parameter

group of solutions to (4.5) with initial condition Yo. Note that when r/=0, (4.5) is
identical to (4.1). Recall that Xo(t) is a 2rr/wo-periodic solution to (4.1), and hence

Xo(0) 6=/o(Xo(0), 0, 0),

that is, Xo(0) is a fixed point for the mapping b2=/,oo(", 0, 0).
Let ’1 dxo/dt(O) and st2 Jxo(O). Since Xo(t) is a nonconstant periodic solution

to (4.1), we know that Xo(0) 0 (since F(0, A 0). Thus, ’1 is tangent to the trajectory
Xo(t) and 2 is tangent to the 0(2) group orbit through Xo. The hypothesis that Xo(t)
is a standing wave guarantees that rl and ’2 are linearly independent. Let (,) denote
an inner product on RN and let W span {sq, ’2}-.

We now define the first return map of trajectories to (4.5) starting in the plane
Wo {Xo(0)+ Yo: yo W} close to Xo(0). In order for such a trajectory to return to Wo
at time r, it must satisfy the equations

(4.6) f(Yo, A, r/, r) (’j, 4,(Xo(0)+Yo, A, r/)- Xo(0)) 0.

Now recall that if we set y(t)= Xo(t)+ z(t) in (4.5) and z(0)= Yo is close enough to
zero, then the integral form of (4.5) is

(4.7) z(t)=S(t)yo+ S(t-s)F(z(s),A, r)ds

where S(t) is the monodromy operator associated with (4.3) and

/3(z, A, r/)= F(xo+ z, A )- F(xo, A Lo( t)z- rlJ(z).

Since b,(Xo(0)+yo, ,X, r/)= Xo(r)+ z(r) it can be seen from (4.7) that

(a) fl(Yo, A, r/, r)= r-2rr/Wo+"
(4.8)

(b) f2(Yo, A, r/, r)= r/+-..,

where indicates terms of the form

o(I,- 2,,/,,ol + nl + o(lal+lyol)).

Using the implicit function theorem, we can solve equations (4.6) for r-- r(yo, ,)
and r/=r/(yo, A)when r(0,0)=2r/wo and r/(0,0)=0. Observe that generically r/

itself is nonzero. The Poincar6 map is now defined by

(4.9) Ga(yo)=Cb{yo.a)(xo(O)+yo, a, r/(yo, a)) Xo(0).

Note that Go(0)= 42,/,oo(Xo(0), 0, 0)- Xo(0)= 0.
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A consequence of this construction is that, if G undergoes a Hopf bifurcation
at Yo =0, then we find an invariant 2-torus in (4.5) that corresponds using (4.4) to an
invariant 3-torus in (4.1). It follows from (4.4) that one of the independent frequencies
is 7, which is small, but typically nonzero.

A second important consequence of the construction (4.8) is that G is
equivariant. We claim that

(a) ysr,=", V?,D.;

(4.10) (b) ysr=sr2 V.),,77., and t(’YYo, A, /)’- yb,(yo, A, /);

(c) S’= -sr2 VS D, E,, and ch,(Syo, A, -1)= Scb,(yo, A, l).

Using the identities (4.10) in (4.6) and uniqueness of solutions to the implicit function
theorem allows us to conclude that

(a) ’(yYo, A)= ’(Yo,)t) Vy D,,

(4.11) (b) /(yyo,,) /(yo, A) Vy7/,, and

(c) "q(Syo, A) -l(Yo, A) VS D,

Using the definition of G in (4.8), we now find it easy to check using (4.9) and (4.10)
that G commutes with D,.

To verify (4.10)(a), recall that since Xo(t) is a standing wave, we know that
yXo(t) Xo(t) for all 3’ D,. Now differentiate with respect to t. Next, observe that 7/,
commutes with J while SJ =-JS for all S in D,---7/,. Now we prove (4.10)(b),(c) by
invoking uniqueness of solutions to the initial value problems for systems of ODEs.

If the Floquet multipliers are simple, then this construction gives a unique invariant
circle by the standard Hopf theorem for mappings. However, when the Floquet
multipliers are double, we can invoke the discussion concerning Hopf bifurcation for
D,-equivariant mappings given at the end of 3. We conclude that when G undergoes
a Hopf bifurcation, three families of invariant tori are produced from this bifurcation.
Of course, the hypotheses of Theorem 4.1 imply that G does undergo a Hopf
bifurcation at A 0. This completes our proof.

Remarks. (a) The stability of these 3-tori can, in principle, be computed from the
results in Golubitsky and Stewart [1986b]. The simplest statement of these results is:
suppose the standing waves are stable when )t < 0. Then generically, for any of the
3-tori to be stable, all those families must appear supercritically (for)t > 0). If all three
families are supercritical, then precisely one family is asymptotically stable.

(b) The reader may check that these results explain the existence of the invariant
3-tori found in the interaction of two symmetry-breaking 0(2) Hopf bifurcations from
a branch of standing-wave solutions. See Chossat, Golubitsky, and Keyfitz [1986].

5. Bifurcation from periodic solutions. In this section, we generalize the discussion
of bifurcation from a periodic solution of 0(2) symmetric systems of ODEs to
bifurcation in systems invariant under a general compact Lie group F. Our formulation
here is mainly geometric and may be contrasted with the analytic nature of the remarks
in 4.

Let x(t) be a T-periodic solution to

(5.1) =/(x)

where f:"-" is F-equivariant, F O(n). Let 4, :"" be the flow associated
with (5.1) and note that 4, is also F-equivariant. We now define a Poincar6 map
associated with x(t).
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Define a local action of F x on n by

(5.2) (),, t).x= ’yb,(x).

Since the actions of y and commute (b, is F-equivariant), we see that (5.2) actually
defines an action of F x R. Let Xo x(0). Since orbits of (smooth) Lie group actions
are immersed submanifolds (cf. Bredon [1972]), we see that

(5.3) M=(Fx). Xo

is an immersed submanifold of Rn. However, since x(t) is periodic, it follows that M
is compact, and hence a submanifold of R". Moreover, M is foliated by the periodic
solutions { yx(t): / F}.

Remark. Let S be identified with the interval [0, T). Then we can define

(5.4) Exo {(y, 0) e rx s’: (y, O)xo=Xo}.

E is the isotropy subgroup of x(t) and M is diffeomorphic to (F x S)/E.
Since M is compact and F-invariant, there exists an open F-invariant tubular

neighborhood of M in N". More precisely, there exists a vector bundle N--SM and a
smooth F-equivariant ditteomorphism o-: NN" defined on an open neighborhood
of M and N such that Im r is an open neighborhood of M in R" and o-[M is the
identity (see Bredon [1972, p. 306]). Via r we can pull back the vector field f to N
and discuss the bifurcation ofthe periodic orbit in N. The advantage ofthese coordinates
is that F acts linearly on the fibers of N and these fibers are orthogonal to M.

Next we define the manifold

(5.5) P7 /.-1({/ x(t)});

that is, Pv is just that part of the vector bundle N that lies over the periodic trajectory
3/" x(t) in M. It is possible to write (cf. Vanderbauwhede, Krupa, and Golubitsky
[1988] or Krupa [1988])

(5.6) f(Y) fp(Y) +fr(Y)

where fp(y) is tangent to Pv for all y e Pv and fr(y) is tangent to the group orbit Fy.
Moreover, both fp and fr are F-equivariant.

Next, observe that F-equivariance implies that fr is a linear vector field on Fy.
Hence, the flow offr is given by exp (tr/) for some r/e L(F), the Lie algebra of F. (In
fact, if we define

(5.7) Fo= {3 e F: 3’Xo Xo}

and we choose a vector space complement U to (Fo) in &e(F), then we can assume
r is uniquely defined in U.) Note that (O(2))= N and that the r/defined in 4 may
be thought of as residing in the Lie algebra of 0(2). Also, in 4, we solved _implicitly
for r/= r/(yo, A). This discussion allows us to write explicitly the first-order terms of
r/. We have not set up such an explicit algorithm here. Nevertheless, we know that
generically r is nonzero, which is all we need. Similarly, since fp is F-equivariant, the
dynamics of fp are determined by the dynamics of fpIP1. We just transport the flow
from P1 to Pr using multiplication by y, which acts orthogonally.

It now follows that the flow off may be understood as composing the flow of fp
on P with linear flow on orbits Fy. In particular, if W is an invariant set under the
flow of fp, then

I?V= U Fy N
y.W
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is invariant under f. Moreover, W is asymptotically stable under fp if and only if the
invariant set I is asymptotically stable under f. Since frlM =- O, we may think of the
flow of f on as being the co,rnposition of the flow of fp on W with a slow drift
along the group orbits of F in W. For the example O(2), connected components of
the group orbits are just circles (being diffeomorphic to SO(2)) and the flow for fr
al.,ong the group orbit is periodic. If, in addition, we assume that W is a 2-torus, then
W will be a 3-torus with the flow along the group orbit having a small frequency.

Thus, bifurcation of the periodic orbit x(t) for f is determined by bifurcation of
the periodic orbit x(t) for F =fp]P1. Note that, since fp is F-equivariant, it follows
that F is Fo-equivariant where Fxo is the isotropy subgroup defined in (5.7). We assume
henceforth that f, and hence F, depend on a real parameter h.

Recall now the isotropy subgroup Exo of x(t) in F x S1, which was defined in (5.4).
We call x(t) a rotating wave if there is a loop

(5.8) (7(0), O) EXo, 7(0)= 1

and a standing wave otherwise. The bifurcation analysis for rotating waves proceeds
along the lines of the Renardy-Rand approach. The assumption (5.8) implies that

X(t)=y(t)-l’x(O).

Now transform the equation 3-fp(y) by looking for solutions of the form

y(t)=T(t)z(t)

and obtain the system

(5.9) .( t) fp(Z( t), A)- 3)(O)z(t).

In this system, x(t) corresponds to the steady-state solution z(t)- Xo and bifurcation
to tori for x(t) is determined by a Hopf bifurcation in (5.9).

For standing waves, we use another approach, which is also valid for rotating
waves. Let S be a cross section to x(t) in the fiber of N over Xo. Since x(t) is periodic,
the flow of F(., 0) returns to Xo after time T. Thus, we can define the Poincar6 map

:SxRS
with g(Xo, 0) Xo, and since F commutes with Fo, so does p. We can now study Hopf
bifurcation of g with symmetry F using the techniques of 3. Of course in the
discussion of 4, F Dn and that specific case represents an example of the general
approach described here.

Acknowledgment. We are grateful to Andre Vanderbauwhede for making a number
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HETEROCLINIC ORBITS AND CHAOTIC DYNAMICS IN PLANAR
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Abstract. An extension of the planar Smale-Birkhoff homoclinic theorem to the case of a heteroclinic
saddle connection containing a finite number of fixed points is presented. This extension is used to find
chaotic dynamics present in certain time-periodic perturbations of planar fluid models. Specifically, the
Kelvin-Stuart cat’s eye flow is studied, a model for a vortex pattern found in shear layers. A flow on the
two-torus with Hamiltonian Ho (27r)- sin (2rx) cos (27rx2) is studied, as well as the evolution equations
for an elliptical vortex in a three-dimensional strain flow.
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1. Introduction. Organized vortex structures in two-dimensional fluid flows can
often be viewed as planar dynamical systems with multiple heteroclinic saddle connec-
tions. We wish to study how such saddle connections break up under small perturba-
tions. In the homoclinic case, the Smale-Birkhoff Theorem and Melnikov’s method
are two useful tools for studying the onset ofchaos and mixing in planar flows possessing
a simple homoclinic orbit. We extend the planar homoclinic theorem to the case of a
heteroclinic orbit connecting a finite number of saddle points, enabling us to analyze
fluid models to which the original homoclinic theory does not apply.

We present three planar fluid models that exhibit heteroclinic saddle connections.
The Kelvin-Stuart cat’s eye flow is a well-known model for a pattern found in shear
layers. This flow is a planar dynamical system possessing an infinite number of
heteroclinic saddle connections involving two fixed points each. We also study a planar
lattice flow in which we find groups of four saddle points linked by heteroclinic orbits.
The lattice flow is an interesting model for certain convection patterns as well as for
nonlinear Taylor vortex flow. In the unperturbed case, these flows are steady solutions
to the inviscid Euler equations and thus have a direct Hamiltonian formulation. We
apply the simplified Hamiltonian form of Melnikov’s method to find chaotic motion
and mixing occurring in time-periodic perturbations of these two planar flows.

The third application of Melnikov’s method presented here is of a somewhat
different nature from the first two. We examine the evolution equations for an elliptical
vortex in an imposed strain. These equations have a Hamiltonian form based on a
dimensionless time parameter. The most physically interesting perturbations are based
on real time and so we are forced to study a non-Hamiltonian dynamical system with
a homoclinic orbit. We apply the non-Hamiltonian version of Melnikov’s method to
find chaotic dynamics occurring in the case of periodic stretching of the straining flow
in a third dimension.

2. Extension of the homoclinic theorem and Melnikov’s method. The ideas for the
homoclinic theorem were first laid out by Birkhoff [5] and were developed by Smale
[26]. We consider a planar diffeomorphism q possessing a hyperbolic saddle point p
whose stable and unstable manifolds intersect transversely at a point q. A result of
this theorem is that p possesses a subsystem equivalent to a shift on two symbols. We
extend this theorem to the case ofN fixed points joined by transverse saddle connections
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(see Fig. 2.3 for the case N 3). The homoclinic theorem is proved by constructing
the horseshoe map and showing that it possesses the shift as a subsystem (Moser 19]).
We must then show that possesses the horseshoe map as a subsystem. Keeping in
mind Moser’s proof of the homoclinic theorem, we construct the generalized horseshoe
map, and present a sketch of the heteroclinic theorem. For the complete details the
reader is referred to [4].

2.1. The horseshoe map and the shift on two symbols. We first define the horseshoe
map used in the homoclinic case. The horseshoe map is a topological mapping of the
unit square Q into the plane such that q(Q)(q Q has two components U1 and U2. The
pre-images of U1 and U2 are denoted by V q-l(Ui), i= 1, 2. V1 and V2 are vertical
strips connecting the upper and lower edges of Q (see Fig. 2.1). The iterates k of p
are not defined in all of Q, so we construct the invariant set

I= N -(Q),

in which all iterates k are defined. Associated with each point p of I is a bi-infinite
sequence (... s_, So; s, s2" ’), sie {1,2} of ones and twos, where -k(p) e Vsk or

i’1 k(vsk).

On the set S of all such sequences, we define a map tr by (trs)i si+. Under the map
o-, all the elements of s are shifted over by one. This provides a mapping -:I S with
’qll o-- as long as " is invertible. We introduce a topology on S as follows: Given
s* (.’., s*2, s*, So*; s*, s2*,’" ") e S then U {s e SIsk S’k, (Ikl <j)} form a neigh-
borhood basis for s*. We see that the horseshoe map possesses periodic orbits of
arbitrary period, as well as an orbit that comes arbitrarily close to all points of L This
last orbit is obtained by constructing a sequence that contains all possible finite strings
of ones and twos.

FIG. 2.1. The horseshoe map.

2.2. A generalization of the horseshoe map. Consider a set of N disjoint squares
Qi in the plane and a map p:U Qi RE such that p(Qi)f’)Qi is a horizontal strip in
Qi and p(Qi)fq Qi+l(modn) is a horizontal strip in Q+lmodn. Here it is not impoant
how each square Q is oriented with respect to the other squares, only that (U Q) Q
are horizontal strips in Q (see Fig. 2.2). Our invariant set thus will be

I= M -k Q
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Q4 Qz

Q3

We will associate with each point p I a bi-infinite sequence (. , S_l, So; s, s2 ")
S’ of N consecutive symbols where

S’={slsi{1,...,N}, si+=si or si+=si+l (modN)}

such that c-k(p) Qsk- Under the appropriate conditions there is a one-to-one corre-
spondence between points of I and sequences s S’. For the precise details of the
above construction as well as a proof of the fact that I and S’ are topologically
isomorphic, the reader is referred to [4].

2.3. A heteroclinic theorem.
THEOREM 2.3.1. If a diffeomorphism q.2_>2 possesses N fixed points

P, P2, , PN that are nondegenerate hyperbolic saddle points, and there exist points qi

at which the unstable manifold WU(pi) intersects the stable manifold WS(pi+l(modN))
transversely for all i, then possesses an invariant set I on which some iteration qk is
homeomorphic to the shift on S’, the set of hi-infinite sequences ofN consecutive symbols
(as described in the preceding section).

We provide an outline of the proof. For details, the reader is referred to [4]. We
want to show that q possesses a subsystem satisfying the requirements for the general-
ized horseshoe map of 2.2. The stable and unstable manifolds are depicted in Fig.
2.3 (for the case N 3).

CLAIM. We can choose an integer k and neighborhoods Ui of p such that the
following conditions are satisfied (see Fig. 2.4)"

Pl

q3

FIG. 2.3
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FIG. 2.4

(1) There exists a local coordinate system in Ui so that p is linear, and Ui is the
unit square.

(2) qi 6 pk(Ui) and qi 6 (p-k(U+l(modV)) for all i.
(3) For R (.k( Ui [,-) (-k( Ui+l(modN)), we have (#-k(R ("1 WS(pi+(modN))) inter-

sects qgk(Ri_(modN) ") WU(pi_(modN))) transversely in exactly one point.
We choose U so that (1) is satisfied for all i. Note that if we shrink each U, (1)

will still hold. Given any U satisfying (1), by the definition of stable and unstable
manifolds, there exists a k such that (2) is satisfied. Note that k depends on the sizes
of the U, which we will continue to shrink until all the above conditions are satisfied.
By the h-lemma of Palis [23], q-k(Ri[’l WS(pi+l(modN))) approaches W(p) and
pk(R_l(modS f’l W(Pi_l(modS)) approaches W(p) as k-. Thus for k sufficiently
large and the Ui sufficiently small, (3) is satisfied. Transversal intersection results
because W(p) and W(p) intersect transversely at pi. Once (3) isachieved, we can
find U sufficiently small so that -k(Ri) is a vertical strip and k(Ri_l(modS)) is a
horizontal strip in U. Thus, p2k possess a subsystem equivalent to the generalized
horseshoe map, which in turn possesses a subsystem topologically equivalent to the
shift on N consecutive symbols.

This last subsystem is termed "chaotic" because of the interesting properties it
exhibits under iterations of pk. We have orbits of arbitrary period greater than N as
well as dense orbits. The bi-infinite sequence corresponding to a dense orbit is formed
by concatenating all possible finite sequences of consecutive symbols. We further note
the unpredictability of this subsystem. Any two orbits with sequences that agree for
some finite length may have completely different sequences further on. Physically we
will find these orbits near each other under a finite number of iterations of pk, yet
the orbits diverge as we proceed past the point where their sequences agree. Thus,
knowing where a point will be for a fixed finite time in no way predicts where it will
be at later times.

2.4. Melnikov’s method. Melnikov 18] devised a method for finding the transverse
intersection of stable and unstable manifolds given a time-periodic perturbation of a
system with a saddle connection. We present the theorem without proof.

Consider the following planar dynamical system:

(A) =f(x)+eg(x,t), xR2, g(x,t)=g(x,t+T), O<-_e<<l,

where for e 0 we have a saddle connection F0 between two nondegenerate hyperbolic
saddle points Pl and P2 (see Fig. 2.5). The unstable manifold W)(pl) of pl and the
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FIG. 2.5

stable manifold W(p2) of p2 coincide. Here we include the homoclinic case where
Pl P_. Associated with (A) is the suspended system

(B) =f(x)+eg(x,O), (x,O)2xS (S’=R/T).
For e sufficiently small, (B) possesses a Poincar6 map: P’’Eto E, where

{(x, O)xSIO= to} is a global cross-section of the flow. Let FT(xo, to) be the flow
map of (B) on R2x S. po is obtained by a projection onto the first factor: P’p(x)=
(F(x, to)) where ((x, 0))= x. Here P’p is a map from 2 to .

Our assumptions imply that for e 0, Po(x) has fixed points at p and P2 and so
the suspended system has circular orbits =p x S, 2=pzx S with stable and
unstable manifolds W() and W() coinciding to form a "cylinder" Fox S. Such
saddle connections are quite unstable and thus are expected to break under small
peurbations.

We define the Melnikov function

(IoM(to) d(q(t to)) g(q(t- to), t) exp tr Df(q(s)) ds dr,

where qO(t) is the solution to the unpeurbed equation (A) staing at to on the saddle
connection Fo. We define the wedge product by a b ab-bla.

In the case where the unpeurbed system is Hamiltonian, we have tr Df(q) 0
and the Melnikov function becomes

M(to) f(q(t- to)) g(q(t- to), t) dt.

The examples of 3 and 4 are both Hamiltonian systems. Two useful forms for
computation are

(fo )M(to) f(q(t)) g(q(t), + to) exp tr Df(q(s)) ds dt

in the non-Hamiltonian case and

M(to) ff(q(t)) g(q(t), t+ to) dt

in the Hamiltonian case. We note that M(to) is itself a periodic function in to. Using
the second form, we have that

M(to+ T)= f(q(t)) g(q(t), t+ to+ T) exp tr Df(q(s)) ds dt

f(q(t))g(q(t),t+to)exp trDf(q(s))ds dt

M(to),

since g(x, + T) g(x, t).



1276 A.L. BERTOZZI

MELNIKOV’S THEOREM. Given the above conditions, and e sufficiently small, if
M(to) has simple zeros, then W(p) and We (p) intersect transversely. IfM(to) has
no zeros in to [0, T] then WS p (q W(p).u

For a concise proof of the homoclinic case, the reader is directed to Guckenheimer
and Holmes [8]. The heteroclinic proof is an obvious generalization. For details, the
reader is referred to [4].

3. Kelvin-Stuart cat’s eye flow. Consider the following flow in the plane:

a sinh y
2=

a cosh y + x/a2-1 cos x’
x/a2-1 sin x

)=
a cosh y + x/a2-1 cos x

This is a Hamiltonian system with Ho log (a cosh y / x/a2 1 cos x). It is a model for
a pattern found in shear layer flow (see [27], 12]). The parameter a controls the shape
of the cat’s eye with a larger a corresponding to wider "eyes." Here we consider only
a > 1. Streamlines are constants of Ho (see Fig. 3.1).

FIG. 3.1

We have fixed points at (27rN, 0) that satisfy the conditions for Melnikov’s method.
Consider the upper trajectory (Xo(t), yo(t)) from (0, 0) to (27r, 0). Along this trajectory
we have Xo satisfying the equation

2o a + 1 -cos Xo a2

This implicitly defines Xo by

I ot= (a+x/a2-1) dx a cosx--I -1.
a2 x/a2-1

By changing variables to s--1-cos x, this integral becomes

j t-cs’ ((aa__i + 1)/s /(s+x/a,22a__,l,)(2-s))ds.
This can be solved exactly to yield

cos Xo 1
a + x/a2- e3’t + [3 + e-’/t

7 fl=2a+a2 1 1 a +/a2-1
along the upper saddle connection from (0, O) to (2rr, 0).



HETEROCLINIC ORBITS IN PLANAR FLOWS 1277

3.1. Periodic stretching of the cat’s eye flow. Instead of examining a general
perturbation g(, t), consider a perturbation of the parameter a. If we take a to be a
time-varying parameter of the form ao+ eb(t), where b(t) is periodic with period T,
we get a phase diagram where the "cat’s eyes" are periodically stretched and compressed
by an e amount. This corresponds to a time-dependent solution to the Euler equation
with external force.

To first order in e, our perturbed equation is

ao sinh y eb(t) sinh y cos x

ao cosh y+x/a- 1 cos x x/ao- l(ao cosh y+/ag- 1 cos x)2’

/ao 1 sin x
)= +

ao cosh y + /ao 1 cos x

eb(t) sin x cosh y

/ao’- l(ao cosh y+/a- 1 cos x)2"

Thus the driving force for our perturbation is

eb’(t)
e-2Hdx,y) (-sinh y cos x.

sin x cosh y !

The perturbed Hamiltonian for this system is

eb(t) (/a- l cosh y+ aocos)H H+/a2-- \-oo-L y +/ao-1 cos

Ho+ H1.
Along all streamlines of the unperturbed flow,

HI oc b(t)(x/ao 1 cosh y + ).ao cos x

Since the saddle connections are streamlines of the unperturbed flow, how they break
up under a perturbation depends only on the perturbation at the points of the saddle
connection. Thus, the Melnikov function for the above perturbation is identical to the
one corresponding to the simpler perturbation

H eb(t)(/a2-1 cosh y + a cos x ).
If we let b(t) have the form cos (kt), then this perturbation corresponds to the
superposition of four waves:

a- 1 cosh y(ei(Z-k’) + ei(Z+kt))+ a(ei(x-kt) + ei(X+kt)).
Here z is the third coordinate and we take the cross-sectional flow in the plane z 0.
The wavelength of the perturbation is exactly equal to the length of one of the cat’s
eyes. The wave speed is allowed to vary.

3.2. The Melnikov function for periodic stretching. Consider the upper trajectory
(Xo(t), yo(t)) from (0, 0) to (2r, 0) for the unperturbed system.

The Melnikov function for this trajectory is

M(to) I_ Cl[(ao sin Xo(t) cosh yo(t) sinh yo(t)

+ x/ag- 1 sinh yo(t) cos Xo(t) sin Xo(t)b(t + to))] dt,

which can be reduced to

M(to) f_ C(sin Xo(t) sinh Yo( t)b(t + to)) dt
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where

1

C2=/a 1 (ao + x/ao 1) 2.

Here we have exploited the fact that

ao cosh yo(t)+/ao 1 cos Xo(t) ao+x/a- 1.

We expand b(t) into its Fourier series:

b(t) Y (ak sin kt + bk cos kt).

The above Melnikov integral then becomes

2 C2sinxo(t) sinhyo(t)(aksink(t+to)+bkcosk(t+to))dt

2 (akCOSkto-bksinkto) Csinxo(t) sinhyo(t)sin(kt)dt

where we define

((ak COS (kto)-bk sin (kto))Mo(k)),

Mo(k) Ca - cos Xo(t) sin (kt) dt,

C3 (ao +/a 1)C2

We have used the fact that sin Xo(t)sinh yo(t) is an odd function in t. Thus,.

Mo(k) C4 (e vt + flo+ e--Yt) 2
sin (kt) dt,

8ao

Evaluation by residues (see Appendix A) yields, for k O,

27r 2 sin a 1- e-lml2/] sn a

rn=--, a=cos 0<c<7r/2.
Y

Whether or not M(to) has simple zeros depends on the values of ak and bk. For
instance, if b(t) is of the form cos kt, then we see that M(to) has simple zeros for
almost all k. A similar analysis shows that the lower trajectory has a Melnikov function
that is just the negative of the one for the upper trajectory. Since both trajectories
break up under the same perturbation to yield the transverse intersection of stable and
unstable manifolds, we have satisfied the requirements for the heteroclinic theorem
(Theorem 2.3.1) with N 2. Our perturbed system has a chaotic subsystem topologically
equivalent to a shift on two symbols.
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3.3. Mixing in the perturbed cat’s eye flow. By exploiting the symmetry of this
model, we see that this perturbing function breaks up all trajectories transversely. In
fact, we can view both the perturbed and unperturbed cases as flows on the cylinder.
Here we take x E/27r, y E. All of the saddle points are identified and we obtain
two homoclinic orbits to a single saddle point. We can now use the standard homoclinic
theorem to find a shift on two symbols.

Based on the proof of the theorem from the second section, we expect mixing to
occur at least within the region around the fixed point. We know that there exists a
neighborhood U of the fixed point (0, 27rN) on which the Poincar6 map for this system
acts like a version of the horseshoe map (see Fig. 3.2).

(a)

yak (u)nu

(b)

U INTER-
SECTS
ITSELF IN
HORIZONTAL
STRIPS.

FIG. 3.2. (a) The cat’s eye flow on the cylinder. (b) Perturbed cat’s eye flow. Here the top and bottom
layers are mixed into the cat’s eyes region and eventually into each other.

Viewed as a flow on the plane, we see that the perturbed system has a geometric
structure similar to that of Holmes’s perturbed sine-Gordon equation [11, 3]. We
show that the perturbed cat’s eye flow has a subsystem isomorphic to the shift on the
symbols "+" and "-," where the "+" corresponds to traveling "downstream" along
an upper trajectory and the "-" corresponds to traveling "upstream" along a lower
trajectory (see Fig. 3.3). This provides a mechanism for fluid inside one cat’s eye to
travel both upstream and downstream. This mechanism does not exist for the un-
perturbed case, since flow within an "eye" will remain there for all time. In the
perturbed system, all saddle connections are broken up to give us transversal intersec-
tion of stable and unstable manifolds. The heteroclinic theorem tells us that at each
fixed point p, (27rn, 0), there is a neighborhood U,, a unit square in local coordinates,
such that for some fixed time T*, the flow qT* maps Ui to intersect Ui_l and Ui/l in
horizontal strips. A simplified model of the dynamics present is pictured in Fig. 3.4.
Here each Ui is intersected by the horizontal strips H_I, (U_I) f3 U and H+I,
( u,+,) n u,.
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+ +

FIG. 3.3

(u_). (u)

ui

(ui) (ui+,)
FIG. 3.4

By the symmetry of the flow and its perturbation, we can choose each Ui so that
Ui+2r Ui+l and p(Ui)+2zr p(U+I). Our invariant set is

I= CI p-k U (H,+I.UH-I.,)

I can be decomposed into disjoint sets I U f’)/. For any given i, we have a one-to-one
correspondence between I and S+/-, the set of all bi-infinite sequences of "+" and "-":

7.. [i-.> S+/-,

[’(X)]l + if q’(x) U==+l(x) U/,

if l(x) U==l+l(x) U_.
Thus there is a set S of sequences corresponding to each L. We see that there

is a mechanism for pieces of fluid to move rather chaotically both upstream and
downstream as well as for fluid within each "eye" to mix with fluid in other "eyes."
This mixing and chaotic motion was not present in the unpcurbed cat’s eye flow.
The fact that the peurbation cos kt leads to such chaos for almost all k indicates that
such mixing may be rather common in the actual shear layers.

4. Planar lattice flow. We consider the following flow:

=-sin (2x) sin (2x), =-cos (2x) cos (2x)

a Hamiltonian system with Ho (2)- sin (2x)cos (2x) (see Fig. 4.1). This is a
model for axisymmetric Taylor voex flow as well as for many convective flows. If
we take x to be a moving coordinate, these equations model the Rossby waves of
geophysical fluid dynamics (see [24, p. 84]). This flow is obviously doubly periodic,
yielding a flow on the torus T=/F where F is the lattice {(n, n); hi,

Viewed as a flow on the torus T, we obtain a system with hetcroclinic orbits
connecting four saddle points. Melnikov’s theory can then be applied to peurbations
of this flow.
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(0,

FIG. 4.1. F’ is represented by the dashed line.

We can also map this flow onto a "smaller" torus T’=Ia/F where F’= {(1/2(n- n2),
1/2(n+n2))} (see Fig. 4.1). Here we have exploited the periodicity in the variables
(x-x2), (x + x2) as well as in x and x2. The flow on T’ has only two heteroclinic
saddle points. By examining perturbed flows on T’, we can look for a subsystem that
is a shift on two symbols. This horseshoe-like structure will result if all heteroclinic
orbits are broken up so that stable and unstable manifolds intersect transversely.

4.1. Time- and space-dependent perturbations. We consider two types of perturba-
tions, ones that are functions of time only and ones that have an added space
dependence. In the purely time-dependent case, we have el(t) as a perturbation to
the velocity field, with f(t)= f(t + T). This corresponds to an external driving force
F ef’(t) that is uniform in space at any given moment. This is physically reasonable
as an approximation to an external force that is time-periodic and has an average
space variation much larger than the periodic lattice structure of the flow. For the
vertical saddle connections, the Melnikov function for this perturbation is

Mo(to) +j cos (27rx2(t))f(t+ to) dt

since sin (27rx) 0 for these trajectories. Likewise for the horizontal orbits, cos (2rx2)
0 and so

Mh(to)= + I_oo sin (27rx1(t))f2(t+ to) dt.

We see that the vertical and horizontal components of f are decoupled. We will
show by symmetry properties that f and f2 must satisfy the same conditions in order
for Mo and Mh to have simple zeros. For this space-independent perturbation, the
F’-lattice symmetry is preserved and chaotic motion can be reduced to a subsystem
isomorphic to the shift on two symbols. The following example presents a spatially
dependent perturbation that breaks up the F’ symmetry.

In general, a perturbing velocity of the form

e
/.)2(Xl, t)
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constitutes a solution to the two-dimensional Euler equation with external force

F= (Ov,(x2, t)/Ot
OV2(Xl, t)/Ot]

A particularly interesting perturbation of this form is

v2 sin (2zrxl cos kt

This has a stream function

cos kt[sin (2wx2)-cos (2rxl)],
2r

which can be viewed as a superposition of linear waves traveling along coordinate axes"

_(ei(2Xl+kt) + ei(2x,-kt))_ i(ei(2x2+kt)_ ei(2rx2-kt)).

This perturbation is geometrically interesting because it breaks up the F’ symmetry
and we are forced to consider heteroclinic orbits joining four points instead of two
points. We shall show that for almost all k, the saddle connections break up to yield
a subsystem topologically equivalent to the shift on four consecutive symbols.

4.2. Explicit calculation of the Melnikov functions. Along an unperturbed horizon-
tal saddle connection, we have

21 +sin (2’xl), 2 =0

and along a vertical connection

2 +cos (2rrx2), 1 0.

In the case of the connection from (1/2,-) to (0,-14), we have 1 =-sin (2rrx,). This has
a solution xl (l/or)tan-1 (e-2’), which by symmetry properties of the flow yields

sin (2rrx,)=+

along all horizontal connections and

cos (2rrx) +

along all vertical ones.

2e -2rrt

1 + e-4wt

+ e--4rrt

For a spatially independent perturbation, the Melnikov function of 4.1, for either
saddle connection, is of the form

Mi( to)
1 -k- e -4rt

fi( + to) dt.

If we expand f into its Fourier series

f(t) , Ak COS + Bk sin

we find that

M(to) A cos +B sin dt
=-m 1 + -4t

COS
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Evaluation by residues reveals

Mi (to) , Ak COS
1 ’k/2T)(2rkTt)+B,sin(2kTt))(e_/_r+ e

Whether or not Mi(to) has simple zeros depends on the respective values of Ak and
Bk. For example, if f/= Ao+ A1 cos (27rkt/T), we require

IAol < IAll e-k/2T+ ek/2r

for Mi(to) to have simple zeros. Now we see that the class of perturbing functions
f=(Acos(t),Bsin(t)) yields My(to) and Mh(to) with simple zeros for all saddle
connections. Applying the results of 2, we obtain a shift on four symbols as a
subsystem of the perturbed flow on T, and a shift on two symbols as a subsystem of
the perturbed flow on T’.

For the spatially dependent perturbation

(cos(x) cos t)e
\sin (27rxl) cos kt

we find that, up to a change of sign, the Melnikov function for either a vertical or
horizontal saddle connection is

e -4,n-t

M(to) 4 COS (kto)
1 + e -4,n-t) 2

COS kt dt

which we evaluate via residues (using the procedure outlined in Appendix A for the
calculation of the integral in 3) to be

M(to)=cos kto
4" sinh (k/4)

cos ktoMo(k).

Mo(k) is nonzero for almost all k so that the Melnikov function will have simple zeros
and we have a subsystem topologically equivalent to the shift on four consecutive
symbols.

4.3. Mixing in the perturbed lattice flow. Under both perturbations, we expect
some sort of mixing to occur that was not present in the unperturbed case. In the
perturbed systems, all connections are broken up to yield transverse intersection of
stable and unstable manifolds. As in the cat’s eye model, at each fixed point Pn, n2--
(1/2ill, 1/2r2+-), nl, n2 7/, we have neighborhoods U,,,,,2 that intersect each other in
horizontal strips under some fixed time mapping of the flow (see Fig. 4.2). In the case
of the first perturbation studied, we can exploit the T’ symmetry to obtain a subsystem
topologically equivalent to the shift on two symbols. The perturbed and unperturbed
systems are both flows on the torus T’. Under this symmetry, we can identify all
clockwise rotating cells with each other and likewise all counterclockwise rotating cells
with each other (Fig. 4.3). In the unperturbed case, these patches of fluid do not mix.
The perturbation satisfies the conditions of the heteroclinic theorem with two fixed
points, yielding a subsystem of the flow topologically equivalent to the shift on two
symbols. In the perturbed case we see mixing patterns similar to those present in the
cat’s eye flow.

In the case of the second perturbation, we do not have the T’ symmetry. The cells
break up into two different clockwise and counterclockwise rotations (see Fig. 4.3).
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FIG. 4.2

(b)
FIG. 4.3. (a) Flow on T’. All clockwise rotating cells are identified, as are all counterclockwise rotating

cells. (b) Flow on T. There are two types ofclockwise rotations as well as two types ofcounterclockwise rotations.

On the torus T we have four fixed points in the heteroclinic orbit and our system
breaks up to yield a subsystem topologically equivalent to the shift on four consecutive
symbols. In the previous case we have symbols 1 and 2 identified with 3 and 4,
respectively. This is analogous to identifying the two clockwise rotations with each
other and likewise the two counterclockwise rotations with each other. Again we expect
similar mixing patterns to occur.

In the cat’s eye flow, we found a mechanism for traveling up- and downstream
randomly within the cat’s eyes. This corresponded to a shift in the symbols "+" and
"-." In the lattice flow, we find a mechanism for traveling all over the plane, along
the F’ lattice. We find that the perturbed lattice flow has a subsystem isomorphic to
the shift on the four symbols "n/," "n_, p/," "p_." Here, n+ corresponds to a



HETEROCLINIC ORBITS IN PLANAR FLOWS 1285

translation by +(-1/2, 1/2) along the lattice. Likewise p+ corresponds to a translation by
+(1/2, 1/2) (see Fig. 4.2).

In the neighborhood U.,. of each fixed point P-,-2, we find that for some fixed
time T*, the flow qT* maps U.,. to intersect U.,-1..2 and U.,+1..2 for nl + n2 odd, or
U.,..2_ and U.,..2+ for n + n2 even, in horizontal strips (see Fig. 4.2).

These strips are mapped to smaller strips in U.,_.2_1, U.1/1..2_,
U.,+..2/1, by a second iteration of qT*. Thus q2T* maps U.,. to intersect
Un,+l.n2_l, Unl_l,n2+l Unl+l.n2+l, in horizontal strips.

For convenience, we now refer to 02T* as o. Thus our invariant set is

(N (-k
k= rll,n

where I can be decomposed into the disjoint sets 1.,. U.,. N L For any given pair
(nl, n2), there is a one-to-one correspondence between 1.1. and the set of bi-infinite
sequences on the symbols p+, p_, n+, n_:

r: I.,.2--> S

[r(x)]=p+ ift(x)

[-(x)], =p_

[(x)],=n+

[-(x)],=n_

/+l(x) t U.,+l,.2+l

if q(x) e U,,,.2::e,qt+(x)e Un,_l,.2_l,

if o(x) e U,,l,,2=:>ot+(x)e
if ql(x) e U.,.2=,l+(x) e U,,,+.,,2_.

Thus, fluid particles within one cell can travel randomly around the plane in the
perturbed case. In the unperturbed case, this sort of mixing is not allowed since fluid
within one cell will remain there for all time.

5. Motion of an elliptical vortex in a strain field. An important part. of fluid
mechanics is the study of vortices, their structure, and how they interact with one
another. In 3 and 4 we examined two well-known two-dimensional planar fluid
models. Since organized vortex structures are observed frequently, we would like to
find a simple model for a vortex affected by a field of neighboring vortices. As the
examples of 3 and 4 indicate, the presence of multiple vortices in stationary planar
fluid flow often results in fixed points of the flow, between vortex structures, that can
be modeled as hyperbolic saddle points in a planar dynamical system. In a neighbor-
hood of such saddle points, the velocity field is roughly linear and can be locally
approximated by a simple strain. Thus it is physically reasonable to model certain
vortex interaction locally as a single vortex in a straining flow. Moore and Saffman
[20], as well as Neu [21], describe vortex interaction that can be modeled in such a way.

We study the motion of an elliptical vortex in a three-dimensional imposed strain.
We see that the evolution of such a vortex can be characterized as a planar dynamical
system that has interesting Hamiltonian and non-Hamiltonian formulations involving
the aspect ratio r/= a/b and the angle 0 of rotation of the ellipse. Here a and b
correspond to the major and minor axes of the ellipse. We apply Melnikov’s method
to the evolution equations of the vortex to show chaotic dynamics occurring in the
presence of three-dimensional periodic stretching of the imposed strain. The actual
analysis differs somewhat from what was done in the previous sections in that we study
chaos occurring in the evolution equation of the shape and orientation of the ellipse
as opposed to chaos occurring in the flow pattern of an actual fluid model.
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5.1. Hamiltonian formulation of exact Euler solution. The Hamiltonian
formulation presented below is due to Neu [22] and represents a three-dimensional
generalization of the exact solutions of an elliptical vortex in a two-dimensional
straining flow (described by Kida [14]). First consider a planar vortex region in the
shape of an ellipse with constant vorticity in the interior. The points on the boundary
of the region are solutions to the equation xE/a2+y2/b2=constant. Following a
potential theory calculation described in Lamb 15], we see that the velocity field inside
the ellipse is linear:

l(a’ b’ O)=-
t

R(O) aO) R(O)"

Here a and b correspond, respectively, to the major and minor axes of this elliptical
cross-section and 0 is the angle of the major axis with respect to the x-axis. R(O) is
the rotation matrix

(cos0 -sin0)sin 0 cos 0

In three dimensions we have a cylindrical vortex region whose cross-section in
the xy-plane is the above velocity field. We add an irrotational straining field the
velocity of which is given by v (3"x,-3"y, y"z) where 3"-3,+ 3’"=0 is required for
incompressibility. The combination of vortex and strain yields a fluid velocity that, in
the xy-plane, has the form U(a, b, O)(x, y)r where

-a+-- R(O) R(O)+
0 -3"

The velocity field inside the vortex is again linear and the path of a fluid particle on
the boundary must satisfy the equation of an ellipse which we write in matrix form:

(Xy) E(a,b, O)(x y)=constant,

E(a,b,O)=R(O)(a
-:z O)0 b_

R(O).

Differentiating the ellipse equation, we obtain

.fTEX .4g- XTjX .qt_ XTE.f 0

where X is the vector (x, y). Since U(a, b, O)X, we have the matrix evolution
equation

+ UrE + EU=O,
which we can write out explicitly in terms of a, b, and 0 to give us the evolution
equations for the elliptical vortex:

ti + (y sin 0 3" cos2 0)a 0,
/ + (3’ cos2 0 3" sin 0) b 0,
wab 1 a2 d- b2

O
a + b )-- -- 3" + 3"’) a2 b2sin20.

These evolution equations have the following Hamiltonian formulation: let ab
be the aspect ratio and r be a dimensionless time defined by dr/dt to’/z/(T2-1).
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Then the evolution equations become

dr OH
dr oO

dO OH r/ 1

r/- cos 2 0,

dr Or/ r/(l+r/)
1 + sin 2 0,

2 to

H log(l+r/): 1 Y+Y’( )r/- sin 2 0.
2 to

We consider 3’, 3", and to to be, in general, time-dependent parameters in this
equation. The total circulation of the vortex is F 7rabto, which we know to be constant
by the Kelvin Circulation Theorem (see [6, p. 28]). The evolution equations imply that

so that

which in turn yields

d(ab)
dt

-(y’-y)ab

ab aoboe(y’-y)t,

to =tooe

Thus, when 3’" 0, 3"- 3’ + 3’"= 0 implies that 3’ 3". Our Hamiltonian system is
autonomous if and only if 3’"= 0, % 3" are both constant. We will consider the case
where this autonomous Hamiltonian system is perturbed by a periodic stretching of
the strain where we set 3’"= eg(t).

In the autonomous case, we have 3’= 3", and are interested in the dynamics
indicated in the phase portrait for 0 < 3’/to < 0.15 (see Fig. 5.1). There are no heteroclinic

REGIME (t} 0
y/o 0.1000

REGIME (2)

7"/ 0.t227

REGIME (3)

Y/( 0.1429

FIG. 5.1
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orbits in the phase portrait for y/to >.15. The three interesting regimes are depicted
in Fig. 5.1"

(1) For 0 < yto .1227, there are oscillating regions (bubbles close to the log rt 0
axis) as well as rotating regions between the bubbles and the outer saddle connections.

(2) At y/to --.1227 we have a bifurcation where saddle connections between three
fixed points exist for this value of 3’/to only.

(3) For 3’/to between .1227 and .15, we have homoclinic saddle connections, the
interior of which represents an ellipse oscillating about the ray 0- r/4.

The importance of the bifurcation is that in regimes (2) and (3) we no longer have
the possibility of a rotating ellipse.

5.2. Real time forrnulatioa of evolutioa equations. In order to apply Melnikov’s
method to the above Hamiltonian system, we would need to consider time-periodic
perturbations of the dimensionless time -. This is not a reasonable physical model,
since a periodic perturbation of the straining flow would be periodic in real time, and
not in the dimensionless time -. Note that the evolution equations written in terms of
the orientation, aspect ratio and real time are

dO tort 1 rt2 + 1

d-- (rt +1)-------- (y+ y’)
rt-1 sin 20,

drt (y+ y’)rt cos 20.
dt

Since (rt, 0) and (,/-1, 0+ r/2) correspond to the same ellipse, we can parameterize
the evolution equation in terms of r= log rt, q 20, and yield a polar coordinates
formulation for these equations in which there is a one-to-one correspondence between
ellipses and points in the phase space (r, o). The evolution equations become

(,+ ,’) cos ,
2toe e2r / 1

(e +1)2 "Y+Y"e2r-1 sin"

From the Hamiltonian formulation, we know that trajectories correspond to constants
of

H=log[(l+er)2]e 2to
er- e-r) sin o.

This can be verified by calculating dH! dt 0 for the real time t. These equations seem
to blow up for r 0. Fortunately, we see that this blow-up is due to the coordinates
we are using and not the equations themselves. Polar coordinates are not well defined
at r 0 so we convert the equations to Cartesian form by x r cos 0, y r sin o. The
evolution equations become:

X
2

(Y + Y’)
x2 + y2

f=(y+y,)
xy +

X
2 / y2

2toye

2toxe

(e+ 1)2

+ (’)’ + 3")
e2+ 1 y2
e2"/Trg- 1 x/x2 + y2’

_(y+ y,)
e-+ 1 xy

e2- 1 x/x2+y2"

We see that as r 0, the first and third terms in appear to blow up. Using Taylor
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REGIME (t) ’/ 0.t000

REGIME (2) 7’/m 0.t227

REGIME (:5) )"/o 0.1429

FIG. 5.2

expansion techniques, we see that the third term can be approximated by

(7 + Y’)
y2

xE+y (1 + ’(r))

for r small. Thus, -> y + y’ as r- 0. In a similar fashion, we see that 3- 0 as r-> 0.
The phase portrait (Fig. 5.2) for the real time formulation has a much simpler

form than that of the Hamiltonian one we first introduced (Fig. 5.1). We see that for
(y + y’)/2to < .15, there is a homoclinic loop with hyperbolic fixed point corresponding
to the largest root of er(er-1)=((y+’y’)/2to)(e:Zr+l)(er+l). We see that the
bifurcation at 3,/to .1227 is represented by the loop crossing the origin.

5.3. Periodic stretching of an elliptical vortex. In general, our perturbed system
will have the form

f Co cos q + eg(r, q, t),

2tOoer e2 + 1
(o

(er + 1)2 Co e2----_1 sin o + eg(r, q, t).

Here g and g are periodic in time, Co (3,o + Y).
For 0<Co/tOo<0.15, the unperturbed system has a hyperbolic fixed point

Po at q r/2, r=ro where ro corresponds to the largest real root of the cubic
e3r+e2r(1-B)+er(l+B)+l=O where B (1/2Cotoo) -1. This fixed point has a homo-
clinic saddle connection Fo as depicted in Fig. 5.2. If we consider a perturbation
involving a periodic stretching by an amount ey"(t), then our perturbation has the form

g- Cl(t) cos

2C2( t)e e2r+l
g2

(e + 1)------Cl(t) e2r_ 1
sin

Here C1 and C2 are periodic in time with period T. We consider the symmetric case
where the oscillation of y" puts equal and opposite oscillations on y’ and y while
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maintaining the incompressibility condition 3"- 3’ + 3"" 0. Thus, 3’ + 3" stays constant
even though 3’- 3" oscillates with 3’". This implies Cl(t)= 0 so that our perturbation
has the simpler form

2C2(t)e
gl =0, g2

(e + 1)2.

If we parameterize Fo by (r(t), (t)), the Melnikov function for the perturbed system
can be calculated using the non-Hamiltonian form. There are two ways of doing the
Melnikov function calculation. We can view Fo as a trajectory in the (r, ) coordinate
system, which has the advantage of a simpler formulation. Since these coordinates
break up at r 0, we cannot treat the case where Fo contains the point r 0. This
occurs only at the value 3,/to .1227. For any other value of ),/to, we can find a C
vector field (fl (r, ), f2(r, )) so that

f=fl(r, tp), b =f2(r, )
is a planar differentiable dynamical system in the coordinates (r, ) with a saddle
connection identical to Fo in its real time parameterization. We have f Co cos ,
f2 2tooe/(e + 1)2 Co sin (e2 + 1)/(e2r 1) in a neighborhood of the curve Fo. This
new dynamical system is suitable for Melnikov’s method and in a neighborhood of Fo
has dynamics identical to that of the original system.

Alternatively, we can treat the evolution equation as a dynamical system in the
(x, y) coordinates. This allows us to show that chaos will also occur in the degenerate
case of T/to .1227. Both calculations are presented.

The Melnikov function in (r, ) coordinates. For this we need to know
exp ( tr Df(Fo(s)) ds). We have

e2r + 1 -f(e2r + 1
tr Df -Co e2r--’_ COS q9

e2r- 1

This gives us

exp tr Df(ro(s)) ds
er(t(e"- e-r)

e2r(t)- 1

This yields a Melnikov function

f

_
e2r cos q9

M(to) C3 (e A- 1)2(e2r- 1)
C2( + to) dt,

C3 Co( ero- e-o).

Using the fact that the integral represents a convolution with an odd function, for
C2 cos kt, we have

f

_
e2r COS q9

M(to) C3 sin kto (e A- 1)2(e2r 1)
sin kt dt

sin ktoMo(k).
Since cos p c t:(t), we can see that the above integral is the sine transform of an L
function.

e2r cos q9

(er+l)2(e2r--1)
dt=2 fo e2r cos

(er+l)2(e2r--1)
dt

C3 f r(c3) e2r
Co dr(O) er A" 1)2(e2r- 1)

dr< o.
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We know by the properties of the Fourier transform on LI(R) ([13, pp. 120-131]) that
M0(k) is a uniformly continuous function of k that is not identically zero. Thus there
exists some interval kl =< k =< k2 such that Mo(k) is nonzero. For these values of k,
M(to) has simple zeros.

The Melnikovfunction in (x, y) coordinates. We now consider the dynamical system

2wr sin qer
=(y+y’)cos2q-

(er+l)2

e2r + 1
+ (y + y’) r sin2 , r 0,

e2r- 1

(3’ + Y’) cos sin q +
2wr cos qge e2r + 1

(er+ 1)2
(y + y’) .e2.r_ 1

r sin q cos q, r0,

i=y+y’, p=0,

for r=0. Here r=x/x2+y2, =tan-(y/x). We have the time-periodic perturbation

eC2( t)rer (-sin qIif(t, x, y):i cos q/"

The following analysis is for the case y+ y’=.1227; the nondegenerate case can be
studied in a similar fashion. We have

re )f^g=(y+y’)coscpC2(to) (e;])2
1

tr Df= (3, + Y’) cos
e2r d- 1)e2r 1

r 0,

=0, r=0,

eJ tr Dfds 2 r(t) e r(

e2r(t)- 1

For C2(t) cos kt, our Melnikov function is

M( to) fo sin kto( t) sin kt
r2e2r

(e2-l)(er+l)2dt

sin ktoMo(k).

Again we see that Mo(k) is a sine transform of an L function"

i.(t)r2e2r

(e2- 1)(e+ 1)2
r(oo) r2e2r

dt=
r(o) (e2- 1)(e + 1)2

dr

(oo) r2 e2r
(e2r- 1)(e + 1)2

dr

This is because r2e2r/(e2r--1)(er+ 1)2 is bounded on the interval (0, r(c)]. We see
that Mo(k) is again the sine transform of an odd L function so that there exists an
interval kl <-- k <_- k2 so that Mo(k) is nonzero, giving us a Melnikov function with simple
zeros.
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Under such a periodic stretching, we find chaotic dynamics occurring in the phase
portrait of the evolution equations for the ellipse. This indicates a sort of randomness
in the evolution of the vortex. The phase portrait includes a horseshoe as a subsystem
that, as we know from 2, indicates somewhat erratic behavior on an invariant set.
Assuming the inability to make completely precise measurements, we can only predict
what will happen to the vortex for a finite time; after this time we have no knowledge
of how it will evolve.

Appendix A. We present the details of the calculation of the following integral
from 3 via residues"

f -o e/t e-/t
Mo(K)

(eV, + + e_Vt)2 sin kt tit,

which by a change of variables z yt becomes

y (e --)2 sin mz dr,

where m k y. Consider the meromorphic function

e3z eZ)e imz

(e2Z-e+l)2"
The denominator has roots

which we can write as

-e

since we know that 0</3 <2. Here, a =cos-1 (fl/2), which gives us 0< a < r/2. Thus,
the function

(e3Z_eZ)e,.,
(eZ_e")2(eZ_e-i,)2

has double poles at z +ia +2,a’iN, N 7/. Let r= z-(ia +2,n’iN). The integral is
clearly odd in m. Thus we need only consider the case rn > 0. We have that

1 f e3r- e
Im J ei, dr

y (e2+fle+l)2

lira Im
I [(2N+l) e3 e

r-oo Y a-(2N+l), (e2 + fie + 1)2
ei’" d’r

[ ( e3z-ez )lim Im
1 1

Res imz- 3, 27ri 0<y<(2N+l)’n" (e2 + fie + 1)2
e

e3’ e im,r

zl=(2N+l)r,y>O (e2r-l-/3e + 1)2
e dr

The last integral goes to zero as N--> oo so that for m > 0, we wish to calculate

[2,rri (e3::-e )]Im Res
(e2 )2

eim
3’ y>o + fie + 1
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Thus we need to calculate the residues of the function in the upper half-plane. We
can calculate the coefficients of the Laurent expansion of the function by first consider-
ing the expansion of its components in the neighborhood of ia +27tiN. Writing
r z (ia + 27riN), we have

e3z eTM 1 + 3r +- +..

eZ= ei (l + r+l- r2+ ")2

r2 +eZ e - 1 + imr
2

(e ei)2= e2i(r + r +...),

(e-e-")2= -4 sin2 a +4i sin aesir+ ..
We write the function in the form

r c + dr +
which has the Laurent expansion

-r + r- +...,
C

so that the residue at r 0 is b/c da/c. Here

a (eTM ei)e--,
b e--[im(e3i ei) +3e3i

c ei(-4 sin ),

d e (4ie sin 4 sin ).

Let R denote the residue at the point x. Then,
--2mN

ei+2iN
2 sin

R-2NmNotice that R+- A similar calculation shows that
-2mN

R_i+2iN
2 sin a

We add the residues in the upper half plane to obtain M(m) for m > 0, and exploit
the fact that M(m) is odd in m to obtain M(m) for m <0. Thus for m 0, our
integral becomes

M(m)=--2[me-’l msinhlm e-11 ]2 sin sin 1- e-11

elegets. I would like to credit Prof. Andrew Majda of Princeton
University for originally suggesting the idea of extending the Melnikov theory to study
the onset of chaos in fluid flows with heteroclinic orbits. I would also like to thank
him for the guidance he has given me on my A.B. thesis, from which this paper stems.
I would like to thank AT&T Bell Laboratories at Murray Hill, New Jersey, where I
spent the summers of 1987 and 1988, for supplying me with the diagrams.
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BIFURCATIONS OF RELATIVE EQUILIBRIA IN THE N-BODY
AND KIRCHHOFF PROBLEMS*

KENNETH R. MEYER" AND DIETER S. SCHMIDT

Abstract. The bifurcations of a one-parameter family of relative equilibria in the N-body problem are
studied using normal form theory, Lie transforms, and an algebraic processor. The one-parameter family
consists of N-1 bodies of mass at the vertices of a regular polygon and one body of mass m at the
centroid. As N increases there are more and more values of the mass parameter m where the relative
equilibrium is degenerate. For N =< 13 each of these degenerates gives rise to a bifurcation and a new relative
equilibrium. This is established using a computer-aided proof. A similar analysis is carried out for the
N-vortex problem of Kirchhoff.

Key words, central configurations, relative equilibria, N-body, bifurcation
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1. Introduction. The study of relative equilibria (r.e.) of the N-body problem has
had a long history starting with the famous collinear configuration of the 3-body
problem found by Euler (1767). Over the intervening years many different technologies
have been applied to the study of r.e. In the older papers of Euler (1767), Lagrange
(1772), Hoppe (1879), Lehmann-Filhes (1891), and Moulton (1910), special co-
ordinates, symmetries, and analytic techniques were used. In their investigations,
Dziobek (1900) used the theory of determinants; Smale (1970) used Morse theory;
Palmore (1975) used homology theory; Simo (1977) used a computer; and Moeckel
(1985) used real algebraic geometry. Thus, the study of r.e. has been a testing ground
for many different methodologies of mathematics.

In Meyer and Schmidt (1987) the methods of bifurcation analysis and the use of
the automated algebraic processor were brought to bear on this subject and the present
paper continues the attack. Specifically we study the bifurcations of the relative
equilibrium which consists of N-1 particles of mass 1 at the vertices of a regular
polygon and one particle of mass m at the centroid. We call this the regular polygon
relative equilibrium (r.p.r.e.). Our first paper considers the 4- and 5-body problems
and uses the special coordinates of Dziobek (1900). These coordinates make the 4-body
problem relatively easy to handle and the 5-body problem accessible, but beyond 5,
Dziobek’s coordinates become very cumbersome. The 4- and 5-body problems in these
special coordinates are sufficiently simple that the general purpose algebraic processor
MACSYMA could handle the tedious calculations. For larger N the special purpose
algebraic processor POLYPAK written by the second author was needed because the
computations increased rapidly with N. In the analysis of the 4- and 5-body problems
the classical power series methods of bifurcation analysis handles the problems nicely,
but for larger n a systematic use of Lie transforms by Deprit (1969) was mandated in
order to bring the equations into a normal form. Thus this paper uses substantially
different techniques than our previous paper.
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This research was supported by a grant from the Applied and Computational Mathematics Program of the
Defense Advanced Research Projects Agency.

f Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025.
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1295



1296 K.R. MEYER AND D. S. SCHMIDT

The problem of finding an r.e. can be reduced to finding a critical point of the
potential energy function on the manifold of constant moment of inertia. Thus the
problem falls within the domain of catastrophe theory and so the general theory is
well understood. However, this specific problem has a high degree of symmetry, many
variables, and a constraint, so the computations must be performed with care. We
consider this paper as a case study in bifurcation analysis in the face of these com-
plexities.

Indeed we analyze the problem at three different computational levels. First, for
small N, we perform the normalization to high order to determine the existence,
uniqueness, and exact shape of the bifurcating equilibria. For medium ranges of N
we exploit the symmetry so that fewer computations need be carried out in order to
establish existence, but now the uniqueness is only within the class of symmetric
equilibria. Last, for large N, we carry out some calculations to establish existence of
bifurcations with no uniqueness information. We can see that for a fixed amount of
computing power the precision of the information obtained decreases as N increases.

For the planar problem that we consider, a relative equilibrium is also a central
configuration and vice versa, that is, a homothetic solution which begins or ends in
total collapse or tends to infinity. Even though as solutions of the N-body problem
r.e. are quite rare and rather special, they are of central importance in the analysis of
the asymptotic behavior of the universe. In general, solutions which expand beyond
bounds or collapse in a collision do so asymptotically to a central configuration.
A survey and entrance to this literature can be found in Saari (1980).

Interestingly this problem in celestial mechanics is formally similar to the problem
in fluid dynamics of describing the evolution of finitely many interacting point vortices
in the plane. Kirchhoff (1897) shows that this problem is specified by a Hamiltonian
which is similar to the Hamiltonian of an N-body problem with a logarithmic potential.
The constants that correspond to the masses are now the circulations, which may be
positive or negative, and so a richer store of bifurcations are to be expected. We develop
the theory and evolution of the bifurcations of the problem in parallel-with that of the
N-body problem.

In Meyer and Schmidt (1987) we studied the 4- and 5-body problem and found
that there was a unique value of the mass of the central particle where the potential
was degenerate. This agrees with the findings in Palmore (1973). However, for larger
N there are more and more values of this mass at which the potential is degenerate,
which disagrees with Palmore (1976). In fact, for large N many bifurcations occur.
We developed the general theory of the bifurcations for these two problems for all N
and completely analyze the bifurcations for 4 N <_-13. Figures 1 and 2 illustrate the
bifurcations which occur at the unique critical mass when N -4, 5 and Fig. 3 illustrates
the multitude of bifurcations that occurs in the 13-body problem.

Also we found that the self-potential for the N-body problem with the central
mass removed was not always a nondegenerate minimum. In fact itis a saddle for
N> 6. This disagrees with one of the findings in Palmore (1975). There were other
surprises in our investigations, which will be explained below when we have developed
the necessary definitions and notation.

2. Relative equilibria for the N-body and Kirchhoff problems. The N-body problem
is the system of differential equations that describes the motion of N particles moving
under the influence of their mutual gravitational attraction. Let qj R2 be the position
vector, pj R2 the momentum vector, and mj > 0 the mass of the jth particle, 1 -<_j -<_ N;
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then the equations of motion are

OH

(2.1) j=l,...,N
OH OU

where H is the Hamiltonian

(2.2) H =j, U(q)
2mj

and U is the (self) potential

(2.3) U mirnj

1--<i <j--< N q, q I1"
These equations reduce to the Newtonian formulation

OU
(2.4) tntj- j 1,..., N.

To change to rotating coordinates let q exp (vJt)uj where v > 0 is the frequency
of the rotating frame and

(0
so (2.4) becomes

(2.5) rnj{fij + 2vJfi v2u} OU( u), j=l,-..,N.
Ou

An equilibrium in these rotating coordinates is a solution of the system of algebraic
equations

OU
(2.6) hrnu Ouj

j= 1 N

where A =/2
2 > 0.

The Kirchhott problem is the system of differential equations describing the motion
of N vortices moving in the plane under their mutual interaction. Let q be the position
vector and rn 0 the circulation of the jth vortex for j 1,. ., N. Then Kirchhott
(1897) gives the equations of motion as

OU(q)
(2.7) tntj J, j 1, , N
where now U is the Hamiltonian

(2.8) U X m,mj log q,- q II.
l<_i<j<_N
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Introducing rotating coordinates as before by setting qj =exp (vJt)uj transforms (7)
to the system

oU(u)
(2.9) m{fi + vJuj} J j 1,..., N.

An equilibrium in these rotating coordinates is a solution of the system of algebraic
equations

(2.10) -Amuj- j 1,..., N

where h v.
It is classical and easy to verify that if ti (til, , aN) and , is a solution of (6)

(or (10), respectively), then the center of mass of t7 is at the origin ( rnfi =0) and
h U()/(1 + 6)1(5) (>0 for (6)) where I is the moment of inertia

(2.11) I(u) =1/2X mjllujll =

and 6 =0 for the Kirchhoff problem or 6 1 for the N-body problem. For either
problem we will set

(2.12)

M {u R2N" Z mju 0},
A {u R2" u u for some j),

S={um’I(u)=l}.

The variable A can be considered a Lagrange multiplier and so an equivalent
definition of a relative equilibrium is a critical point of U restricted to S\A. If u is an
r.e. then so is Au (Aul,..., AuN) where A SO(2, R) is a rotation matrix. We can
define an equivalence relation by u Au when A SO(2, R), and since U, /, are
constant on equivalence classes we can define the quotient spaces 5 (S\A)/--- and
the function 0-//: 5--> R by ([u]) U(u), where denotes an equivalence class. 5
and o//are smooth. Thus a similarity class of r.e. is a critical point of .

A relative equilibrium is called nondegenerate if its equivalence class is a nondegen-
erate critical point of a//in the sense of Morse theory, i.e., the Hessian is nonsingular
at the critical point. It follows from the implicit function theorem that bifurcations
can occur only at degenerate critical points, so first we must find degenerate r.e,

3. Palmore coordinates. Our first step is to introduce the local coordinate system
on the quotient space 5 which was given in Palmore (1976). Let n N-1 and
to exp (i27r/n) be a primitive nth root of unity. Consider complex numbers as vectors
in the plane, so toJ, 0 =<j < n are the vertices of a regular polygon with n sides. By the
regular polygon relative equilibrium (r.p.r.e.) we shall mean the r.e. which consists of
n particles of unit mass, mj 1, situated at to for j 0, , n 1, and one particle of
arbitrary mass, mn m, situated at the origin.

Let q (qo, ql,"" ", qn)7 be the position vector of the N n + 1 particles in the
plane, 1 (too 2 n--1 T

to to ,. ., to ,0) be the position vector of the r.p.r.e., and change
coordinates by

(3.1) q
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where z-(Zo, Zl,’’ ", zn) is the position vector in the new Palmore coordinates and
V is the matrix

1 1 1 1 1
2 n--1o w w 1

2 4 to2(n--1)
(3.2) V

to to 1

to
n--1

to
2(n-- 1)

to
(n-- 1)2 1

0 0 0 -n/m

In these coordinates the center of mass is

(3.3) mjqj- nzo
j=0

so setting Zo 0 fixes the center of mass at the origin. The moment of inertia is

ln m
I =-2 --o IlqJll=+ IIq I1=

(3.4)
+ + + +-I1  112 j= m

so that the first approximation, the manifold I Io n/2, is given by z + 1 2 Re z 0.
Requiring z to be real, Im z =0, we select a representative from the rotational
equivalence class. Thus to the first approximation local coordinates on 5e near [12] are

Zo z 0 and z2, z3, , z, arbitrary.
Henceforth, set Zo=0 and Im z =0 and let Re z x. From (3.4) we see that

OI/Ox(f) 1 s 0, so by the implicit function theorem we can solve I Io for x, as a
function of the remaining variables. Let x b(z, z3, , z,) be this solution. Chang-
ing variables by x’1-- Xl- ((Z2, ", Zn) Zt2-" Z2, ", z,, z,, brings the manifold I Io
to the hyperplane x =0 locally. Thus z,..., z, are valid local coordinates on ow
near [f].

Computationally we effect this change of variables by using the method of Lie
transforms as given by Deprit (1969). We construct the change of variables from the
unprimed to the primed variables order by order using the standard normalization
procedure. That is, we eliminate the xa dependence in I order by order. Henceforth,
we will assume that this initial normalization has been carried out, we will ignore Zo
and z, and we will drop the primes on the variables.

The next step is to look at the Hessian of the function at [f]. We can consider
(1) as a change to the (z, ) coordinates or follow Palmore and use the real and
imaginary parts of z. We choose the latter for exposition purposes.

Let zj x + iy, (x2,... xn) T ’l (Y2, Y,) , U (X, , y,) r, and a
02/ouZ[fl]. Palmore (1976) shows that the Hessian, A, has the relatively simple form

(3.5) A (B + B-cO)
where B and C are (n- 1)x (n- 1) matrices, B is a standard diagonal matrix, and C
has nonzero entries only on the cross diagonal running northeast. These nonzero entries
are given in Appendix A for reference. In Appendix A we give the general formulas
for all potentials which vary inversely with the distance of the 6 power, so the N-body
problem is when 6 1, and the Kirchhoff problem is the limiting case when 6 0.
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Let D(n, k) (respectively, D-(n, k)), 2<-k<=n/2 be the 2x2 submatrix of B+C
(respectively, B-C) formed by taking the (k,k), (k,n+2-k), (n+2-k,k), and
(n + 2-k, n + 2-k) entries. In the case that n is even the two diagonals B and C cross
in a single entry at the (n/2+l,n/2+l) position; let D(n,n/2+l) (respectively,
D-(n, n/2+ 1)) be the corresponding 1 x 1 matrix or number. This is a special case,
which requires special treatment, and we will typically discuss this case last.

The r.p.r.e, is degenerate when A is singular, which happens when one of the
submatrices D(n, k) is singular. Except for the last row of B + C all the nonzero entries
of B + C are linear in rn and in fact the determinants of the D(n, k), 2 < k -< n/2 + 1,
are linear in rn also. Referring to Appendix A shows that the last row is slightly more
complicated, the determinant D(n, 2) has an extraneous factor of (m + n) and another
linear factor in m. Thus, there is a unique rn m(n, k), which makes the submatrices
D(n, k) and D-(n, k) singular. In the special case when n is even and k n/2 + 1 the
1 x 1 matrix or number D-(n, k) does not contain m, and so when rn m(n, k) we
have D(n, k)=0 but D-(n, k) O. In this special case the dimension of the kernel of
A is one. Let d(n, k) =det D(n, k) for rn =0, 2 < k <- n/2+ 1. Appendix A also contains
the general formulas for m(n, k) and Appendix B contains a table of m(n, k) and
d(n, k) for all 3 =< n-_< 12 for both the N-body problem and the Kirchhoff problem.
Recall that d (n, 2) is not defined. The tables in Appendix B are easily generated from
the formulas in Appendix A.

Palmore (1973) considered this one-parameter family of r.e. for the N=n-1
body problem for n 3, 4 and showed that there was a unique positive value of the
mass that makes this r.e. degenerate. In Meyer and Schmidt (1987), we verify this fact
and show that additional families of r.e. bifurcate from the original family. Palmore
(1976) makes a similar statement about the existence of a unique positive critical mass
for all n. From the table in Appendix B, we see that m(6, 2) 20.91 and m(6, 4) ---.00598,
and so this is not the case for n 6. We computed this table all the way up to n 20
and found that as n increases, more and more positive critical masses appear. Moreover,
the critical mass of Palmore is m(n, 2) in our notation, and it becomes negative at
n 7 and remains negative up to n 20. Later we will show that these positive critical
masses give rise to new families of r.e. which bifurcate from the r.p.r.e.

Palmore (1982) also states that there is a unique positive circulation which makes
the Kirchhoff potential degenerate for all n _-> 3. Appendix B shows that the uniqueness
is false for 8 -< n-< 12 and we extended the table to n 20 to find more and more
positive critical circulations as n increases. For the Kirchhoff problem the exact formula
for the critical circulation m(n, k) takes on a simple form as shown in Appendix A.
From this we see that m(7, 4)= 0, so one critical circulation is zero. Negative values
of the circulation are meaningful and so we investigate these bifurcations in the next
section also.

There are several other errors in Palmore (1976), (1982). He also states that the
r.e. when m 0 is a nondegenerate maximum of the potential for both problems and
for all n. Since we work with the self-potential or the negative of the potential, this
would mean that the matrices obtain by deleting the first and last rows and columns
of B + C are positive definite and in particular the d(n, k) > 0 for 2 < k<= n/2 + 1. This
is false when 6<= n <-12, which can be seen easily by looking at determinants d(n, k)
given in Appendix Bin particular d(6, 4)--0.036< 0. Again we extended this all
the way to n 20. We give a simple analytic argument in Appendix D which shows
that the potential does not have a minimum at this r.e. when n 6. As noted above
the Kirchhott problem is degenerate when n 7 since m(7, 4)=-0. The source of all
these errors seems to be in the analysis of the 2 x 2 submatrices D(n, k).
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4. The splitting lemma, reflections, and Hopf’s method. There is a simple argument
due to Hopf (1942) that establishes a bifurcation without a knowledge of higher-order
terms. The analysis ofthe Hessian given in the previous section along with the symmetry
of the potential function is enough to adapt Hopf’s argument to the present situation.
We present this argument before the discussion of the full normalization to emphasize
how little computation is necessary to establish some information about the nature of
the bifurcation.

Fix n and k, let tx -m- re(n, k) and h- 2n-2. The special case when n is even
and k- n/2 + 1 will be treated at the end, so for now assume we are not in this case.
By the analysis of the previous section and the splitting lemma as found in Poston
and Stewart (1978) there is a coordinate system r/ near [] so that

(4.1) //= +r/32+ r/24+... :k r/+ G(r/1 T2, U. ).

In catastrophe theory the Lyapunov-Schmidt method is called the splitting lemma. In
the next section we discuss in detail how the quadratic terms are brought into the
above form and how the function G is computed order by order using Deprit’s method
of Lie transforms and the second author’s algebraic processor POLYPAK.

From the form of the Hessian A in (3.5) and the fact that the submatrices D(n, k)
and D-(n, k) have the same determinant which is linear in the mass m, we see that
the quadratic terms of G have the form a/x(r/21 + ,/22)/2 where a is a nonzero constant.

Also o//is invariant under a reflection which leaves the regular polygon relative
equilibrium fixed. In the original coordinates the reflection is

(4.2) r qj’-’) n-j, O<--J < n, q,, l,,.

At one of the critical masses a perturbation in the direction of the kernel of the Hessian
is of the form

(4.3)
qJ wj + wjkzk + wjlzl’ k + n + 2,

qj w + ooJkz, k n/2 + 1.

In the first case the Zk and Zl are not independent but are linearly related (essentially
conjugates), so one can be used as a coordinate of the perturbation. In the second
case the z is arbitrary. Thus we can use Zk or z as a coordinate in the kernel of the
Hessian. The action of on this subspace is

r o)J + toJkzk .3t_ tDJlzI _. o)j "4t- wJkk 4;- o)Jll, k 1,
(4.4)

OO + o)Jkz - O) -1 o)’Jk k n/2 + 1.

Thus in coordinates ’Zk k or ’z 5, so is a reflection on this subspace also.
Therefore, we can choose the coordinates r/ and r/ so that

(4.5) G( r/l, r/2,/x) G(r/,, -r/:,/x).

This is essentially the same as Lyapunov-Schmidt reduction in the presence ofsymmetry
discussed in Proposition 3.3 of Golubitsky and Schaeffer (1985).

Thus, if OG/Orl(/1,0, 0) 0, then r/= (, 0, , 0) is a critical point of 0//. Since
OG/Ortl(O, O,/x) O, r/ is a factor of OG/Orl(rt, O, Ix), and so we must solve

OG
(*/l, 0, p,)= txarll + nlg(nl, I)

(4.6)
r/,(a/x + g(r/1,/z))
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or

(4.7) a/.t + g(nl,/x) 0

where g(0,/z)=0. Since a #0, the implicit function theorem gives a solution of (3)
of the form ft o(r/1) and so r/= (r/, 0, , 0) is a critical point of 0//when
So we have shown that locally the critical point set of 0// in Rh R consists of two
intersecting curves namely (r/, )= (0, ft) and (r/,/z) ((r/l, 0,..., 0), o(r/1)). These
solutions are symmetric with respect to the reflection and are unique in this class.
Of course there may be more nonsymmetric solutions.

Hopf’s argument just given depends only on the analysis of the Hessian and the
symmetry of the system and so is quite easy to apply. The values of m(n, k) and the
corresponding a’s are easy to compute from the formulas in Appendix A for both the
N-body problem and the Kirchhoff problem. Appendix B contains a table of m(n, k)
and Appendix C a table of a for 3-< n =< 12. Since the computed values of the a’s are
nonzero the above result holds in all these cases.

However, this result is rather weak. First of all G could be identically equal to
zero, in which case the function o(r/1) would be identically zero also. Most people
would not call this a bifurcation. The result does not tell how many r.e. are found
since the method only looks for symmetric solutions. To overcome the first weakness
only a little more computation needs to be carried out.

The full normalization of 0// was carried out by the method of Lie transforms
using the second author’s algebraic processor POLYPAK in almost all cases. The size
of the problem grows rapidly with n since (1) the number of variables increases, (2)
the number of critical masses increases, and (3) the order to which we must carry out
the normalization increases. The first two cause linear growth in complexity whereas
the third causes exponential growth in complexity. The full normalization is discussed
in the next section.

If we are content to seek only solutions that are symmetric with respect to the
x-axis we need only compute the first nonzero term in G(r/1,0, 0) to determine the
general nature of the bifurcation. Thus the quest for symmetric solutions grows like a
polynomial in n in the generic case.

Using the previous notation as found in (6) assume that

(4.8) g( 11 0) --j’l -{-

where/3 0. Then the solution/z o(r/1) is a solution of

(4.9) a/x g(r/1,/z) a/a, -/3r/’ + 0,

(4.10) ft i)( T --+. ..
Now we can decide how many symmetric relative equilibria bifurcate from the

regular polygon relative equilibria as/x varies, since we can solve (4.6) for r/1 to find

(4.11) nl= /ala,13 +
Here we use the standard convention about the pth roots. In particular, if p is even,
there are two r.e. that bifurcate from the r.p.r.e, for/z > 0 when a/3 > 0 or for/z < 0
when a/3 < 0. If p is odd one r.e. bifurcates from the r.p.r.e, for/z < 0 and one for/z > 0.

In the special case when n is even and k n/2 + 1 the kernel of A has dimension
1 and so the splitting lemma says there are coordinates such that

(4.12) t=+n+/-n +. "+n+G(nl,).
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In the previous case we used the symmetry to reduce the problem to that of solving
(4.6). In this case we need only look at OG/Oql(71,/) -0 and proceed exactly as above.

Generically we would expect p- 1 unless the problem had a further symmetry in
which case we would expect p 2. We explain this difference in the next section. Thus
in the generic case we do not have to compute the function G to high order. Appendix
C contains a table of a, fl, and p for both the N-body and the Kirchhoff problems
for 3 _-< n - 12, 2 <- k <- n/2 + 1. Note that several entries are missing from the table for
the N-body problem since these correspond to negative mass. The N-body problem
behaves in a generic manner with p being I or 2, but the Kirchhoff problem is somewhat
unpredictable. Note in Appendix C, when n- 11, k =6 that p-2 for the N-body
problem whereas p -4 for the Kirchhoff problem. The Kirchhoff problem is even more
degenerate when n 4, k 3. In this case p 1 and with it g(’/l, U, 8U,( ’/1 -}- ’/31 "’" ")"
All the terms have a factor/. and therefore the r.e. exists for/x -0 with "F]l arbitrary.
We will come back to this case in the next section.

FIG. l(a). n=3, k=2. FIG. l(b). n=3, k=2.

Figure 1 shows the r.e. which bifurcate from the equilateral triangle family. This
is the case when n 3, k 2, and p 1, so the two isosceles triangle r.e. exist on either
side of the critical mass m(3, 2)--0.77 for the 4-body problem or m(3, 2)- 1 for the
Kirchhoff problem. The acute triangle exists for m <m(3,2) and the obtuse for
m > m(3, 2). Figure 2 shows the r.e. which bifurcate from the square family when
n 4, k 3, and p 2. Only the kite r.e. shown in Figure 2(a) is symmetric with respect
to the x-axis and is established by the above argument. It exists for m > m(4, 3). Figure
3 shows all the r.e. that bifurcate from the duodecigon family when n- 12 and for
various k and p. Only those shown in Figs. 3(a), 3(c), 3(e), 3(g), 3(i), 3(k) (every other
one) are symmetric with respect to the x-axis or with respect to . Figure 3 shows the
special case when n is even and k-n/2+ 1. These are the ones established by this
argument. Note that all of the r.e. in Fig. 3 have an axis of symmetry even though in
some cases it is difficult to see at first glance. We will discuss these figures more in the
next section.

5. Symmetries and higher-order normalization. In the special case when n is even
and k n/2+ 1 the Hessian A does not have a two-dimensional kernel, and so the
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FIG. 2(a). n 4, k 2. FIG. 2(b). n 4, k 2.

FIG. 2(c). n =4, k 3.

discussion of the previous section is complete for this case. Thus we will assume that
k n/2 + 1 throughout this section.

Let (l,. , h) 7" (X2,. ", X,, Y2," ", Yn) r, where h 2n 2, are the Pal-
more coordinates discussed in 2. As before fix n and k and let lz m-m(n, k).
Obviously is invariant under the symmetries of the regular polygon with n sides;
that is, there is a subgroup D, of the orthogonal group O(h, R) which is isomorphic
to the dihedral group such that

(5.1) (D,/z) //(,/x)

for all D D, and all small and .
When /x =0, the Hessian A of at =0 has a two-dimensional kernel and

therefore there is an orthogonal matrix O, such that 07"AO=diag(O, 0, A3,’-" ,Ah)
where /iO for 3<=i<-_h. Let 02=diag(1,1,1/x/,...,1/) so B=OT"AO
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FIG. 3(a). n 12, k 2. FIG. 3(b). n 12, k 2.

FIG. 3(c). n 12, k 3. FIG. 3(d). n 12, k 3.

FIG. 3(e). n 12, k =4. FIG. 3(f). n 12, k =4.
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FIG. 3(h). n--- 12, k 5.

FIG. 3(i). n 12, k 6. FIG. 3(j). n 12, k 6.

FIG. 3(k). n 12, k 7.
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diag (0, 0, + 1,. ., + 1) where O O102. If we change coordinates by : Osr then the
Hessian of 9/in these coordinates is B or the quadratic part of 9/is as in (4.1). Usually,
we use the same symbol for a function in different coordinates, but for the moment
let 9/’(sr,/x) 9/(O’,/z) so

(D, )= (, ),

(5.2) 00-1DOff, 0, ),

’(O-1DOLg)=’(L),

or

(5.3) ’(O’L #) ’(ff, #)

where D’ O-O. From (5.3) D’ leaves the Hessian of ’ invariant and so
D’rBD’= B. This and the special form of O implies D’ is of the form

where is a 2 x 2 ohogonal matrix and F is some nonsingular (h 2) x (h 2) matrix.
The set of such ’s form a subgroup of 0(2, R) which is clearly isomorphic to the
subgroup of obtained by letting F be the identity matrix in (5.4). Since is
isomorphic to a subgroup of a dihedral group and as we saw in the last section contains
a reflection, it must be isomorphic to a dihedral group whose order divides 2n. The
order of this group depends on n and k, and the precise dependence will be given at
the end of this section along with the discussion of the specific findings.

Let e be a formal parameter and consider

(5.5 .(, ,= 2 (,.
i=0

where .(, , 1) (, ) and is a homogeneous polynomial in of degree + 2.
The method of Lie transform given by Deprit (1969) constructs a near identity change
of variables

=(n,, e)= n+"
where is the general solution of the differential equation

(5.

If the function W has the formal expansion

(s.7 (,., .(, .
then in the new coordinates

*(n, , .((n, , , ,
(5.a

2 (, ).
j=

The functions . and * are related by the double index array {}, which agrees
with the previous definitions when either or j is zero and are related by the recursive
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relation

(5.9) _, W/]u’i--1
k=0

where is the Lie derivative operator on functions given by

(5.10) [q/, W] =0q/W.

Let k be the space of homogeneous polynomials of degree k+2 in ’1,""", ’h
with coefficients which are smooth in/z. Let 3’{k be the subspace of k of homogeneous
polynomials in ’l and ’2 only and k ’3k-1 +’" "+ hk-1 SO that k-
Since o 1/2’rBsr the operator L" W--> 0-//, W] defines a self-map of k with kernel
ff{k and range k. By a standard argument in normal form theory, we can find a formal
series for W so that 07/, is in normal form, i.e., q/ok Kk for all k_-> 1. That is, the
higher-order terms in 0//, depend only on 71 and 72. This argument is found in Meyer
and Schmidt (1977), for example. This is the formal version of the splitting lemma.

Moreover, the normalizing generating function W satisfies Wk k SO that the
function W is zero on E {:" :3 :h 0}. Thus E is an invariant surface for (7)
or the change of variables (6) fixes E or .. {r/" */3 Th --0}. This means that
the new function 0//, is invariant under the linear action defined by the matrices of
the form (5.4) with F I, the identity matrix.

We see that the normal form for / is the same as given by the splitting lemma
in formula (4.1). Moreover, if the normalization is carried out as outlined above, the
higher-order terms (i.e., G in 4.1) are invariant under the standard action of on the
plane.

Let ’ have order 2d where d divides n. Appendix C has a table giving d for
various n and k. Consider the r/l, */2 plane as the complex plane by setting w
and let b exp (27ri/d) be a primitive dth root of unity. By the above, we are reduced
to studying the critical points of

(5.11) r(w, , )= G(, ,, )
where F is invariant under the action of * or

(5.12) r(6w, 6w, )= r(w, e, ), r(w, e, )= r(e, w, ).

The only terms in a Taylor expansion which satisfy the conditions in (5.12) are of
the form

(5.13) (w)’wd or (w)i2dj

where and j are integers. Thus a typical expansion of F would look like this"

(5.14) F(w, if, i)=pl(w)+p2(w)2+ .+(1/d)ql(wd + d)+"
The p’s and q’s are real functions of/. By the analysis of the Hessian given in 3,
Pl(/) a/., /... where a is a nonzero constant. Assume we are in the generic case so
that ql(0) # 0 and in addition p2(0) # 0 when d > 4 and p2(0) # ql(0) when d 4.

Case 1. d 3. Let ql(0)- b, so we must solve

atff + bw2 + O,
Ow

(5.15) al(W)+bw3+ O,

ala,r
2 + br exp i3 0) 4- 0
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where w r exp (i0). Thus, by the implicit function theorem F has critical points at
r q:a/b +... when exp(i30)= +/- 1. That is, three critical points move linearly away
from the origin (or the r.p.r.e.) as z varies from zero. This case occurs when n 3,
k 2 (Fig. l(a) shows a solution where exp (i30) +1 and Fig. l(b) where exp (i30)
-1. ); when n =9, k =4; n 12, k 5 (Fig. 3(g) shows a solution where exp (i30) +1
and Fig. 3(h) where exp (i30) =-1) for both problems, and when n---6, k=3 for the
Kirchhott problem. See Appendix C. In the notation of the previous section a a,
/3 b, and p 1.

Case 2. d -> 5. Let p2(0) b 0 and ql(0) c 0, so we must solve

OF
atz + b(w)2 +" + cwa- + O,

Ow
(5.16)

alr + br4 +. + crd exp (id0) + O.

By the implicit function theorem F has critical points at

(5.17) r=/-atz/b+" ", exp(idO)=+l.

That is, F has 2d nonzero critical points for/x > 0 and none for/x < 0 when ab < 0
and vice versa when ab > 0. These solutions fall into two families of d each depending
on the sign of exp (id0). The families move away from the origin like the square root
of z. For most n and k, we have d => 5 (see Appendix C). For n 12, Figs. 3(a), 3(i)
show the solutions where exp (i120) +1 and Figs. 3(b), 3(j) show the solutions where
exp (i120)=-1. In the notation of the previous section a a,/3 b, and p 2.

Case 3. d 4. Using the above notation, we must solve

(5.18) atzr
2 + b + c exp i40))r4 + 0

and so there are solutions of the form

(5.19) r=x/-atx/(b+c)+"’, exp (i40) +1.

If b + c are of one sign then there are eight solutions for/x on one side of zero as in
Case 2. This happens when n 12, k 4. Figure 3(e) shows a solution when exp (i40)
+1 and Fig. 3(f) shows a solution where exp (i40) =-1. If b+c have two signs then
there are four solutions when z is negative and when/x is positive as in Case 1. This
happens when n =4, k 2. Figure 2(a) shows a solution when exp (i40) +1 and Fig.
2(b) shows a solution when exp (i40)=-1.

To understand the relationship between n, k, and the order d of the rotational
subgroup which acts on the two-dimensional subspace, we proceed as we did in the
previous section when we discussed the reflection symmetry. 0//is invariant also under
a rotation 7 which leaves the regular polygon relative equilibrium fixed. In the original
coordinates the rotation is

(5.20) " qj wqj-1, O<-j < n, " q, q,.

This rotation with the reflection generates the symmetry group of which also
fixes the r.p.r.e, f. At one of the critical masses a perturbation in the direction of the
kernel of the Hessian is of the form

(5.21
q tOj + tOjkZk "[- tOilZ1, k + n + 2,

q to + tokz, k n/2 + 1.
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In the first case the Zk and Zl are not independent but are linearly related (essentially
conjugates), so one can be used as a coordinate of the perturbation. In the second
case the z is arbitrary. Thus we can use Zk or z as a coordinate in the kernel of the
Hessian. The action of on this subspace is

’. ot)J’Jt- o)Jkzk’Jt- ot)Jlzl" oJJ + ot)Jk(o) l-k)zk’- ot)Jl(fl)l-1)Zl, k l,
(5.22)

t o.) "Ji- (.oJkz 0 W + (.o
k oo k z, k n/2 + 1.

Thus in coordinates Y:Zk(wl-k)zk or 6:Z(wl-k)z, SO is a rotation on this
subspace also; but it does not necessarily generate the full symmetry group. The order
of the rotation group generated by 6 on this subspace is d where (k-1)d 0 mod n.
Appendix C lists n, k, and d for all cases 3 <= n <-12.

Consider Figs. 3(e) and 3(f) for example where n 12, k 4, and d 4. By rotating
these figures by /2r/12 for =0, 1,.-., 11 we obtain d =4 distinct r.e. which have
symmetry given by the dihedral group D3, because k-1 3. Contrast that with Figs.
3(a) and 3(b) where n 12, k 2, d 12. When we rotate these figures by /27r/12,

0,..., 11 we obtain d 12 distinct r.e., which have the symmetries of the dihedral
group D1 (generated by a single reflection), since k-1 1. The other figures follow
the same pattern.

Finally we will consider the degeneracy in the Kirchhott problem when n 4,
k 3. In this case the symmetry with respect to both axes is preserved. Since the
moment of inertia has to remain constant, r.e. can only be formed by a rhombus with
the fifth vortex at the center. The coordinates of the five vortices are

qo----q2 1 + Xo,

qa q3 i,/i 2Xo- x,
q4 =0.

Let m be the value of the vorticity at the origin, then the potential function (2.8) turns
out to be - log 2 -(1 + 2m){log (1 + Xo) +1/2 log (1 2Xo- xg)}.

For m -1/2 the potential function has extrema at Xo =0 and Xo =-1/2. For m =-1/2 the
potential function is independent of Xo and therefore any rhombus can serve as a r.e.
for the Kirchhott problem. See Fig. 2(c).

Appendix A. Entries in the Hessian.

b2 c

B b3 ""C=Cr

Oo C,

b, 2

bk=-(--Rk--ym), k=2,3," ..,n-l,

nm+n
b,, (-ym-6n-S),

2 m

n
Ck - Tk ym ), k 3, 4, , n-l,

Ck --(m + n)% k=2, n
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where 3’ 6 + 2 and

1 . 1
S=F r=l sin (Trr/n)’

nl sin (wrk/n)
Rk--2+l r=l sin (rr/n)

+s,

/ nl sin (rrk/n) sin (Trr(k-2)/n)
Tk--26+l r=l siny (’n’r/n)

m(n, 2)
Rk(6n + S)

y(2n-R2-S)’

T2- RkRtm(n,k)= k+l=n+2,
y(Rk + RI+ 2Tk)’ k#l,

Tk-- Rkm(n,k)=, 2k=n+2.
2’),

In the Kirchhoff problem,/ O, the formulas for m simplify to

m(n, 2)=1/4(n-1)2,

re(n, k) 1/4{(k- 2)(n k)- n + 1}, k=3,4,..., (n +2)/2.

Appendix B. Critical masses and subdeterminants.

Kirchhoff

n k m(n,k) d(n,k)

n + body problem

m(n,k) d(n,k)

3 2 1.000E + 00

4 2 2.250E + 00

4 3 5.000E 01 2.000E + 00

5 2 4.000E + 00
5 3 -5.000E- 01 1.200E +01

6 2 6.250E + O0
6 3 -5.000E-01 1.600E + 01
6 4 -2.500E-01 1.000E + 00

7 2 9.000E + O0
7 3 -5.000E-01 2.000E +01
7 4 0.0 0.0

8 2 1.225E+01
8 3 -5.000E 01 2.400E + 01
8 4 2.500E- 01 -1.500E +01
8 5 5.000E -01 -2.000E + 00

9 2 1.600E + 01
9 3 -5.000E- 01 2.800E +01
9 4 5.000E-01 -3.600E +01
9 5 1.000E +00 -8.000E +01

10 2 2.025E+01
10 3 -5.000E-01 3.200E +01
10 4 7.500E 01 -6.300E + 01
10 5 1.500E +00 1.440E +02
10 6 1.750E +00 -7.000E +00

11 2 2.500E+ 01

7.705E-01

2.380E + 00
-2.500E -01

6.478E+ 00
-2.442E 01

2.091E +01
-2.201E 01
5.983E-03

-6.433E+02
-1.814E-01
3.242E 01

-3.793E+01
1.306E- 01
6.980E-01
9.963E-01

-2.544E+ 01
-6.937E-02
1.119E+00
1.774E + 00

-2.172E+01
1.064E-03
1.581E+00
2.641E + 00
3.012E + 00

-2.027E+01

1.500E + 00

1.144E+01

1.577E+01
-3.590E-02

1.800E + 01
-4.342E+01

1.686E+01
-1.301E+02
-5.978E +00

1.116E+01
-2.725E+02
-5.133E + 02

-2.068E-01
-4.819E+02
1.002E + 03

-1.807E +01
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Appendix B. Critical masses and subdeterminants (cont.)

11

11
11
11

12
12
12
12
12
12

3 -5.000E- 01 3.600E + 01 7.969E- 02
4 1.000E+ 00 -9.600E+ 01 2.080E + 00
5 2.000E + 00 -2.240E+ 02 3.588E + 00
6 2.500E +00 -3.000E +02 4.391E +00

2 3.025E+ 01 1.974E + 01
3 -5.000E- 01 4.000E +01 1.657E-01
4 1.250E + 00 -1.350E + 02 2.611E + 00
5 2.500E + 00 -3.200E + 02 4.605E + 00
6 3.250E +00 -4.550E +02 5.894E +00
7 3.500E +00 1.400E +01 6.338E +00

-1.830E
-7.687E
-1.708E
-2.340E

-4.411E
-1.143E
-2.665E
-3.949E
-3.803E

+01
+02
+03
+03

+01
+03
+03
+03
+01

Appendix C. Coefficients.

Kirchhoff

k d p a

n + body problem

3

4
4

5
5

6
6
6

7
7
7

8
8
8
8

9
9
9
9

10
10
10
10
10

11
11
11
11
11

12
12
12
12
12
12

2 3 1.200E +00 1.717E +01

2 4 2 -7.843E-01 -4.919E+01
3 3 8.000E + 00 0

2 5 2 -5.769E- 01 5.858E +00
3 5 2 1.000E + 01 -7.500E + 00

2 6 2 -4.541E-01 5.456E +00
3 3 1.200E+01 -1.697E+01
4 4 2 1.200E +01 -4.500E +01

2 7 2 -3.733E-01 5.312E +00
3 7 2 1.400E+01 -2.100E+02
4 7 ? 1.400E +01 ??

2 8 2 -3.165E-01 5.298E+00
3 4 2 1.600E + 01 -3.840E + 02
4 8 2 1.600E + 01 9.000E + 01
5 4 2 1.600E + 01 -2.560E + 02

2 9 2 -2.744E- 01 5.360E +00
3 9 2 1.800E +01 -2.100E +02
4 3 1.800E +01 -5.728E +01
5 9 2 1.800E + 01 -2.550E + 02

2 10 2 -2.420E- 01 5.469E +00
3 5 2 2.000E +01 -2.400E +02
4 10 2 2.000E+01 -1.102E+03
5 10 2 2.000E +01 -4.800E +02
6 4 2 2.000E +01 -8.750E +02

2 11 2 -2.164E-01 5.609E+00
3 11 2 2.200E + 01 -2.772E+ 02
4 11 2 2.200E +01 -9.900E +02
5 11 4 2.200E+01 3.831E+04
6 11 2 2.200E+01 -7.425E+02

2 12 2 -1.956E-01 5.772E +00
3 6 2 2.400E+ 01 -3.200E + 02
4 4 2 2.400E+01 -1.836E+03
5 3 2.400E+01 -1.357E+02
6 12 2 2.400E + 01 1.925E + 03
7 4 2 2.400E+01 -2.304E+03

2

2
2
2
2

2
2
2
2

2
2

2
2

-1.921E +00

-9.756E-01

-3.773E-01

-7.906E -02

1.800E + 01

2.098E +01

2.393E+01
2.400E +01

2.688E+ 01
2.699E + 01

2.930E+01
2.982E+01
2.997E+01
3.000E +01

3.217E+01
3.276E+01
3.294E+ 01
3.299E+ 01

3.504E + 01
3.570E+01
3.591E+01
3.598E+01
3.600E +01

1.562E+01

-5.327E+01

1.132E+01

8.977E + 00

-7.850E+01

-1.169E+02

1.930E + 02
-5.497E+02

-6.443E+01
-6.070E+02

-2.550E +02
-1.325E+03
-1.685E+03
-2.253E +03

-3.099E + 02
-1.479E +03
-2.005E + 03
-2.312E+03

-3.739E+02
-2.628E+03
-1.759E+02
-6.147E+03
-6.947E + 03
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Appendix D. The potential of the hexagon configuration. Consider the one-
parameter perturbation of the hexagon configuration (with no particle at the centroid)
in the n-body problem given by

qo (1 + e)(2, 0),

q2: l + e)(-1, x/),

q4 (1 + e 1, -x/),

ql 4(1 2e e2)(1, v/),

q3 /(1 2e e2)(-2, 0),

q5 4(1 2e e2)(1, -x/).
This perturbation has been chosen to keep the moment of inertia, I, fixed. From the
symmetry,

6 3 3 3
U +--+--+

Ilqo-q, Ilqo-q211 IIq,-qll Ilqo-qll

x/ 2 +x/ 3{ le2 )=3{1-e2+...I+--{1-e+e +...} -{l+e+2e2+...}+ 1+ +’’’

+x/ -(7 4x/)e2 +

5.48 0.0269e2 __.
Thus U initially decreases along this family and so the hexagon configuration is not
a minimum of the (self-) potential.
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Abstract. A time-dependent family of harmonic problems with boundary condition h(oo/Ou) q, where
h is a function dependent on the history of 0, models an electropaint process. It is proven that the problem
has a weak solution {0(x, t),h(x, t)} and limt_,0(x, t) exists and coincides with the solution of an

appropriate Signorini problem.
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Introduction. In this paper we are interested in an electropaint process model,
which was introduced by Aitchison, Lacey, and Shillor [ALS] as an approximation of
the physical problem. Electropainting is a commonly used method for painting metal
surfaces" a workpiece is immersed in an electrolyte solution and a potential difference
is applied between the workpiece and the outside boundary of the bath. This induces
a deposition of ions on the surface of the metal, which is subsequently painted (for
more details, see [ALS]).

Let us describe the mathematical problem. We denote by F the surface of the
workpiece and by S the boundary of the bath: will be the region occupied by the
electrolyte solution. Then 012 S U F and f is a domain in N, N => 2. Let o be the
electric potential in f and h the thickness of the paint layer on F. The problem is to
find q (x, t), h (x, t) such that

(0.1) A0 =0 in f,

(0.2) =1 onS,

(0.3) h=o onF,
Ov

t>0,

t>0,

t>0,

(0.4)
oh

e ifxF, h(x, t)>0,
Ot Ov

(0.5)
Ot

e if x 6 F, h(x, t) O,

(0.6) h(x, 0) 0 on F,
where e >0 is the dissolution current constant; O/Ov denotes the inward normal
derivative. Let p be the solution of (0.1), (0.2), and

(0.7) q, 0 on r.
Obviously, if OO/Ov <-_ e on F, then (q,, 0) is a trivial solution of (0.1)-(0.6). In order
to exclude this case, we will always assume in the sequel that

(0.8) meas ({/eF: 04’ })-->e >0.
0v
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Under this assumption, Cattarelli and Friedman showed in [CF] that a smooth solution
of (0.1)-(0.6) satisfies

oh (a)
+

(0.9) 0- --v- e on F,

i.e., there is no paint dissolution in the process; moreover, they introduced a time-
discretized version of the above problem with (0.9) instead of (0.4), (0.5) and they
proved existence and uniqueness of the discretized solution and its convergence to the
steady state Signorini problem.

The study of the electropainting problem has been taken up by Marquez and
Shillor in [MS], where they introduced an overpotential r(x)_-> r. > 0 for the paint
thickness h. Namely they considered the following conditions:

Oh
e if x e F, h(x, t) > G(x),(0.10)

Ot Ov

e if x e F, h(x, t) or(x)
Ot

(0.12) h(x, 0) r(x) if x e F,

instead of (0.4)-(0.6).
Note that this is an approximation that regularizes the original problem because

it avoids degeneracy in the Neuman condition (0.3). Thus they are able to show that
a smooth solution of (0.1)-(0.3), (0.10)-(0.12) satisfies (0.9) and, moreover, that
Oh/Ot=O on F is impossible. The work of Marquez and Shillor also contains an
existence and uniqueness result for the smooth solution of (0.1)-(0.3), (0.9), (0.12).
Furthermore an L3(F) estimate of Oo/Ov is proved in [MS, Lemma 6.3] under the
following geometrical assumption: 11 is the difference between a convex set with
boundary F, and a subset of it with boundary S; thus F and S are inverted.

The novelty in this paper is the extension of this L3(1-’) estimate to f with a general
geometry; such a generalization is obtained via a harmonic supersolution technique.

Then, letting cr - 0, we are able to obtain a weak solution ofthe problem (0.1)-(0.3),
(0.9), (0.6) as a monotone limit of the solutions (o, h) given in [MS] for or(x) or> 0.
Furthermore, showing that in fact (o, h) is a solution of (0.1)-(0.3), (0.10)-(0.12),
we prove that the obtained weak solution satisfies (0.4), (0.5), i.e., it is a solution of
the electropainting problem. Finally, following the argument given in [CF], it can be
shown that the process converges asymptotically to a unique steady state.

1. An existence result. Let ’1 and -2 be connected bounded open sets in EN
(N =>2) with C 1’1 boundaries F and S, respectively. We assume that ll c f2 and set
fl := l)2\l)l. In the physical situation 121 is the workpiece and f12 is the bath.

We consider the following problem:

(Po) Given T> 0, find a couple {o, h}, q’12 [0, T]-E, h’Fx[0, T]-E satisfying

(1.1) A =0 in f, 0=< t_--< T,

(1.2) q=l onS, 0 -<t_-<T,

(1.3) h= onF, O<-t<=T,
Ov

(1.4) h e dr on F, Ot-T,
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where OolOu is the inward normal derivative of q on F and e > 0 is a given
real number.

First we define a weak solution of (Po).
DEFINITION 1.1. A weak solution of (Po) is a couple of functions {q, h} such that

(1.5) o L(0, T; H3/2()),
(1.6) h e L(Fx (0, T)), h, eL(O, T; L-(F)),
where h is the derivative of h with respect to t;

(1.7) p and h satisfy (1.1)-(1.4).

Note that the equalities (1.3), (1.4) make sense; indeed from (1.5) and (1.1) it follows
that O/Ov L(O, T; L2(F)) (cf., e.g., [LM, Chap. 2, Thm. 7.3]).

Our aim is to prove the existence of a weak solution of (Po). To this end, we recall
a result of Marquez and Shillor [MS] on the existence and uniqueness of a smooth
solution of the following problem:

(P) Find %, h) satisfying 1.1 )-( 1.3) and

Oo,_ e d" on F, 0 =< -< T,(1.8) h tr+
\ 0v

where r > 0 is a constant.

THEOREM 1.1. There exists one and only one solution %, h, of (Po) such that

(1.9) o, WI’(0, T; H3/2(1-))U C"(I)x [0, T]),

(1.10) V, C(x [0, T]),

(1.11) (%)t 6 C"(I) x [0, T]),

(1.12) Oo., (otr)t cl’a(fi), O<=t<= T,

(1.13)
0q, (0, e C,(Fx[O T]),Or’ \ Ov /t

(1.14) h, (h,)t C(Fx [0, T]),

for any a (0, 1).

Proof See Theorems 4.2 and 4.4 of [MS].
We will use these results to prove the next theorem.
THEOREM 1.2. There exists at least one weak solution of (Po).
Before giving the proof, we state some preliminary results. The next lemma

generalizes an idea of [MS] for a particular geometry of 1).

LEMMA 1.1. Let W be the solution of
A W 0 in 1),

W=I on S,
(1.15)

OW
tr=W onF.

Ov

Then there is a constant 0 > 0 independent of tr > 0 such that

OW
(1.16) 0=<-< 0.

Ov
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Proof As F is C 1’ 1, 1ql has the uniform interior sphere property, i.e., there exists
ro > 0 such that for every x F there exists a sphere of radius ro contained in fl and
tangent to F at the point x.

Denote by Xo the point of F where the maximum of W on F is achieved. Then
the maximum of O W/Ou on F is also achieved at Xo (cf. (1.15)). We want to find a
supersolution U such that (OU/Ou)(Xo)>=(OW/Ou)(Xo); then, in order to prove the
lemma, it will be sufficient to bound (OU/Ou)(Xo).

Let y be the center of the ball of radius ro contained in fl and tangent to F in
Xo. Set

r= lx- yl, do= d S, F),

if N=>3 U(x)=C1-C2/rN-2,
if N=2 U(x)=C1-Czlogr,

where C1 and C2 are given by

C1- C2/ro-2 W(xo)
(1.17)

C1 C/ ro + do)1- 1

and, respectively,

C,- C log r0 W(xo)
(1.18) if

C1- Cz log (to + do) 1

Note that U satisfies

if N=>3,

N--2.

AU=0 in

(1.19) U => 1 on S,

U>=W onF.

By the comparison principle, from (1.15) and (1.19) it follows that U=> W on f.
Moreover U(xo)= W(xo); therefore by the strong maximum principle we infer that
(o u/o)(Xo) >- (o w/o)(Xo).

It is easy to check that C2 is bounded independently of o- and Xo (note that
0< W(x)< 1 for x I U F) and this gives the desired estimate for (cgU/cgv)(xo).

LEMMA 1.2. Let (q, h) be the solution of (P) given by Theorem 1.1. Then there
exists a constant C > 0 independent of tr, T such that

(1.20) Iv -v <-C for any r>0, t[0, T].

Proof. See Lemma 6.3 of [MS]. However, since their lemma is the crucial step
needed in passing to the limit with cr- 0, we briefly outline their proof.

By assumption, (o, h) satisfies

(1.3) h---v =qg, on F, 0_-<t_-<T.

Differentiating (1.3) with respect to time, then multiplying it by (Oo/Ov),, integrating
over F and noting that
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and that if Ocp/Ov <-_ e then (OOr/OV), > 0, we obtain

\au-e -\au/t \au
e

au\au/,

-<- ()’\o,/,
which can be rewritten as

e Og:,o._
e =<0.+\ o,

The estimate follows by integration over (0, t) and from the uniform estimate of
(Or/OV) (X, 0) given by Lemma 1.1.

Now we collect some results proved in [MS], namely Lemmas 6.4, 4.3, and 6.5.
LEMMA 1.3. There exists C > 0 independent of 0- and T such that

Moreover for every 0- < 1/e

1
(1.22) 0_-<h_-<l+- on Fx[0, T].

E

Finally if 0< 0-1 < 0"2 and (p,, h,), ((o.2, h2) are, respectively, the solutions of
(P,) and (P2) given by Theorem 1.1, then

(1.23) q,-<q2 on (12Ur)x[0, T],

(1.24) h, <-_ h on F x [0, T].

Proofof Theorem 1.2. Let us denote by q, h the monotone limits of the sequences
q, he as 0"-0 (cf. (1.23), (1.24)). From (1.21), (1.22) it follows that

(1.25) q xa q weakly in H(fl), 0< < T, a.e. in f,

(1.26) he xa h weakly * in L(F x (0, T)), a.e. in F.

From (1.20), (1.21), and (1.1) for q it follows that {q} actually is bounded in
L(0, T; H3/2()) (see, e.g., [LM, Chap. 2, (7.28)]); thus p q weakly * in this space,
which yields Oq,/Ou- O/Ou weakly * in L(0, T; L2(F)) (see for instance [LM, Chap.
2, Thm. 7.3]); by (1.20) normal derivatives actually converge in L(0, T; L3(F)). Note
that all this is true in principle for a subsequence, but the monotonicity of {0} implies
a unique limit and thus the "whole" sequences converge.

Due to Lebesgue’s theorem, we have that h- h strongly in LP(F) for any
1 < p < +o, 0 _-< _-< T. Then, taking the limit in
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we obtain (1.3). Note that h is a nondecreasing function with respect to t, as it is the
limit of nondecreasing functions. It remains to prove (1.4); therefore it suffices to show
that

(1.27) --e ---*-,o -e in L(Fx(0, T)).

Indeed (1.27) will allow us to take the limit in (1.8) to obtain (1.4).
Set the following:

(1.28)
Qo= {(x, t)eF (0, T)" h(x, t) =0},

Q+ (rx (0, T))\ Qo,

o() {x . h(x, t) 0},
(.9)

I+(t) r \ to(t).

As h is monotone nondecreasin with respect to t, Fo(t) x [0, t] Qo for any e [0, T].
Now, integratin (1.8) on Fo(t) and takin the limit as 0, we et

(1.30) e 0 in Ll(Fo(t) x [0, t]), 0 N N T.
k0

As 0/00/0 weakly * in L(0, T; L(F)), thus weakly in L(Fo(t)x[0, r]) for
any e [0, T], from the equality

(1.31)
k 0v

e
k 0v

-e k-e
and (1.30) it follows that the weak limit := lim ((O/Ou)-e)- exists in L(Fo(t) x
[0, T]) and that (O/Ou)-e =0-0; that is,

(1.32) (0)+

-e =0 on Fo(t)x[0, t], 0tZ
Ou

Now, because of the monotonicity of the set Fo(t), it is possible to find a sequence
t (0, T) such that

(1.33) meas(Qo-E,)-0 as n,

where E, U=,Fo(t)x (0, tin). Note that (1.30) and (1.32) are still true in L(E,).
Applying the Schwarz-H61der inequality and (1.20), we have

0_e(134)
C{meas(Qo-E,)}/3+

k0u

where C is independent of . Taking the lim sup as 0 in (1.34), we obtain by (1.30)

(135, -From (1.33), (1.35) it follows that (1.27) is satisfied on Qo.
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In addition, by the definition of Q/, (1.25), (1.26), and (1.3), we have

(1.36)
0p q o 0

a.e. on Q+.
Ov h o h Ov

Now Egorov’s theorem asserts that for every 6 > 0 there exists a subset As c Q/ such
that Oo/Ov -o Oq/Ov uniformly on A and meas (Q+ A) < & Then, using the
Schwarz-H6lder inequality, we derive from (1.20)

C62/3+(1.37) -0u 0 0u

where C is independent of . Thus (1.27) is also satisfied on Q+. This concludes the
proof of Theorem 1.2.

Remark 1.1. Note that, by Theorem 1.2, problem (P0) has a solution for every
T> 0, i.e., on [0, +).

2. A solution of the electropainting problem. In [MS], Marquez and Shillor, follow-
ing Caffarelli and Friedman [CF], show a smooth solution (in the sense of Theorem
1.1) of the following problem:
(EP) Find , h) satisfying 1.1 )-( 1.3) and

0-e onr {h },(2.1) (h,),

(.3 h(x, 0 on r,
where > 0 is a smooth solution of (P).

Our aim is to prove that the converse is also true, by means Of an argument
suggested by Theorem 2.1 of [CF]. This result will allow us to take the limit in (2.1)-(2.3)
as 0 in order to.obtain a solution of the following problem:
(Po) Find (, h) satisfying (1.1)-(1.3) and

-e onF{h =0}, t->0,

(2.5) h,= -- e on r f’) {h > 0}, t->0,

(2.6) h(x, 0) 0 on F.

THEOREM 2.1. There exists a unique solution (o, h) of (EP) satisfying (1.9)-
(1.14).

Proof Let (q, h) be the solution of (P) given by Theorem 1.1. In order to prove
that (q, h) is a solution of (EP), it suffices to show that h verifies (2.2). By
contradiction, we assume that there exists Xo F and c > tr such that

(2.7) h(xo, t)= c

for any belonging to an open interval I c (0, +c). Let (to, ?) be the maximal interval
where (2.7) is satisfied. Note that, by (2.3), to> 0.
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Step 1. (q), => 0. Since h, is monotone increasing, the claim follows from the
following property (see [CF, Lemma 2.2]): if o 1, q2 are the solutions of

Ao 0 in f,

(2.8) o i= on S,

hi=goi on F, i=1,2,

corresponding, respectively, to hi, h2, and if hi->-h2 on F, then ql->_ rp2 in f.
Step 2. (Orp/Ov),(Xo, to)<-_O, (h),(Xo, to)= 0. Since (to, ?) is the maximal interval

where (2.7) is satisfied, by (1.8) there exists ti to such that (Oq/cv)(Xo, ti)> e. On
the other hand, Oq/OU(Xo, to)<= e. Then (O,/Ou)t(Xo, to)<=O. (h,),(Xo, to)=0 follows
from (2.7).

Step 3. (q)(x, to)=0 for xl, (h)(x, to)=0 for xF. The expression (q) is
a solution of the following:

(2.9)

(2.10)

A(q),=0 inf,,

(o), 0 onS,

0o___.__+ h__0(2.11) (h,),
Ov Ov(,), (e), on F.

From (2.7), Step 1, Step 2, and (2.11) we find

(2.12) (),(Xo, to)= (),(Xo, to) 0.

Then, by the strong maximum principle, (),(x, to)=0 for every x; therefore,
(O/Ou)(),(x, to)=0 for xF and (2.11) becomes

(h),=0 on F.

It follows that (h),(x, to) =0 for x F ((O/Ou) > 0, by the strong maximum principle
applied to (1.1)-(1.3)).

Step 4. Definition of r. For any x F set

(2.13) a(x)= U L(x),

where I(x) is an open interval of (0, +) such that

(2.14) h(x, t) C > for every I,

where C is a constant and indexes all the inteals satisfying (2.14). Set

[infA(x) ifA(x) ,
(2.15) to(X) + if a(x) .
Now, let - be defined by

(2.16) z= inf to(X).
xl’

Note that z <+ by our contradiction assumption.
Step 3 implies (ha), (x, to(y)) 0 for every x, y F with to(y) < +o, and con-

sequently (h,),(x, z)=0 for xF. Hence z>0, if not, we would have a contradiction
with (0.8).
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Step 5. End of the proof. By the definition of z, we have that for < - the solution
of (P) is a solution of (EP). Therefore we can apply the final argument of the proof
of Theorem 2.3 in [MS] to obtain a contradiction.

The uniqueness of the solution is obvious for the equivalence between (P) and
(EP) and the uniqueness of the solution of (P).

THEOREM 2.2. There exists a weak solution (in the sense ofDefinition 1.1) ofproblem
(EPo).

Proof. Let (o, h) be the solution of (Po) obtained in 1 as the limit of (o, h).
We want to show that in fact (o, h) is a solution of (EPo). The only thing to prove is
(2.5).

We fix T>0. Due to the monotonicity of the set F/(t), it is possible to find a
sequence tm (0, T) such that, if A, U m, F+(tm) X (t,, T), then

meas (Q/ \ A,) - 0 as n -(2.17)
Set

{ 1 }(2.18) B, (.J (x, t)" h(x, t) >--, h <- <= T
ln

Note that A, and B, are two monotone set sequences and

(2.19) U B= U A,
nN nN

so that

(2.20) meas (Q+ ( B) ) 0.

Using (1.24) and (1.26) we have

1 1
(2.21) h(x,t)>=h(x,t)>->o" for(x,t)B, o<-

From Theorem 2.1 it follows that

As Oq,/O,O/Ou weakly in L3(F) for every te[0, T] and ((Oq,/O,)-e)+-
((Oq/O,)-e)/ in LI(Fx[0, r]) as o’-0 (cf. (1.20) and (1.27)), we can deduce from
(2.22)

(2.23) 0o (0_u)+e -e on Bn.
0u

Finally from (2.20) it follows that

(2.24)
O

q
e= (O-u )e on Q/.

Since T is arbitrary, (2.5) is proved.
Remark 2.1. Concerning the asymptotic behaviour of the solution (o, h) of the

electropainting problem (EPo), we recall that o and h increase in and are bounded
in Hl(f) and L(F), respectively. We can thus define

(2.25) w := lim o(., t) weakly in H(f),

(2.26) /:= lim h(., t) weakly * in L(F).
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We are able to prove that w is the unique solution to the following variational inequality:

wK, IVwV(q-w)+e fr(-w)>-O VrlK,

(2.27)
K={76Hl(I) 7=1 on S, t->0 on F}.

For the proof, it is sufficient to follow the arguments of [CF, 5]. Then the electropaint-
ing process stabilizes as and tends asymptotically to a unique steady state; in
fact w is a C’-funetion (cf. [F]) and

(2.28) (x)= w(x) (x) if w(x)>O,

0 if w(x) =0.
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Abstract. For A _-> 0 it is determined precisely which functions V(x)>= 0 on R" satisfy an inequality of
the form

(Vu, u)Ca(V)(llVull2+x2lJull2), uC
for some constant Ca(V). The value of the smallest such constant is found. Inequalities of this type are
important in the study of the Schr6dinger equation. An application is given.
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1. Introduction. Let

(u, v)- fao u(x)v(x)* dx, Ilull (u, u)

denote the scalar product and norm in L2= L2(R"), and let V(x)>= 0 be a measurable
function on R". For A -_> 0 define

(Vu, u)
(1) Cx(V) sup= IlVull=+ A=llull =
where C denotes the set of all infinitely differentiable functions on R" with compact
supports. Our first result is Theorem 1.

THEOREM I.

(2) C, (V) inf sup
I f V(x)p(x)G (x -y) dx

p>o y p(y)

where

(3) Ga (x)-J04,n.n/2 e dt,’1/2-2

(if n <-_ 2, assume A # 0).
As a consequence we have Corollary 2.
COROLLARY 2. If n > 2, then

1
(4) Co(V)

r(n/2 1)
inf sup if J v(x)p(x)]x-yl- dx.

4n/2 p>o y

us there is a constant C such that

(5) Vu, u) cIlull =, u c
if and only iffor each e > 0 there is a p(x) > 0 such that

( V(xo(xlx 1- ax
r( (c +

For other work on this question see [2], [3], [5]-[10] and the references therein.
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2. Integral operators. Our proof of Theorem 1 will be based on Theorem 3.
THEOREM 3. Let K (x, y)>= 0 be a measurable function on R2", and define

(7) Tu(x)= I K (x, y)u(y) dy.

Then T is a bounded operator on L2(R") if and only if there are a function d(x)>= 0 on
R and a constant C such that

K(x,y)=O a.e. when 0(x)=0 and b(y)=0(a)

and

(b) I K(x, y)O(x) dx <= Cck(y) a.e.

where

(8)

Moreover, TII c. f

q(x) I K(x, y)(y) dy.

1
(9) Co inf sup Jb Y iY) g(x, y)K(x, z)ck(g) dz dx

where the infimum is taken over all (x)>-0 satisfying (a) and (b) and we take 0/0= 0,
then

(10) zll: Co.
Proof. Assume that there is a b(z)=>0 satisfying (a) and (b). Let

M {x n"ld/(x 0}, n {x R" 14,(x) 0},

M’=R"-M, N’=R"-N.

K(x,y) =0 a.e.

=0 a.e.

=0 a.e.

Thus we have

Hence

(Tu, v)=ffK(x,y)u(y)v(x)*dxdy

xeM, yeN by(a),

xeM’, yeN by(b),

x e M, yeN’ by(8).

and

K(x, y)l/2(x)l/2dp(y)-’/2u(y)K(x, y)l/9-dp(y)’/2(x)-l/2v(x)* dx dy
M’
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Thus T is a bounded operator on L2 and 11TII2=< C. Since Co is the infimum of all
constants C satisfying (b), we see that TII =--< Co,

Conversely, assume that T is bounded on L2, and let C be any constant satisfying

(11) IIT*TII<C.
Let h(x) be any positive function in L2, and define

bo 0, bk+ h + C- T* Tbk.

Clearly bg(x)> 0 for each k and b 4 in L2. Then

cb h + C-1T* Tcib,

and consequently b(x)_>-h(x)> 0 almost everywhere. Clearly 4 satisfies (a) and (b).
Consequently, any constant C satisfying (11) satisfies (b). Since Co is the infimum of
such constants, we have Co =< T* T[[ _-< T][ 2. [3

The proof of Theorem 3 implies

(12) [[T’12=infsup
1 If>o y qb(y)

K(x, y)K(x, z)qb(z) dz dx.

3. The reduction. Now we show how the proof of Theorem 1 can be based on
Theorem 3. We shall need the following facts concerning Bessel potentials (cf., e.g.,
[1], [3], [4]). Let u be any function in C, and let

(13) v=(h2-A)’/2u

(v can be defined by Fourier transforms). Then

(14) v = ([= a]u, u IIv u = / 211 u =.
Moreover, we have

(15)

where

(16)

We also have

u(x) f GI,, (x-y)v(y) dy

IX[ 1-n I0 21x12/4t)- 1)/2-1 dt.G,,a (x)
2 -a)3F(1/2 e-(a

(17) G*,x G,,, G,

where G, is given by (3). Using these facts we can give the proof of Theorem 1.

Proof of Theorem 1. Let e > 0 be given, and let Ca*(V) denote the right-hand side
of (2). If Ca*(V)< oo, there is a p > 0 such that

V(z)p(z)G,(y-z) dz<=(C*x(V)+e)p(y).

Put 6(z)= V(z)/2p(z), K(x,y)= G,x(x-z)V(y) /2. Then

q,(x) f O,,,(x-z)V(z)p(z) dz
d



EXACT ESTIMATES FOR POTENTIALS 1327

and by (17)

f K(x,y)d/(x)dx= I Gl.x(x-y)V(y)l/2f G,,x(x-z)V(z)p(z)dzdx

,, (x y)G,,a (x- z) dx] V(z)p(z) dz

V(y) 1/2 f G, (y z) V(z)p(z) dz

<-- (C’x(V) + e) V(y)’/:Zp(y) C* V) + e)dp(y).

Thus condition (b) of Theorem 3 holds. Moreover, the only way that 0(x) can vanish
for some x is if V(z)p(z)= O. Since p(z)# 0 almost everywhere, this implies V(z)= 0
almost everywhere. This in turn implies K(x, y)= 0 almost everywhere. Hence condi-
tions (a) of Theorem 3 are also satisfied. Thus the operator T given by (7) is bounded
on L2 with T[[ z -< C*(V) / e. Since e was arbitrary we have I1T[[ z--< C*(V). Thus, by
(14) and (15)

Vu, u) T* v = T* II=ll v =

TII=( IIV u = + A =11 u =)
_-< c*( v)(llVu / A =11 u I1=).

Consequently, CA (V) <- C*(V).
Conversely, assume that

(8) (Vu, u)<= c([[Vull=+ Allull=),
Then by (14) and (15)

uC.

T’vii== vu, u) cIlll =.
Since the range of (A2-A) 1/2 on C is dense in L2, we see that T* is a bounded
operator on L: with norm =< C/. Hence 11TII :--< c. By (12) for each e > 0 there is a

b > 0 such that

(19) f I K(x, y)K(x, z)ck(z) dzdx<-([IT[[2+e)4(y).

(20)

Define p by

This is equivalent to

Gx(y-z) V(y)l/2V(z)l/2(z) dz<=(llTll+

qb(y)
p(y) V(y)l/2 V(y) # 0

(11 T]I :z + e) -1 I GA (y z) V(z)’/2(z) dz, V(y) =0.

If V(y) O, we have by (20)

(21) f G(y-z)V(z)p(z) dz<-_(llTIl+e)p(y).
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If V(y)- 0, we have by the definition of p

f G(y-z)V(z)p(z) dz= I G(y-z)V(z)/(z) dz

(11 TII=+ e)p(y).

Thus (21) holds for all y. Since p(y)> 0 for all y, we see that

_<-II TII 2 / e --< c / e

where C is any constant satisfying (18). Thus C*(V) <- Cx(V), and the proof is
complete, l-]

4. An application. We can apply Theorem 1 to the study of the spectral theory of
the Schr6dinger operator. For instance, we have Theorem 4.

THEOREM 4. Let V(x) >- 0 be a measurable function on R". If C (V) <- 1, then
-A-V has a self-adjoint realization H on L2(Rn) having no spectrum below -h 2. If
Ch (V)> 1, then every self-adjoint realization has spectrum below -A 2.

Proof. If C (V) _-< 1, then Vu, u) <-_ ([h 2_ A]u, u), u C. It is well known that
this implies that a self-adjoint realization H of-A-V exists such that -h2[[ul12_-<
(Hu, u) (cf., e.g., [3]). This implies that the spectrum of H is contained in the interval
[-h 2, c). If C(V)> 1, then there is a u C such that (Vu, u)> ([h2-A]u, u). Thus
(H,  ) -A ll ll any self-adjoint realization of-A-V. This means that H has
spectrum below -h2. [3

REFERENCES

[1] N. ARONSZAJN AND K. T. SMITH, Thgory of Bessell potentials, Ann. Inst. Fourier (Grenoble), 11
(1961), pp. 385-475.

[2] E. BALSLEV, The essential spectrum of elliptic differential operators in LP(Rn) Trans. Amer. Math. Soc.,
116 (1965), pp. 193-217.

[3] M. SCHECHTER, Spectra of Partial Differential Operators, North-Holland, Amsterdam, 1986.
[4] A. P. CALDERON, Lebesgue spaces of differentiable functions and distributions, in Partial Differential

Equations, Proc. Symposia in Pure Mathematics, Vo!. 4, American Mathematical Society, RI, 1961,
pp. 33-49.

[5] F. STUMMEL, Singulare elliptische Differential operatoren in Hilbertschen Raumen, Math. Ann., 13
(1956), pp. 150-176.

[6] S.Y.A. CHANG, J. WILSON, AND T. WOLFF, Some weighted norm inequalities concerning the Schr6dinger
operators, Comment Math. Helv., 60 (1985), pp. 217-246.

[7] S. CHANILLO AND R. L. WHEEDEN, Lp estimates forfractional integrals and Sobolev inequalities with
applications to Schr6dinger operators, Comm. Partial Differential Equations, 10 (1985), pp. 1077-
1116.

[8] C. L. FEFFERMAN, The uncertainty principle, Bull. Amer. Math. Soc., 9 (1983), pp. 129-206.
[9] M. SCHECHTER, Hamiltonians for singular potentials, Indiana Univ. Math. J., 5 (1972), pp. 483-503.

[10] A. DEVINATZ, Schriidinger operators with singular potentials, J. Operator Theory, 4 (1980), pp. 25-35.



SIAM J. MATH. ANAL.
Vol. 19, No. 6, November 1988

1988 Society for Industrial and Applied Mathematics
006

NONLOCAL VARIATIONAL PROBLEMS IN NONLINEAR
ELECTROMAGNETO-ELASTOSTATICS*
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Abstract. The effects of arbitrary applied electric and magnetic fields on unshielded, nonlinear,
deformable, polarizable, magnetizable, nonconducting bodies are studied. Both monotone materials
(dielectric, paramagnetic, etc.) and classical ferromagnetic materials are considered. The lack of
shielding forces us to consider unknown fields outside of the material. This leads to nonlocal ("shape-
dependent") effects. The work of Ball is extended ["Convexity conditions and existence theorems in
nonlinear elasticity," Arch. Rat. Mech. Anal., 63 (1977), pp. 337-403] to get an existence theory using
direct methods of the calculus of variations.

Key words, electromagneto-elasticity, ferromagnetism, polyconvex materials
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1. Introduction. Rogers and Antman [15] initiated a program to extend the
modern existence theories for elastic materials (cf. [3], [8]) to materials that admit
coupled elastic and electromagnetic effects. Such problems are of great practical in-
terest (high current devices such as fusion reaction containment vessels and magnetic
levitation trains and acoustic devices using piezoelectric materials are highly depen-
dent on the coupling of mechanical and electromagnetic fields), and the nonlocal
nature of the resultant equations is of intrinsic mathematical interest. The prob-
lems considered in [15] involved self-effects of conducting bodies; but for simplicity,
electromagnetic boundary conditions that shielded the body from applied fields were
employed. In this work, we consider an unshielded body and study the effects of
applied electric and magnetic fields. We assume the body is nonconducting; but we
allow it to be deformable, polarizable, and magnetizable. We study both monotone
materials (dielectric, paramagnetic, etc.) and classical ferromagnetic materials.

Our problem is rather easy to formulate in spatial (Eulerian) coordinates (we
do so in 2.3), but such a formulation is, in general, intractable. (For example, the
boundary conditions are posed at points that depend on the deformation, a principal
unknown.) A more useful formulation uses spatial coordinates for the resultant dec-
tric and magnetic fields E and H (which must be known both in the interior and
exterior of the body) and material (Lagrangian) coordinates for the deformation ,
deformation gradient F, polarization p, and magnetization m. The variational form
of this problem involves finding stationary points of an energy of the form

(r, Er,p, Hr, m) .fo ],t)(F(x),p(x),m(x))dv

./o. {[Er (’(x)) + E0(P(x))]. F(x). p(x)

+ [Hr((x)) + H0(]?(x))]" F(x). m(x)}dvx

2
IE,(y) + dvu.
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Here, is the stored energy and Eo and Ho are the applied fields.
Unfortunately, this energy is neither coercive nor weakly lower-semicontinuous.

We overcome this difficulty by replacing the spatial fields Er and Hr with solution
operators that depend on the global values of material fields:

Er(y)- r(P(’),(’);Y),
Hr(y) r(m(’),(’);y).

If p, m, and are sufficiently smooth these are simply the usual Coulomb integral
operators. We show below that after the substitution of these nonlocal operators and
some manipulation we get an energy of the form

r(’P’m) .fo (F(x), p(x), m(x))dvx

./o[Eo(r(x)). F(x). p(x) q- Ho(r(x)). F(x). m(x)]dvz

/ {I/(p, :; y)l u / I// (m, ; y)l}dvu.

Note that now the only unknowns are material fields; the spatial fields involved are
either data or well-defined operators on material fields. Moreover, the new energy is
coercive and (though this is not obvious) weakly lower-semicontinuous under appro-
priate hypotheses on . However, we have paid a price for these gains: While the
first two integrals in the new energy involve local densities e.g., at a particle x, the
stored energy density depends only on the values of the fields at that particle), the
final integral involves nonlocal energy densities e.g., at every point y, the electric
field operator/r depends on the global values of the fields p and ). The most novel
difficulties in our existence theory involve these nonlocal terms. In particular, we must
examine the weak convergence properties of the solution operators 1. and 1/under
composite limits of sequences of deformations, polarizations, and magnetizations.

Variational problems with nonlocal energy densities have been considered before.
Notably, Auchmuty and Beals [2] gave existence and regularity theorems for some
model problems from astrophysics in which self-gravitation plays an important role.

The remainder of this paper is organized as follows: In 2 we present several
mathematical formulations of our physical problem, culminating in the nonlocal vari-
ational problem that we eventually solve. In 3 we give some results on how the
electric and magnetic fields react under simultaneous limits of deformations, polar-
izations, and magnetizations. In 4 we prove existence results. Finally, in 5 we offer
some concluding observations.

2. Formulation of the problem. In this section we formulate the problem of
a deformable, polarizable, magnetizable, nonconducting body subjected to arbitrary
applied static electromagnetic fields.

2.1. Kinematics. We consider a body whose reference configuration is given
by a bounded set gt in R3 with typical material particle x and Lipschitz continuous
boundary. We refer to fields with independent variable x as material or Lagrangian.
The familiar differential operators Grad, Div, and Curl operate on such fields. The
deformation of the body is given by the map

(2.1) f S x - (x) E R3.
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The operators grad, div, and curl operate on fields in spatial or Eulerian coordinates
(fields with typical independent variable y). The deformation gradient F and the right
Cauchy-Green deformation tensor C are given by

(2.2) F(x) Grad (x)*, C(x) F* (x). F(x).

Here the star indicates transpose, and A. B indicates the product of two tensors. To
ensure that the orientation of the material is preserved under deformation we require

(2.3) det F > 0.

To ensure that there is no interpenetration of the material we require (cf. Ciarlet and
Ne!as [8]):

det F(x)dvx <_ I()1,

where IS is the three-dimensional Lebesgue measure of the set $.

2.2. Applied fields. We assume that the total electric and magnetic fields E
and H can be decomposed as

E=Eo+Er and H=Ho+Hr,

where E0 and H0 are the respective applied electric and magnetic fields (fields that
are generated by sources not connected to the body) and Er and Hr are the respec-
tive resultant electric and magnetic fields (fields generated by the polarization and
magnetization of the body).

We think of the applied fields as data and assume only that they satisfy

Eo, Ho E {v E LU(Ra)lv grad , e Hlloc(R3)}.
Here Hs W,2 where Ws,p is the usual Sobolev space of functions with generalized
derivatives of order up to s in Lp (cf. Adams [1]), and HIoc(R3) is the space of
functions such that HI(R3) for any C(R3). Our assumption implies
that the applied fields are fixed and are not changed by the resultant fields. We think
of the sources of these fields as being outside the deformed body, though this is not
implied by (2.5).

2.3. Spatial formulation. In this formulation our principal unknowns are the
deformation and the resultant electric and magnetic fields Er and Hr defined above,
the Cauchy stress T, the spatial polarization P, and the spatial magnetization M. We
require that the support of T, P, and M be contained in the image of the deformed
body r(f).

We assume that the Cauchy stress T can be decomposed in the following way:

(2.6) T TM W Tins,

This decomposition is not unique. Hutter and van de Ven [12] discuss various possible formula-
tions of electromagnetism in deformable media and subsequent variations in the form of the Maxwell
stress tensor. In the static case, all of the formulations they consider are shown to be equivalent
under appropriate choices of constitutive equations. Our constitutive assumptions are compatible
with any of these choices.
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where TM is the mechanical stress and Tins is the Maxwell stress, which is given by

1
[E. (E + P)+ H. (H + M)]I.Tins EE + EP + HH + HM -Here EE, EP, etc. are dyadic (tensor) products and I is the identity tensor.

We also assume that the electromagnetic body couple L is given by

L EP PE + HM MH.

(See Rogers and Antman [15] for a discussion of the absorption of electromagnetic
body forces into a generalized stress tensor and the subsequent form of the body
couple.)

We now state a local, spatial formulation of our physical problem. For the present,
we assume that all of our functions are smooth enough for the equations in which they
appear to hold in a classical sense.

Problem 2.1. Given functions Yo, So, Eo, and Ho, we seek r, T, Er, Hr, P, and
M such that:

1. The deformation , satisfies (2.3) and (2.4). At points y E r(f) inside the
deformed body the balance of linear momentum

(2.9) div T 0,

the balance of torque

(2.10) L T- T*,

and the static version of Maxwell’s equations

(2.11) curl Er(y) 0,

(2.12) div Er(y)= -div P(y),
(2.13) curl Hr(y) 0,

(2.14) div Hr(y)= -div M(y),

are satisfied.

2. We assume that the boundary of the reference configuration Of] can be repre-
sented as the disjoint union of two sets with Lipschitz boundary, $1 and $2. On $1
we prescribe Dirichlet boundary conditions

(2.15) (x) yo(x), x E $1,

and on the deformed image of $2 we prescribe dead-load boundary conditions

(2.16) T(r(x)). fi((x)) detF(x)so(x), x

Here fi is the unit outward normal to 0p(l). On the entire surface 0(f) we require

(2.17)
(2.18)
(2.19)
(.0)

[[Er(y)[] x fi(y) 0,
[]Er(y)[]. fi(y) -[[P(y)[]. fi(y),

[IH,.(y)I] x fi(y) O,
[IH,.(y)I]" fi(y) -[IM(y)I]’/(y).
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Here [Ifl] indicates the jump in the field f in the direction of ft.
3. At points y E R3 \ (l’t) in the exterior of the body we require

(2.21) dive 0,

(2.22) curlE 0,

(2.23) divH 0,

(2.24) curlH 0.

4. We also require that the resultant electric and magnetic fields be regular at
infinity

lyl21Er(y)l + lyl21Hr(y)l-- O(1) as lyl-* .
While this statement of the problem is clear, it presents several impediments to

a solution: One set of difficulties is common to all elasticity problems posed entirely
in spatial coordinates (e.g., constitutive theory for nonhomogeneous media is difficult
to formulate and the support of the unknowns is itself an unknown). In the next
section we present a formulation that overcomes these problems by introducing mate-
rial coordinates. A second set of troubles arises from the addition of electromagnetic
effects and the lack of shielding. This forces us to solve for the electric and mag-
netic fields in the exterior of the body with jump conditions at the unknown points
of the deformed boundary. The solution of this problem must wait until 2.7 Where
we introduce solution operators that give the electric and magnetic fields in terms of
material fields.

2.4. Mixed formulation. The referential or (First) Piola-Kirchhoff stress S at
a material particle x E is defined by

(2.26) S(x)* det I(x)F-1 (X)" T((x))*.

The Piola-Kirchhoff versions of the mechanical and Maxwell portions of the stress
(SM and Sms) have an analogous relation to their spatial counterparts. We also
introduce the material versions of the polarization and magnetization:

p(x) det F(x) F-l(x). P((x)),
m(x) det F(x) F-1 (x). M(,(x)),

and the material version of the electromagnetic body couple:

(2.29) l(x) (det F(x))L((x)).

Since we need to consider the electric and magnetic fields at points in the exterior of
the body, we are primarily interested in their spatial versions, but at points in the
interior of the body we can introduce material versions of the electric and magnetic
fields:

(2.30)
(2.31)

e(x) E((x)). F(x),
h(x) H((x)). F(x).

Material versions of the applied and resultant fields (eo and er) are defined in an
analogous way.
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Three pieces of our data remain unchanged: The applied electric and magnetic
fields Eo and Ho are still best given in spatial coordinates, and the Dirichlet data Yo
was always given as a material field. However, we will replace the live-load traction
boundary condition and the spatial data to with a dead-load condition and material
data So. As we indicated above, we consider the dead-load condition our primary
problem and merely introduced the live-load condition to present a similar problem
with an easy exposition. With this change, we state Problem 2.1 in terms of the
material coordinates introduced above.

Problem 2.2. Given functions Yo, So, Eo, and Ho, we seek , S, Er, Hr, p, and
m such that:

1. The deformation r satisfies (2.3) and (2.4). At material particles x E 12 we
have

(2.32) Div S 0,

(2.33) l S. F* F. S*, and

(2.34)
(2.35)
(2.36)
(2.37)

Curl er(x) 0,
Div (det F(x)C-1 (x). er (x)) -Div p(x),

Curl hr(x) 0,
Div (det ’(x)C-1 (X)" hr(x)) -Div m(x).

2. The Dirichlet conditions

(2.38) (X) Y0(X) VX e

are satisfied, the dead-load conditions

(2.39) S(x). (x) so(x) Vx e s
are satisfied, and for every x 0f the jump conditions

(2.40)
(2.41)
(2.42)
(2.43)

[IEr(P(x))l]" F(x) .n(x) 0,
det F(x)C(x)-1. [IE(:(x))l]" n(x) p(x). n(x),

[IH(’(x))l]. (x) x n(x) o,
det (x)C(x)- [IH(’(x))l]" n(x) m(x). n(x),

are satisfied. Here n is the unit outward normal to Of2.
3. In the exterior of the body Er and Hr satisfy (2.21)-(2.25) just as they did

in Problem 2.1.
Of course, Problems 2.1 and 2.2 are both underdetermined. We introduce consti-

tutive equations to remedy this.

2.5. Constitutive equations. Our constitutive equations for electromagneto-
elastic materials are fully coupled and nonlinear. (Thus, we allow for such effects as
electrostriction and magnetostriction.) In the variational problems we consider, it is
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convenient to adopt F, p, and m as independent constitutive variables and S, e, and
h as dependent constitutive variables.2

We first direct our attention to materials that exhibit monotone electromagnetic
effects. These include many common materials such as dielectrics, certain pyro-
electrics, paramagnetics, and even (at least for approximate constitutive equations)
soft ferromagnetics. Our constitutive equations have the general form:

SM(x) SM(F(x), p(x), re(x), x),
(2.47) e(x) 6(F(x), p(x), m(x), x),

h(x) h(F(x), p(x), re(x), x),

but we consider only materials for which there is a stored energy function (F, p, m, x),
continuously differentiable in F, p, and m and measurable in x for all values of the
remaining arguments, such that

M(F, p m, x)
0

(F p, m, x)

(2.48) (F, p m, x)
0

(F, p, m, x)-b-P-p

(F p,m x)-
0

(F, m,x)

In the existence theorems of 4 we state our convexity and growth hypotheses on .
We also consider ferromagnetics: a type of nonmonotone material. For this ma-

terial we drop consideration of electric effects; we assume the body does not polarize
and that the solutions of the electric field equations are independent of solutions of
the balance laws of elasticity and magnetism. Following the classical model of ferro-
magnetism (cf. Landau and Lifshitz [14] and Brown [5]), we consider a stored energy
function

(2.49) )(F, m, x)

2 In other problems it is convenient to take F, e, and h as independent variables and S, p, and
m as dependent variables:

S(x) (F(x), e(x), h(x), x),
(2.44) p(x) 15(F(x), e(x), h(x), x),

re(x) ltl(’(x), e(x),h(x),x).

Such a choice can be shown to be equivalent to the one chosen in this work under appropriate
monotonicity and growth hypotheses. For instance, we could adopt a monotonicity assumption such
as the restricted strong ellipticity condition:

_
o o0 < ab" "ab+ab" -.u+ab" .v

(2.45) +u" o’ab+u’e’u+u" o.v
+v. o--l-’ab+v.--.u+v, o-l-.v

for all (ab, u, v) (0, O, O) (ab is a dyaxl, a typical tensor of rank one) and a growth condition such

(2.46) [15(F, e,h, x). e

Equations (2.45) and (2.46) imply that for every fixed F and x, the map (e,h) (15, rh) can be
globally inverted, so that constitutive equations (2.44) are equivalent to (2.47).
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for which )(F, .,x) is nonconvex. We also include in the total energy (cf. (2.74)
below) an exchange energy term of the form

(2.50) X (F, Grad m)

for which we make appropriate convexity assumptions below. The most commonly
used term is of the form IGrad ml2. Once again, we reserve more detailed continuity
and growth hypotheses until the statement of our existence theorems in 4.

2.6. Mixed variational formulation with local densities. In this section we
present a variational formulation for monotone materials. We postpone consideration
of ferromagnetic materials until the final, nonlocal formulation.

The usual variational form of Problem 2.2 is obtained by defining an energy
depending on all of the unknown electromagnetic fields:

(, Er, p, Hr, m) f_ (F(x), p(x), m(x), x)dvx

-/fl{[Er(’(x)) / Eo(r(x))]. F(x). p(x)

+ [Hr (’(x)) + Ho(’(x))]" F(x). m(x)}dvz

1/It [Er(y)[2 + IHr(Y)[dvy"
2 a

Problem 2.3. Given functions Yo, so, Eo, and Ho, we seek , Er, Hr, p, and m
such that:

1. The deformation $ satisfies (2.3), (2.4), and (2.38).
2. The fields Er and Hr satisfy (2.11) and (2.13), respectively.
3. The variational equation

(2.52) 6’(, Er, p, Hr, m) So(X). 6(x)daz,

is satisfied.
It follows from the work of Toupin [17] and Tiersten [16] that sufficiently regular

solutions of Problem 2.3 are solutions of Problem 2.2 as well.
Two difficulties to finding solutions of Problem 2.3 are immediately apparent.

First, solutions of (2.52) are not extrema of (2.51); we must simultaneously minimize

’ with respect to , p, and m and maximize with respect to Er and Hr. Second, the
comments at the end of 2.3 still hold: the use of spatial coordinates for the fields Er
and Hr give us trouble; we must optimize these fields without knowing in advance the
points at which they must jump, much less the magnitude or direction of the jump.
To eliminate these difficulties, we define, in the section below, solution operators that
give the electric and magnetic fields in terms of the material fields ,, p, and m.

2.7. Solution operators. In defining our first solution operator we think of the
spatial fields P and M as being prescribed functions in L2(R3) with support in the
deformed body (Vt), and we solve for the electric and magnetic fields they generate.
Note that we can do this without reference to the deformation.

PROPOSITION 2.1. Let

(2.53) q _= {Y E L2(R3)lcurl Y 0 in H-I(R3)}.
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For every pair offunctions (P,M) E L2(()) there exists a unique pair (Er, Hr) :
Er(y) --/r(P; Y),
Hr(y) fir(M; y)

that satisfies

(2.54) [ (Er. E / Hr. H")dv f (P. E" / M. H")dv V E, H .
()

Furthermore,

(2.55) ]]r(P;’)[]L.(R3) _< C[[P[IL2(,(12) ), and

(2.56) II/(M; ")IIL(R) < CIIMIIL6,()).
IfP and M are in H1(r(12)), then the solution operators are given by the following

integral equations:

(2.57r(Y)) r(P; Y)

[f P(Y’)’fi(’)(g-Y’)-- (n)
-air Ig-g’P(’)-’) dye, + fob(n) ig_g, la da,

(2.58H) y)

[f -divM (r). ()(- )day,(Y)(Y-8)d%, + fo,(f) M i
4 (ft) ly-y,I 3 ly-y,l

Here, fi is the unit outward normal to 0().
If P and M are in C1(()) then Er and Hr satisfy (2.11)-(2.14) in the interior

and exterior of the body, (2.17)-(2.20) at the boundary of the body, and are regular at
infinity.

This result follows from the Lax-Milgram lemma and standard results of potential
theory (cf., e.g., Kellogg [13]).

We now define solution operators that tie Er and Hr directly to the material
fields , p, and m. Let (, p, m) be prescribed functions in the set

(2.59)
(, p, m)

WI,P(12), p >_ 2; (2.15) holds in the sense of trace;
F Lq(f),q >_ (p- 1)/p; detF Lr(12),r > 1;
detF > 0 a.e. in ft; f detFdv _< Ir(ft)l;
F.p F_:.m_ E L2().V/det F’ V/det F

Here F indicates the formal adjoint or cofactor matrix of F. Before continuing we
observe that for any (r, p, m) 3 we have:

1. Ciarlet and Nelas [8] imply that the map
We denote the inverse by ..

2. The composite functions

[detF((y))]-lF((y)) p((y)), y ei(2.60) /5(, p; y) _=
0 elsewhere

and

( [det F((y))]-lF((y)) m(c(y)), y C ,(12),(2.61) M(, m; y) 0 elsewhere
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are in L2 (R3).
3. HSlder’s inequality implies that the functions F.p and F. m are in LS(f2) with
2r8 r+"--i’"
We also observe that without further assumptions on p, q, and r we cannot ensure

that p and m are in an Lp space with p > 1.
Now, as in the spatial case, we can define solution operators that describe the

electric and magnetic fields as being generated by material fields in the set/3.
PrtoPOSTON 2.2. For every triple of functions (r, p,m) E / there ezists a

unique pair (Er, Hr) A"

Er(y) -/r(r, p; y),
Hr(y) [/r(, m; y)

that satisfies

fRs Er(y)" Etl(y) + Hr(y). H(y)dvy

ff[F(x), p(x). El((x)) + F(x). m(x). Hl(r(x))]dvx

.for every (E, H) . Furthermore,

(2.63)

(2.64)

II/($’, p; )ll,(m) -< CIIl. p/V’det IIIL.(f),
IIZ-L(P, m; -< CIl:" m/v/de FIIL().

and

The material versions of these solution operators can then be defined by

er(x) 6r (r, p; x) ----/r (r, p; r(x)) F(x),
hr(x) lr(, m; x) r(’, m; r(x)). F(x).

As before, the proof of this result follows directly from the Lax-Milgram lemma.
Note that the^operators /r and r (which operate on spatial fields) and the

operators/ and Hr (which operate on material fields) are related by

(2.67) /r(r, p; y) /r(P(:, p; "); y),
(2.68) /-/r(r, m; y) //r(h/(, m; .); y),

where/5 and f4 are defined in (2.60) and (2.61).
2.8. Energy with nonlocal densities. Given any material functions (r, p, m)

B we can compose the solution operators ]r and/-/r with and use the relation

(2.69) ./Its I/ (P, :i’; Y)I u + I//(m, :i’; Y)lUdvu

ff 6r(P, ; x). p(x) + hr(m, ; x). m(x)dvx

(which is simply (2.62) with E =/r and H r) to get the following representation
for the energy:

(2.70) (,/r(p, r; "), p, if/r(m, r; .),m) (r, p, m)+ ,(r, p, m),
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where

(2.71) (r, p, m)

_=/ {(F(x),p(x),m(x),x)- leo(x), p(x)+ ho(x), m(x)]} dye,

,(r, p, m) 1/2 fl:t I/," (P, 9; Y) u +
fft[6r(p, ,; x) p(x) + lr(m, 37; x). m(x)]dvx.

Accordingly we define

(2.73) (r, p, m)---- (,/r(p,; "),p,r(m,; .),m).

In getting the energy functional $ we have made the trade-off indicated at the
outset: The new energy is simpler because our unknowns are defined only on the
reference configuration of the body; but it is also more complicated because the energy
density now depends (through r and lr) on the global values of the unknowns.

We now adapt this final form of the energy to the ferromagnetic materials con-
sidered in this paper. Adopting the constitutive assumptions (2.49) and (2.50), we
consider an energy of the form

(2.74) ’ (:, m) ft{ (F(x), m(x), x) ho(x) m(x)

+ X(F(x), Grad m(x))}dvx + (, m),

where the nonlocal energy , has been modified in the obvious way to account for our
neglect of electric effects.

2.9. Minimization problems. Note that for either type of material, the non-
local form of the energy, ’ and , respectively, is coercive. (This assumes, of course,
that we put reasonable growth conditions on and ), as we do in 4.) Thus, it is
reasonable to pose minimization problems. We begin with monotone materials.

Problem 2.4. Given Yo E WI’p([) satisfying (2.3) and (2.4), So E L--- ($2), and
(Eo, Ho) satisfying (2.5); find (, p,m) such that

,r(,p,m) (,p,m) f 8o" da,

is minimized.
It follows from Brown [6] and Ciarlet and Ne+as [8] that sufficiently regular solu-

tions of the minimization Problem 2.4 combined with the solution operators E and
r solve the variational Problem 2.3. Furthermore, it follows from the work of Brown
[6], [5] that sufficiently regular solutions of the weak form of the Euler-Lagrange equa-
tions for the functional

(2.75) 6(r,p,m) f so(x).6r(x)dax,

again combined with the electric and magnetic fields given by Er and Hr, solve the
local Problem 2.2. However, regularity theory for solutions to such problems remains
incomplete. In particular, conditions such as (2.3) pose serious difficulties.
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We now consider ferromagnetic materials. We begin by modifying the admissible
states of the body to account for our omission of electric effects" Let

(2.76) -- { (,m)
m E Wl’S(), s > p(r+l)+2r’
such that there exists p with (, p, m) E

Our problem can then be stated as follows.
Problem 2.5. Given Yo WI’p.(i2) satisfying (2.3) and (2.4), So L--- ($2), and

Ho satisfying (2.5), find (, m) such that

(2.77)

is minimized.

.(,m) t(,m) fs so" ,da

3. Continuity and compactness results. In this section we give some results
on the convergence of the solution operators defined above for various sequences of
data.

It follows directly from (2.54) that the spatial version of the solution operator is
weakly continuous.

THEOREM 3.1.
{M’.} such that

it follows that

For any sequence of polarizations {P} and magnetizations

PJ [:’ } in L2(R3)M"

](W; .) ](P, .) } in L2(R3),.)_- .)

where the half arrow--- indicates weak convergence.
The situation in material coordinates is not so simple. Here, we must consider

composite limits of deformations, polarizations, and magnetizations. The following
lemma is useful in this context.

LEMMA 3.2. For any sequence {r, Gj} such that

(3.1) detFj > 0 a.e.,

(3.2) det F <_ Ir (t2)l,

(3.3) spt G

and

(3.4) r r in WI’p("),
(3.5) det F det ’ in Lr (),
(3.6) G in/q(R3)

for some p > 2, r > 1, q > 1 it follows that

(3.7) detFJ(.)G(rJ(.)) det (.)((.9(.)) in Lq’ ()
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with q’ qr
r+q--1

Proof. Using Hhlder’s inequality, (3.5), (3.6), and the boundedness of weakly
convergent sequences, we get

Thus, by the weak compactness of bounded sets in Lq’, there exists an f E Lq’ ()
such that at least for a subsequence

det F (.)G (r (.)) f(.) in Lq’

We now show that

f(.) det (.)(((.)).
Let and denote the respective inverses of ’ and . (The invertibility of
follows from (3.1) and (3.2); the invertibility of y is shown in [8].) Now for any
E C(f) we define the spatial fields

(y) { ((y)), y (),
0 elsewhere;

and

(y) { ((Y))’ y e y(c),
0 elsewhere.

Since i _, almost everywhere (at least for a subsequence) and is continuous we
have __,
Also, for any s [1, ) we have

fR I(Y)ldv

a.e. in R3.

ff I(x)I s det F (x)dvx

ff I(x)l s det (x)dvx

fR IJ(Y)ldv
It follows from a standard exercise in real variable theory that

(strongly) in LS(R3).
Thus, for any C(gt)

det F (x)G (r (x))(x)dvx G (y)" (y)dvy

-’ fR ((y)((y)dv

ff2 det (x)((x))(x)dvx.
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Here we have used the fact that the product of a weakly convergent and a strongly
convergent sequence (in the appropriate spaces) converges weakly in the sense of
distributions. The conclusion of the lemma follows directly from a density argument
and the uniqueness of weak limits. D

The following theorem on the limits of material functions will be used in our
existence theorem for monotone magnetic materials.

THEOREM 3.3. Let {J, pJ, my} C satisfy

(3.9)

and

I]FYI[L() + IIFY IILq() + II detFYl[Lr()

(3.10) (Fy (x), pY (x), my (x), x)dvx < C;

then there exists (, ), rh) E such that (at least for a subsequence)

,J , in W1,p

J in Lq(),
det Fy det " in Lr (fl),
F. p . ) in L(fl),
F. m . la in LS(12),
](:Y, pY;.) 1(, ; .) in L2 (R3),
/:/(p, m; .) ,f-/(:, ; .) in L2 (R3),

(3.11)
(3.12)
(3.13)
(3.14)
(3.15)
(3.16)
(3.17)

where s r +--’-f
Proof. The existence of a :, suitable as a component of an element of , such that

(3.11), (3.12), and (3.13) hold, follows from the work of Ball [3] and the refinements
of Ciarlet and Neighs [8]. To deduce the existence of ) and rid we define

PJ (y) =/5(d, pJ;y)(3.18)

and

(3.19) MJ(y) ]/(J, mJ; y)

where/5 and f/are defined in (2.60) and (2.61), respectively. We note that

IIP’llL(rt) --"
IIMIIz-(R) -;.

and

(3.20) PJ-I5 inL2(R3) andMjfir inL(R3).

Thus, by (3.9) and the weak compactness of bounded sets in L2, there exists (l
such that (at least for a subsequence)
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It follows from Theorem 3.1 that

(3.21)
(3.22)

/r (W; .) /r(P; .)
/-/r (MJ; .) t/r (55/; .).

and

If we define

(3.23) (det ,):-1. p(:(.)) and
ff (det )--1 _/((.)),

then (3.14)-(3.17) follow directly from (2.67), (2.68), (3.20), and Lemma 3.2. Thus,
our theorem is proved.

The final result of this section is useful in our theorems on classical ferromagnetic
materials.

THEOREM 3.4. If for some sequence {#J, my} such that

(3.24) detF > 0 a.e.,

(3.25) det F <_ Ij

(3.26)
Fj mY
V/det Fj

2prand for some r > 1, p > r2r---", 8 > p(rA-1)A-2r

(3.27)
(3.28)
(3.29)

(weakly) in W1,p ’det ’ (weakly) in Lr(fl), and

(strongly) in is fl

then is invertible with inverse , and if Mj is defined as in (3.19) and

[det ’((y))]-l’((y)). m((y)), y E p(f]),(3.30) f4(y)--
0 elsewhere

then it follows that

(3.31) M fi in L2 (R3),

and

(3.32) /:/r(yJ, mJ, .) [-Ir(,ffa, ") in L2(R3).

Proof. As in the previous theorem, (3.26) implies that there exists h)/E L2(R3)
such that at least for a subsequence

MJ----h/ in L2(R3).
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We must show that h)/- 1/. We first observe that Lemma 3.2 implies that at least
for a subsequence

’J. m (det F)M"(y (.)) (det ’)//((.)) in Lq’ ()

with q’ 2r But (3.27) and (3.29) imply;-.

(3.33) F. m ’. rh in Lq()-- > q’ Thus by (3.30) and the uniqueness of weak limits we have f//= f/with q p+s
and (3.31) is proved. It follows from Theorem 3.1 that

(3.34) [-Ir M .) ---,/-/r (.//; .),

and (3.32) follows from (2.68). [3

4. Existence. We sae and prove an existence heorem for he minimization
Problem 2.4 for monotone materials.

TrlEOREM 4.1. Let Yo Wx’v(f2) satisfyin9 (2.3) and (2.4), So q L---r ($2),
and (Eo,Ho) atisfin9 (2.5) be 9iven. Let be polyconvex, i.e., let it atisf

(4.1) (F, p, re, x) T(F, FX,det F,F p,F. re, x),

with T(.,.,.,.,., x) convex for each x f. (See Ball [3] for the definition of polycon-
vexity in a purely elastic material.) Let T satisfy

(4.2) T(F,Fx, 5, F. p,F. m,x) --. as 6 O,

and suppose that there exist numbers k > O, p >_ 2, q > p/(p- 1), r > 1, and a

function w L (gt) such that

T(F,F x 5, F.p F.m,x) > w(x)+k (]FIp + IF xlq +tir + IF. pl IF. ml2)detF
4-

(4.3)
for every x [. Suppose further that there exists an element (, p,ml) such
that (, p m < o. Then there exists a solution (,, f, n) 1 to Problem 2.4.

Proof. Since is bounded below there exists an infimizing sequence (,, p, m)
/. It follows from Theorem 3.3 that there exists (’, ,) / such that (3.11)-(3.17)
hold. The weak lower-semicontinuity of follows from the convexity of T and Tonelli’s
theorem cf. [9, p.7]). The weak lower-semicontinuity of follows from (3.16), (3.17),
and Tonelli’s theorem. Thus

(4.4) 2’ (,, , rh) _< lim inf .r (r, pJ, m).
So r (,, p, rh) is minimal, and our theorem is proved.

We now prove an existence theorem for the minimization Problem 2.5 for fer-
romagnetic materials. Our result is a generalization of that of Visintin [18] which
considered ferromagnetism of rigid bodies. The proof is very similar to that of The-
orem 4.1, but here we use the additional compactness in m given by the exchange
energy X to compensate for the nonconvexity of the stored energy 3). To do this we
employ the following lemma.

LEMMA 4.2. We consider the function

(4.5) RTM x R x Ft (u, v, x) -, F(u, v, x) e R.
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We assume that F is measurable in x, continuous in its other arguments, and convex
in u. Then if (uj, v) is a sequence of functions on 12 such that

u t in LI(),
v --* 0 a.e in

(4.6)
(4.7)

and

(4.8) F(uJ(x),v(x),x) >_ f(x), F(fi(x),V(x),x) >_ f(x)

for some f E Ll(fl), then

(4.9) f_ F(fi(x), 0(x), x) _< lim inf f_ F(u (x), v" (x), x).

The proof of this can be found in Eisen [10] and Ball, Currie, and Olver [4].
THEOREM 4.3. Let Yo E WI’p() satisfying (2.3) and (2.4), So L--- ($2),

and Ho satisfying (2.5) be given. Let ) be measurable in x, continuously differentiable
in its other arguments, and satisfy

(4.10) ) (F, m, x) ’(F, Fx det F, m, x),

with T(.,.,., m, x) convex for each (m, x) R3 x ft. Assume also that

(4.11) (F, FX, 6, m,x) --, x) as 6 -. 0;

2prthat there exist numbers kl > 0, r > 1, p _> r_-rl, q > p/(p- 1), s > p(r+l)+2r’ and
a function w Ll(fl) such that

(4.12) (F, Fx 6, m, x)

for every x f. Assume further that the exchange energy density satisfies

(4.13) X (F, G) Z (F, Fx det F, G),

where 2 (.,.,., .) is convex and

(4.14)

for some positive constants
such that .(rl, ml < oo, there exists a solution (r,i) e to Problem 2.5.

Proof. As usual, let {,m} be an infimizing sequence for . The growth
conditions (4.12) and (4.14)imply that

Thus, there exists rh WI’s(") such that (at least for a subsequence)

(4.15) m" rh in Wl’S(fl),

and

(4.16) m --. rh in is().



1346 ROBERT C. ROGERS

As before, there also exists " WI’p (") such that

in W1,(12),
F. ,x in Lq(), and
det F det ’ in Lr (fl).

Thus, it follows from (3.32) of Theorem 3.4, the convexity of , (in its spatial form),
and Tonelli’s theorem that

(’, rh) _< lim inf , (F, m).

The weak lower-semicontinuity of ) follows from Lemma 4.2, and the weak lower-
semicontinuity of the other terms follows as in the proof of Theorem 4.1.

As a simple example of an energy density satisfying our hypotheses, consider

(4.17)

( Im14 -)) (F, m, x) )(F, Fx det F, x) --/1
4 m Iml +

IF. ml+ g (det F)

Here g and g are positive constants, and we take to be polyconvex. Thus the
first term represents a purely elastic part of the energy. The second term describes
the pure magnetic part (this would be the energy of a rigid ferromagnetic material
with preferred magnetization too); and the third term ensures that the energy of the
spatial magnetic field is bounded above. We could of course introduce other coupled
terms modeling such effects as magnetostriction.

5. Comments. We conclude with some remarks on possible extensions of these
results.

1. In the linear theory of diamagnet’c materials one assumes a constitutive rela-
tion of the form

M- xH
with X negative but IXI < 1. Thus, while map H M is "monotone decreasing," the
map H -, b where

b=_H +M H +xH
is monotone (increasing).

The results of [15], where we chose h as an independent variable and b as a
dependent variable, depended on the monotonicity of b without regard to m, and
thus applied to diamagnetic materials. In this regard, we note that one should be
able to obtain an existence result for materials for which the map m - is concave
from the results above as long as proper coercivity assumptions are placed on the
entire energy.

2. In ferroelectric materials one usually assumes that the stored energy is noncon-
vex, but that unlike ferromagnetic materials there is no exchange energy. Thus, we
can expect neither the weak continuity found in the problems for monotone materials
nor the compactness given by the exchange energy in the problems for ferromagnetic
materials. It may instead be possible to consider "measure valued" solutions such as
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those considered in the theory of twinning in crystals as developed by Ericksen [11],
and Chipot and Kinderlehrer [7]. The idea here is that while the weak limit of an
infimizing sequence may not minimize a nonconvex energy functional, the Young’s
measure for the sequence (a probability measure whose center of mass is the weak
limit) may represent the physical situation that minimizes energy. It may be possi-
ble to model the microscopic structure of the domains (highly discontinuous regions
of uniform polarization) found in ferromagnetic materials by a macroscopic Young’s
measure indicating the distribution of the domains.
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THE INTEGRAL REPRESENTATION OF THE POSITIVE SOLUTIONS OF
THE GENERALIZED WEINSTEIN EQUATION ON A QUARTER-SPACE*

(MER AKIN"

Abstract. The present paper gives a unique integral representation for the positive solutions to the
generalized Weinstein equation

U + Ux,
Xn -1 Xn

This integral representation is explicitly described in terms of hypergeometric functions. The methods used
are those of potential theory; the technique of Martin plays a particularly crucial role.

Key words, potential theory, Martin boundary, Weinstein equation, integral representation, minimal
harmonic functions

AMS(MOS) subject classifications. 31, 31 B, 31D

1. Introduction. The equation

(1.1) L[u]=Lpq[U] =- Ux.x.+
p

u, ,+qux
Xn Xn

has been treated by Gilbert [1], [2] by integral operator methods, and fundamental
solutions to (1.1) were given by Weinacht [3]. Kapilevich [4] and Celebi [5] have
given mean value theorems for a class of equations (1.1). Hall, Quinn, and Weinacht
[6] have also given some mean value theorems for (1.1). Quinn and Weinacht have
given existence and uniqueness theorems covering all parameter ranges of p and q [7].

In (1.1) if p =0 then the equation reduces to the form Lq[u]=O, which has been
treated in [8]-[12]. The method used by Brelot in [12] is essentially different from
those used in the other papers. He was the first mathematician to treat the equation
tq[tl] "-0 by using Martin’s technique [13]. Brelot described all the positive solutions
of that equation, in terms of an integral kernel given by Huber in [9]. We would like
to use the potential theoretic methods of Martin; however, the problem is significantly
more complicated than the problem treated by Brelot [12], because the symmetries of
a quarter-space are more sparse than for a half-space.

The papers [7] and [11] introduced fundamental solutions for the operator Lp,q.
It will be important to identify the minimal positive fundamental solutions (or, in
other words, the classical Green functions). We do this when p, q < 1 and use the
correspondence principle to identify the minimal positive fundamental solutions if p
or q is bigger than one. (The correspondence principle is as follows: A function u is

1-p xln-q. U is a solution of L, q[ v] 0.)a solution of t2_p,2_q[U --0 if and only if v xn-1
After we have done this we follow Martin’s method in considering the ratio of these
Green functions. Standard results from potential theory tell us how to obtain an integral
kernel describing all positive harmonic functions [13]-[17]. We will also identify the
Martin boundary points corresponding to minimal positive harmonic functions and

* Received by the editors August 20, 1987; accepted for publication (in revised form) December 15,
1987. This research was done while the author was visiting the Department of Mathematics, University of
Edinburgh, Edinburgh, Scotland.

" Department of Mathematics, Faculty of Science and Arts, University of Firat, Elazig, Turkey.
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so obtain a unique representation for every positive harmonic function in the
domain Q"

Q={x: (xl,x2," ,x,,)",x,,_>O,x,,>O}.

Our formula is reasonably explicit.

2. Potentials for L,,q. Let us suppose a function ,p,q(X, ) is given as follows:

-F(k)
o"- sin- O1 sinq- 02 dO dO2r"/ZF(p/2)F(q/2

where

cr Ix 12 +4x,_,_ sin2 + 4x,, sin2

2k= n+p+q-2, p, q_-> 1.

We shall use Ep,q(X, ) obtained from Ep,q as follows"

(2.1) Ep,q(X, )=-P,_q,Ep,q(X, ).

It is already known that (2.1) is a fundamental solution of Le,q with pole [7].
We also know that

--p --q(2.2) Elp,q(X, )= Xn_ X E2_p,2_q(X )

is a fundamental solution of (1.1) when p < 1, q < 1 [7].
We want to describe an integral kernel which will yield all positive harmonic

functions on the Q. To do this we will apply the Martin’s method as described in 13].
To apply the technique found there it is necessary that our fundamental solutions be
potentials.

We need to prove that Ep,q(X, ) is a potential on the quarter-space Q. To do this
it is enough to show Ep,q is a potential for p, q < 1, because the correspondence principle
conserves harmonicity (superharmonicity, subharmonicity) and also preserves the
order structure.

Applying the maximum principle on relatively compact open subsets of Q, we see
that it will suffice to prove that

(x,)-O asx-oQ oroo

where oQ is the boundary of the quarter-space Q.
Let us suppose is a fixed point in Q"

(2.3) lim E.q(X, )- lim xl,,-Px 1-q. lim EE_p,2_q(x, ).
x-oQ oQ x-oQ

It is clear that in (2.3) the first limit is zero. We need to understand the second
limit. We can assume that there is a 6 such that Ix-1 > 6. It is easily shown that

lim E2_p.2_q(X, ) < ’6p+q-’-z.
xoQ

This result shows that in (2.3) the second limit is bounded from above. It follows that

lim Ep,q(X, ) O.
xoQ

In this paper as in Brelot-Collin and Brelot’s article [12] harmonic, superharmonic, etc. are used
relative to L rather than A.
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Now, we need to show

lim Ep,q(x, ) O.

To show this, we use the fact that 6 < Ix-s[ so

0
"p+q-n-2 sin1-p 01 sin1-q 02 dO dO2 - Ix-[P+q--n--27’2

This estimate only holds because p, q < 1. So,

(x, s) < lim -P. x,-qlx- sol p+q-"-2 2lim Ep,q Xn_ "7"i"

We note that the convergence of the right-hand side is uniform in the direction
of approaching o.

Thus, Ep,q(X, ) is a potential in the quarter-space Q for Lp,q if p, q < 1. Con-
sequently, E(x, ) is a potential in the same space for Lp,q if p, q _-> 1. The function
E(x, ) is a Green function and Q, with E, is a Green space in the sense of potential
theory 15].

3. The Martin boundary.
(a) The case where p, q > 1. In the previous part we proved that Ep,q, defined at

(2.1), is a Green function. In this part, we will construct the minimal harmonic functions
for Lp,q by considering limits of ratios of Green functions. In other words, we will use
Martin’s technique. To apply that technique we will prove that the ratio of Green
functions E(x, )/E(xo, ) has a continuous extension to the compact space QUoQU
{oo} as a function of s for any x, Xo in Q. We keep Xo fixed and denote the extension
of E(x, )/E(xo, ) by K(x, ..) where .. 0Q U {oo} and x Q.

Let us find K (x, E)

E(x,sc) E(x,)
(3.1) lim im_= K (x, E).

t- E(xo, sc) E(xo, )
To calculate the limit (3.1) we will treat two cases: .. aQ and .. {0o}. In the

first case, without loss of generality, we may assume that .., the nth coordinate of ..,
is zero in (3.1); otherwise, we merely interchange the last two coordinates, namely,

O)"1, 2, "n--1,

It is easily seen that

/(X, S:) 2p+q-2
I(k) F(p/2) r(q/2) ( P q -2)r"/ r(p) r(q) "Ix-l-. F k,,,p, q, -e-2, -e

where

(81, E2)-- \v’47._-,._,’ -;Y./
and Fa is the function of Lauricella [16]. So,

2P+q-2F(p/2)F(q/2) ( 4’’n-lXn-1)lim E (x, :) ]Xo- .]-2k. FA k, p- , p, q, 0
e--,z ’rr"/ZF(p)F(q) 2’ IX ,.]2

and also

2P+q-2F( p/2 F(q/2 ( -4’’ )lim E(xo, ) IXo-’1-2k FA k, , q ,-lX0._l 0
-*Z .,r"/ZF(p)F(q) -’ p’ q’

]Xo- ..12
Thus we consider lime_,_=/(x, )//(Xo, :).
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It is obvious from the integral representation for p,q(x, ) that the denominator
and numerator are both nonzero and so this is equal to

( 4-x-I )o
(3.2)

x-
K(x, Z).

xo
q,_ ,0

’ Ixo-
Fuahermore, if the (n- 1)th coordinate of , ,_ is zero then it is clear that

(3.3) lim
E(x, ) x- - K(x, =).

ez E(xo, ) Xo-

In the second case, 1 , and by using (2.1), (3.1) a calculation shows that

E(x,)
(3.4) lim 1.

E(xo, )

Now

IX--:l 2 4Xn-ln-, 0,. 4x,,,, 02 ] -’

lim 1’12 +---q-so]T---sin --+/- 1’12 sln [ =lim [ g(x,,)3-2el IX0 l 4XO,_l_ , 02"" 4X,/ . 02 [ el g2;) 1.

This limit is uniform in 01, 0 and it leads us to the result (3.4).
(b) The case where p and q < 1. In this case we can use the correspondence

--p --qprinciple; i.e., a function u is a solution of L2_p,2_q[ u] O if and only if v x,_ x, u
is a solution of Lp,q[V] O.

Note that the transformation is order preserving and so it preserves minimality, etc.
Using (3.1) we take K(x, E) as u and we get K as v where

Kl(x, Xn_

We replace p and q by 2-p, 2-q in (3.1):
1-. xl.-q K (x, =), _, O,(3.2’) x._

p+q--2--n

(3.3’) Xo._, x g Xn-1 Xn
Xo

-p -q(3.4’) x._,. x. 1,

where K(x,E) is defined in (3.2) with the parameters 2-p, 2-q.
(c) The case where p (or q) < 1 and q (or p) > 1. We can use the correspondence

principle in the following form: a function u is a solution of Lz_p.q[U 0 (or Lp,2_q[U
-p -q0) if and onlyifv=x,_.u (or v=x, .u) is a solution ofLp,q[V]=0. Using the

same argument as we did in case (b), we can find
1-p(3.2") x._,K(x, Z)[or x’.-OK(x, z)], =._, e 0,

-q =0,(3.3") -P 2 1--p X
Xon_ g Xn_ or x n-1 n

Xo-
--p --q(3.4") x._" l(or x 1), I1

where K (x, E) is also defined in (3.2) with the parameters 2-p, q (or p, 2- q).

4. The integral representation of the positive solutions of (1.1). Using the Harnack
theorem we readily see that K(x, E) is a locally uniform limit of harmonic functions
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in x and so in turn is harmonic 17]. Thus if/z is a finite positive measure on oQ, and
we see that

(4.1) h(x) f K(x, ..) dtz(..)
Q

is a positive harmonic function on Q.
Letting be a collection of functions E(x, )/,E(xo, ) and 1)= Q, we see that

QUoQU{oo} satisfies the role of in [14] and is the Constantinescu-Cornea
compactification of Q. oQ U {} is the Matin boundary and also is called Matin
space. Following Matin, as described in [14] or in the original aicle by Maain [13],
any positive harmonic function u on Q may be expressed in the form

(4.2) u(x) [ K(x, E) dg(E)
Q

where is a finite positive Radon measure. Moreover, if

0 {]K(x, ) is a minimal harmonic function}

then there is a measure on 0 that also gives u and among measures supposed by
oQ it is unique. This is because the cone of all positive harmonic functions on Q that
are one at Xo is a compact Choquet simplex and so every positive harmonic function
is the barycenter of a unique measure on the extreme points and these in turn are just
minimal harmonic functions.

The following definition is Main’s [13]" A function positive and harmonic in a
given domain is called minimal for this domainif it dominates no positive harmonic
function on the entire domain except for its own constant submultiples.

We wish to identify the minimal harmonic functions. It is evident that 8Q is
nonemptyindeed, it must contain at least one E that does have E > 0; otherwise
we note that in the case p, q < 1 every positive harmonic function on Q (being an
integral combination of such functions) would be zero on the boundary hyperplane
_

> 0. By a scaling argument if K(x, E) is minimal so is K(x, hE), etc. Thus every
E oQ with E, > 0 (or ,_ > 0) is in oQ.

PgoeOSITION. Let us suppose p, q < 1, u > 0 is a solution of (1.1) and u tends to
--p --q-P x,-q and so x,_xzero on the o Q. en u is proportional to x,_ is minimal.

Proo It is already known [6] that

(4.3) u(x) 1--p 1--q f_x_" x. ,_,J(x, )g() dQr

is the unique solution of (1.1) in Q B taking on the boundary values g

lim u(x) g(), x B, Bfx

where

2(r-’x’)F (n+4-p-q) ;o fo"J(x, )
2 p+q--n--4 sin-p 0 sin1-q 0 dO dO,

B {x" Ixl ( r, x (x ,..., x,) e n, X,_l Xn ) 0},

Qr {X" Ixl r, x (x ,..., x,) e ", Xn_l X > 0I.
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X" +Now we need to show that for each x, B
tl--p tl--qu(x’)/x._

(4.4) lim
[]=r- lg(Xtt)/xttl-pn-1 Xnttl--q

It is obvious that

(r-lx’l)/r
!irn (r_ ,,-)-/; 1,

The last limit is uniform in 0,, 02. Thus,

o.P+q-n-4(X’)
lim ,_4(x,,)ro 0

"p+q-

lim o Jo o’P+q--n--4(Xt) sinl-p 01 sinl-q 02 dO, dO2

I--I-.o o o rP+q-’-4(x’) sin’-P 01 sin’-q 02 dO1 dO2
From this result, we can see that (4.4) is satisfied.

X" +In this proof, x, B are any points in B, so (4.4) is true in whole B. Then
we can write the following result"

vl--pvl--qU(X’)/Xn-1 n(4.5) (x,,)/x,,p. x. q 1.

This leads to the following result"

1--p x --q.(4.6) u(x) a"

In (4.5) and (4.6) x, x, are any points in B+ If u(x) is a solution of (1.1) then the
function

is also a solution of the same equation.
This transformation preserves the propey of being minimal (and other propeies

coming from order structure). It is a Kelvin transformation [12], [18]. Using this
inversion we deduce that K (x, ) is minimal for all in

_
0, and hence for

all on the Matin boundary when p, q < 1. In this case we therefore have that any
positive solution u to L,q(U)= 0 is of the form

u(x)= o (x,) d

where g is a uniquely determined Radon measure.
We can transfer to the other cases for p, q by using the correspondence principle.

The appropriate formulae for K(x, ) are given by
(a) (.), (.),
(b) (.’), (.’), (.4’)
(c) (.2"), (."), (.4") wen p < ], g > ] (or # > ], g < ]).

Using Theorem 3 of [6] the kernel gives a unique integral representation for every
positive solution of (1.1).

The cases where p 1 (or q 1) and p =q 1 can be treated easily.

hekleget. The author expresses his gratitude to Professor Terry J. Lyons,
Depament of Mathematics, University of Edinburgh, for suggesting the topic and
for his guidance throughout the development of this work.
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EXISTENCE OF SOLUTIONS TO THE
STOMMEL-CHARNEY MODEL OF THE GULF STREAM*

V. BARCILON-, P. CONSTANTINe, AND E. S. TITI

Abstract. The existence ofweak solutions to the equations proposed by Stommel Trans. Amer. Geophys.
Union, 29 (1948), pp. 202-206] and Charney [Proc. Nat. Acad. Sci. U.S.A., 41 (1955), pp. 731-740] as a
model of the Gulf Stream are established by means of the method of artificial viscosity.

Key words. Navier-Stokes equations, artificial viscosity, ocean circulation
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1. Introduction. In this paper, we examine the mathematical properties of an
equation arising in the theory of ocean circulation. In order to understand the role of
this problem in oceanography, a brief review of the subject is necessary. The first
successful attempt to provide a mathematical description of the mid-latitude ocean
currents was made by Stommel [13] in 1948. He showed conclusively that a Gulf
Stream-like intensification on the western side of an ocean basin could be explained
by the so-called fl- effect. This is the geophysical terminology for the latitudinal variation
of the normal component of theearth’s rotation. Aside from this variable Coriolis
force, the other forces which entered into Stommel’s model were those due to the
pressure gradient, the surface winds, and friction. For the sake of simplicity, this last
force was taken to be proportional to the velocity fields. All the effects of density
stratification were neglected by making the assumption that the ocean was
homogeneous. Finally, by working with vertical averages, Stommel essentially treated
the ocean circulation as a two-dimensional horizontal motion. Somewhat surprisingly,
Stommel’s ad hoc, linear model was shown later to provide an accurate description
of an actual experimental setup [12]. In particular, it is now well known that the
Rayleigh friction terms included in Stommel’s model arise quite naturally from a
consideration of frictional effects near the ocean bottom.

The subsequent work in the field has attempted to overcome the two oversim-
plifications of Stommel’s model, namely, to take into account inertial forces that are
known to be important in the vicinity of the Gulf Stream and to represent more
adequately the complex mixing/dissipative processes. These two broad generalizations
were initiated by Charney [5] and Munk and Carrier 10], respectively. Although these
early papers make use of analytical techniques, the bulk of the recent work in the field
has relied on numerical techniques to study the nonlinear problems arising in the
mathematical formulation of wind-driven ocean circulation models. The papers by
Bryan [4] and Veronis [15], [16] fall within this category.
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In this paper, we study the inertial extension of Stommel’s model, namely

(1 1) eAd/+Od.+R(Od/ OAq Oq

OX OX2 OX2OX---] =f

in a bounded domain I in R2 with Dirichlet boundary conditions. Just as in Stommel’s
paper, is the streamfunction of the vertically averaged horizontal velocity fields.
Hence, Aft is the vertically integrated relative planetary vorticity which we will also
denote by to. The right-hand side f represents the driving due to the curl of the applied
surface wind stress. Each ofthe terms on the left-hand side has a physical interpretation:
the first represents the loss of vorticity by frictional processes along the ocean bottom,
the second the gain in vorticity due to a northern flow (this is the/3-effect), and the
third the advection of vorticity by the circulation. Thus, the above equation represents
the vorticity budget of a column of fluid in the ocean. The parameters R and e arise
as a result of the nondimensionalization of the various fields. Such a nondimensionaliz-
ation can be carried out in several different ways depending upon which process
controlling the vorticity is perceived as being crucial. In the ocean, measurements
suggest that the prevailing balance is the so-called Sverdrup balance in which the
/3-ettect is comparable to the wind curl. This is why the corresponding terms in (1.1)
have unit coefficients. The other terms in (1.1) represent small departures from this
balance. Thus, we consider both R and e as small parameters. They represent, respec-
tively, the importance of inertial and frictional effects relative to the /3-effect. The
interested reader is referred to Pedlosky [11] for a very thorough discussion of the
derivation of this equation.

The main result of this paper is the proof of the existence of weak solutions to
(1.1). These weak solutions are obtained as limits of solutions of auxiliary equations
with artificial viscosity and artificial boundary conditions. Physically, this auxiliary
problem corresponds to the addition of side-wall friction and stress-free boundary
conditions. We derive uniform L bounds for the solutions of the auxiliary equations.
This procedure cannot yield classical solutions because the artificial boundary condi-
tions give rise to boundary layers in the classical limit. Nevertheless, we expect the
solutions to be classical in certain parameter ranges.

The same method was used by Yudovitch [17] in his paper dealing with the
time-dependent two-dimensional Euler equations. This method cannot be extended to
the time-independent Euler equations. Actually, it is known [9] that the time-indepen-
dent Euler equations have no solutions for two- and three-dimensional axisymmetric
domains and generic driving forces. However, because of the presence of the bottom
friction term eAq, the method can be used for (1.1).

Once the estimates for the stationary problem (1.1) are understood, solutions for
the time-dependent version of this problem

with given initial conditions on A$ can be obtained by applying the method of
Yudovitch in a straightforward manner. The fl-effect term does not create any serious
difficulties. We can show that (1.2) has unique global solutions.

The problem of describing the set of stationary solutions is still open. We expect
the solution to be unique only when e is large compared to R.
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2. Preliminaries. Let 1 be an open bounded set of R2 with sufficiently smooth
boundary 011. We consider the system

eto+a--O+R(O ato a
aXl ox= ax= f in,

(2.1)
A= in,

0 on 0,

where f(x), e > 0 and R 0 are given.
In this paper we study the existence of weak solutions of (2.1).
We denote by H() the usual Sobolev spaces of order s and by H() the

closure of C(fl) in the H() norm. We define

to be the negative Laplacian with domain D(A)= H()H(). It is well known
that A- is a compact linear self-adjoint positive operator in L() (cf. [2], [8]). The
spectrum of A consists of an infinite sequence 0 < h < h. of eigenvalues counted
according to their multiplicities; h as n ; the eigenfunctions {w.} provide an
ohonormal basis in L(). Finally, there exists a scale invariant constant c0 such that
] Coh where I denotes the area of . The scalar product and norm in L2()
are denoted by (.,.) and [.[, respectively. A scalar product in H(fl), in view of
Poincar6’s inequality, is

((u, v))= f Vu(x)" Vv(x) dx Vu, v H(),

and the corresponding norm is denoted by [[-[[. The norm in LV() for lp is
denoted by [[. ][. It is known (cf. [2]) that on D(A) the g2(fl) norm is equivalent to
the [A. [norm, i.e., there exists a constant c > 0 such that

Moreover, D(A1/2) H(fl) and II" A’/" I,
The bilinear bounded operator J: H(fl)x H() Ll(fl) is defined as

(2.2) j(O,o)_0O 0o 0O 0o
VO, oeH’(fl).

OXl Ox Ox2

We need the following inequalities that correspond to various continuity propeies
of the operator J.

PROPOSITION 2.1. Let Sl, s, s3 0 satisfy

and

Sl dr" S2 -" S3 1 if si # 1 for all 1, 2, 3

S "[- S2 dr" S > 1 if si 1 for some 1, 2, 3.

Then, there exists a scale invariant constant C(Sl, s2, S3) such that

(2.3) I(J(O, o), v)l<-c(s $2, S3)t (s +s +,’ .3/=llg, ll,_,s.+.,... II,o11.+.<..
The reader is referred to 14] and [6] for the idea of the proof. We also note that

(2.4) (J(4’, to), v)=-(J(to, ), v)

for every q H,+(f), to H+(f), and v H().
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PROPOSITION 2.2. For every q H2(12), to HI(-) and v H(12) we have

(2.5) ((, ,o), v) -(J(q, v), o).

Proof Because of Proposition 2.1 it is sufficient to show that (2.5) holds for
v C(12) and q, to C(O). Let u be the vector (-OO/Ox2, Od//OXl); then we can write

(J(q,, oo), v)= I, v (oo(x)u(x))v(x) dx

(u(x). Vv(x)),o(x) dx.

The following corollary is an immediate consequence of the above proposition.
COROLLARY 2.3.

(2.6) (J(q, to), to)=0 Vq H2(12), to H(12),

(2.7) (J(d/,to),toP)=O /qH2(12), toeD(A), p=l,2,....

Proof Equation (2.6) is a direct consequence of (2.5). Since H2(12) is a Banach
algebra (cf. [1]) we can easily verify that toP D(A), for p--1,2,..., whenever
to D(A). We can then use (2.5) to deduce that

(J(0, ,o), ,o’):-(y(6, ,o’),

while from direct computations

J q, toP), to)=-p(J(q, to), to), p 1, 2,...,

which verifies (2.7), in view of (2.6). Let us note that (2.6) also holds for q C(fi),
to CI(I)), and V6 normal to 012.

3. A stationary problem with artificial viscosity. In this section we consider a
singular perturbation of the stationary problem (2.1) obtained by adding an artificial
viscosity term -,Ato and imposing homogeneous Dirichlet boundary conditions on
to. The artificial viscosity equation provides an approximate solution. Uniform bounds,
independent of the viscosity , will enable us to pass to the weak limit. In this process
the boundary condition on to is lost. The auxiliary problem is:

(3.1a) -,Ato + eto++RJ d/, to) f in 12,
Oxl

(3.1b) -AS+to =0 in12,

(3.1c) q =0, to =0

where v is given such that 0< v< e3/8 and f Loo(12).

on 012,

3.1. Existence of solutions of the perturbed problem. We restate the problem: Find
(to, tp) D(A) D(A) such that

(3.2a) uAto + eto + 0____0 + RJ O, to f
OXl

(3.2b) Aq+to 0.
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It is obvious that every solution (to, ) of (3.2) is a solution to (3.1) in the
distribution sense.

The following a priori estimates of the solutions of (3.2) will be needed.
LEMMA 3.1. Let (to, d/) 6 D(A) x D(A) be a solution of (3.2). Then

I,ol=< Ifl-- K(, A1)(3.3) 11,o11=+
(3.4) ,11 = --< 21fl(, x,
(3.5) IAO] < 41f12

2 K(e, A1),
E

and

(3.6)

where

vlAo 2If] + 2,f2lflK’/( e, a ,) [ 1 +
0)C2 ]gc(-, ,

v3/ee,/ ]f]2K(e, a,)

K(s, A,)= 1+

Proof. Let (to, 0)e D(A) x D(A) be a solution to (3.2). Taking the scalar product
of (3.2a) with we get

(3.7) v(Ato, )+ e(to, s)+ tl, O)+R(J(O, to), O)= (f, 0).

In view of (2.4) and (2.5), and of the fact that (O/OXl, )=0, (3.7) reduces to

Then by Young’s inequality, we can write

E
11,11= 11=+ Ifl +_ I111 =.

2eA1 2

Finally, since 0_-< v -<_ e3/8, we deduce

1111<(2,,,/)1,<>1+ Ifl <. Ifl
=,, 7 I<,> 12-t-.21

If we take the scalar product of (3.2a) with to and use (2.6) we obtain

,..11., I1-+ 11= -(OCslOXl, to)+(f, to)
-< I1,11 I<ol + Ifl I<ol,

and by Young’s inequality

i IIll If[,.,ll,oll+= Io., <__ +-

v(Ato, J)+ s(to, J)= (f, ),

or, because of (3.2b), to

Using first Poincar6’s inequality we can write

-1/2
E [1[12 vito[2+ [fiA1
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From the above inequality and (3.8) we deduce (3.3). From (3.3) and (3.8) we
can easily obtain (3.4). Finally, (3.2b) and (3.3) directly imply (3.5).

To establish (3.6) we take the scalar product of (3.2a) with Ato, from which we
see that

la,o = + II,o = -< I(01]//0X1, ato )1 + RI(J(, to ), ato )[ + ](f, ato)[,

-<-II q, IAto[ + Ri(J(, to), Ato)[ + I(f, Ato)l.
By using (2.3) for sl s2=1/2 and s3=0, we get

lao =/ 11,o =<-- (11 , / rc(.-. 0)II , I1,-(.)11,o I1,-(.)/ Ifl)la,ol.
and by an interpolation inequality, we get

la,o I: + e II,o <-- (11 ,11 + Rc(1/2, 1/2, O)c21l bll’/lla,ll’/:ll,o II’/la,ol’/ + Ifl)la,ol;
hence

-IAI/II’II=--<2 I1,11/ c=(, , O)cNIIC, lAC, ll,oll /lfl Iel.

Making use of (3.3), (3.4), and (3.5), we obtain (3.6).
LZMMa 3.2. There exists at least one solution to problem (3.2). Moreover, every

solution of (3.2) satisfies (3.3)-(3.6).
Proof. One approach is to use the Galerkin approximation method based on the

eigenfunctions of the operator A as in Constantin and Foias [6] and Temam [14] to
show the existence of a solution to (3.2). The crucial point in this approach is to
establish similar a priori estimates to the ones in (3.5)-(3.6) for the approximate
solution.

Another approach is by the Leray-Schauder degree theory. Indeed, problem (3.2)
is equivalent to

(3.8)

where

+K(4,, to)
0

(3.9) K(, to)=( v-’A-’[eto +Oo/OXl4- RJ(’b’ to)])m-lto

By Rellich’s lemma and (2.3), we can show that the nonlinear mapping

K" D(A) x D(A)-> L2(f) x L2(f)

is compact. Therefore, making use of the a priori estimates (3.5)-(3.6), we can conclude
that (3.8) has at least one solution [3].

Remark 3.3. If f C(l)), then every solution (to, @)D(A)xD(A) of (3.2)
satisfies (3.1) in the classical sense, namely @, to Coo(l)).

3.2. Uniform L" bounds for the artificial viscosity problem. In (3.3), (3.4), and
(3.5) we gave estimates for Itol, II$[I, and IA,I, which were independent of v. In this
section we shall derive uniform (i.e., independent of v) Loo estimates for every solution
of (3.2) and for 0< v< e3/8. We recall first the following known result in potential
theory (see, e.g., [7]).
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THEOREM 3.4. Let G(x, y) denote the Green function of the Laplacian operator in
the domain with Dirichlet boundary conditions. Then, there exists two scale invariant
constants Ca, c4 such that

(3.10) IG(x,y)l<=ca(l+llog(A/EIx-y])[) Vx, y, xy,
and

(3.11)
OG(x,y)

OXk

Moreover, since

it follows that

C4 Vk- l, 2, x, y e l), x y.

ok(x) Ia G(x, y)Ab(y) dy,

oG(x, Y)(3.12) | Ab(y) dy.

THEOREM 3.5 (Uniform L bounds). Let (to, d/) D(A) x D(A) be a solution of
(3.2) (or equivalently a solution of (3.1)). en

<_
64 2c42c/2 /2((3.13) []wll= 2e I]f[[ + e3Al/ IflK e, 1)

and

Note that (3.3) provides a uniform upper bound for [w I.
Proof Let 6>0. We denote by B,(z) the ball in R that is centered at z with

radius 6. From (3.1a) and (3.13) we have

V(x)= a VG(x, y)w(y) +,

which, because of (3.11), implies

]v (x)[ 2c4 f ](y)
de,Ix-y

or

Therefore

(3.15)

]Vq(x)]<_-2c4
x yI dy+ x yI dy

elBa(x) \B(x)

Using H61der’s inequality, we see that for odd integers p _-> 3

Ivq,(x)l<--2c4 I1o11+1 Ix-yl-+1/ dy +--Ial’/

17 I(X)] __< 2C4 {][to[[p+l(2,.iT)p/p+lt(p-1)/(p+l)..} to..l
tp-1/p+ 2C41f1,/2 IolIlvq, (4c4)11o11,,+, + T
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In order to get an estimate for I1o11/,, we multiply (3.1a) by toP(x) and integrate over
f. This leads to

-P fo Ato(x)toP(x) dx + e ff toP+l(x) dx + R(J(, to), toP) -( --x1x1, toP) + (f, to),

or, after integrating by parts and using (2.7), to

pp fa lVto(x)lZtop_l(x) dx + e lsa top+l(x) dx ( 0
Using H6lder’s inequality as well as the fact that p is an odd integer, we conclude that

p+ll < IIvll II,oJJ / Ilfl}+,ll,oll p+l,
or

(3.16) 11,oll "+ +’
,+, -< (llvlloolal ’/, + Ilfll,.+l)lla, llvP+,.

Substituting (3.15) in (3.16) we see that

(3.17) 11,o I1+, =< IIf I1+, + (4,rc4)lnl’/+’-’/+)ll,o I1+, + 2c411 (p+3)/=p+a) [’1
6

If we choose 6 (e/8"17"C4)]-1-1/(p-I), then (3.17) implies that

2 477.c4 (8 7r4 )p+l/p-1(3.18) II.,ll,+l--<-Ilfll+,+ lal ’/= lall/+ll,ol.

Passing to the limit as p- , we conclude that

(3.19) II,oll <2 ilfll=+32=c41al,/=l,ol2

After replacing I111 in the above expression by CO/ and using (3.3), we obtain (3.13).
In order to derive (3.14), we observe that (3.15) holds for every 6 > 0. Therefore

(3.20) Ilvq, ll-< (4c4) Ilto I1 -k- 2c41-[ 1/2 I1.
6

Minimizing the right-hand side, we deduce that

[Iv I1 --< 42-c4[f1/44 o, 1o I,
and after replacing I1 by c0A-l, we obtain (3.14).

4. Existence of weak solutions. Let { ’k}k= be an arbitrary sequence of real num-
bers, v (0, 153/8) for k 1,2,. ., and such that ,0 as k. Let (to, 0) be a
sequence of solutions to problem (3.1) corresponding to u=uk for k= 1,2,...,
respectively. By Lemma 3.2, we know that such sequences exist.

TIEOREM 4.1. There exists a b D(A) and an to L(I) that are weak solutions

of the stationary problem (2.1), i.e.,

15to++RV (tou)=f in 1,
Ox

(4.1) A to in 12,

4’ 0 on OFt,
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where u (-Od//Ox2, Oq,/Oxl). Furthermore, , and to satisfy

(4.2) [to[ < 21f---l K1/2(e, A1)
8

2 64rr2c24c/2 1/2((4.3) to ll <- -e Ilflloo+ eA3 I/2 [flK e, 11t,

(4.4) IIv q, I1 <-- 4c4c 4]-1/%/11 ,, 1,, I.
Proof Let (tOk, qk) be as mentioned above. From (3.5) we know that

IAq, < 2If___! K 1/2(e, 1)
E

Therefore, there exists a subsequence, say {{/tkl}, that converges weakly in H2(f) to

@ e H2(-), and by virtue of Rellich’s lemma, q’k, converges strongly to q, e Hl(f);
hence @ e D(A). From (3.13) we know that

64,rr2c]c/2
I1%11 <2 Ilfll+ Iflgl/2(e,

e e3A

and therefore

(4.5) IIWlllp I1/( Ilfll
647r2c]c/Z )E3/. 11/2 IflK 1/2(E,/ 1) l/p 1, 2, ".

By means of (4.5) we can inductively find, for every p 2, 3,... a subsequence
{tokp} of {tok} that converges weakly in LP(F) to the same limit tog LP(f) for every
p 2, 3,. . In particular, we have

o --< lim inf o qp 2, 3,...
kp

which by (4.5) entails

(4.6) IIoollp<=lll/P( Ilfll+
r’2"1/2 )64rr2.4.o

e’a l/ IflK’/(e, a,) vp 2, 3,’’’

Passing to the limit, we deduce (4.3). The derivations of (4.2) and (4.4) follow
simply from (3.3) and (3.14). We will omit their proofs.

In conclusion, the diagonal subsequence {tokk} converges weakly to to e LP(f) for
every p 2, 3,. ., and {q%} converges weakly to q, e H-(f) and strongly in Hi(O).
Because Vq% converges strongly in L2() to 7 and tok converges weakly in L(Iq),
it follows that the product (V q%)(tok) converges to (7 q,)(to) in the distribution sense.
Since {tokk, q% } solves (3.1) for v uk, by passing to the limit we can verify that (to, q,)
solves (4.1).

Up to now, the parameter R did not enter at all in our estimates. In the next
theorem, we give an upper bound to the "diameter" of the set of stationary solutions
of problem (4.1).

THEOREM 4.2. Let (11 tol) and (i//2, 0)2) be two weak solutions to problem (4.1)
satisfying (4.2)-(4.4). Then

,,,.2 ,.,2 2 )4R 64, 4o
(4.7) IIq’l-q’2ll<--lfl2K(e’al)e Ilfll+ g3All/2 ITIK /2(e,a,)
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or

Proof From (4.1) we have

zx(,/,1 4,9 +
a

0x-- (q/1 + 2) + R div ((.Oltl (.02112) 0,

OX--I (/1- 2) -" R div (w,(u,-u2) + (o,- co2)u2) 0.

We form the scalar product with (Pl-/2) and, since bl-q/2e H(), we can integrate
by parts and obtain

, I//l + R(u2( .Ol (.02), V( i//1 /.2)) 0.(4.8)
From (4.8) we get

and hence

(4.9) 114’l-
As a consequence of Lemma 3.1 and Theorem 4.1,

I1 ,=11-<-21fl: g(
Substituting this expression and (4.3) in (4.9) we arrive at (4.7).
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MULTIPLE TRAVELING WAVES IN A COMBUSTION MODEL*

S. P. HASTINGS’

Abstract. A model reaction scheme, consisting of two simple competing reactions A-> P1 and A-> P2,
is studied using Arrhenius kinetics with a cut-off to handle the cold boundary difficulty. It is shown that
for appropriate values of the parameters in the problem, the model equations have three distinct traveling
wave solutions. The middle solution, presumably unstable, is obtained from a singularly perturbed problem
by rigorous matching.

Key words, combustion, traveling waves
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1. Introduction. Recently there has been progress in the mathematical analysis of
planar fronts in premixed combustion, thereby putting some rigorous buttressing
around the walls of high activation energy asymptotics. For example, there are existence
theorems for the simple reaction scheme R--> P, where R is the reactant and P the
product, and also results justifying the inner and outer expansions developed by formal
methods 1], [5], [8]. Similar results have been obtained for a chain reaction with two
steps [7]. However, these models do not support strict traveling waves, unless artifical
modifications are made in the usual Arrhenius reaction rate, because of the cold
boundary difficulty [2]. By introducing intermediate variables, or radicals, this problem
disappears, but the mathematical difficulties are considerably greater. Again, some
progress has been made in proving existence of a flame [4], but much remains to be done.

One phenomenon that has not yet received a rigorous treatment is the possibility
of several flames existing under the same conditions of temperature and concentration
of the unburned mixture. Formal analysis was carried out by Clavin, Fife, and
Nicolaenko [3], for the case of two competing reactions, with the scheme

(i) R -> P1,
(ii) R --> P2.

It was found that if the activation energies and rates of heat release of the two reactions
are ordered correctly, then for a range of unburned reactant concentrations, two flames
traveling at different speeds are possible. The relevant equations actually have three
distinct solutions, but only two of these seem to be stable and therefore representative
of real flames.

This is perhaps the simplest model from premixed combustion where such multi-
plicity is found, and our purpose here is to demonstrate rigorously the existence of at
least three solutions. A defect in our result is that the simple model (i)-(ii) again suffers
from the cold boundary difficulty, and the reaction rate term must be modified in order
for any solution to exist. We hope eventually to combine the techniques used here
with those from [4] to obtain a multiplicity result for a reaction scheme involving
intermediate species and unmodified Arrhenius kinetics.

2.1. Statement of the result for simple kinetics. Let kl(T) and k2(T) define the
temperature dependence of the reaction rates for (i) and (ii), respectively. It is assumed
that there is a cutoff temperature T_, below which kl and k: are both zero. Further,

* Received by the editors September 21, 1987; accepted for publication January 11, 1988. This research

was supported by the National Science Foundation.
f Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.
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it is assumed that there is a crossover temperature T* such that kl(T)< k2(T) for
T_ < T < T* and kl(T)> k2(T) for T> T*. This results in expressions of the form

ki(T) ei(T-r*)/Tr* for 1, 2, and T> T_

where 01 > 02>0. (It is convenient, but not necessary, for us to assume that both
reactions are cut of[ at the same temperature.)

By appropriate rescaling, the differential equations become

(1) Ley"- y’ + Dykl(T) + Dyk2( T),

(2) T"= T’- QiDyk( T)- Q2Dyk2( T),

where Le, Q1, and Q2 are given positive constants and D is an adjustable parameter.
The boundary conditions to be considered are

(3) Y(-) =Yu, T(-) =0

and

(4) y(c) =0, T’() =0,

where yu > 0 is given. It is easily shown that the conditions (4) imply that limx_ T(x)
exists. However, this number, denoted by Tb for "burned state," is not specified ahead
of time.

By a "solution" of (1)-(4) we mean a triple (D, y, T) where y and T satisfy the
equations for the given value of D.

THEOREM. Suppose that Qyu> T*> Q2yu. For any l with 0</. < 1, there is a
O* such that if 0*<- 02 <- iO, then there are at least three distinct solutions of (1)-(4).

2.2. Preliminary calculations and outline of proof. Henceforth we shall always
assume that/z has been chosen and that 02 -</0. We use a shooting method, starting
from x 0, where x is the independent variable. We assume always that T(0)= T_,
T’(0) T_. Therefore T(x)= T_e for x-<0, and T automatically satisfies the correct
condition at -c. Also, if y(0) y’(0) / y, then y(x) y’(O)e +y for x _-< 0, and y also
satisfies the desired condition at -m.

LEMMA 1. Let

F= {(D, y’(0))ly decreases on (-c, ) and y(+)=0}.

Then F contains a continuum y, which, for any D > _D > 0, connects the line D D with
the line D D.

The proof will be given in 2.3.
Let A denote the point (D, y’(0)). We assume from now on that A lies in y. The

problem is to choose this point so that T’(c)- 0. For each D > 0, let

7o {(D, y’(O)) ,ID D}.

We now define two subsets of the continuum 7"

A {Alfor some x > 0, T’(x) < 0}

and

B {Alfor some x > 0, T(x) > T1 Qly,}.

The following results will also be proved below.
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LEMMA 2. IfD is positive but A does not lie in A [_J B, then the corresponding solution
satisfies (1)-(4).

LEMMA 3. The sets A and B are open and disjoint.
LEMMA 4. IfD is sufficiently large (depending on 01 and 02), then Yo c A and T’

becomes negative before T T2 =- Q2yu, while if D is positive but sufficiently small, then
yo c B. Furthermore, there is an > 0 such that for sufficiently large 02 and 02 <- IzO1,
T’ cannot have a zero at a point where T* 7q < T < T* rl/ 2.

LEMMA 5. For each sufficiently large 01, the set A is a disconnected subset of 3/with
at least three boundary points in y.

Lemma 5 is by far the most difficult of these results to prove. Lemmas 2-5 imply
that there are at least three points in 3/which do not lie in either A or B, and each of
these corresponds to a solution of (1)-(4). Hence they imply the truth of our theorem.

2.3. Proofs of Lemmas 1-4. The first assertion of Lemma follows from a straight-
forward shooting argument. We observe that y and y’ cannot vanish simultaneously,
unless y is identically zero. Also, if y’=0 and T> T_, then sign (y")= sign (y). This
implies that the planar set

l-l= {(D, y’(0))lD > 0, y’(0)> -yu,

and y’(x)> 0 for some positive x}
is open and disjoint from the open set

A {(D, y’(0))ID > 0, y’(0) > -y,,

and y(x) < 0 for some x > 0}.
Furthermore, for fixed D>0, if y’(0)> 0 then (D, y’(0)) lies in , while if y’(0)

is sufficiently close to -y,, then this point lies in A. Lemma now follows from a
result in topology.

PROPOSITION [6]. If S is a square and P and Q are disjoint open sets containing,
respectively, the right and left sides of S, then there is a continuum connecting the top
and bottom of S within S and this continuum lies in the complement ofA B.

Lemmas 2 and 3 are easily proved, and we omit the details.
The proof of Lemma 4 is a little harder, and requires the use of some techniques

to be employed for Lemma 5 as well. Integrate (1) and (2) from -o to x, using the
boundary conditions (3), which we know are satisfied by our choice of T(0), T’(0),
and y(0) as a function of y’(0). We obtain

Ley’(x) y(x)-Yu + a(x)+ fl(x),

(6) T’(x) T(x)- Qla(x)-

where

a(x) ff Dy(s)kl( T(s)) ds

and

(x)=fDy(s)k2(T(s))ds.
It is obvious from (6) that T’(x)<-_ T2 as long as T <_- T2, so we can find an xl > 0

such that T(xl) <-_ Tz + T_)/2 for any A y. (Recall that T(0) T’(0) T_ < T2.) When
we let D- ce, with A remaining in y, there are two possibilities: either y(xl)O, or
there is a 6 > 0 and a sequence of D’s tending to c such that y(xl)>-_ 6. In the latter
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case it is clear that Dykl(T) tends to infinity uniformly on [0, xl], which implies that
T’ becomes negative. In the former case, y(xl) and y’(xl) must both tend to zero. From
(5) we see that a(Xl) +/3(xl) Yu. Then, from (6),

Qla(Xl)+ QEfl(Xl) > QE(yu e) > T(xl),
for some small e > 0 and sufficiently large D, which again implies that T’(Xl)< O.

The assertion that if D is small then YD c B is easier and we omit the proof. For
the last statement, suppose that T’(xo)--0. From (6), Qla(Xo)+ Q2fl(Xo)- T(xo) and
a(Xo)+ fl(Xo) < Yu. Since T is increasing up to Xo, fl(Xo)/a(Xo) >- k2( T(xo))/kl( T(xo)).
The latter ratio tends to infinity with 02 if 02 <-/x01 and T(xo)< T*-6, for any fixed
6. Combining these shows that for some small r/ and for large 0:, T(xo) <- T*-ft.

2.4. Proof of Lemma 5 for a special case. We begin by discussing a restricted set
of parameters in order to concentrate on the main idea of the proof. Later the extension
to a full range as described in the theorem will be covered. Our assumption for the
moment is that

(7) T2 < T* < T1 + T2)/2.
There are several steps in this proof, as given in the following additional lemmas.

LEMMA 6. Fix D D*, an arbitrary positive number. Then for sufficiently large
and 02, chosen independently of A in yo*, and 02 <= lz01, A lies in the set A, but T increases
to above T* before T’ becomes negative.

Proof This is the key result. Use is made of (5) and (6). Let

Q(x) Q,a(x) + Q:fl(x).

Roughly, it is observed from (6) that T’ becomes negative when
exceeds T. From (5) it is seen that a(x)+fl(x)-yu, as x- oe. As long as T< T*,
is large, so Q cannot grow much above Q:y, T:. The type of solution described in
Lemma 5 is only possible if T increases beyond T* in such a way that a/fl becomes
large enough for Q to exceed T.

Reference must be made to a certain limiting solution of (1)-(3). Let Yo and To
be the unique solution to (1)-(3) when D 0 such that yo(x) 0 when To(x) T*. Thus,

yo(X) -y,e(x-’c*/e + y,,

and

To(x) T_e

where x* log (T*/T_).
LEMMA 7. For any fixed positive D, T To uniformly in [0, x*] and uniformly in

y as long as D is held constant, as O: c.
Proof It is easy to see that T(x)< To(x) and T’(x)< T(x) for all x > 0. If the

result is false, then there must be a 6 > 0 such that for a sequence of 02’s tending to
infinity, T(x) <-_ T* 6 on [0, x*]. Then, however, k(T(x)) and k2(T(x)) -. 0 uniformly
on this interval. The initial conditions of T are the same as those for To, irrespective
of 01 and 02, and A. It follows that T must tend to To as claimed.

COROLLARY 1. a(x)- 0 and fl(x) 0 as 02-, uniformly on [-oo, x*] and in y.
Proof The functions a and /3 are nondecreasing, with derivatives bounded by

Dyu as long as T_-< T*. The result follows from (6) and Lemma 7, since T To.
In the following result, D is still held constant.
LEMMA 8. As 02 o, y(x) yo(x) uniformly on [0, x*].
Proof We first show that y’(0)- y(0). First suppose that there is a 6 > 0 such

that, for arbitrarily large values of 0:, y’(0)<-y(0)-6. From Lemma 7 it follows that
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the ki(T(x)) tend to zero uniformly on compact subintervals of[0, x*), and this implies
that y becomes negative for sufficiently large 02, because the solution of y"-y’,
y’(0) y6(0) 6, y(0) y’(0) + Yu becomes negative on the interval [0, x*]. This contra-
dicts the way y’(0) is chosen.

Next, we suppose that for some 6 > 0,

y’(0) _-> y(0) + 6,

for an unbounded sequence of (positive) 02’S. Then for these 02’S
(8) y(x*)>-6.

Also, Y’I Yu. Hence we see that

(9) y(x)>=6-y,(x-x*)

on I [x*, x* + 61], where 61 6/yu.
LEMMA 9. Under our present assumptions, at least one of the terms Dy(x)ki(x) is

unbounded on the interval 12 Ix*, x* + 61/2], that is, max,l
Proof Suppose not, and there is an M such that [Dy(x)k(x)] <- M on I2, for each

i. Then on this interval IQ(x)[ _-< o(1)+ Ml(X-X*), where M1 m(Q1 + Q2) and where
o(1) is a term which tends to 0 as 02 oo. (We use the corollary above.) From (6) it
then follows that unless T’ becomes negative there is an e > 0 such that for large 02,
T(x) >= T* + e on I3 [x* + 61/4, x* + 61/2]. However, this implies that kl(T)
uniformly on this interval, and this with (10) contradicts the assumption that IDyk[ <- M
on 12

COROLLARY 2. For at least one i, Dyk(T)oo as 0oo, uniformly in Ix*+
61/2, X* + 61].

Proof This follows because d(yki(T))/dx is bounded below.
This corollary, with (9), leads immediately to the conclusion that y’ becomes

positive. This is a contradiction, and so we have proved that y’(0)--> y(0), which is
Lemma 8.

In fact, what we have shown is that (8) is impossible for large enough 02. This
proves the following lemma.

LEMMA 10. As 02 - 130, y(x) - yo(x) uniformly on [0, x*], and y’(x) y’o(X) uni-
formly on any compact subinterval of [0, x*), for a fixed value of D, and A Yo.

Since y(x*)= O, y’(x)< 0, and y(x)> 0 for all x, we have demonstrated that there
is a "corner layer" at x for large 0_ and fixed D. The following limits are all uniform
in ’)/D*

LEMMA ll. lim_o lime_oo y’(*-p)-y’(* + p) -y.
Proof. This follows from Lemma 8, because y)(*)=-y.
COROLLARY 3. lim_o lime_oo {(a + fl)l.+- (a + fl)l*-} Y.
Proof. This follows by intesratin8 (5) from * p to * + p and usin8 the definitions

of and ft.
LEMMA 12. limo lim infe_oo a(* + p)/fl(* + p) >-- 1.

Proof This crucial result requires several steps to prove.
(i) T(x*) - T* as 02- o0. If not, then there is a 6 > 0 and sequence of 02’s tending

to infinity such that T(x*) <- T*- 6. Then T(x)<-T*-6 on [0, x*]. But this implies
that each ki(T(x))-.O uniformly on [0, x*], which in turn implies that T(x*) does
tend to To(x*), a contradiction.

(ii) As 02--> , a(x*) 0 and fl(x*) O. Choose some e > 0. Then there is a 6 > 0
such that T-<T*-6 on [0, x*-e], for all large 02. Then a(x*-e)-*0. Also,
a(x*)<=a(x*-e)+ eDy, because T(x*)<-_ T*. The proof for/3 is the same.
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(iii) There is an > x* such that T()= T*, and x* as 02 o. For each 6 > 0,
T’(x*-6) T’o(X*-6). Also, T’o(X)>= T_ and T">= T-QID-Q2D as long as T<= T*.
Therefore T crosses T* near x*.

(iv) As 02, c(:)0 and /3()0. This is shown in the same way as (ii).
Lemma 12 now follows because 01_>- 02 and T(x*+p)> T* for large 02 and any
given p.

LEMMA 13. limp_o limo2-. Q(x* + p) > T*.
This follows from Lemmas 8 and 12, Corollary 3, and inequality (7).
In fact, for large 02, both a and /3 remain about constant beyond x*. More

precisely, we have Lemma 14.
LEMMA 14. For any p > 0, lim02_ (a (x) c (x* + p)) 0 and limo:_, (/3 (x)

fl(x* + p)) =O, uniformly in [x*+p, o). Furthermore, a(x* + p)+(x* + p)-> y,.
Proof The second assertion was already proved. The first assertion follows because

a and/3 are nondecreasing, and from (5), because y() =0.
COROLLARY 4. limo_.(Q(x)-Q(x*+p))=O uniformly on [x*+p,), and

lim0_. Q(x*+p) exists and is greater than T*.
The final step in the proof of Lemma 6 for the special case under consideration

is to solve the differential equation (6) starting at x x*. We obtain

T(x) e-*[ T* Q(x* + p + O(p + o( 1 + O( e

for small p and large x as 02 c. The desired conclusion that T’ becomes negative
for sufficiently large 02 follows.

The remainder of the proof of Lemma 5 is relatively routine, and we merely outline
the steps. Fix some small 6 < T*-T2. For T<= T*-6, k2!k is small for large 02, if
02 -<_/z01. Therefore the second reaction (ii) dominates. It is not hard to show, using
simple shooting, that this reaction supports a traveling wave, with final temperature
Tb T2. For large 02, we can show that the pair of reactions supports .a flame with Tb
close to T2. More precisely, we have seen that if D is sufficiently large, then A A and
T’= 0 before T-- T. In particular, consider some unbounded component yl of A. By
Lemmas 2 and 4, yl is entirely contained in the region D > D*, since the point where
T’= 0 depends continuously on initial conditions and cannot jump from below T*-r/
to above T*. Some point of YD* defines a second component 3’2 of A, separated from
yl in y. If D is sufficiently small, then A B. Therefore 3’2 has at least two boundary
points, one with D > D* and one with D below D*. Any boundary point corresponds
to a solution of (1)-(4). Suppose that there are only two boundary points of 3’2, and
let p be the one with D > D*.

LEMMA 15. The point p is not a limit point of the set y.
Proof p is a limit point of points in T2, and all these points correspond to solutions

where T has a maximum above T*. Therefore p corresponds to a solution such that
T(o)-> T*. It follows that nearby solutions must also reach at least T*-r//2. This is
impossible for points in y.

It follows, therefore, that y has a boundary point different from any boundary
point of 3’2. This proves Lemma 5 and our theorem in the special case.

2.5. The general case. We wish to remove the restriction (7), and allow any T*
between T and T2 Q2yu. This is accomplished by improving the estimate on a/.
In order to achieve a sufficiently large ratio a!/3, it is clearly necessary that T increases
beyond T*. The statement to this effect in Lemma 6 must now be more precise.
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Lemma 16. Let K (( T T2)/( T1 T*)) 1. Choose a number A so that

e;(1-) K.

Then for sufficiently large 02, T-T*)/ TT* must exceed A/ 01, at some x** such that
x** -> x* as 02 -> o. Furthermore, a(x**) -> 0 and fl(x**) -> 0 as 02 -> c.

Proof This improved estimate is obtained by modifying the argument for
Corollary 1 of Lemma 7. The derivatives of a and fl are bounded independent of 01,
for fixed D, as long as T- T*)/TT* _-< A / 0. (Here A is fixed as above, while 0 -> .)
Therefore the same reasoning as used in Corollary 1 yields" this improved result.

Now all the arguments subsequent to Corollary 1 are the same, if x* is replaced
by x**. Note that

kl/ k2 e"x -)

for x _-> x**. Therefore, for given p > 0 and sufficiently large 0, a(x** + p)/fl(x** + p) >=
K. The definition of K, and the further result that (a +/3)1**+ y, as 0 , imply
that Q(x**+ p)> T* for sufficiently large 02, and the result follows as before.
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MAXWELL EQUATIONS IN POLARIZABLE MEDIA*

BERNARDO COCKBURNt AND PATRICK JOLY"

Abstract. The resolution of Maxwell equations in polarizable conductive media led to the resolution
of a linear integrodifferential system. A method for the numerical approximation of this system was proposed
in lB. Cockburn, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 843-852]. Here the mathematical results that
justify this method are given.
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Introduction. In [2], Cockburn proposed and described a method for the numerical
approximation for the solution of the following integrodifferential system:

(0.1)1

From both mathematical and numerical points of view, the main difficulty lies in the
treatment of the nonlocal time-convolution operator appearing in (0.1)2. Such a system
arises when we consider the propagation of an electromagnetic field (E,H) in a
one-dimensional conductive and polarizable medium. (E, H) satisfies the Maxwell
equations that can be written in the space-frequency (x (x, y, z), o9) domain as follows:

curl :(x, o9)= i/xo9 H(x, o9), curl H(x, o9)= or(x, og):(x, o)

(here : and H denote the time Fourier transforms of E and H).
The function or(x, o9) is the (complex) conductivity ofthe medium. The dependence

of r on the frequency o9 is determined by the polarizability of the medium (see Diaz
[5] or Goldman [6] for further details concerning the physical model).

One of the most classical polarization laws is Warbourg’s law, which corresponds
to the formula

(0.2) o-(o9) tro((l+A(icc)l/2)/(l+(icc)l/2)) (Re (Zl/2) > 0).

If the data are independent on y and z it can be shown that the fields E and H
can be expressed as follows:

E(x, t)= E(x, t)fio, H(x, t)= H(x, t)eo.

Assuming that

o’(x, o9)= o’oo(x) +-- h(x, t) e -i’t dt,

we then easily show that the pair (u, v)= (E, H) is a solution of the system (0.1).
Of course, for the two- and three-dimensional cases, the fields E and H are solutions

of an integrodifferential system analogous to (0.1) and our analysis will still be valid.
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For the sake of simplicity, in this article we will only present results concerning the
system (0.1).

The idea developed in [2] for treating the convolution operator consists in
approximating this nonlocal operator by a local one. This can be achieved by
approximating the kernel t--> &l(x, t) by a sum of decreasing exponential functions,
or equivalently, by approximating the time Fourier transform rl(x w) of this kernel
by a sum of simple rational fractions.

More precisely, if we approximate tr(x, w) by the following function:
bk(X)

(x) +
k=l 1 + iak(X)tO’

(0.3)
bk(x) > O, ak(X) > O, k l, 2, n,

then, as will be proved in 2, the system (0.1) can be approximated by the new system

Ou Ov
/x+=0,

Ot Ox

(0.4) o’v + , fk + O,
k--1

ak--/fk bkU, k 1, 2," ", n,

where the functions fk are auxiliary functions related to the approximate kernel (0.3).
Thus, we have replaced a system of two integrodifferential equations by a system

of (n / 2) differential equations, the numerical approximation of which is now classical
(see [2], [3]).

In this article, our aim is to give some theoretical justifications of this approach.
In 1 we establish some preliminary results about the time convolution operator. In
2 we give the mathematical analysis of the system (0.1) (existence, uniqueness,

regularity, and continuity results with respect to o-).
Finally, in 3, we provide a complete justification of our method in the case where

the polarization is given by Warbourg’s law (0.2). More precisely, we give the following:
(1) A constructive process for obtaining the approximate polarization’s law; and (2)
An error estimate for the approximation of the solution of (0.1) by the solution of (0.4).

1. Mathematical properties of the convolution operator. Let us introduce the follow-
ing notation. For I , _P (I) (1 -< p < +co) will denote the space of Lp functions with
complex values and LP(I) the subspace of .P(I) of functions with real values. We will
identify _P(+) with the subspace of functions f(t) in _P() that are 0 equal for <0.
By we will denote the Fourier transform in _() defined for regular functions u(t)
by

(U)(W)= u(t) e-i’t dt.

( is an isometry in _(R).)
As a first step, we assume that the convolution kernel r does not depend on the

space variable x and we study the convolution operator formally defined by

(1.1) (dpu)(t)=tru(t)+ rl(t-s)u(s ds.
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1.1. Study of the operator
1.1.1. The class of admissible polarization laws. We introduce the following set of

complex functions:

(1.2) E(E)- {r(w)’E-+C satisfying (1.3), (1.4)},

(1.3) Zl(o’ l(t))+ L
1 I+,X (+) Vw (w)=+_ (t) e-’’dt,

(1.4) 3,6+ V e((w))>,>O.

It is easy to verify that Z() has the following propegies"
(1) Z() is an open, convex subset of the space C() of complex functions

that are continuous and bounded (with the L norm).
(2) For any in E(), we have the following:

I111>*

lim (w) ,
(-) (),

I()l e(q()) ,.
1.1.2. The operator ,. We introduce the linear operator for e ()"

&.()(),
u() v()= (u)(),
V(w) (w) U(w) a.e.

Using the propeies of it is easy to obtain the following Theorem.
THEOREM 1.1. is a linear continuous operator in (), with continuous inverse. Moreover, we have

vvt() ,llvlle(&U, u)e*llull.
COROLLARY 1.1. We have the following estimates"

1.1.3. The operator & in (). For every

Since the operator is unitary, we clearly have the following theorem.
THEOREM 1.2. 4 is a continuous linear mapping in _2(). ch, is invertible and ch

is continuous. Moreover,
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Using the properties of the Fourier transform with respect to the convolution and
the fact that t is a causal integrable function, we easily establish the following theorem.

THEOREM 1.3. For any u in _2(), v dpu is given by

v(t) croou(t) 4- [ ff(t- s)u(s) ds.
d-

Knowing that c is a real function we deduce the following corollary.
COROLLARY 1.2. b is a bijective operator from LE(E2) to itself It maps _2(E+) to

_2(E+) and when u belongs to _2(+)

VuL2(+) (dpu)(t)--Croo(t)4- ’I(t--s)u(s) ds.

In this last formula, we can see that when the function u is causal, the value of
bu at time only depends on the values of u in the interval [0, t] (we then say that
the operator b is causal). This allows us to define the operator b on L2(0, T).

1.1.4. The operator , on L(0, T). We now define

th L2(0, T) - L2(0, T),

qbu( t) o’oou( t) + ,(t- s)u(s) ds.

The main result of this section is the following theorem.
THEOREM 1.4. th is a linear, continuous, bijective mappingfrom L2(O, T) to L2(O, T),

with continuous inverse . Moreover

Io/ Io1 Io/(1.5) Vu L2(0, T) r, [u(t)12dt <- chu(t)u(t) dt - 0"* ]u(t)]2 dt,

Proof of (1.5). Let u be in L2(O, T). We define the function u*(t) in L2() by

u*(t)=u(t) ift[0, T],
(1.6)

u*(t) 0 if [0, T].

Now we set

v bCu L(0, T), v*= thoU* L2([).
Since 4 is causal, we know that

(1.7) a.e. [0, T] v*(t) v(t).
From Theorem 1.2, we have

cr.( f+ lu*( t)[2 dt) <- I+ u*( t)v*( t) dt <- tr*( I [u*( t)[2 dt)
But, thanks to (1.6) and (1.7), we have

u*( t)v*( t) dt u( t)v( t) dt,

lu*(t)] dt lu(t)] dt.

Then (1.5) follows immediately.
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Remarks. It is clear that the inequalities (1.5) still hold if we replace T by any
in the interval [0, t]:

Io
Note that the essential assumption to obtain the propeies of ellipticity for & is

e(()) , > 0

Finally, let us give a propey of the operator with respect to time derivation.
THEOREM 1.5. For any function u in HI(0, T), we have

d (u) + u(O) in ’(0, ).

This identity is easily obtained in the sense of distributions. Note that this equality
makes sense since Hi(0, T) C(0, T) and e Ll(0, T), so that u(0) belongs to
L(0, T) and thus to N’(0, T).

1.1.. Cttfeg . (N) is a metric space with the distance
induced by the L-norm

IIq,- q[{ sup Iq,(w)- q(w).

We now consider the mapping

:() 2(L:(0, r)),

Then we have Theorem 1.6.
THEOREM 1.6. e application is a contraction from Z() onto (L:(O, T)):

using causality and Plancherel’s theorem.
Now we can consider the case where q is also a function of the space variable x.

Then we consider the operator formally defined by

(u)(x, t)=(x)u(x, t)+ (x, t-s)u(x, s as.

Notation for 1.2 and 2. a ]0, +m[; x
denote the usual scalar product and norm in L(a).

I.ZI. Te class (; N) f ssle lrt ls. We now introduce the
following set of functions:

(a; =l:axc/(.a and (1.9)},

(1.8) (,)eL(a)xL(a;L(N+)) such that (x)e().>0 a.e. xea,
and Ve (x,)=(x)+/IS(x,)e-’ a.e. xea,

(.9) . e 2/a.e. (x, ) e ax e((x, )) e ,> 0.

Properies of(a; N). (1) (a; N) is an open and convex subset of L(a; C())
for the topology of
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(2) For any r in X(f; ), almost everywhere xefr(x,’)eXo,(), and almost
everywhere (x,o)eflx O<g,g(x,)g*<+ (where

1.2.2. Definition and properties of ,. We define the operator

6 L2(0, T; L2()) L2(0, T; L2()),
u(x, ) (x, ) (u)(x,

v(x, )= ,(x)u(x, ) + (x, -s)u(x, s) s.

All the results concerning 0 can be deduced from those obtained in 1.1 for . It
suces to note that

a.e. x e a (u)(x,.) 4(..u(x,. ).

Then Theorems 1.4 and 1.5 lead to the two following results.
ToM 1.7. is a linear, continuous, invertible operator in L(O, T; L()). Its

inverse is coninuous and we have e [0, T])

Io ;ov(0, T; t()) , [u()[ ds (u(), (s)) d* ]](s)[[ as,

THEOREM 1.8. For any u in H(O, T; L2()), we have

d(u)= +S()xu(x, 0) inN’(O, T; L(a)).

Finally, let us give to (; N) a metric space structure with the following distance:

[]l-2ll sup I,(a )-(a
(x,)

and let us consider the mapping

:(;)(t(0, T; t()),

From Theorem 1.6, we deduce Theorem 1.9.
THEOREM 1.9. e mapping is a contraction from E(, ) into

(t(0, T; ())):
V(I, )(;)

1.3. Two particular subsets of (; ).
1.3.1. The subset (;) of Warbourg’s law. Warbourg’s law is defined by

(1.10) (X,)=o(x) l+(x)i(x 1+ ic(x)
where o(x), I (x), and (x) are strictly positive functions. Note that we can write

( / ((x,=(+(-( o(x + ic(x
(x) 1(x)o(x) lira (x, ).
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THEOREM 1.10. Under the following assumptions:

0 < (O’o), -< O’o(X) =< (O’o) * a.e. xefl,

l_--<h,=<h(x)-<h * a.e. x

0 < (w), <-_ Wc(X) <- (oo)* a.e. x e

the law o- defined by (1.10) belongs to E(l); N).
Proof We have to check that o- satisfies both properties (1.8) and (1.9). To prove

this result we will use Lemma 1.1.
LEMMA 1.1. Let f( t) be the real and causal function defined by

1 1
f( t) =- e e cls if > o,

f(t)=0 ift<-o.

Then, f is positive, belongs to L1($+), and satisfies

Ilfllc<+> 1.

Moreover its Fourier transform is given by

1
F(o) (f)(o)

1 + (io) 1/"

Proof of Lemma 1.1. (i) The calculation of f(t) (as inverse Fourier transform of
o- (1 + (io)/=) -’) can e founa in [4].

(ii) The positivity off(t) is a consequence of the following inequality:

_2 s e 1 +
sz 1 -te ds:

s ds<- se- ds:-e
e(iii) As limt+o e ds < +o% we have

1
f(t)=+O(1) when t-0.

(iv) A double integration by parts (see [4] for details) leads to the following
identity:

+2 l e-t 1 e-’ 3
e *’- ds

2 v’7 4 - - -- ds

from which we easily deduce that

i
f(t) 2x/-ff 3/ 1 + O when --> +00.

Stems (iii) and (iv) prove that f belongs to LI(R+) and as f is positive

By Lemma 1.1, we can write

%/Zll

1 I0 --itotr(x, o) (x)+ 6"(x, t) e dt
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with

tl(X, t) (1- A(x))tro(x)f(tOc(X)t).

This proves that (1.8) is satisfied. Now, a simple calculation gives

e((x, oo= (Xo(X+(- 2t (xo(Xq,

where

(y)

It is easy to check that

VyR

Then, as 1 A (x) < O, we obtain

1 + yx//2
1 +yx/+y)-"

0< (y)-< 1.

e(cr(x, w )) >= A (x)o’o(X) + (1- A (x))cro(x) >= (O’o), > O,

which proves (1.9) and the theorem.
We will denote by Z.w(l); R) the subset of Warbourg’s law defined by (1.10) with

the assumptions of Theorem 1.10.

1.3.2. The subset (1; )of approximate laws. We define an approximate polariz-
ation law by the formula

(1.11) tr(x, o) o’oo(x) +
k=l 1 + iak(X)W

with the following assumptions (for each k 1, 2,..., n):

(1.12)1 0< (at‘), =< at‘(x) <= (at,)* < +00,

(1.12)2 bk(X)<--(bk)* < +00,

(1.12)3 inf tro(x)+
(x, to) k=l 1 + ak(X)200 2 O.

THEOREM 1.11. Under assumptions (1.12), the function r defined by (1.11) belongs
to Z(I); N).

Proof We have the identity

O’(X, (.0)= O’eo(X)-- (l(X, t) e -i’, dt

where

6h(x, t)=
k= aa- e

which proves (1.8). Moreover, (1.9) is nothing but assumption (1.12)3 (which is true
if bt‘ (x) _-> 0 for each k).

We will denote by E(f; N) the set of approximate laws defined by (1.11). Of
course the main interest of E(f; N) lies in the fact that, for r in E(f; N), the
corresponding operator 6 can be defined with the help of ordinary differential
operators. More precisely we have the following result.
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THEOREM 1.12. The operator d/ associated with the law (1.11) is defined by

Vu L2(0, T; L()) (O,u)(x, t)= cry(x, t)+ fk(X, t)
k=l

where each function fk(x, t) is the unique solution of

ak(x) of (x, t)+f(x, t)= b(x)u(x, t)
OX

f(x, o) o.

2. Mathematical analysis of system (1.1). Let tr be an element of E(I); ). We
consider the following initial boundary value problem"

(2.1)

k+--=O, (x,t)eaxlR+,
Ot Ox

On,v+--= O, (x, t) ED,+,
Ox

u(x,, O) Uo(X), x

v(O, t) ck( t), E +.
In view of the study of continuity with respect to r, we are going to deal with the
nonhomogeneous problem"

(2.2)

Ou
--+--= O, (x, t) e 11 x IR+,I
Ot Ox

Ou,,v +xx g, (x, t)exlR+,

u(x, O) Uo(X), x Ct,

v(O,t)=ck(t), tEIR+,
with the following assumptions

(2.3) Uo e L2(D,), 4 L2(0, T), g e L:(0, T; L:(12)).

2.1. Existence, uniqueness, and regularity results.
2.1.1. Notation and functional spaces. We introduce the Banach space

(0, T)= W(0, T)x L2(0, T; L2(12))

where W(0, T) {u e L(0, T; L2(12)) c L2(0, T; Hl(-))/dlI/dt L2(0, T; H-I(-))}
with the following norms"

We are going to look for solutions of (2.2) in the space . Note that for (u, v) in ,
it is not possible to give a meaning (in the classical sense) to the boundary condition
v(O, t) dp( t)

Nevertheless, it is possible to give a "weak" meaning to this condition via the
following definition.
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DEFINITION. An element (u, v) in (0, T) is a weak solution of (2.2) if and only

Vu* HI()
d ( ,t.t - u( t), u*)

\
v( t) du* + u*(0)th(t) 0 in (0, T)

’dx/

(Ov(t), v*)+(O.--u-u(t), v*)=(g(t), v*) in ’(0, T),
/

u(O) Uo.

Remarks. (1) If (u, v) is a weak solution we have

0
Ot Ox

in L2(0, T; H-I().,)),

On
qo-V-xx g in L2(0, T; L2(l)).

(2) As soon as v belongs to L2(0, T; H1(l)) we have

v(O, t)= (t) in L:(0, T).

(3) The initial condition u(0)=Uo makes sense since W(0, T)
C(0, T; H-’(fl)).

2.1.2. The existence and uniqueness theorem.
THEOREM 2.1. Under assumption (2.3), problem (2.2) admits a unique weak solution

(u, v) in (0, T). Moreover, we have the following a priori estimates:

Ilullo,r;2.))lluoll+c Ilgll+llll+ I(t)l dt

L2(O,T;L2())
C IlU011+ilgll+ll411+ I6(t)l dt

c Iluoll+llgll+ll4ll+ I(t)[ dt
L2(O,T;H-())

where the constants C only depend on , g,, and * and where we have set

Proof of the theorem. (1) e a priori estimates.
Ou

(2.4) +=0,
Ot Ox

OU
(2.4)2 ,o-v +_---= g.

OX

Multiply (2.4)1 by u, (2.4)2 by v, add the two equations, and integrate in space.
Integrating by. parts, we easily obtain

2 at Ilu(s)ll:+(=’(s)’ v(s)) (s)u(O, s)+(g(s), v(s)).
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Now, integrating in time between 0 and (t [0, T]) gives the following identity:

io io/ 2e [lu(t)ll2+ (@v(s), v(s)) as =- [[Uoll + (g(s), (s)) ds+
2

We use the ellipticity of the operator @ (Theorem 1.7) to obtain

fo’ Io fo<o = ()1 II()ll ds+ I()11(0,)1 ds.ll(t)ll=+*2 I1()11=d=lloll + I1
The trace theorem furnishes the following estimate"

I(0, )1 I1()11 + (s)

()11 + I1()11 + ()11 ((2.4)=).
Then, standard techniques (Young inequalities and a generalized Oronwall inequality)
together with the continuity propey of lead to the estimates on
nd I111o,.

The estimate on au/ax stems from (2.4) and from the fact that belongs to
(L2(0, T; g())), the estimate on au/a from (2.4)4, and from the fact that
(g(n); n-’(n)).

Clearly the uniqueness result is a consequence of the a priori estimates.
(2) xistence prooby Galerkfn’s method. Let w,. ., w,,.., be a Hilbe space

basis of (). We construct an approximate solution (u, ,) in the following way"

(2.5) Find (u,(t), ,(t))’[0, T] V, x V, (where V =span [, w,. ., ,])
such that (g, g(0, T; V,))

d
,) ( Ou*]vu* v. Z(u.(t), u u.(t),/+u*(o)(t)=o,

u(0) Uo, e

Decomposing the approximate solution on the basis {w, w,. ., w} it is easy to see
that solving P is equivalent to solving the following integrodifferential system in N"

u
A(t)-BV(t)+(t)=O inn,

(2.6) V(t)+ (t-s)V(s) ds+’BU(t)=G(t) inn,
u(0) uo, e

where the different matrices occurring in (2.6) are the following"

(A)q (wi, w) (symmetric positive definite),

(B)q &, w (antisymmetric),

()u j (x)w(x)w(x) dx (symmetric positive definite),

()u(t) a l(X, t)w(x)w(x) dx (belongs to L’(0, T; (N)).

The only nonstandard point is the following lemma.
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LEMMA 2.1. The approximate problem (2.5) admits one unique solution

(u,, v,) H’(O, T; Vn) x C(O, T; Vn).

Proof. We write system (2.6) in its integral form:

(u(tl-ug)- V(s) s+ 4)(s s=O,

;v()+’u(t+ r(t-s)V(s)s= a(s)s,

which is strictly equivalent to

(.7

-’B Uo+2 V(s) s-2 4(s) s

(2.8) U(t) U+A21B V(s) ds-A2 (s) ds.

Let us introduce, in the Banach space C(0, T: N) (0< T N T)

:c(o, r;) c(o, r;,
V(t)*,V(t),

v(t=(1-1 a(sas- r(t-slV(ss

-()- ’B Ug+AIB V(s) ds-A (s) ds

A simple calculation shows that, for any (V, V) in C(0, T; V),

II*.v=-*Vlll l()-ll 1(7(t)l dt)+l(E)- ’B,AIB, IT, IIv=- vllo,

(where I. denotes a convenient norm in (")). As (t) belongs to L(0, T; (")),
we can choose T, small enough so that

1()-11 17(s)l T.I(E)-’ ’B.A’B.I <.Max
a

Then for all (V1, V2) C(0, T.;a), II.v,-.v=llo.llv= vllo, ..
So, using the Contraction Mapping Theorem, we show that there exists a unique

V. in C(0, T.; ") such that .V. V.(O (2.7)). Of course, we can iterate the process
on the interval T., 2 T.], [2 T., 3 T.],. and construct a solution in C(0, T; a"). U.
is then obtained by (2.8), which shows that U. belongs to H(0, T; V.). H

It is then standard to prove that, if we choose Uo,. and, g. such that

(Uo..,g.)(Uo, g) in L(O)x L(0, T; L2(O)),
the sequence (u., v.) converges (weakly in L:(0, T; L2())) to a solution (u, v) of
(2.2) (see, for example, [8]). H



1384 B. COCKBURN AND P. JOLY

2.1.3. Regularity results. Let us consider two different groups of assumptions:

b e Hi(0, T),

(2.9) Uo =0,

b(0) 0 (compatibility condition),

(b, tl) n(0, T) x L2(0, T),

,9( auo’(2.10) x ’Ltx/ L2(O)’

(0) 1](0) (compatibility condition).

Remark For e(; N), 1 belongs to L(0, T); however, for in (; N),
does not belong to L(0, T).
We can show (see [4] for details) the following theorem.
ToM 2.2. Under assumptions (2.9) or (2.10), the unique solution (u, v) of

(2.1) satisfies
u e W’(O, T; L(a)) m Hi(0, T; HI(a)) m H(0, T; H-(a)),

v e L(0, T; Hi(a)) m H(0, T; L(a)),

and therefore, we have the following equality:

v(O, t)= () in L(O, T).

Comments. (1) This result can be easily obtained by considering the system
satisfied by (Ou/Ot,Or (We use Theorem 1.8 to obtain it.)

(2) The assumptions (2.9) or (2.10) are necessary to obtain the time regularity up
to the boundary, but they are not necessary to obtain interior" time regularity. There
is, as for the diffusion equation, a regularizing effect as soon as x > 0, which is due to
the propey

(See [4] for a more precise result.)
(3) It is not clear whether there exists a maximum principle for this system... Cfifeslfi f (.1) resee elHfi1. Using

Theorem 2.1 (with g =0), we can construct the mapping

: (a x (0, rl x (a; (0, rl,

(uo, 4, (u, v),

(u, v) is the unique solution of (2.1).

e mapping (uo,)r(, uo, ) is linear and continuous (Theorem 2.1).
The mapping r(, uo, ) is nonlinear.
TOM 2.3. For given , uo), the mapping r(, uo, is locally Lipschitz

coninuous from (a, N) into (0, T):

(1, )e(a; N), C(,,, uo, , T) such that
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Proof Let (Ul, Vl)= /T(r,, Uo, ), (u2, v2)= T(tr2, Uo, ), and (, )=
(Ul- u2, va- v2). Then, (, ) is the solution of the following system:

--+--=0,0tox ’ =(-,)v,
(x, 0) 0, (0, t) =0.

Using Theorem 2.1 with (Uo, , g) (0, 0, (:- )v2), we can obtain the estimate

However, by Theorem 1.9 we know that

and the result follows with

Remark. In view of the solution of the identification problem, it would also be
interesting to study the differentiability of the mapping g r(g, Uo, ).

3. Coavergeaee result and error estimate.
3.1. A geaeral roximatioa result. Let us recall that the numerical method we

propose for solving problem (1.1) begins by substituting for the exact polarization law
g an approximate law g belonging to E,(fl; R) (cf. 1.3.2), which reduces the
approximate system to a system of two linear paial differential equations coupled to
n ordinary differential equations (cf. Theorem 1.12 and (0.4)).

From a theoretical point of view, the continuity result obtained in 2.2 justifies
this approach for any function g that belongs to the closure of E(fl; R) in E(; R).
Indeed, by assuming that

there exists a sequence g in E(fl; R) such that

gg inE(fl;).

Then, by Theorem 2.3, the approximate solution (u, v) of problem (2.1) associated
with g converges in (0, T) to the exact solution (u, v) associated with g and we
have the error estimate (Theorem 2.3)"

The aim of this section is to prove that such a sequence exists for any Warbourg law,
in other words,

w(n;)(; a)(.

3.2. Aroximatioa of Wrbaurg’s law by ratioaal fractious. First we notice that
if we make the approximation

f()
1 +(i)1/fn(i) =1 1 + iffn

then Warbourg’s law (cf. 1.3.1),

(,=(xl+[(-l.(xl i),,,,
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can be approximated by

 o(x.

which can be written in the form (1.11) with

ak(X) a.ktOc(X)-1, bk(x) flk.o’o(X)(A (X) 1).

TO approximate f(z) (1 + zl/2)- by rational fractions, a rather classical method (see
1 or [7] for other applications) consists in using continued fractions (see [9] for the

general theory)
Remarking that f(z) is a fixed point of an homographic function,

1
(3.1) f(z)=2+(z_ l)f(z

we apply the process of successive approximations to define f*.(z) by

1
(3.2) f*.+l(Z)=2+(z_l)f..(z), fo*(Z) 0.

LEMMA 3.1. For each n in , f*.(z) is a rational fraction.
Proof By induction it is easy to check that

P.-I(X) Q.(z)
f*,,(z) f2*n+l(Z)

Q,,(z) P.(z)

where (P., Q.) are the sequences of polynomials defined by the following relations:

P,,+(z) (z 1)P. (z) + 2Q. (z),

Q.+l(Z) (z- 1)Q.(z) + 2P.(z),

Po(z) O, Qo(z) 2,

which show that dP,, dQ,, n.
LEMMA 3.2. The sequence f*.(z) is given by

1
f*. (O) 1-.

n+l

Proof. Let us set f(z) (l+v/)- and g(z) (l+v/)-, which are the two sol-
utions of y= 1/(2+(z- 1)y). We easily check that

f*.+(z)-f(z) 1-/f*.(z)-f(z)
f*+(z)-g(z) 1-v/-f*.(z)-g(z)

so that

f*. (z)-g(z) -v/-] g(z)’

which leads to Lemma 3.3. l-i

LEMMA 3.3. For each z in C\R-,

lim f*. (z)=f(z).
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Moreover, for each compact subset K of C\R-, there exists a constant ct (K) [0, 1] such
that

]f*(z)-f(z)[ _--< Ca(K)".

Proof From Lemma 3.2, we deduce the equality

f(z)-f*.(z)-
1+ 1+] 1-

1+]
then it suces to remark that, as e()>O, the function (z)=(1-)/(l+)
maps CiR-to the unit open disk D {z Clz < 1}.

We can now state the first impoant result of this section.
THEOREM 3.1. For any n, the rationalfractionsf(z) admit thefollowing expansions"

2
1 l+zcotg2ni(i) fn(Z) --2n + l k=

=+ 1 l+z cotg2n’+2(ii) f+(z)
2n+l 2n+2 =1

oo Let us give the proof for f().
(1) Determinaion of the poles off. Using Lemma 3.2, the poles off() are

the solution of

+] =1 and +]1.
((-/(+ e/(+, = , ,...

-tg(kH/(2n + 1)), k 1, 2,. ., 2n.
(2) Using Lemma 3.1, we know that f(z) has an expansion in the form

=, *(/(* 1))"
As each pole z.=-tg(kH/(2n+ 1))is simple, we have rJ.= {(1/f.)’(z.)}-1. Then,
if we use the expression of f(z) given in Lemma 3.2, it is rather easy to obtain

=+tg
which completes the proof.

We now consider the sequence f() defined by

for which we can establish the following approximation result.
THEOREM 3.2. For any integer n in N, e have the equality

1
sup If()-f()l=2(n+ 1)"e(z)

Proofof the theorem. (1) A first calculation proves that for any z 0, we have the
identity

(2) Now we can restrict the study to I1 1.
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From Lemma 3.2, we deduce the identity

1 1- (z)
f.(z)-f(z)

1 +x/ 1 q(z)2"+2

Thus we can also write

1
f.(z)-f(z)

(1 +x/)(1 + b(z))

A simple calculation gives

from which we deduce

l+x/
where (z)=

1_--Sz.

2n+l

k--1
(d/(Z)-- eik’r"/(n+’))}

-1

( k. )q,(z)- e’k’/"+’ vr tg
2(n + 1)

(1 --V/)2n
(3.4) f"(z)-f(z)=(1 +x/)(1 + q(z))

3,(z),

(3.5) ()= i-I (l+e’n/(+) -itg2(n+l)
kn+l

A rearrangement of the terms of the product leads to

.(z)=
=

[l+en/("+12 z+tg22(n+ 1

z + tg2
kH

2(n+l)

But, for e (z)- 0, we have

> tg2

Then, for e (z) ->_ 0

I.(z)l =< (k=lfi 11 + e’k/("+l>12 tg

kH
2(n+l)"

But, as 4,(0)= 1, we deduce from (3.4) that

2(n+l)
6.(0).

1

n+l
6.(0) 2(f. (0)-f(O))-

Consequently,

1
Yz/e(z)>-O If,(z)-f(z)l <-

n+l

(1 -x/)2"

(1+ x/)(l+ q(z))

Then, using

(1 +v)(1 + q(z)) 2(1/] Vlzl<-_l/tez>--O, II-x/l<_- 1,
1 -x/J

we easily obtain

1 1-x/ 1
Vz/e(z)>-_O and Izl-<l IL(z)-f(z)l < 2(n+ 1)2(n + 1) l’+v I1 x/lu" -<.

Using (1), the result follows immediately.
Now, using Theorems 3.1 and 3.2, and Lemma 3.3, we can summarize our results

in Theorem 3.3.
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THEOREM 3.3. Letf,(z)=f*,+(z), where the sequence f*, is defined by (3.2); then
we have the following:

1 1 "__ 1
(i) f"(ito)=2(n+l----+- k=l l+itocotg2(kII/2(n+l))"

1
(ii) supa If(ito)-f(ito)l-2(n/ 1)"
(iii) For 0<to, <to* < +, there exists a constant a(to,, to,) ]0, 1[

/supe,o,,,.lf,,(i(o)-f(io)l<= C(w,, w*)- a((o,, w*).
In Fig. 1 we illustrate the convergence of the sequence f*(ito) to f(ito), for to .
3.3. The error estimate. We now consider the approximate law (r, defined by

where f, is the sequence defined in 3.2.
From Theorem 3.3 and properties of the functions A(x), o’o(x), and toe(x) we

deduce

tr*(A*- 1)
2(n + 1)

This proves that Ew(f; R)c Ea(; R).<n;a). Moreover we have Theorem 3.4.
THEOREM 3.4. Let (u, v) be the solution ofproblem (2.1) associated with Warbourg’s

law r and let (u,, v,) be the solution of the same problem (2.1) associated with the
approximate law tr,; then we have the error estimate

tr*(A*- 1)
2(n+l)

Comments. The method we have adopted furnishes a constructive way to obtain
an approximate polarization law. Of course there is no reason for the law tr, we
consider here to be optimal for a given number n of rational fractions; for example,
we can change the initial element of the sequence f* (and take fo*(Z)= a) without

FIG. 1. n odd (1, 3, 5); n even (2, 4, 6).
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affecting the rate of convergence of tr, to tr. In [2], a process for the determination of
such an optimal approximate law is described (for any polarization law). It essentially
consists of minimizing an appropriate norm of the difference tra- tr. Nevertheless, it
is clear that the law tr, we obtain here gives a good initial point for the optimization
algorithm. Let us recall that in practice it is sufficient to take n 3, 4 (three simple
rational fractions, which implies three auxiliary unknown functions) to get a reasonable
approximation of the exact law (see [3]).

4. Conclusion. Our study allowed us to define a good class of polarization laws
tr ( 1) for which the integrodifferential system (0.1) is well posed ( 2). The approxima-
tion result given in 3 is interesting from both theoretical and practical points of view.
It brings a mathematical justification to the numerical method proposed in [3] and
gives a way to construct a "good" approximate polarization law.

To conclude, let us mention that looking at result (iii) of Theorem 3.3 we can
expect to improve the error estimate given in Theorem 3.4. Moreover our conjecture
is that the approximation result we obtain for Warbourg’s law could be generalized
to any polarization law in the class E(fl; R). A nonconstructive proof using the
Stone-Weierstrass Theorem seems to be possible but is still an open and interesting
question.
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FORMATION OF SHOCKS FOR A SINGLE CONSERVATION LAW*
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Abstract. The initial value problem for an equation of scalar conservation law in several space
dimensions is considered. By the method of characteristics, the solution of this problem with C-initial
datum is concretely constructed. Generally, this solution becomes multivalued in finite time. By virtue of
the theory of singularities of C-mappings, its structure as a multivalued function is completely revealed.
The entropy solution is constructed by making it single-valued. In this process, shocks occur. Shock surfaces
are constructed by using the stable manifold theory. Thus propagation of shocks is described.
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1. Introduction. In this paper, we will consider the Cauchy problem for a single
conservation law:

au+ afi(u,)_ 0 in {(t,x) eiR"+’" t>O},-- axii=l

(1.1)
u(0, x) q(x) on I".

Here, f= (fl,""" ,f,) is a C-mapping; Ro[" and q is a real-valued Coo rapidly
decreasing function on ITS". Generally, we cannot expect the global existence of Coo-
solutions for (1.1). That is, shocks occur (cf. Conway [3]). The purpose of this paper
is to investigate concretely how shocks occur and propagate.

Consequently, we consider (1.1) in a weak sense. A weak solution for (1.1) is a
function u satisfying the following for any g C(l+n):

(1.2)

Since uniqueness of weak solutions for (1.1) does not generally hold, we impose an
entropy condition in order to eliminate physically meaningless solutions. A weak
solution for (1.1) satisfies the entropy condition if the following holds for any g
C(1+"), g >= 0, and for any k

(1.3) sgn(u-k) (u-k)-+ (f(u)-f(k))
Og

dtdx>=O.
+n i=1

We call such a solution an entropy solution. For the existence and uniqueness of
entropy solutions, see, for example, Kruzkov 11 ].

Our main result is that, under a nondegeneracy hypothesis corresponding to that
of Guckenheimer [7], we can construct the entropy solution locally and this solution
is piecewise Coo, with C-shock surfaces. More precisely, see the theorem in 6.

Many authors have studied the global structure of shock waves in the case n 1
(see, for example, Chen [1], [7], Jennings [10], and Schaetter [13]). On the other hand,
when n-> 2, there are few results (see Debeneix [4]). These authors either constructed
the solutions explicitly by the method ofcharacteristics or they represented the solutions
by using the elementary catastrophe theory. Recently Tsuji 14], 15] investigated the
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formation and propagation of singularities of solutions for Hamilton-Jacobi equations
in two space dimensions. He used the theory of singularities of mappings of the plane
into the plane obtained by Whitney [17]. Our result is much inspired by his, which
suggests that we can treat higher-dimensional cases if we use the theory of singularities
of mappings in higher-dimensional spaces. Here we carry out this program.

Our result is an extension of that of 1 in [7] to n-dimensional cases. The method
of proof is also a refinement of the argument in [7], which seems to be incomplete.

An equation of single conservation law in two space dimensions arises in petroleum
engineering. See Glimm, Marchesin, and McBryan [5] and Wagner [16].

The plan of this paper is as follows: in 2, we will construct the solution explicitly
by the method of characteristics. As the solution becomes multivalued in finite time,
in 3 and 4, we will clarify its structure as a multivalued function by virtue of the
theory of singularities of mappings and make it single valued. Shocks appear in this
process. In 5 and 6, we will construct shock surfaces by using the stable manifold
theory, which we have surveyed in Appendix A1. In 7, we will give an example which
arises in petroleum engineering. In Appendix A2, we will prove the smoothness of the
stable manifolds with respect to the parameter according to the argument in [2].

2. The method of characteristics. We will construct the solution for (1.1) by the
method of characteristics. Set ai(u)=f(u), l<-i<-n. Then the characteristic line
associated with (1.1) through (0, y) is the solution line (t, x(t)) of the following:

(2.1) dxi(t)/dt=a(u(t,x(t))), x,(O)-yi (1_-< i_-< n).

Since du(t, x(t))/dt=-Oifu is a smooth solution for (1.1), u(t, x(t)) =- u(O, x(0)) (y).
Therefore the solution of (2.1) can be expressed by x(t)-y+ ta(p(y)).

We define C-mappings t and associated with these characteristics as follows:

(I) [] l+n l+n
(t,y) "-> W(t,x),

tb,(y)= y+ ta(q(y)),

(t,y)=(t,t(y)).

From the classical theory of characteristics, it follows that the solution of (1.1) is
expressed by u(t, x)= o(-l(x)) and is C at (t, x) which is not the critical value of
o. Then our next problem is to study the singularities of mapping or . We shall
consider mapping , which can be treated more easily than ,.

Set h (y) =1 a’i(q(y))Ocp/Oyi. Then, a direct calculation shows that the Jacobian
[J()[ det J() of is equal to 1 + th (y) (see [3]). Here J() is the Jacobian matrix
of . If h (y)-> 0, there exists a global C-solution since [J()[_-> 1. Thus we assume

(A.1) miny h (y) h (yo) M < O.

Note that, since p is rapidly decreasing, h must attain its minimum at some finite
point yO unless h(y)_-> 0. Set o- 1/M and x- to(y). For < , IJ(@)[> 0 and u is
C. Therefore, from now on we will consider for _-> o near (t, yO). The following
assumption corresponds to the first nondegeneracy condition of [7]:

(A.2) The singularities of h are nondegenerate, i.e., VA (y)- 0 implies
rank Hess h (y) n.

From (A.1) and (A.2), we can easily see that Hess h(y) is positive definite. We
also remark that the same argument follows for yO: minimal point of h (y).

3. Structure of singularities of mapping @. Under assumptions (A.1) and (A.2),
we have the following results.
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LEMMA 1. By affine transformations of coordinates, we may assume the following:

(3.1) a(p(y)) 0 (1 =< i_<- n- 1),

(3.2) a’,,(o(y)) > 0,

(3.3) a,(q(y)) 0 (1--<_ i=<n-1).

Proof Let a . al(q(y)) and a, (a,, ..., a,). Then, from (A.1), a, 0. We
choose b (1 =< =< n) so that b, a,/la, and b,.. , b, form an orthonormal basis of
a". First we consider the transformation

X; y + b x y (1 <-_j < n
i=1

Then, we have

O=ou/ot+
i=1

=Ou/OT+l= i=1
bjai(u) cOu/OXj

=ou/or+ b(u)u/X
j=l

and b(q(y))=Y.,i=l bjai(q(y))=O (1 <j<n-1) >0 (j= n). Thus we obtain (3.1)
and (3.2). Next, by the following transformation

T=t,

Xj=xj-aj(q(y))t (1 =<j<= n- 1),

(3.3) is easily seen to be satisfied. This completes the proof.
Remark 1. It is easy to see that the above transformations preserve assumptions

(A.1) and (A.2).
Before stating the proposition, we need a definition.
DEFINITION 1. The singularity yO of a C-mapping M’RR is said to be

fold (respectively, cusp), if, by diffeomorphisms in and in sending yO and
M(y) to the origins, M is transformed into the following form:

X1 Yl, X1 Yl,

respectively,
Xm-1 Ym- Xm-1 Ym-1,

xm y-yy.

PROPOSITION 2. Near , the singularities of dp must be fold or cusp.
Proof. Consider the C-mapping h

Y y, + tai (0 (y)) 1 <= <= n 1 ),
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(3.5)

(3.6)

on the set

From (3.1), it follows that h is a ditteomorphism near (t, yO). We represent h -1 by

t=T,

y, b,( T, Y) (1 _-< i_-< n),

where b,(T, Y)- Y, and b satisfy

(3.4) Y b T, Y + Ta o b T, Y (1-_<j_-< n- 1)

Then, = h-1 is expressed by

t=T,

x=Y (l_-<j-< n- 1),

x, Y,, + Ta,,((b( T, Y))).

Note that (T, Y) is the "adapted system of coordinates" in the terminology of
Morin 12]. We only have to show that the singularities of must be cusp unless they
are fold. In order to do so, we use the characterization of fold points and cusp points
obtained in 12]. That is, we have only to show

a3x./a y3, # O,

02x,/O TO Y, # O,

Since

Y_,’" {( T, Y); ax./o Y. o=x,./aY 0}.

ax./aY. I.()l Ix(,)i/lx(h)l {1 + TZ(b)}/lJ(h)[,
E’"= {(T, Y); 1 + TZ(b)==, OA/Oy. Ob/OY, =0}.

On this set, we have

03xn/oYan T(tb" Hess A" b+ i=lOA/OYi’0bi/0Y")/IJ(h)]’

where b=’(obl/aY,,...,ob,/aY,). From (A.1), (A.2), (3.1), and (3.2), we have
a3x,/ay3n>o and O2x,/OTaY, <0 on E’. This completes the proof.

Remark 2. The following facts, which will be used later, can be easily seen"

(3.7) a2x,/o Yo Y, 0 at (T, yO) h(t, yO) for any j.

These imply that the singularity yO of mapping ,o is neither fold nor cusp. Thus we
consider instead of ,. On the other hand, it is shown by the same argument as in
Proposition 2 that, for > , the singularities of (I), must be fold or cusp.

Remark 3. When n 1, Chen[ 1] has proved the same result.
Remark 4. Tsuji 14], 15] studied the singularities of mapping HI, which corre-

sponds to ,, for the Hamilton-Jacobi equation. He assumed that the singularities of
HI must be fold or cusp.

We set E= {(T, Y) E n+l; 1 + TA(b(T, Y) =0}. Then, E (respectively, ._,1,1) is the
set of singularities (respectively, cusp points) of .
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LEMMA 3. Near T, yO), ,, is a C-submanifold of R"+1 with codimension 2
parametrized by Y’ Y, ., Yn-).

This lemma follows from the implicit function theorem The following lemma is
also easy to see.

LEMMA 4. (E’1) is a C-submanifold of R.+I with codimension 2 parametrized

We represent E’ {(T, Y); T (Y’), Y. =/(Y’)} and (E’1)- {(t, x);
t= a(x’), x. fl(x’)}.

4. Formation of shocks. From the argument of the preceding section, the structure
of singularities of mapping ) (and therefore of cI)) has been completely clarified. From
the canonical form of mappings at cusp points (cf. Definition 1), it follows that the
inverses cI)-, )- are triple-valued. See Fig. 1.

FIG.

We set II ({1 + TA(b(T, Y)) <0}), and we write the three inverse images of II
by/i (1-<iN 3) and three branches of -1 in II by

(1 ,)-’ Y’
y. i)( t, x),

where )(t, x) < )(t, x) < )(t, x) in fl. Since h, we can write three branches
of- by

t=t, y=g(i)(t,x).

We set ui(t, X) cp(g(i)( t, X)) in [l (1 -< i-< 3). Then we have the following lemma.
LEMMA 5. OUl/OX., Ou3/Ox. < O, and Ou2/Ox. > 0 in fl.
Proof Set qS(T, y) q h-(T, Y)=p(b(T, Y)). Then, u,(t,x)=(t,x’,gi)(t,x))

and Ou/Ox,=(=,O/Oy Ob/OY,)Og)/Ox, From (3.1), (3.2), (3.4) and (A.I) it
follows that, at T, ), Ob/O Y, =0 (1 i n 1), 1 (i n) and at (t, yO), 0/0y <
0. Then Og)/Ox,=OY,/Ox,=(Ox,/OY,)->O (i=1,3), <0 (i=2). Thus we get
Oui/Ox, < 0 (i= 1, 3), > 0 (i= 2) in near (T, yo). This completes the proof.

Thus we have completely clarified the structure of the solution u of (1.1) as a
multivalued function.

Since we are looking for a single-valued solution, we must make u single valued
in . For this reason, u must be discontinuous in . We consider a weak solution
having Cl-shock surface S= {(t, x)=0} near (t, x). Let n n(p) be the unit normal
vector to S at p S and let u(p)= lim+o u(p en). Then the Rankine-Hugoniot
condition (4.1) follows from (1.2):

(4.1) n- F(u+, u_) 0,
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where F(u+, u_)- ([u], [f(u)],""", [fn(U)]), [U] u+- u_, [f/(u)] =f/(u+)-f(u_).
If S ( v(t, x) 0}, (4.1) is expressed by

a, [f,(u)]
(4.2) + , 0 on S.

at = [u]

Furthermore, since S issues from (E’), u must satisfy

(4.3) v(a(x’), x’, fl(x’)) O.

On the other hand, if we orient a so that u/ > u_, the entropy condition implies

(4.4) n. F(k, u+)>-O,

for any k, u_ =< k u/.

Later we will construct S so that S is parametrized by (t, x’), i.e., S is expressed
by x, (t, x’). Then, (4.3)-(4.4) implies

(4.5) O+",’ If(u)] Oqt_ [f.(u)]
at i=, [u] OX [U]

on S,

(4.6) (c(x’), x’)= /3(x’).

Now we define, in fl, a single-valued function u(t, x) by

J" u,(t, x) if" x. < ,(t, x’),
(4.7) U( t, X)

Ua(t,x) if x,> b(t,x’).

And let ff (t, x’) be the solution of (4.5), (4.6) with u/ u and u_ u3. Then we
have the following lemma.

LEMMA 6. Suppose Od//Oxi (l<-i<=n-1) are bounded in . Then the entropy
condition is satisfied.

Proof. From the definition, n=(Ob/Ot, Od//ax’,-1). Hence (4.4) is equivalent to

(4.8) O__._t_’ f(k)-f(u,) O___ <f,,(k)-f.(u,)= (u3<=k< u,)’=at i=1 k- u Oxi k- u
where ui ui( t, x’, d/( t, x’)).

It follows from (4.5) that (4.8) is equivalent to

i=1 U k u //3
(4.9)

_-<f"(u)-f"(k)-f"(u)-f(u3) (u3<= k <= u).
u k u u3

From (3.2) and the assumption, IOb/Oxl <- C (1 <-_ <-_ n- 1) and a’(u) >-_ c in some small
neighborhood of (t, x) for some C, c > 0. And it follows from (3.2) that, for any
e > 0, there exists an open neighborhood of (t, x) such that we have lal(u)l <- e there.
Then the following lemma shows:

1
IThe left-hand side of (4.9)l<=-eC(k-u),

C
The right-hand side of (4.9)->_(k-u3),

which is easily seen. By taking e sufficiently small, we have (4.9). This completes the
proof.
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LEMMA 7. Let g(u)= {f(u)-f(w)}/(u- w). Then we have the following:
(i) iff"(u) >= c > O, g’(u) >= c/2,
(ii) if [f"(u)l<= e, [g’(u)l<-_ e/2.
Later we shall prove the existence of $ and the boundedness of O$/Oxi.
Remark 5. When Tsuji 14], 15] made the solution u of Hamilton-Jacobi equation

single valued, he proved that u must jump from Ul to u3.

5. Construction of shock surfaces (I). Now we will construct the soution of
(4.2)-(4.3) or (4.5)-(4.6). It is a noncharacteristic Cauch.y problem of a first-order
nonlinear partial differential equation. Note that, since (X1) is the set of critical
values of , ui are not Lipschitz continuous on (Xl). Thus we cannot use the usual
method of characteristics. According to the argument in [7], we pull back the problem
by . We define a vector field X in fl by

(5.1) X-(l+tA(y)) /
,= [u] ax

where [u]- ul(t, x)-Ua(t, x), etc. and a vector field ., in/2 by

X-(l+ Tx((T, )))-+(1+ T) ,--1 [u] 0Y,

{ ([f(.u_)]
[u] )(s.2) +lJ(n)l- (1+ T)\ -a(,)

o, (u)]

where [u]=u-u3, etc., ui=ui(T,Y)=o(l,)-lop(T,Y) (i=1,3). By a
direct calculation, we have X =.X. In this section, we will investigate some
properties of X.

LEMMA 8. " can be continued, as a C-vectorfield, to a neighborhood of T, yO).
Proof. Since the smoothness of a vector field is preserved under diffeomorphisms.,

we may assume that is the canonical form at cusp points. That is, we may take
as follows"

t=T, x’=Y’, x,=y3,-TYn.

What we have to show is the smoothness of [f(u)]/[u]. Since the roots of
T]2,Y,- Y,-TYn are I7",= Y,, (-Y, +/-A)/2, where A=(4T-3Y2,)/2, we have

U(1)( T Y) q;( T, Y’, -Yn-A’)2’ U(3)( T, Y) q3 ( T, Y’, ---).-Y+
Then

[f] 1 fot df[U]--U(1)--U (3) ds
(SU(1)+(1--S)U(3)) ds

ai s T, Y’,-’------- +(1-s)95 T, Y’,
2 -y,+a)2 ) ds

F,(T, Y,A).

From the hypothesis, F is C with respect to T, Y, A) and F( T, Y, -A) F( T, Y, A).
Then the function G( T, Y, s) F( T, Y, sol/2), defined in :> 0, is smoothly continued



1398 s. NAKANE

to sc_-<0. Now we have Fi(T,Y,A)=G,(T, Y,A2)=G,(T,Y,4T-3Y), which
implies [f]/[u] is smoothly extended to a neighborhood of (T, yO). This completes
the proof. [1

LEMMA 9. Let Z be the set of singularities of the vector field f(. Then E E1’1.
Proof It is easy to see El’lC E c Z1, Hence we show Z zl’lo Note that ai(u)=

ai()+a()(u-)+(u-)2 [.o (1-s)aT(+s(u-)) as. We set

[f] 1
{ai(u)- ai(q)} du

[u] ai()=ul)_u3) ,3,

(1)_ u(3) d,,3
(u ) du

(1) (3)
U --U

u(l)

I01(u-C)2 (1-s)aT(+s(u-)) dsdu
dU(3)

Then

1 (1) U(3)Ii=-a()(u + 2q3),

C
U

(1)
U

(3)

__< c,l()- , )-)1.
Thus we have

i )
=, o a((+-+(l(’-’

T (1) (3) 2ff)+o(l(u(l),U(3):--a;(){x(u +u
2

Since u1)= u3) or u<l) ff u <3) on Z-Z1’, In<l)+ u<3)-2ffl I(u<l)- if, u<3)- )[
on E1 1.. These imply that the points in E EI’ are not singularities of . This
completes the proof.

Next we shall compute the Jacobian matrix J() of at (T, yO). To do so, we
study how it is exchanged by diffeomorphisms. Suppose that a vector field X1

c(x)(O/Oxi) in ", is, by a diffeomorphism" x=g(y), transformed into Xz
ds(y)(O/Oys). Then we have the following lemma
LEMM 10. At singularities of X1, J(X)= J(g)-lj(x)J(g).
We omit the proof. Now we will transform into the canonical form at cusp

points by diffeomorphisms. We set g(T, Y)= Y, + Ta,(b(T, Y)). Then from the proof
of Proposition 2, we have Og/OY,=Og/OY =0 and 03g/OY, 02g/OTOY, #0 on ’.
The unfolding theorem (see [13]) shows that there exist C-functions h( Y) near
(To, yO), no( T, Y’), al(T, Y’) near (T, yO,) such that

g(T, Y)=h(T, Y)-a(T, Y’)h(T, Y)+ao(T, Y’)

and Oh/O Y, O. By a direct calculation, we have Z’ {( T, Y); h( T, Y) al( T, Y’) =0}
and Oa/OT 0 on ’.
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Consider the following mapping P" "+1
_
0+1,

s=al(T,Y’), p’=Y’, p,=h(T,Y).

Then, J(P) is equal to

Oal/OT Oal/O Y’ 0

0 I._ 0

Oh/OT Oh/OY’ Oh/OY.

From (3.7) it follows that 8al/OY’=O at (T, yO), which implies that J(P)(T, yO) is
equal to

Oal/OT 0 0

0 I,,_ 0

Oh/OT oh/o Y’ ah/o Y.

and [J(P)[(T, Y)=Oal/OT. Oh/OY, #0. Hence P is a diffeomorphism near (T, yO).
We write its inverse p-1 by

T= T(s, p’),

Then, ’= c p-1 is expressed by

T(s, p’), x’ p’,

Y’= p’, Y, Y,(s, p).

x. p3. sp. + ao( T(s, p’), p’).

n+l n+l.Now we set a C-mapping Q" (t,x)g(r,q).

r=al(t,x’), q’=x’, q.=x.-ao(t,x’).

Since J(Q)(t, x) is equal to

Oal/Ot 0 0

0 In_ O,
1

Q is a ditteomorphism near (t, x). Then the C-mapping " Q ’ is expressed by

r=s, q’=p’, q.=p3.-sp.,

which is the desired canonical form.
Now we write f=co(T,Y)(O/OT)+Z,=c,(T,Y)(O/OY) and ’=P.=

do(s, p)(O/Os) + Y,=l d,(s, p)(O/Op,).
LEMMA 11. At (s, pO)= p(To, yO), j(.,) is equal to

0 0,,-1 0

-h(y)

Proof Since ci (O<-- <- n), Oal/OY (1_-<i-<-n-1), OCo/OY,,=O at (TO yO) and
n--1do Co(Oal/OT)+,= c(Oal/OY), we have (Odo/OS)=(oa,/oT) (OCo/Or) (oT/os)=

h at (s, pO). In the same way, we get Odo/Opj =0 at (s, pO) (1 _-<j-< n).
Next note that d, c, (1 + Th)([f(u)]/[u]) (1 _-< _<- n 1) and [f(u)]/[u] a,(q3)

on 1.1. Then, from (3.3), Od/Os-Odi/Opj=O at (s,p) (l _-< i_-< n-1, l<-j<-n).
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Now we consider d, Co(OhiO T) +j=l c(Oh/O Y). By.the same argument as above,
we have only to consider the term c,(Oh/O Y,). If we set ff 3 p-, u() u()(s, p)
(s, p’, (-p A)/2), u(3 u(3(s, p) (s, p’, (-p, + A)/2), where A (4s -3p)2/2.
The same argument as in the proof of Lemma 8 shows

[f/]
[u]

-p. + A)Io a’( r( s’ p’’
-p

+(1 r)( s, P" 2 )dr
F(s, p, A)

t,(s, p, 4s- 3p),

where ffi(s, p, A), ti(s, p, ) are C. Then, on P(E1’) {s =p, =0},

a [f] 0/,_6 a(, 1 O ’,03ap, [u] -ap, p,o--p--, -al(ff(O, p’, 0))O- (0, p

Hence, at (s, pO),

Here we have

Consequently,

Op. -- as 3 O (0, O)a(3 (0, p’, 0)) o--p p’, (i= n).

Op Off O Y, Op / Oh
Op, -0 Y,, Op. -/, at (s, po).

t9 rn j=l Oyj Op, \[u] a

0o{ 3 0 }Ta’. -- a’.(q(y))-y.(y)
_3TA (Y)( h(Y))

_3h(yO).
2

This completes the proof. [q

From Lemmas 10 and 11, we have the following lemma.
LEMMA 12. J(()( T, yO) is equal to

(5.3) 0 0n_ 0

-h(y)

6. Construction of shock surfaces (II). Recall that we are looking for a solution
to (4.2)-(4.3) or (4.5)-(4.6). Instead of (4.2), we consider

(6.1, (I+TA){0 [f(u)] 0_}+ =0.
i:1 [U]

If 1 + TA 0 on v 0, the solution v of (6.1) satisfies (4.2). Since the coefficients of
the vector field X do not have enough regularity, we consider X instead of X. Lemma
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8 assures us that .. is a C-vector field near (T, yO). Lemma 9 tells us that has
singularities on X’. Lemma 12 suggests that we can make use of the stable manifold
theory in order to obtain integral curves of . tending to x,l.

Recall that ’=co(T, Y)(O/OT)+,= c,(T, Y)(/OY,.) and E’={(T, Y); T=
t(Y’), Y, =/3(Y’)}. Thus our purpose is to get a function (t)=(t, y’)=’(T(t, y’),
Y(t, y’),..-, Y, (t, y’)) satisfying

(6.2)

d
-(t) c(( t)),

lim +(t, y’)= t((y,), y,, (y,)),

where c= c(T, Y)=t(co(T, Y), cl(T, Y),.’’, c,,(T, Y)) andy’ eR"-l parametrizes Xl’.
If we define u t(uo, u,..., u,,) by

Uo(t, y’) T( t, y’) c (y’),

(6.3) uj(t, y’)= Y(t, y’)- yj (l_-<j_-<n-1),

u, t, y’) Y, (t, y’) fl (y’),

then u must satisfy

(6.4)

d
d---u A(y’)u +f(y’, u),

lim u 0.

Here A(y’) J()[x’.’ and f(y’, u) is C near (y’, u) yO,, 0) and satisfies f(y’, O) O,
Vf(y’, 0) 0.

We set u(t, y’)= e-air(t, y’) for some a > 0. Then v satisfies

d
(6.5) d---t v= (A(y’) + aI)v + eaf(y’, e-atv).

Lemma 12 implies that, by taking a appropriately, the real part of one eigenvalue of
A(y’)+ aI is negative and the real parts of the other n eigenvalues are positive for y’
near yO,. Then there exist one-dimensional stable manifolds. As for the stable manifold
theory, see Coddington and Levinson [2, Chap. 13].

We will state it more precisely. First we blockwise diagonalize A(y’)+ aL Because
of the distinctness of its eigenvalues, there exists a matrix-valued C-function P(y’)
near yO, satisfying

(6.6)

where

(A(y’) + aI)P(y’) P(y’)D(y’),

(y’)
(6.7) D(y’) |

0l

0 0 10 ]= 0 D2(y’) 0
DI(y’)

0 0 e(y’)

where D(y’) (respectively, D2(y’)) is an n n (respectively, (n 1) (n 1)) matrix
(see, for example, Hsieh and Sibuya [9]). Set P(y’)= [Pij(y’)]o_<i,j_<,. Then, by a direct
calculation, we have

(6.8) Poo(Y’)#0 and p,o(Y’)=O (l _-< i-< n -1).
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If we set v- P(y’)w, w satisfies

d
(6.9) w D(y’)w / g(t, y’, w),

dt

where g(t, y’, w)= p(y,)-i eaf(y,, e-atp(y,)w). It is easy to see that g is C and
g(t, y’, 0) 0, Vwg(t, y’, 0) 0. Now we define U(t) U(t, y’) Uo(t, y’) / Ua(t, y’),
where

Uo( t) [ etd(Y’) O ] [00 O ]0 O
U(t) e,(y’

Then, if we take a sufficiently small neighborhood V’ ofy’= yO,, there exist a, tr, C > 0,
independent of y’, such that in V’,

(6.10) [Uo(t)[<=e-(+)t (t 0),

(6.11) [Va(t)[ <- C e’ (t<-_O).

Theorems 4.1 and 4.2 of [2, Chap. 18] shows that there exist Ca-functions ri(wo) near
the origin in R satisfying ri(0)= r(0)-0, and a solution w of (6.9) such that

(6.12) b e td(y’) <= IWo( t, y’)[ <= c e td(r’),
(6.13) w,(t,y’)=r(wo(t,y’)) (1_<- i-< n),

for some constants b, c > 0. Furthermore we will show that w is C with respect to y’.
See the Appendices. Thus we conclude that u e-atp(y’)w is also C with respect to
(t,y’).

LEMMA 13. For any e > O, there exists a small neighborhood V’ ofy’= yO, such that

(6.14) Uo( t, y’)--- e-(-d(y’))t,

(6.15) [u,( t, y’)l <-_ eluo( t, y’)[ (1_-< i-<_ n- 1),

in V’ as +.
Proof. We can easily obtain (6.14) from (6.12). We show (6.15). Recall that

u e-at Y’-j--o P(Y )wj. From (6.8) and (6.13), we have

U0 e-atwo,

[uil<_ee-atlwol (1<_-- i_<--n-1).

This completes the proof. [q

Thus we obtain a family of integral curves of X.
LEMMA 14. There exists a constant c > 0 such that

(6.16)
O(t,y’)

Proof A direct calculation implies

Ouo/Ot

(6.17)
0(T,Y’_..____) / Ou,/Ot
O( t, y’)

kOu_/Ot

det
0( T, Y’) --> ClUo(t, y’)l.

L--1

Since OuolOt’--Uo, I u,lotl<- l.ol (1=<in-1), we get the conclusion (6.16). This
completes the proof.
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Now we conclude that the orbits of " flow from a Cl-hypersurface in R;)
parametrized by (T, Y’), which we write S= { Y.- (T, Y’)}.

LEMMA 15. 0/0 Yj (1 =<j =< n 1) are bounded.
Proofi Let ’ be the Cl-mapping: R,y,)-R’r.y, defined by ’(t, y’)=(T(t, y’),

Y’(t, y’)). Then ( T, Y’) y.o ,-1( T, Y’), and 0/Y 0 Yn/Ot" at/O Y +
n--1

i=1 O Y./Oyi" Oyi/OY. It easily follows from (6.17) that Oyi/OY are bounded and
Ot/OY=O(ul). Since O Y./Ot=O(uo), a/aY are bounded. This completes the
proof, lq

Now the function if( T, Y) Y, ( T, Y’) satisfies .,ff 0 and Tlx,., 0. Moreover,
since lu, <-- luol (1 _-< i_-< 1), luol--< Cluol on 0, 1/ T 0 on 0. Let u(t, x)
ff (12)-1(t, x). Then u satisfies (4.2)-(4.3). By the mapping , g={Y, =(T, Y’)}
is transformed into S {x, (t, x’)}. Here is a Cl-function near (t, x’). $ is the
desired shock surface. Lemma 15 implies that O/Oxi (1 -<_ -< n 1) are bounded. Thus
we obtain the following theorem.

THEOREM. Suppose (A.1) and (A.2) are true. Then thefunction u constructed above
is the entropy solution for (1.1) having C 1-shock surface near (t, x).

7. An example. Consider the following equation in two space dimensions"

0_u+

__
ot i=, oxi

(vif(u)) =0.

This equation arises in oil reservoir problems; see [5] and [16]. We assume that vi are
positive constants and thatf(u) u2/2. We treat the Cauchy problem with the following
initial condition:

u(o, x) ,(x) (x + x)/3 -(x, + x).

Then we have

dO t" xi yi + tvio (y), 1, 2

2

A (y) E v,(y2- 1),
i=1

min X (y) A (0) --(ol + 02) < 0.

Hess A diag (2vl, 2v2),

Y,’ { v,yl + v2Y2 vl + vz- 1/t},

E’" {(t, y) X 1", Vlyl + v2y: 0}.

Especially, if we set v v2 1, then,

E1 {y+y 2-1/t}, E1’1 {y21 +y 2-1/t, Yl + Y2 O}

and we can easily construct the entropy solution explicitly, whose shock surface is
expressed by Xl + x2 0, Ix1] =< 1 1/2t.

Appendices.
AI. The stable manifold theory.
In the Appendices, we will show the smoothness of the solution w of (6.9) with

respect to the parameter y’. First we will survey the stable manifold theory as pre-
liminaries in this section. For the details, see [2].
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LEMMA 16. Afunction w is a bounded solution of (6.9) ifand only if it is a bounded
solution of the following"

w(t)= Uo(t)+ Uo(t-s)g(s,y’, w(s)) ds

(AI.1) r
I Ul(t- s)g(s, y’, w(s)) ds

for some Rn+l.
We prepare some notation"

(= r:)

Xk {w(t) 6 C([0, oo)); Iwl sup ek’[w(t)l < oo},
to

Bk(r) {u Xk; lulk <- r} (k=0, 1),

y(p) sup {IVwg(t, y’, w)l, [Vw(Og/Oyj)(t, y’, w)]; 0, y’ e Y’, ]w p, 1 j n 1}.

Note that y(p) is continuous near p 0 and y(0)= 0.
LEMMA 17. Let C Co+ 1. en,

[Tew- Tevlk -y(max (IWlo, Ilo))lw-l,

fork=O, 1.
Ifwe take p such that y(2p) < /(2C), then Lemma 17 implies, for J p, k O, 1,

T,. (2p) (2p), IT,w- T:l lw-vl.
Thus we have the following lemma.

LEMMA 18. Suppose [p. en the equation Tw= w has a unique solution
w= w(t, y’, ) in B(2p).

We can take =t(,0,...,0), . Set w=t(wo, w’) and g=t(go, g’). Then
(A1.1) implies"

Wo(0, y’, ) ,
W’(0, y’, )= Ul(--S)g’(S, ’, W(S, y’, )) ds

(= s(.

LMMa 19. S() is of C near =0 and saisfies"

Is(e)l 21el

is,()l < 2Co
=, (21l).

A2. The existence of Ow/Oy. We will show the smoothness of w with respect to
y’. The method of proof is the same as in the proof of Theorem 4.2 in [2, Chap. 13].
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Let us differentiate (AI.1) formally with respect to yj. Then, rl Ow/Oyj, if it exists,
must satisfy:

od fo’ od
rl t-- U( t- s)--yj Uo( t- s)g(s, y’, w(s)) ds

+ Uo(-(,y’,(

+ Uo(t- s)Vwg(S, y’, w(s))" rl(s ds

OD(A2.1) --W (t-s)Ul(t-s)g(s’y’’ w(s)) ds

Ul(t-S)oy(S,y’ w(s)) ds

Ul(t- s)Vwg(S, y’, w(s))" rl(s ds

=11+12+’" "+17.
We will show the existence of / satisfying (A2.1). Let us estimate/j. We estimate
for example. From (6.11) and the definition of 7, wc have, for some C > 0,

[I] <= C t- s) e-(’+)(t-’)lg(s, y’, w(s))Ids

<=Ce-"’7(iWlo)[W[1 (t-s) e-(t-) ds

<--=Ce-’r(Iwlo)lwl.
Then II=1, <---=cr(Iwlo)lwl. The same argument shows there exists C > 0 such that
1I/I=/I/Z/I61<-cr(Iwlo)lWl and 114/Il<--cr(Iwlo)ll. Set I4+I7 U7.
By taking I1 < p sufficiently small, we have It + z+ I+ I+ I61--< 1 and ul-<--ll.
Hence there exists (I U) -1 E=o U and [(I U)-I[1 <- 2. Then r/=
(I-U)-1(I1+I+I3+I5+I6) is the unique solution of (A2.1) in

Next we set Wh=W(t,y’+hej,), Ui,h(t)= Ui(t,y’+hej), gh(t,y’, w)
g( t, y’ + hej, w), where ej I-1, ej j, and consider

Wh--W={Uo,h(t)--Uo(t)}+ Uo.h(t--s){gh(s,y’, wh)--g(s,y’, Wh)I ds

+ {Uo,(t--s)--Uo(t--s)}g(s,y’,h)ds

+ go(t- s){g(s, y’, Wh) g(s, y’, w)} ds

Ul,h(t--s){gh(s,y’, Wh)--g(s,y’, Wh)} ds

{u.,(-s-(-sltg(s.y’.w,

Ul(t-s){g(s,y’, Wh)--g(s,y’, W)} ds

=11+’" "+17.



1406 s. NAKANE

A direct calculation shows that there exists C > 0 such that

II1 + I2 + I3 + I5 + I611 <= Clhl,

1141 =< r-1 /(max (Iwh[o, Iwlo))lw wl,

lI7l--< ( / o)-1 CoT(maX (Iwlo, Iwlo))lw Wll.
Hence, if [Wh[o, [WIo--<2ISC[, there exists C>0 such that [Wh-- W[1 Clhl.

Now, consider e (Wh W)/h r. Then,

OUo " { Og }e---{Uo,h(t)-- Uo(t)}--y (t)+ Uo,h(t--s) (gh(Wh)--g(Wh))----yj(Wh) ds

+ uo.,(- 0g(,_(
+ o.(-s-o(-slt(as

+ (-s){g(wh)-g(w)} ds

+ Uo(t-s) (g(h) g(W))-- Vg(W) ds

U..h(-s) (g.(wh)--g(w.))--(Wh) ds

U,(t-s) Og(wh)_(w) ds

(,(-s- l(-s-(- g( a

OU
(t--S){g(h)--g(w)}ds
U(t-s) (g(w)-g(w))-Vg(w)" n ds

=II+" "+I13.

We estimate I for example. Since

Io { fo’ Io’ Og
h Uo h S) rh(s, y’ + qrhe, Wh) dq dr ds,

Oyj

(s y,
oy + qrhe, Wh < C lWh I,
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for some C>O, we have I:l,<-_-lCIwl,lhl. Similar estimates follow for I,---16,
Is I:. Now we estimate I. Since

I= Uo(t-s) Vg((1-r)w+rwh) dr. (wh-w)-n

+ {g(( r) + r,) g()} r. n s,

we have for some C, C’> 0,

117[ -1 y(max (IWhlo, IWlo))lell + Cwh Wllnll
d-v(max (Iwlo, IWlo))lll + C’lhl.

In the same way, we have

1I3[1 ( +)-Coy(max (IWlo, I1o11 + C’lhl.
Thus we obtain

le] N-C, y(max (IW, lo, IWlo))ll + clhl 11 + Clhl.
Then le[, 2CIhl and limho Ill 0. Hence Ow/Oy exists and equals n. Similar argu-
ment shows the continuity of Ow/Oy.
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ON THE STRONGLY DAMPED WAVE EQUATION:
u-au-Au,+f(u)=O*

DANG DINH ANGt AND ALAIN PHAM NGOC DINH

Abstract. The following initial boundary value problem is considered

u.-Au-AAu,+f(u)=O, (x,t)eflx]0, T[, A>0,

u=0 on0fx[0, T),

u(x, o)= Wo(X), u,(x, O)= w(x)

where fl is a bounded domain in R N with a sufficiently regular boundary 0fl. In Part 1, a theorem on local
existence and uniqueness is proved for w in H(fl) and wl in L2(fl), under a certain Lipschitzian condition
on f.

In Part 2, the question of global existence and asymptotic behavior for t--> c is studied, under more
restrictive conditions, namely 1-<_N=<3, feCI(R,R), f(0)=0, and f’>=-c with c>0 "small" and Woe
H(II) fq H2(fl), w e L2(II). It is proved that under these conditions, a unique solution u(t) exists on I+
such that Iluz(t)ll and Ilau(t)ll decay exponentially to 0 as t--> . (11" denotes the L2(fl) norm.) The method
followed in this paper is that of successive linearizations (Part 1) and Galerkin (Part 2).

Key words, linear recursive schemes, local existence, global existence, decay exponentially

AMS(MOS) subject classifications. 35, 35B, 35K, 35L, 41

Introduction. We will consider the following initial boundary value problem:

(0.1) u,-Au-AAu,+f(u)=O, (x,t)llx(O, T), A>0,

(0.2) u 0 on 0fl x [0, T),

(0.3) u(x, O)= Wo(X), u,(x, 0)= Wl(X),

where ll is a bounded in RN with a sufficiently regular boundary 0D,. The problem
was considered by Webb in [9] for N 1, 2, 3. For A 0 and N 1, the problem was
treated in [7] and [8], and in [2] for a function f depending on u and u, or monotone
in u,. We consider the problem with A > 0 under various conditions on f and on the
initial values. For 1 =N-< 2, (0.1) governs the motion of a linear Kelvin solid (a bar
if N 1 and a plate if N 2) subjected to nonlinear elastic constraints.

The paper consists of two parts. In Part 1 under a certain local Lipschitzian
condition on f with Wo in H(I)) and Wl in L2(), a local existence and uniqueness
theorem is proved, using the method of successive linearizations. Some of the results
on local existence are also contained in 1] and [4]. In [4] Sandefur factors (0.1) and
then uses semigroups and successive approximations to get existence and uniqueness.
The results in [1] are generalizations of work done in [4].

In Part 2, we strengthen the hypotheses and assume as in [9] that 1_-< N<_-3,
Wo H(f) f) HE(o), and Wl L2(f) while f satisfies no condition other than f(0) 0,
f’>-_-c for c>0 "small." It is then proved that under these conditions, a unique
solution u(t) exists for all t->0, with the property that llu,(t)ll and [IAu(t)ll decay
exponentially to 0 as --> generalizing a result of Webb [9]. (Here and elsewhere I1"
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1988.
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t D6partement de Math6matiques et d’Informatique, Universit6 d’Orl6ans, 45067 Orl6ans Cedex 2,

France.
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stands for the L2(12) norm.) In Part 2 we limit ourselves to the case 1 <_- N <-3 in order
to use the imbedding theorem of Sobolev: H2(f)c C(). Asymptotic results for
strongly damped wave equations can also be found in [5]. In [3] we study an extension
of equation (0.1), namely the strong solutions for an operator generalizing the Lap-
lacian. The method used in Part 1 can serve as a starting point for computing algorithms
[6]. Note that in this sequel we will consider (0.1) as an ordinary differential equation
in a Banach space for u(.t), so that we will write u’(t) for u,(., t). For simplicity of
writing, we will take h 1.

1. Part 1. Let

L2= La(f), H= H(f), H2= H2(f).
Here H(f) and H2(fl) denote the usual Sobolev spaces on f. Let (.) denote either
the L2 inner product or the paring of a continuous linear functional with an element
of a function space. Let I1" ]], be a norm on a Banach space X, and let X* be its dual.
We denote by LP(O, T; X), 1 <= p <- oo, the space of functions f on (0, T) to X such that

II/ll ,(o.;)= Ilf(t)llP dt < +oo for 1 <_-p <

[[flloo(o,;,,)=esssupllf(t)ll for p=eo.
(0,T)

We will make the following assumption

(A1) f" H--> H-1 satisfies:

for each bounded subset B of H(f), there exists kn > 0 such that

Ilf(y)-f(z)[I,-.<- klly-zll y, z n
where I1" I1,,-’ is the dual norm on H-1, the dual of n().

Then we have the following theorem.
THEOREM 1. Suppose f satisfies (A1) and let Woe H, w L2. Then there exists a

T>0 such that the initial and boundary value problem (0.1)-(0.3) admits a unique
solution u (t) in the following sense:

(i) u c(0, T;

(ii) u’ C(0, T; L2) f’l L2(0, T; H),

(iii) d/dt(u’(t), v)+a(u’(t), v)+a(u(t), v)+(f(u(t)), v)=0 IvH,
u(O) Wo, u’(O) w

with a(u, v)= (Vu, Vv).
Furthermore, u (t) is the limit of the sequence { u, (t)} of solutions of the following

initial boundary value problems (i.b.v. problem):

(1.1) u".-au’-au. =-f(u,,_), n_--> 1, Uo=0,

(1.2) un=0 on

(1.3) u,(0) Wo, U’n(0) W.

The sequence {u,} converges uniformly to u in C (0, T; H) and the sequence { u’}
converges to u’ in L2(0, T; H) and uniformly in C(O, T; L2).

The proof of the theorem relies on a number of propositions.
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PROPOSITION 1. Under assumption (A1), there exists a T> 0 such that for each n
the initial boundary value problem (1.1)-(1.3) admits a unique solution un in C(O, T; H)
with u’ in C(O, T; L2) 71L2(0, T; H). Furthermore the sequence {un} lies in a bounded
subset of C(O, T; H) and the sequence {u’,} lies in a bounded subset of C(O, T; L2) 71
L2(O, T; H).

Proof. Consider the following equation in H for ul(t):

(1.4)

with the initial conditions

(1.5)

ui’- Au,- Au -f(0)

Ul(0 W0, U(0)-- W

It is easily proved, using a Galerkin approximation scheme, that for each K > 0, a
unique solution Ul(t) exists on [0, K]. Suppose by induction that u._(t) is a solution
of the i.b.v, problem

(1.6)

(1.7)

satisfying

u’.’_,- au._,- Au’._, -f(

Un_l(0) W0, Urn_l(0) W1

(1.8) []VU._l(t)llz+llu + []VU,_l(r)]]._,(t)[t dr<= M2, 0<= <= T

where

(1.9)

(1.10)

ks4 a constant> 0 such that

MZ> 3(llX7woll = +
T(ki" M+lf(O)l(mesf)/)<2M/3 (mes f Lebesgue measure ofO),

(1.15) -2 (f(u,_l(r)), u’,,(z)) dr IIf(u.-,())ll-’ d+ IlVu’()ll = d.

We have

(1.11) IIf(y)-f(z)ll.-,<-kllVy-Vzll Vy, z,

with IlVyll M, IlVzll M.

We claim that the (unique) solution u,,(t) of the i.b.v, problem

(1.12) u Au. Au’,, -f(u._l),

(1.13) u,(0) W0, Urn(0) W

satisfies Proposition 1.
The existence of a solution of (1.12), (1.13) can be proved using a Galerkin

approximation scheme. Taking the inner product of (1.12) with u’ and integrating
with respect to the time variable from 0 to give, after some rearrangements,

Ilu2(t)ll=/llVu,,(t)ll=/2 IlVu’()ll = dz
(1.14)

-IIw, ll=/ IlVwolt=-2 (f( u,, _l r) u’,,(r)) dr.
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Therefore,

(1.16) -2 (f(u,_l(Z)),U’n(’r))d’r <- r[kMM+lf(O)l(mesf)l/2]2+

as can be seen from the induction hypothesis (1.8) and condition (A1). From (1.16),
(1.9), and (1.10) we can then deduce

(1.17) IlU’n(t)ll2+llVu(t)ll=+ IlVu(’)IId’<--_M- VO<-t<-_T.

We conclude that the latter inequality holds for all n. The continuity of u, "[0, T)H
results from the fact that, by (1.17),

(1.18) IlVu’ (,)ll = d,-<_ M2, 0_-< t=< T.

The mapping: t-> Ilu’(t)ll which is defined by (1.14) is continuous. On the other hand,
for each v in H the mapping, t->(u’(t), v), is a continuous mapping as can be seen
from

(u’.(t), v)+ (Vu.(z), Vv) dr+(Vu.(t), Vv)

(1.19)
(1, V)-- (f(Un_l(’r)) V) d’+ (un(0),

which is obtained from (1.12) by taking the inner product with v in H and integrating
with respect to the time variable from 0 to t. Hence u’ is continuous on [0, T) to L

Poaosrro 2. Lee T satisfy (1.10) and furthermore let

(1.20) kT< 1

with M and kM as in (1.9)-(1.11). Then the sequence {u,} constructed in the proof of
Proposition 1 is a Cauchy sequence in C(O, T; H). Furthermore the sequence {u’,} is a
Cauchy sequence in C(O, T; L) fq L(O, T; H).

Proof. Let v, u, U,_l. Then v satisfies

(1.21) v AVn AV’. --[f(u._,) --f(Un_2)],

(1.22) v.(0) v’.(0) 0.

Taking the inner product with v’.(t), integrating, and rearranging gives

IIv’.(t)ll=/llvv.(t)ll=/ Ilvv’.(-)ll = dr<-_k2 IlVv,,_l(-)ll = d
(1.23)

_--< kT sup IIVV._l(t)ll

where the sup is taken over 0_-< <_-- T.
It follows from (1.23) that

sup IIv(t)ll=_-<, sup Ilvo_(t)ll = for o’= kT< 1.

Hence

(1.24) sup IlVu,(t)-VUm(t)ll->O for n, m->oo.

Furthermore we have for n > m

(1.25) U--u--A(Un--Um)--A(Un--U)=--[f(Un_l)--f(Um-1)].
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Taking the inner product with u’,(t)- u’(t), integrating with respect to t, and making
use of the Lipschitzian property off gives after some rearrangements

(1.26)
Ilu’(t)--U’m(t)ll2+llVu.(t)--Vum(t)ll+ IlVU’(’)--VU’(’)II = d

<- k IlVu._(-)-Vum_l(r)ll dz.

It follows from (1.24) and (1.26) that

(1.27) sup Ilu’.(t)--U’m(t)llO

and

for n, moo

From (1.1), we have

T

(1.32) IlVu’()-Vu’()il d-0
o

(1.29)

Since clearly

(1.30) U

and

we also have by Proposition

(1.31)

sup IlVu.(t)-Vu(t)ll-->o for n-oo.

weak * in L(0, T; L2)

weakly in L2(0, T; H),

suPllu’(t)-u’(t)ll0 as n-oo,

as n -> oo.

(1.33)
(Un(t), V)+ (VUn(Z), Vv) d’+ (VUn(’), VV) dz

(f(Un_l(’r)) 9) d’r-t-(1, v) ve I-/.

From (1.29), (1.31), (1.32) we obtain, using the Lipschitzian property off, and passing
to the limit as n oo in (1.33)"

(1.34)
(u’(t), v)+ (Vu’(z), Vv) dz+ (Vu(z), Vv) dr

(f(u(z)), v) d’+(wl, v) Vve H.

We turn to the proof of Theorem 1.

ProofofTheorem 1. It is immediate that there is at most one solution of (0.1)-(0.3).
We will prove existence. Since H is complete and since, by Proposition 2, Un is a
Cauchy sequence in C(0, T; H), there is a u in C(0, T; H) such that

T

(1.28) IlVu’.()-Vu’()ll argo for n, moo.
o
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It follows from (1.34) and (1.17) that u(t) satisfies

d/dt(u’(t), v)+ (Vu’(t), Vv)+ (Vu(t), Vv)=-(f(u(t)), v)

(1.35) almost everywhere on (0, T) and Vve H
U(0) W0, ut(O)--W

2. Part 2. We will consider the problem of global existence and asymptotic
behavior for oo. To this end, we will limit ourselves, in what follows, to the ease
1 -<_ N -< 3, and furthermore, we will restrict the hypotheses on f and on the regularity
of the initial data. Thus we will consider the following conditions on f:
(A2) feC’(,), f(0) 0,

(A3) (f(u)+eu)u>=O VluI>-- a,

with 0 < e < 1 satisfying ea < 1 where a > 0 such that

(2.1) ]]u[]-_< a][Vu][ and I]Vu[[ =< a]JAuJ] Vu e Hfq H2,

(A4) f’-> -c, c>0.

The problem (0.1)-(0.3) with Woe Hffl H, w e L was studied by Webb [9] under
conditions on f which are similar to (A2)-(A4). We will show that Webb’s result [9]
on asymptotic decay for 0o can be considerably strengthened.

PROPOSITION 3. Let Woe Hfq H2 and w e L and let f satisfy (A2)-(A4). Then
there is a unique solution u( t) ofthe i.b.v, problem (0.1)-(0.3) defined on [0, 0o). Moreover
the quantity

IIAu(t)ll+llu’(t)ll=+ /IVu’(,)ll =d-

is bounded on compact subsets of [0, oo).
Proof. Let the approximated problem be, after rewritingf(u) g(u)- eu with e > 0

(2.2) u"-Au, + g(u,)- eu =O.

Here the finite-dimensional spaces considered in the Galerkin approximation are
eigenspaces of the Laplacian.

Taking the inner product of (2.2) with u’(t) and integrating from 0 to t, we obtain

Io’ fofo]]Un(t)ll2-t-llVun(t)]]2+2 [IVUn(7")]] 2 dr+2 g(u) du-ellu,(t)]]
(2.3)

Wo = / w1 = / v Wo = / 2 g(u) du.

Since Woe Ho fq H2 and 1 <- N <- 3, for e sufficiently small we obtain from (2.3)

I0’ Iolo(2.4) Ilu’.(t)ll=+llVu.(t)ll)-+2 IlVu’,(r)ll 2 dz+2 g(u) du<=M

where/3 1- ea> 0 and M’ a constant independent of t.
For any argument u, > 0

fo(2.5) g(u) du-- g(u) du/ g(u) du >-_- Ig(u)l du
0
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since the second integral is nonnegative due to (A3), un being larger than a. A similar
argument applies for negative arguments un.

Finally from (2.4) we can deduce the following inequality:

(2.6) Ilu’,(t)ll2+dllVu,(t)ll+2 IIV u’,(r) 112 dz <_- 2(mes f) Ig(u)ldu+M’-M

with M constant independent of t.
Likewise, by taking the inner product of (2.2) (with e c) with -Au,,(t) and

integrating from 0 to give, after some rearrangements:

Io tlAu.)ll a+
1
2llAu.(t)ll2+ g’(u.)lVu.[ dx dr

(2.7) =c IlVu.()ll=d/ u;au.dx+ IlVu;()ll2d

+2 Ilawll2 wawo aN vt e O.

By (2.6), (2.7), and hypothesis (A4) it follows that, for each T> 0

(2.8) IIAu.(’)ll=/-llAu.(t)ll=<=M/[lu’.(t)ll.[[au(t)ll lO<=t<=r

where Mr is a constant depending on T.
Inequalities (2.8) and (2.6) involve

(2.9)

MT always indicating a bound depending on T.
Inequalities (2.6) and (2.9) show that from the sequence {un} we can deduce a

subsequence still denoted {un} which converges weak * to an element u
L(0, T; H. f’)H2) such that u’ L(0, T; L2) f3 L2(0, T; Ho).

Consider the sequence {f(un)}. We have

(2.10) (f(u,,(t)), v)(f(u(t)), v) IvH in L(0, T) weak *

since f C (R, E) and u, converges to u almost everywhere on Q (0, T) x f.
If we pass to the limit in the variational form associated with the approximated

equation (2.2), we find that u satisfies equation (1.35).
Finally for each T> 0 there exists a unique solution u(t), 0 =< < T of the i.b.v.

problem (0.1)-(0.3) with u in L(0, T; H71H2) and u’ in L(0, T; L2) (’] L2(0, T; H)
and such that

,()112IlzXu(t)ll=+llu’(t)llZ+ IlVu d is bounded on [0, T). [3

Remark 1. As shown in Webb [9] the solution u(t) is actually more regular with
respect to than has been asserted in Proposition 3 above.

Remark 2. Under hypotheses analogous to the ones in Proposition 3 above, Webb
[9, Thm. 3.1] claims that there exists a global bound on [[au(t)ll+llu’(t)ll 2 for all
=> 0. However his proof is not valid, since the inequality [9, (3.18)] is not proved. On

the other hand, on the question of global bound we have the following proposition.
PROPOSITION 4. Iff CI(R, ), satisfies limlxl_f(x), x >-- O, then under the sole

condition Woe H and w L, there exists a global bound Ilu’(t)ll and [[Vu(t)ll for all
t>_O.
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Proof. Let g(u) -f(u) + eu (e > 0). By using the same arguments as in Proposition
3 it is possible to obtain, for e sufficiently small, a constant M’ independent of such
that

(2.11) ]lu’(t)ll+]lvu(t)ll2+2 I]Vu’(-)]] dr+2 g(u) duM’.
Wo

The condition limlxl_..of(x)x >-0 can be written as liml,l__>a ug(u)>=0 for a sufficiently
large, and we can always assume that a-> ]Wo(X)] almost everywhere x .

We can prove as in Proposition 3 that

f’ f" g(u) du _<- (mes 1)) [g(u)] du

which implies (2.6) for all => 0.
We can now state the main result of Part 2.
THEOREM 2. Let WoeHH2 and Wl L2. Let (A2) hold and let

(A) f’ >- -c, c satisfying the following conditions" 0 < c < 1/2,

co 2 <1 (a as in (2.1)).

Then the solution u (t), which existsfor all >- 0 as per Proposition 3, decays exponentially
to 0 as in the following sense: there exists an M > 0 and y > 0 such that

Proof Let c be as in Theorem 2. We write

f(u)=g(u)-cu;

then g’(u)>= 0, and hence f satisfies (A3). Thus by Proposition 3 the solution u(t) exists
on [0, o).

If we take the inner product of (0.1) with u’(t) and integrate with respect to the
time variable from 0 to t, we find using the property u.g(u)>=0 (see (2.3)) that there
exists an M1 > 0 independent of such that

(2.12) Ilu’(t)ll+(1-,)llVu(t)ll-+2 IlVu()ll d’<-MI for all t_>-0.

Likewise, by taking the inner product of (0.1) with -Au(t) and integrating from 0 to
t, we get (see (2.7)), taking into account (2.12), two constants C1 and Ca independent
of such that

(2.13) (1-cce 2) Ilau(=)ll d’+IIAu(t)II<=C, IIAu(t)II+C Vt=>O.

Clearly (2.13) implies

(2.14) IIAu(t)ll M= Vt>--0.

M2 is a constant independent of t.
Taking the inner product of (0.1) first with u’(t)e vt, then with -flAuevt and

integrating with respect to the time variable from 0 to t, we find, after rearranging and
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summing up, and taking (2.14) into account:

(1-c-2fl) e’llu’(t)ll=/2+(1-a=c) e’llVu(t)ll=/2+ e’llAu(t)[lz/4

+ [1 -fl 3’(1 +fl)a2/2] e"llVu’(t)l[ d-

(2.5) +[-/2-c-’+(-)/] e"ll.(,)lld,

+ e v’ a(u(x, t)) dx + fl g’(u)llVu(,)l[ e’" d,

+(c/2) e"llu(,)ll = d, C(wo, w,, )

where

(2.16) G(u) g(z) dz,

(2.17) k’= (mes (11)/2) Sup Ig’(llu(t)ll)l.

If in (2.15) we take fl (1-2c)/2 and

3, (1/a 2) min [(1 + 2c)2/(3 -2c), (1 a2c)(1 2c)/(1 + k’a + (1 2c)/a2)]
then the coefficient of each term of the left-hand side of the inequality is positive and
hence there exists an M > 0 such that

Ilu’(t)ll2+llZXu(t)ll<=Me-’ Vt>O.

Webb proved a very interesting result [9, Thm. 4.1] on the asymptotic behavior
of the solution under the hypotheses

fCI(R,R), f(0)=0, limf(x).x>-O, f’(x)>=-c where c>0.

From his theorem he deduced, under the foregoing hypotheses with an additional
condition on the smallness of c>0, that Ilu’(t)ll and Ilau(t)ll tend to 0 as t [9,
Cor. 4.1]. Our theorem is therefore a considerably stronger result than Webb’s result
of the asymptotic decay of the solution for , since on one hand the hypothesis
limlxl_.f(x), x>-0 is not used and on the other hand our asymptotic decay is
exponential.

Remark 3. As remarked by one of the referees, the restriction on c (0 < c < 1/2) can
be removed by a scaling argument. In fact write (0.1) in terms of =/xx, r =/zt. Then
we have

u. AIxAeu. Aeu +f(u)/tx2= O.

Let g(u)=f(u)/, with f(u) always satisfying (A4); then the previous conditions on
c become

0 < c < Min (/x2/2, 1/ a 2)
with/z > 1/2A (the coefficient of e’llAu(t)ll in (2.15) becomes (/3/4)(2AIz-1)).

Acknowledgments. The authors wish to thank the referees for their constructive
criticism and most pertinent remarks, leading to improvements in the original manu-
script.
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ON THE NODAL SETS
OF THE EIGENFUNCTIONS OF THE STRING EQUATION*

CHAO-LIANG SHEN"

Abstract. In this paper the nodal sets of the eigenfunctions of the string equation are investigated. For
n sufficiently large it is found that the shortest nodal domain of the nth eigenfunction must be one of the
neighboring nodal domains of the maximum points, and the longest nodal domain of the nth eigenfunction
must be one of the neighboring nodal domains of the minimum points of the density function of the string
equation. A limit formula for the ratio of the longest length and the shortest length of the nodal domains
of the nth eigenfunction is also proved, and some average formulae for the nodal domains are derived.

Key words, string equation, eigenvalues, eigenfunctions, nodal sets, nodal domains
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Introduction. The subject of this paper is the investigation of the nodal sets of the
eigenfunctions of the string equation

y"(x) + Ap(x)y(x) O, 0 < x < ,
(0.1)

y(O) y(fl O

where the density function p(x) is a strictly positive C2-function on the interval [0,/3 ].
In 1 we study the relation between the location of the nodal domains of extreme
lengths of the nth eigenfunction q,(x) of (0.1) and the extremal points of p(x). We
also prove a limit formula (Theorem 1.3) for the ratio of the lengths of the longest
and the shortest nodal domains of qn. In 2 we prove some average formulae for the
lengths of nodal domains, and the nodal points of the eigenfunctions of (0.1).

1. Length of the nodal domains and the extreme values of the density function. Let
(n) X(2n)pn(x) be the nth eigenfunction of the string equation (0.1). We will denote x

< x( the nodal points of p in the open interval (0, 8), and we denote X(on= O,
i_.j_l, ]. Then, by the variational formula for An, and the monotonicity

principle for the comparison of the eigenvalues, we have

(1.1)
’/.n [(:)n(X)]2 dx/J O(XI[fC)n(X)]2 dx,

2 2

max (p, 2

where max (p, In,j) (respectively, min (p, In,j)) denotes the maximum (respectively, the
minimum) of p in In,j, and IIn,jI denotes the length of the interval In,j.

LEMMA 1.1. For 6 > O, there exists no(6) such that

for all n > no.
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Proof Suppose there exists a 6 > 0 such that there is a sequence nj, limj_ n ,
and for each n there is a nodal domain I,,k such that ]I,,kl -> 6. Then, by (1.1)

21 r
A.=< min (p, [0,/3]) 62,

which contradicts the fact that limn_ An c. [3

In the rest of this section we will assume, for simplicity, that the density function
p(x) satisfies the following condition (A): p has only finitely many critical points in

[0, fl], where the critical points of p are those points at which the derivative of p
vanishes. We will call the values of p at its critical points the critical values of p.

We define the neighboring nodal domains of the extreme points of p(x) as follows.
Let x, be one of the maximum (respectively, minimum) points of p(x). If x, Interior

(In,), we call In,j_1, In,j, In,j+ the neighboring nodal domains of x,. If x, xJn), we
call In,, In,j+ the neighboring nodal domains of x,. Note that if x, fl, the only
neighboring nodal domain is In, If X, 0, In,1 is the neighboring nodal domain. The
following theorem tells us the nodal domains of 0n of extreme lengths have to be the
neighboring nodal domains of the extreme points of p(x).

THEOREM 1.2. Suppose p(x) satisfies condition (A). Then there exists no such that

for n > no a shortest (respectively, a longest) nodal domain of the nth eigenfunction of
(0.1) must be one of the neighboring nodal domains of the maximum (respectively,
minimum) points of the density function p (x).

Proof Let p>p2>.. ">pl (>0) be the sequence of the maximum value,
the critical values, and the minimum value of p. Denote e
min {p p2, p- P3, , Pl- Pl}, and define e as follows:

el if p, p(/3)= p(0),

p, p(/3)) if p p(/3), p(0) Pl,min el,
3

p, p(0)} if p, p(fl) p(0) p,,min el,
3

p,-p(0) p,-p(fl)} ifp,p(/3), p,p(0).min e 1,
3 3

Then, for this e, there exists 6 > 0 such that [p(x) p(x’)[ < e if [x x’[ < 8. By Lemma
1.1, for this 8, there exists an no, such that for n > no, [In, k] < 8/2, k 1, 2,..., n.

Suppose there is an n > no such that one of the shortest nodal domains, say In,,
of on is not a neighboring nodal domain of the maximum points of p(x). We consider
the three possible behaviors of p(x) in In, separately: (1) p(x) is strictly increasing
in In,j; (2) p(x) is strictly decreasing in In,; (3) one of the local extreme points of p
lies in the interior of In,. Note that by the choice of e, 8, if x is in one of the neighboring
nodal domains of the maximum points of p(x), then

p,-p 2p,+p2 p,-p(3) 2p,+p(fl)
p(X) > p,- Pl 3 3

p(x) > Pl- 3 3

if p, > p(fl).
If case (3) happens, since In, is not a neighboring nodal domain of the maximum

points of p, the maximum of the local extremal values of p in In, is less than or equal
to p2. Thus, by the choice of e, 8, and the fact Ilndl<6/2, p(X)<p+e <-

p2+(p--p2)/3=(2p2+Pl)/3 for all x in In,j. Since 2p2+P1(2pl+P2 for x in In,j,
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in any of the neighboring nodal domains of the maximum points of p we have
p(x)<p().

If case (1) happens, let sup {x [0, fl ]: p is increasing in [x}"__)l, x]}. Then is
either a critical point of p in (0,/3), or is/3 itself. Suppose is a critical point of p
in (0,/3). If is not a maximum point of p, then for all x in I,,j p(x) <_- p2 < (2pl + p2)/3 <
p(:) for all in any of the neighboring nodal domains of the maximum points of p.
If is a maximum point of p, since In,j is not a neighboring nodal domain of , there
is a neighboring nodal domain In,k of such that p(x)< p() for all x in In,j, : in
In,k. That is, if p is increasing in In,j, then there exists a neighboring nodal domain
!n,k of the maximum points of p such that p(x)< p() for all x in In.j, in In,k. The
same conclusion holds for the case fl and for case (2).

By the previous argument, we find that if In.j is one of the shortest nodal domains
of the nth eigenfunction n, n > no, which is not a neighboring nodal.domain of the
maximum points of p, then we can find a neighboring nodal domain/.k ofthe maximum
points of p such that p(x)<p() for all x in In.j, : in In.k. Since IIn,jl<=lln,k], for
x in In j,

_
..(n) ,.(n) is in Ink. For x in In let fi(x) p(x/x_-xJ_))’k-1 "j-1

-*k- j-. Then

u"(x) + Zn(x)u(x) 0 in In,j.

Note that fi(x)> p(x) for x in In,j because p(s) > p(x) for s in In,k, X in In,j. Since

".(x)+ Z.p(x).(x)=o in In,j,

p(x) < fi(x) in In.j,

Sturm’s comparison theorem (see [2, Thm. 3.1] or [1, 10.3]) tells us that u(x) has a
zero in the interior of In / i.e. the eigenfunction qn has a nodal point

< + <

which is absurd. Thus the shortest nodal domains of the nth eigenfunction qn, n > no,
are among neighboring nodal domains of the maximum points of p(x). A similar
argument implies the longest nodal domains of qn are among neighboring nodal
domains of the minimum points of p(x). [3

Theorem 1.2 has an interesting application.
THEOREM 1.3. Let Ln, {n denote, respectively, the lengths of the longest and shortest

nodal domains of the nth eigenfunction Pn of (0.1). Then

(1.2) lim (L-.")2 max (p’ [0’ fl])
min (p, [0, fl ])"

Proof By Theorem 1.2, if we let/. j,(n), ", In j (n) be the shortest (respectively,
longest) nodal domains of qn, then ma (p, [0,’/3 ]) (epectively, min (p, [0, ])) is the
limit point of the sequence

(no+l) (no+l) (no+l)ptx,(.o+)-), p(x,(.o+), ", p(X&o+,(.o+)-),
(no+l) (n) (n)

Xj(nptX&o+,(.o+),. px,(.)_),p( ))
(n) (n)

ptx.( )_) p(Xj.(n)
Let In,a.) be a nodal domain of qn of shortest length and let In,n) be a nodal domain
of qn of longest length. Then limn_ max (p, In,n))= limn_ min (p, In,an))=
max (p, [0, fl ]), limn_ max (p, In.(n)) limn_ min (p, In,n)) min (p, [0, fl ]), and
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these limits are independent of the choice of I..e(.), I..L(.). Since, by (1.1), we have

min (p, I..e(.)) < L__. <max (p,
max (p, I../(.))= g. min (p, I..(.))"

These inequalities and previous limit formulae imply (1.2).

2. Some average formulae. Let x]" < x") <. < Xl be the nodal points of the
nth eigenfunction , of (0.1) in the open interval (0, fl). Denote x")= 0, x")= ft.

THEOREM 2.1.

(2.1) .lim = x") -xJ] p(x) dx (p(x) dx

Proof By (1.1) we have

(2.2)

j=l

Since lim (A/n) /( 4p(x) dx)2, (2.2) implies
2 fl 1 1dx

( p(x) dx)= lim= x))--which is (2.1).
Remark. We know that ( (p(x) dx)2 fl p(x) dx, and the equality holds if

and only if p is a nonnegative constant. If the limit of (2.1) is 1/fl, then p(x) must be
a constant. The following inverse spectral result is a consequence of Theorem 2.1" "If
there are infinitely many eigenvalues A, of (0.1) such that the nodal domains of the
corresponding eigenfunctions are of length /nj, then p(x) is a constant."

It will be interesting to find the limit

1 1
(2.3) lim (x} ().
If we follow the idea of the proof of Theorem 2.1, we find that in order to evaluate
the limit (2.3), we have to be able to calculate the limit

(2.4) lim 2= P()),-
where e[x}{,x} such that p(})is equal to the maximum (respectively,
minimum) of p(x) in the interval [x}{, x}]. Since O(x)is uniformly continuous on
[0, ], to evaluate the limit (2.4), it suces to evaluate the following limit:

(2.5) lim 2=1 p(xj)

In the course of studying the convergence of (2.3), we found that the limit (2.5) does
exist, and can be evaluated explicitly as follows.

THEOREM 2.2.

(2.6) lim. n f CO(X)dx
Theorem 2.2 is a corollary of the followin8 interestin8 theorem.
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THEOREM 2.3. Let xn) < <x(,") be the zeros of the nth eigenfunction qn(x) of
(0.1) in (0,/3]. Then forfe CI[0,/3], we have

(2.7) limf(X.,)+. .+f(x(,,,,, j’t /fof(x)x/p(x) dx x/p(x) dx.
rl 0

Proof Denote by N,(t) the number of points among x"), x("), which lie in
the interval (0, t]. Then by Problem 147 of [3, Part II] we have

(2.8) f(x]")) + +f(x(,,")) nf( N,( t)f’( t) dt.

We claim that

Nn(x) x/(t) dt
(2.9) lim

n o px/( d

Then (2.7) follows immediately from (2.8) and (2.9).
Now we prove (2.9). We may assume is normalized so that o (x) dx 1. It

is known (see [1, 11.4], [2, p. 13]) that qn(x) has the following asymptotic formula:

+ o

We denote I dt/I t)dt by g(x). Equation (2.10) means that there exist
constants K and no, such that

(x)- sin (ng(x))

for nno.
Choose n no such that (K/n) <(2/)/ for n n. For n hi, let y be the

point in [0, ] such that

Note that for a fixed n, y,...,y are distinct because g is strictly increasing. For
n n we have

,(y"))- sin (ng(y"))) ,(yJ"))- sin j-

3

Hence (y})0, and the sign of ,(y) is (-1)-. By the Intermediate Value
Theorem and by the fact that has only n- 1 zeros in the open interval 0 < x <
we see that has one and only one zero x in each of the open intervals (y, y{),
j 1, 2,..., n- 1. Since g(x) is strictly increasing, we have

(n)Thus when nn, for x in the interval (0, ), if N(x)=j, i.e., xNx<+, then

j-<ng(x)<j+.

Now it is clear that for n n, 0 N x N , the following inequality holds:

N(x) 3
g(xl

n 2n
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Equation (2.9) follows immediately from (2.11). This completes the proof of Theorem
2.3. [3

Now we evaluate the limit (2.3).
THEOREM 2.4.

1 1 Io [p(x)]/ dx
(2.12) lim (x,, +(x)dx 

Proof By (1.1) we have

A,, Yf= min (p, I..) 7r L 1

-" F/ 1,13 (XJn) (n))2L
j=l -j--1

(2.13)
</..._.n. Z;=I max (p,
---n n

Using the formulae limn_, Ann -2= r2(o /p(x)dx)-, (2.7), (2.13), and the uniform
continuity of p(x), we obtain (2.12).

Remark. Formula (2.7) has the following interesting consequence: "Suppose we
can ’hear’ infinitely many eigenvalues Anj of the string equation (0.1), and we can ’see’
the corresponding nodal points x"), .., x,.- of ,, then p(x) can be determined."

--2 7T2/( x/p(x)dx), we have all the moments c. ofSince by (2.7) and lim_ A.n
x/p(x), where e. is defined as follows:

Ioc.= x"/p(x) dx, n=l,2,....

By the theory of moments (see [4, Chap. III]), rip(x) can be determined from the
moments
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A RESOLUTION METHOD FOR RICCATI DIFFERENTIAL SYSTEMS
COUPLED IN THEIR QUADRATIC TERMS*

L. JODARf AND H. ABOU-KANDIL"

Abstract. By means of algebraic transformations a Riccati differential matrix system coupled in its
quadratic terms is reduced to another one for which the successive approximation method is available. An
iterative algorithm for solving the problem and an error upper bound for the approximation are given.

Key words, iterative algorithm, matrix differential system, initial value problem, convergence interval,
error bound, approximate solution, coupled Riccati system
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1. Introduction. When trying to solve many interesting control problems we are
often led to a set of coupled Riccati matrix differential equations. Examples are found
in singular [3, p. 41] and hybrid system control [9], reduced order compensator design
[2], and nonzero sum differential games [12]. Depending on the problem under
consideration, different types of coupling will appear. However, the common feature
in all the cases mentioned above is that such differential systems are difficult to solve.
A general class of coupled Riccati equations is considered here, i.e.,

/l -Ql(t) AI(t)KI- KA2( t) + KIS( t)K q- KS2(t)K,
(1.1)

I -Q2( t) B(t)K2- K2B2(t) + K2S2(t)K2 + K2SI( t)K,

The problem is then to find Kl(t), K2(t), for [0, ty] with the terminal conditions

(1.2) KI(tf) Kly, K( ty) K2y.

It is clear here that the coupling appears only through the quadratic terms. In fact
(1.1) is a generalized form for Riccati systems appearing when a Nash equilibrium
solution is sought for a two-player linear differential game with quadratic cost func-
tionals [12]. For the time-invariant case and under some assumptions relating the
constant coefficients, a number of methods have been developed to obtain numerical
[11] or series solutions [5]. Moreover, under the further assumption: Q =otQ1, where
t is a scalar, an explicit solution has been proposed in [1].

The purpose of this paper is to show that after an appropriate algebraic transforma-
tion, the successive approximation method may be used to solve (1.1). This leads to
a straightforward algorithm for which the convergence conditions are clearly stated.
Furthermore, a bound of the approximation error is obtained so that the number of
iterations required for a given precision can be predetermined. The solution procedure
developed here is related to the method proposed in [7] to solve coupled Lyapunov
equations.

2. Basic notation and preliminary results. In order to make the paper somewhat
self-contained, definitions and results to be used later are recalled in this section.

* Received by the editors December 1, 1986; accepted for publication (in revised form) December 15,
1987.
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1426 L. JODAR AND H. ABOU-KANDIL

If A and B are matrices in R,,n and Rks, respectively, then the tensor product
of A and B, denoted A(R) B, is defined as the partitioned matrix

alB a2B a,,B

A(R) B a21. B 422B a2,. B

LamB a,,2B am,,B

If A R,,,, we denote

alj

A4

amj

l<_j<_n

and

vec A

Note that if A [A, A2] then

vec A=
vec

lvec A:
If M, N, and P are matrices of suitable dimensions, then using the column lemma
[10], we get

(2.1) vec(MNP)=(Pr(R)M)vec N
where Pr is the transpose of P.

The Frobenius norm of a matrix A R,, is defined by

(2.2) IIAll- Y la,l2
i=1 j=l

In the sequel, since only the Frobenius norm is used, it will be simply denoted by II.
The following propeies are then verified for A R, and B Rnxq [6, p. 274]:

(2.3) AB N a B II,
(2.4) IIa[l Ilvec All,

(2.5) a@B a n.
Finally, if Fo R,,, for N i, j N 2, then

4 max {IIFolI; 1 i, j2}.(2.)
f21 F22

The following theorem may now be stated.
THEOREM 1. Let Ki, P be matrices in R,, for 1, 2, with K [K, K2] P

[PI, Pz], and let S [S1, S] be a fixed matrix in Rnxzn then if Vs" R2,2xl R,2xl is
the function defined by the expression

(2.7) s(vec K)= F/K((R)K1 Kf(R)K/[vec’] S],KT (R)K2 K(R)K2L 3
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it follows that

(2.8) Ilalts(vec K) alts(vec P)II <--4IIsII(IIK / IIPll)llvec K-vec PII-
Proof. From the definition of s, we have

(2.9) alts(vec K)-Its(vec P)= [ KI @K-PI @P1 K@K1-P@P1][vec S].

Taking norms on both sides and using (2.3), (2.6), we find that

(2.10) [[s(vec K)-s(vec P)II-<4[[vec Sllmax {IIKy(R)K-Pf(R)PII; 1 <--i j<--2}.

The elements of the partitioned matrix (2.9) can be rewritten as

(2.11) Kf(R)Kj-p.T,(R)pj=(K.T,-p.T,)(R)K)+p.T,(R)(Kj-Pj), 1<_-- i,j--<_2;

then

(2.12) K,(R) Kj p.T,(R) P)II <- IlK,- P, Kj / IIP, IIK PII,
since

IIg,]l Ilvec g, -< Ilvec (g)l], ]]Pill ]]vec P,I] <- vec (P)II, i= 1, 2.

Equation (2.12) leads to

(2.13) g,(R)g P,(R) PII--< Ilvec g -vec PIl(llvec gll / Ilvec PII).
Considering (2.10) and (2.13), we immediately obtain the result given in (2.8).

COROLLARY 1. Let M M1, M2) R,2, and 8 > O. IfK, P are matrices in
such that g M -<- , P-M --< , then

(2.14) [ls(vec K) alts(vec P)II <--811SlI(/ IIMII)llvec K-vec PII.
Proof. It is clear that (2.14) is a direct consequence of (2.8).

3. Main results. The initial value problem (1.1)-(1.2) is now considered. By
introducing tensor products in the two members of (1.1), and taking into account the
column lemma (equation 2.1) [10], it follows that

d/dt(vec K,(t))=-vec Ql(t)-(I(R)Al(t))(vec Kl(t))-(Af(t)(R)I)(vec Kl(t))

+(KT (t)(R)Kl(t))(vec Sl(t))+(Kf(t)(R)Kl(t))(vec S2(t)),

(3.1) d/dt(vec K2(t))=-vec Q2(t)-(I(R)Bl(t))(vec K2(t))-(Bf(t)(R)I)(vec K2(t))

+ (Kf t)(R) K2( t))(vec S2( t)) + (K( t)(R) K2( t))(vec Sl( t)),

vec KI(tf) vec Klf vec K2(ty) vec K2y.

Define

(3.2) Dl(t)=(I(R)Al(t))+(A(t)(R)I), DE(t)=(I(R)Bl(t))+(BE(t)(R)I).

System (3.1) can be rewritten as

d(vecdt K (t)) -vec Q(t)-[ Dl(t)O
(3.3) + KTI (t)(R)K2(t)

vec K(tf)=vec (Klf, K2f)

o]D2(t)
[vec K(t)]

Kf t)(R) Kl( t) ][vec S(t)],Kf(t)(R)K(t)
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where Q(t)=[Ql(t),Q2(t)], S(t)=[Sl(t),S2(t)], and K(t)=[K(t),K2(t)] are
matrices in Rn2n, for all e [0, tf]. Writing (3.3) in a compact form, we have

d/dt(vec K(t))= F(t, vec K(t)),
(3.4)

vec K (ts) vec (Kls, K2s)
where F: [0, ty] x R2n2- R2n2, is defined by (3.3); i.e.,

F(t, vec K(t)) -vec Q(t)-D(t)(vec K(t))+qtst)(vec K(t))(3.5)

with

D(t)=[D(t) 0 ]0 Dz(t)

and st is given by (2.7).
Assuming the continuity of the coefficient matrix functions occurring in (1.1) on

the interval [0, tf], the following constants are finite and well defined:

max Ilvec Q(t)ll,S ot<=tfmax Ilvec s(t)ll, q
O<=t<=tf

(3.6)
d tl

/2 max {llai(t)l[, Ilni(t)ll., i-- 1,2}.
o<=t<=tf

When we exploit the special structure of D(t) and use (2.2), it is easy to show that

(3.7) max IID(t)l _<-2 max (lIDi(t)ll 1 <= i2}=<4d
O<--_ttf O<--<_t<=tf

because the Frobenius norm of the identity matrix in R,,, is IIIl]--n /2, and, from
(2.5), we have IIDl(t)ll--< nl/=(llA(t)ll / IIa2(t)ll) and IID=(t)[[ =< nl/2(lln(t)ll / IIn2(t) [I).

The following theorem gives a successive approximation procedure used to solve
the problem (1.1)-(1.2) and an upper bound for the approximation error.

THEOREM 2. Let > 0, Ilvec gll / , and let M be the constant defined by the
expression

(3.8) M q + 2d/+ 4S’/2
where q, d, and s are given by (3.6). If , min { ty, 8/M} and assuming that the coefficient
matrixfunctions Ai( t), Bi( t) and Si( t) are continuous on the interval [0, ty], then problem
(1.1)-(1.2) has a unique solution K(t) on the interval [ty-o, tf] such that K(t) is the
Frobenius norm limit of the sequence of successive approximations:

{KP)(t)}po, where Kp)= [K?, Kp] are given by K)(t) Kiy, i= 1, 2

and

(3.9)

K (p+I) f(t)=Kf (Q(u)+A(u)K?)(u)+K?)(u)A2(u)) du
f

+ (?(s(u?(+K?(,S(,K?(,
tf

+ (K?(S(,K?(+K?(USl(uK?(,.
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Moreover, for b t, tf], the error upper boundfor the pth approximation is given by

M(I)p*l

(3.10) e(t) ]]vec (K(t))-vec (K(V(t))]] _-<
I(p+ 1)!

exp ()

where

(3.11) p= 8s+2d.
Proo Using the definition of F(t, vec K(t)) (equation (3.5)) and (3.6), we get

(3.12) ]]F(t, vecK)]]q+2d[[vecKll+4s[[vecK];

thus

sup{[[F(t, vecK)[]; Otty; [[K-Ky[[8}q+2d(8+[[Kyl[)+4s(8+[[Kfl[)
3.13)

q +2d+4S2.

From Theorem 1, we have that F(t, vec K) satisfies a Lipschitz condition of the type

IlF(t, vec K)-F(t, vec P)II [[vec K-vec PII
where p is given by (3.11) and Ilvec K vec KII , Ilvec P- vec K[I . Now, rom
the theorem of the successive approximations [8, p. 129], [4, Chap. 5], the unique
solution of the problem (3.4) on the interval tf-, tf], is given by the Frobenius norm
limit of the sequence {vec K(P(t)}peo, where

(vec K()(t))= (vec Kf)

and

vec K(P+(t) vec K+ F(u, vec K(P(u)) du

(3.14) =vec K+
-QI(U)-D(u)KP(u)

du
tf Qz(U)- D2(u)KP)(u)

+ (K]P)(u)@KV)(u))(vecS’(u))+((KP)(u)) @KP)(u))(vecS2(u))
du.

q ((KP)(u))@KP)(u))(vecS,(u))+((KP)(u))@KV(u))(vecS2(u))

When we take into account the column lemma [10] and the definitions (3.2), the sum
of the two integrands occurring on the right-hand side of (3.14) is equivalent to the
following expression:

vec (WP)(u), WP)(u))
where

W])(u) -O,(u) A,(u)K])(u) K)(u)A2(u)

+KP(u)S,(u)KP(u)+ KP(u)S2(u)KP(u),
(3.15)

WP(u) -Q2(u)- BI(U)KP)(u)- KP(u)B2(u)
+KP)(u)S2(u)KP)(u)+ KP)(U)Sl(u)KP)(u).

Equation (3.9) is directly obtained using (3.14) and (3.15). The error upper bound of
the pth approximation defined by (3.10) is a consequence of the theorem of the
successive approximations [8, p. 129], [4, Chap. 5].
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Remark. It should be noted that the convergence interval for the proposed
algorithm described in Theorem 2 depends on the ratio 8/M, where 8 is a free positive
number, while M is a function of 8 as given by (3.8). Therefore, it is interesting to
find a 8 > 0 such that 8/M is maximized, because the convergence interval is ty-ot, ty],
and e min { tl, 8/M}. In order to maximize 8/M, let us consider

r()=/M--(q+2d(llvec/yll /) + 4s(llvec gll + )=}-1.

If we assume that all elements of Q(t)=[Ql(t), Q2(t)], S( t) [Sl( t), S2(t)], are not
identically zero, then maximum of r(8) is obtained when d/dS(r(8))=0, i.e., for

8" {(4s)-l(q + 2d Ilvec gll + 4s Ilvec KII=)} 1/2.

Acknowledgment. The authors thank an anonymous referee for his constructive
remarks.
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ON SMOOTHEST INTERPOLANTS*

A. PINKUS?

Abstract. This paper is concerned with the problem of characterizing those functions of minimum
LP-norm on their nth derivative, <=p=<, that sequentially take on the given values (ei). For p= the
unique minimizing function is characterized. For p < fairly explicit necessary conditions are given.

Key words, minimum norm interpolation, Sobolev spaces, splines

AMS(MOS) subject classifications. 41A05, 46E35

1. Introduction. Let n->2 be fixed. For pc (1, ], W<pn) will denote the usual
Sobolev space of real-valued functions on [0, 1] with n-1 absolutely continuous
derivatives and nth derivative existing almost everywhere as a function in LP[0, 1].
Equivalently,

W(")= :f(x)-- aiXi-+-p
i=o

1 fo n-lh (y) dy, h Lp, a, R,
(n-l)!

(x-y)+

i=0,1,...,n-l}.
(Here ai =f(i)(o)/i!, --0, 1,. ., n 1, and h --f(n).) For p 1, rather than considering
the analogous W]"), we introduce V"). To define V"), let M denote the space of real
Baire measures on [0, 1 ]. For/x e M, II/x will denote the total variation of the measure

/x. Then

n-1V(’ f:f(x) 2 ax’+ (x-y)+ d(y) IIll <
i=0 (n-1)

We will shortly explain our reasons for considering V<") rather than W">.
Let e,..., eu be given real fixed data, e # e+, i= 1,. ., N-1. Set

=u ={t: t= (t,. ., tu),0 t<. < tu 1}.

For each t u, set

w(n)W">(t’e)={f:f6 p f( ti) ei, l, N}

for p (1, ], and

V<")(t; e)= {f:f6 V<">,f(ti) e, i= 1,... N}.

The following problems are considered in [2] and [6]"
(n)(1) inf{l[f<">ll,’f w, (t, e)}

for p (1, ], and

(2) inf{llll’f v<">(t; e)}.

(It is understood that f and in (2) are related as in the definition of V<").) Later we
will describe the solutions to problems (1) and (2). An understanding of their exact
form is crucial to a solution of the problems we consider. We do note, however, that
there existf W">(t; e) andf V<">(t; e) for which the above infima are in fact attained.

Received by the editors October 22, 1986; accepted for publication (in revised form) December 15, 1987.
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If we replace the extremum problem (2) by the analogous problem where Wn)

takes the place of Vn), then this is not necessarily the case, i.e., the infimum need not
be attained by some f W]"). However, the value of the infimum in (2), or in (2) with

Wn) replacing Vn), is the same. This is one reason for considering Vn) rather than
W]n). A more detailed discussion of this matter can be found in de Boor [2], and in
Fisher and Jerome [5], [6].

In this work, we are interested in solutions to the problems

(3) inf inf{]lf")]]p f Wp (t; e)}
t7

for p (1, oo], and

(4) inf
t

and in functions for which the infima are attained. Thus, for each fixed n
and data (ei)N, we wish to characterize those functions f that take on the values (ei)N
sequentially, and minimize the LP-norm of their nth derivative. (Here we are abusing
notation in the case where p 1.)

Before continuing, we note three simple facts.
(I) It suffices to assume that (e- e-l)(e+l- ei) < 0, i= 2, , N- 1. This follows

from continuity considerations. If, for example, e-l< ei < e+l for some
{2,..., n-1}, then we may delete the condition f(t)= e since f will always attain
the value ei at some point in (ti_l, ti+).

(II) We may assume that N > n. If N_-< n, then for any choice of ..u, there
exists a polynomial q of degree_-< n-1 for which q(t)= ei, i= 1,..., N. Moreover
qn)_= 0 and our problem is trivially solved.

(III) We always have t 0 and tN 1. Assume, for example, that tN < for some

f which solves (3) or (4). Set g(x)=f(xtu) for x [0, 1]. Then g is "admissible" in
(3) or (4), and since g(n)(X)--tNf")(XtN), it easily follows that ]lg(n)l-lp < ]]f")l]p for
p (1, Do], with the analogous strict inequality in (4).

Thus in what follows we will always assume that
(a) (e- e_)(e+l- e) <0, i=2,. ., N- 1;
(b) N> n;
(c) tl=0, tu=l.
There always exist functionsf Wpn) which solve (3) (orf VCn) which solve (4)).

The proof of this fact is not difficult and we omit it. It follows from the existence
already alluded to in (1) and (2), and from the fact that there exists a t* ..u (and
not in EN\"N) for which the left-most infima in (3) or (4) are attained.

We will prove that solutions to (3) and (4) must be of a particular form, given by
solutions to (1) and (2), respectively, and must also "oscillate" strictly between the
values (ei)N. TO explain what we mean by this latter term, we introduce the following
definition.

DEFINITION. Let (e- ei-1)(ei+l- el) < 0, 2, , N- 1, and 0= tl <" < tu
1. Let f C[0, 1] satisfy f(t) e, i= 1,. ., N. We say that f oscillates between the
(ei) on (t)N iff is monotone on [ti, t+l] for each i=1,..., N-1. We say that f
oscillates strictly between the (e)l on (t) if f is strictly monotone on [ti, t+l] for
each i=l,...,N-1.

Because of the nature of the problem, we divide our analysis into three parts,
namely, 1 < p < oo, p oo, and p 1. Both p 1 (Vn)) and p c may be considered as
limiting cases, but they are much more special and will be considered separately.
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In 2 we quite easily prove that solutions to (3) for pc(l, oe) must be of a

particular form and oscillate strictly between the (ei), on some (h)N. However, we
are unable to prove either the uniqueness of the solution or the fact that functions of
this particular form are necessarily solutions to (3). In other words, we prove necessary
but not sufficient conditions for a solution to (3). We do conjecture, however, that
these conditions are sufficient and that (3) has a unique solution.

In 3 we consider the case p oo. We somewhat surprisingly are able to explicitly
characterize the solution and we show that it is unique. The uniqueness is especially
surprising since for fixed t .. N and p co, the solution to (1) is not necessarily unique.
(While for p (1, oo) the solution to (1) is unique.)

In 4 we consider the case p 1. We prove that the solution to (2) is unique and
is of a particularly simple form (splines of degree n- 1 with N-n knots). We again
prove a necessary condition for the solution to (4). Here again both the full characteriz-
ation and uniqueness is lacking, except in the case n 2 where it is easily seen that
every solution to (2) necessarily oscillates strictly between the (e)l. For n_->3, we
conjecture that the characterization leads to a unique solution.

Let us review the history of and motivation behind this problem. The above
problem in a multidimensional setting (x still runs over [0, 1], but we are dealing with
a d-dimensional vector of single-valued functions and d-dimensional data vectors e,
i= 1,..., N) was discussed by Marin [9] and T6pfer [12]. Physical motivation for
this problem comes from problems of geometric curve fitting and design of a trajectory
for a robot manipulator (see Marin [9] and T6pfer [12]). Marin explicitly proved
existence and uniqueness for the one-dimensional problem in the case p 2 and n 2.
Here we are dealing with natural cubic splines (solutions of (1)) and we can explicitly
calculate the solution. More recently Scherer and Smith [11] dealt with the problem
of existence in the multidimensional setting for the case p 2. It is our hope that the
one-dimensional problem considered herein will not only be of interest in and of itself
but will also provide insight into the multidimensional problem.

Finally it should be noted that generalizations of the results of this paper exist
since many of these results are consequences of the underlying total positivity structure
of the problem. However, this is not true of all of the results and generally only weaker
versions hold. Thus, for example, we might consider an nth order disconjugate differen-
tial equation L on [0, 1], and the problem

inr inf (11 Lfll " f W(p’(t; e)}
t

for p e (1, co], with an analogue of (4) for p 1. The main result of 2, Theorem 2.2,
will hold in an analogous form except that it is not necessary that tl 0, tN 1, or
that every optimal f* oscillate strictly between the (e)N on some (t*)lN, but only that
f* on [t*, t*+l] take on only values between e and ei+l, i- 1,..., N-1. For p 1,
and especially p oe, the results are substantially weaker than those obtained herein.

Another generalization that can be dealt with using the techniques of this paper
is the following. Consider the problem

inf inf h I1 K t,, y h (y dy e,, 1,..., N
t?N 0

(and the analogous problem for p 1) where K is a strictly totally positive kernel.
Here again weaker results of the above form are obtained, but only in the case where
eiei+ O, 1,’’’, N- 1.
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2. p(l,o). To understand the solution to (3) we must first consider the
problem (1).

Recall that forf w(n)

(5) f(x)-- E aix’d-Jo (x-Y)"-lh(y)+ dy,
i=o (n-l)!

where ai f(i)(O)/i!, =0, 1,. ., n 1, and h =-f" Lp.
Let tu be fixed, t =0, tu 1, N n+l. f[t,..., t+,] will denote the nth

divided difference off at the points t, , li+n, 1, , N- n. Forf W"(t; e), set

Ei=f[ti, ti+,’’’, ti+n] i=l,’’’, N-n.

When we assume (e-e_)(e+-e) <0, i= 2,..., N-1, it easily follows that
EiEi+ < 0, 1, , N- n (since n 1). Applying the nth divided difference at
the points t,. ., t+, to f W"(t; e) as in (5), we obtain

Io’= ,(h( , i= ,..., N-n,
where Mi., is a positive multiple (easily computed) of the B-spline of degree n-1
with knots li,’’" li+n, i-- 1,"" ", N-/I. Problem (1) is equivalent to

Io(6) inf [Ihll" M,,(y)h(y) dy Ei, i= 1,..., N- n

Problem (6) (see de Boor [2], and Fisher and Jerome [6]) (and thus (1)) has a unique
solution of the form

(7) he(Y)-- 2 biMi.n(y) sgn 2 bMi.n(y)
i=1 i=1

where 1/p + 1 / q 1, and

Io(8) E M,,(y)hp(y) dy, i= 1,..., N-n.

Equation (8) uniquely determines the coefficients (b) in (7). To obtain the unique
solution f to (1), we write

f(x) a,x+ (x-y)+ hp(y) ay
i=o (n-l)! Jo

and uniquely determine the (ai))- so that fp(t) e, 1,. , n. From (8) it follows
that fp Wp (t; e).

The following notation will prove useful. For f C[a, hi, let S(f) denote the
number of sign changes of f on [a, hi, i.e.,

S(f) sup {k: a <- xa <. < xk+l <-- b, f(x,)f(x+l) <0, i= 1,. ., k}.

Of course, if f is either nonnegative or nonpositive on [a, b], then we set S(f) =0.
Similarly, for a vector x R"\{0}, S-(x) will denote the number of sign changes of
the vector x, i.e.,

S-(x) max {k: _-< i <. < ik+ m, xix!,+ < O, j 1,. , k},

unless x is nonnegative or nonpositive in which case S-(x)= 0.
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N-,
biMi,(x) where the (bi)N-, are as determined by (8).Let Q(x)= i=1

PROPOSITION 2.1. Q has exactly N-n-1 sign changes on (0,1), and
crQ(n-(x)(-1)i>O for x(ti, ti+), i= 1,’", N-l, where cr {-1, 1},fixed.

Proof. It is well known (see, e.g., de Boor [3]) that

S b,M,,n <= S-((b,,..., b_,)).
i=1

Since S-((b, , bN-n)) N- n 1, it follows that Q has at most N- n 1 sign
changes on (0, 1). Assume Q has k sign changes on (0, 1). Then

hp(y) [O(y)l q-’ sgn (Q(y))

has k sign changes on (0, 1). Let 0= o < 1 <" < k+l 1 be such that 6hp(y)(-1) 0
for all y [_1, ], j 1, , k + 1, where 6 {-1, 1}, fixed. Set

From properties of B-splines (see, e.g., de Boor [3]) it follows that A= (a) -’+=,= is
a totally positive (TP) matrix. Fuhermore,

k+l

a0(-1)=i, i=l,...,N-n.
j=l

From the above, N- n k + 1. As a consequence of the variation diminishing propey
of TP matrices (see Karlin [7]), we have

S-((E, ,-.., _)) N min {rank (A) 1, S-(-, ,..., (-1)+)}.

Since N+I < 0, 1, , N- n 1, it follows that the left-hand side equals N- n 1
and that N- n N k Therefore k N- n 1 and Q has exactly N- n 1 sign changes
on (0, ).

Since k=N-n-1, we have that S-((b,...,b_))=N-n-1, and thus
b(-1)>0, i= 1,..., N-n, for some e{-1, 1}, fixed. It is well known that the
(n-1)st derivative of M.(x) strictly alternates in sign as we go from (t, t+) to

(t+, t+), j 1, , + n 2. In particular,

. >0, xe(t,t+), j=i,...,i+n-1.

Thus for x e (t,
N-n N-n

Q(-(x) 2 bM(- ) h, (x (- 2 I---, (xl.
i=1 i=1

M(-(x)0 on (t, t+) for some i, it follows thatSince b0 for all i, and .._,
(-1)Q(-(x) > 0 on (t, t+), j 1,..., N-1. This proves the proposition.

With the above proposition we easily prove the following theorem.
ToM 2.2. Letp(1, ), and letf*e W be a solution of (3). ere exists a

t* (t,. ., t), 0 t <. < t 1 such that f* e W ( e). Furthermore,

N--n q-1 (n(a) f*((y)= 2 bM.(y) sgn bM,(y)
i=1 i=1

where 1/p+ 1/q= 1, M. is a positive multiple of the B-spline of degree n- with knots
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t’i,’’’, t’i+,, i= 1,’’’, N-n, and the (b*i )-" satisfy

n(Y)f*(n)(Y) dy=f[t*,..., t*+n], i= 1,..., N- n.
0

(b) f* oscillates strictly between the (el)
Proof Let f* solve (3). Existence implies that there exists a t* as above for which

f* W(pn)(t*; e). Since f* must also solve (1) for t*, it follows that f* necessarily
satisfies (a). It remains to prove that (b) holds.

Since (ei-e_l)(e+l-ei)<O, i=2,...,N-1, f* has at least N-2 interior
extrema, i.e., f*’ has at least N-2 distinct zeros. From Proposition 2.1, f*(") does not
vanish on any subinterval of[0, 1] and has exactly N- n- sign changes. From Rolle’s
theorem applied to f*’, it follows that f*’ has exactly N-2 (simple) zeros in (0, 1).
Let 0<sz<. .<su_ <l(s --0, SN 1) denote the unique extrema of f*. Thus f*
oscillates strictly between the (f*(s))N on (s)N. It remains to prove that si= t*,
i=2,. ., N- 1. Note that tf_l<S < tf+l for j=2,. ., N-1.

Assume si t* for some i{2,..., N-I}. Consider problem (1) at the points
l=f*(s), i= 1,... N. There is a unique solution to this new(s) N with the values e

problem which we denote by g*. It follows from Proposition 2.1 that g* f*. Further-
more f* is "admissible" for this problem. Thus Ilg")llp < IIf*")llp. From continuity
considerations, there exist points 0<_-w<...<wv<_-I such that g*(wi)=ei, i=

1,..., N. Thus g* is "admissible" in (3). However, this contradicts the minimality
property of f*. Thus s t*, i= 2,..., N-1, and f* oscillates strictly between the
(e,)l on (t*).

On the basis of the above result, it is natural to ask whether the solution to (3)
is unique, and in particular, whether there is a unique function satisfying (a) and (b)
of Theorem 2.2. Marin [9] showed by construction that there is a unique function
satisfying (a) and (b) in the particular case n =p 2.

Remark. For the case n 1, it is easily seen that every solution to (1) a spline of
degree one with simple knots at t,..., tN_ 1. Thus it oscillatesstrictly between the
(e) on (t) for any choice of t... However, a bit of calculation shows that the
solution to (3) is in fact unique. The optimal choice oft* is given by tl* =0, t* 1, and

i-1 /NIt* [ej+i ej[ ]ej+l- ej[, i= 2,..., N- 1.
j-----I Ij=l

Note that this unique choice is independent of p (1, c).
3. p=oo. For fixed 0=t<...<tu=l, N>n>=2, and (e-e_)(e+-e)<0,

i=2,..., N-l, the problem (1) for p =o, i.e.,

(9) inf{]]f(")]]:f W)(t; e)},
may have many solutions. There is always at least one. solution of particular interest.
It is a perfect spline of degree n with exactly N- n -1 knots, i.e., a function P of the
form

P(x)= aixi+-, x +2 2 (-1)i(x-,i)
i=0 i=1

where o 0 < : <. < u-,-1 < ,-, 1 (see, e.g., Karlin [8]). Note that [P(")(x)] [c[
for all x

The main idea used in the proof of Theorem 2.2 does not carry over to the case
p since the g* constructed therein is generally identically equal to the f*. However,
much research has been done on perfect splines and we will use some of those results
to prove not only an analogue of Theorem 2.2, but also the uniqueness of our solution.
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We first state two deep results due to Bojanov. Recall that we always assume that
N> n->2 and (ei-ei_l)(ei+l-ei)<O, i=2,’’ ", N-1.

THEOREM 3.1 (Bojanov [1]). There exists a unique perfect spline P* of degree n
with N- n 1 knots, and a unique set ofpoints 0- t*l t* 1 for which

(i) P*(t* )- ei, i- 1,..., N;
(ii) P*’( t/*) 0, i-2,...,S-1.
THEOREM 3.2 (Bojanov 1]). Let P*(.; e) denote the unique perfect spline as given

in Theorem 3.1, where we indicate the dependence on e- (el, , err). In a neighborhood
of every e satisfying (ei-ei_l)(-1)io, i-2,..., N, we have that ]]P*((.; is a
strictly increasing function of each (- 1) ei, 1,. , N.

On the basis of Theorems 3.1 and 3.2, we immediately obtain the following result.
THEOREM 3.3. There exists a unique perfect spline P* of degree n with N-n- 1

knots which satisfies (3)forp -do. P* is uniquely characterized by thefact that it oscillates
strictly between the (ei) on some (t’i) .

Proof. The only fact that is not an immediate consequence of Theorems 3.1 and
3.2 is the fact that P* is strictly monotone on [t/*, t*/] for each i--1,..., N-1.
However, a simple Rolle’s theorem argument shows that P*’ has exactly N-2 zeros.
Thus P* is strictly monotone on [t*, t/*+l], i- 1,..., N-1.

In the above theorem, uniqueness is proved only for the class of perfect splines.
There is more that is true, namely, Theorem 3.4.

THEOREM 3.4. The perfect spline of Theorem 3.3 is the unique solution to (3) for
p-odd

Proof. Let P* be as in Theorem 3.3 with P*(t/*) ei, i- 1,- , N, 0- tl*
t*N 1. Assumef W(t; e) for some t EN. There exists a perfect spline P of degree
n with N-n-1 knots for which P(ti)=f(ti) ei, i= 1,. , N, and
If t t*, then from Theorem 3.3, [[P*(]] IIP(ll. Thus iff W,f is "admissible"
in (3), and Ilf()ll- IlP*("ll, then it necessarily follows that f W)(t*; e).

We next prove thatf’( t/*) =0, i=2,... N- for anyf as above Assumef’(t.*) 0
forsomej{2,...,S-1}.Replacetbysj(t_,t+)sothatifgW),-g(t*i =ei,

i=1,..., N, i#j, and g(sj)=f(s), then g attains the value e at least twice in
(t-l, t+l), and g is "admissible" in (3). Let P be a perfect spline of degree n with
N- n- 1 knots such that P(t*) eg, i= 1,. ., N, j, and P(s) =f(s). Then P P*.
Thus IIP(ll_<-IIf(ll and from Theorem 3.3, IIP*()ll IIP(l[. This contradicts
the minimality property of Thus f’(t) 0, 2, , N- 1.

Assumef P*. Thenf P* on (t, t.+l) for somej{1,..., N-l}. Since (P*-
f)(t)=0, i=j, j+l, (P*-f)’(x) must change sign on (t, t+l). Thus for >0,
suciently small, (P*-(1-)f)’(x) has a sign change in (t, t+). Furthermore
(P*-(1-g)f)’(t)=O, i=2,..., S-1. Thus (P*-(1-)f)’(x) has at least S-1
distinct zeros in [0, 1 ]. Since [P*(’)(x)[ ]f(’(x)[ > (1 )[f(’(x)[ almost everywhere
on [0, 1], it follows from Rolle’s theorem that (P*-(1-)f)(")(x) has at least N-n
sign changes on [0, 1]. But P*(")(x), and thus (P* (1 g)f)(")(x), has exactly N n 1
sign changes thereon. This contradiction proves the theorem.

Remark. For N n + 1, P* is the unique polynomial of degree n that satisfies
P*(t) ei, 1, , n + 1, and P*’(t) 0, 2, , n. Such polynomials have been
considered previously (see, e.g., Davis [4] and Mycielski and Paszkowski [10]). It
seems that it was not previously noted that such polynomials satisfy an extremal
property with respect to their nth derivative.

Remark. In the case n both Theorems 3.3 and 3.4 are valid. However, the
proofs are somewhat different. The unique solution is identical for all p e (1, ] (see
the remark at the end of 2), and is a perfect spline with knots (t)-1.
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4. p 1. We first considerin some detail solutions to (2) forfixed0 tl < t_<. <
tN 1 with N> n =>2 and (ei-ei_l)(ei+l-ei) <0, i=2, , N- 1. We recall that
f v(n)(t; e)if

n-1

(10) f(x)= E aixi+
i=0 Io +n--1(n- 1)!

(x y) dlx(y),

where II ll < and f(t)= e,, i= 1,..., N. We are concerned with the problem

(11) min (1111" fe V(n)(t; e)t

where is associated with f as in (10).
As in 2, set

Ei f[ ti, t+l,. ", ti+n ], 1,. ., N n.

Thus (11) is equivalent to

Io(12) min I1 Mi, (y) dtx (y) Ei, 1,

Since n => 1, we have EiEi+ < O, 1, , N- n 1.
It is well known that (Mi,n)N-, is a weak Chebyshev (WT-) system on [0, 1 ]. Thus

there exists a nontrivial

Nnn

h(y)= E c,Mi,,(y)
i=1

and points 0 < :1 <" < N--n < 1 such that

i--1,...,N-n.

Without loss of generality, we normalize h so that h I1 1. Before showing how we
use h to construct a solution to (12), let us consider h and the points of equi-oscillation
(soi) -n in more detail.

PROPOSITION 4.1. Let h be as above. Then we have the following"
h is unique.

(ii) c(-1)i>0, i=l,...,N-n.
(iii) The i - are uniquely defined.
(iv) If n >- 3, then ti+l < i < ti+n--1, 1,. , N- n.

Proof For n 2, h is continuous and piecewise linear with knots t2,"" ", tu-1,
and satisfies h(0)= h(1)= 0. h is easily seen to exist and satisfy (i), (ii), and (iii) with

i-- ti+l, i-- 1,’’’, N-2.
Assume n =>3. By construction h has at least N-n-1 sign changes. From

Proposition 2.1 and the proof thereof, it follows that h has exactly N-n-1 sign
changes, h ("-1) strictly changes sign at each t, i=2,...,N-I, and c(-1)>0,
i= 1,. , N-n.

For eachj{1 N} (Mi,n)u-"=l,j is a WT-system on [0, 1]. Since h equi-
N

oscillates at N- n points, it follows that -cj 1Y=l,e ciMi, is a best approximant to
NM, on [0, 1] in the uniform norm from span {Mn}i’=S i. Furthermore, the error in

the best approximation is exactly Icl -. If h== dgM,n satisfies Ilhll-1, and
/(r/i)=(-1) , i=1,..., N-n for some 0<r/l<’"<r/n_,<l, then it follows as
above that Thus d -cj for each j proving.the
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uniqueness of h. (A different proof of the uniqueness of h follows from the analysis
in the proof of Theorem 4.2.)

Since

N--n_, c,Mi,,()= (-1) j, j= 1,’’’, N- n,
i=1

and (Mi,()) N-"i,j= is TP, it follows that this matrix is nonsingular and thus i e (ti, t/,),
i=l,..., N-n. However, we wish to prove more, namely, ie(t+, t/,_), i=
1,..., N-n. To this end we use Rolle’s theorem and the fact that h’()=0, i=
1,..., N-n. Since n3, h’ is continuous and vanishes on (0,] at the points,. ., . Fuhermore hJ(o) =0,j =0, 1,. ., n-2. When we apply Rolle’s theorem,
it follows that h"-2 has at least i+ 1 distinct zeros in [0, ], and h"- has at least
sign changes in (0, ) (since h"- does not vanish identically on any subinteal).
But h"- changes sign exactly at t2,..., tN-. Thus t+ < . Similarly we prove that
i < ti+n-l"

It remains to prove (iii) for n 3. Propey (iii) follows if we can show that h’
has no zeros in (0, 1) other than ()-". This fact may be proven by a simple Rolle’s
theorem argument. Alternatively, we can argue as follows:

N--n+l

h’(y)= dM,_l(y)
i=1

where suppM,_l=(ti, t+,_), i=l,...,N-n+l. If h’()=0 for some
(0,1){,...,_,}, then by setting {l,’’’,s-+l} ={l,’’’,s-,} where
0 < <. <_+< 1, it follows from (iv) that t < < ti+n_l, 1, , N n + 1.
But this implies that h’ 0, which is a contradiction.

We can now construct a unique solution to (11).
THEOREM 4.2. Let h and (i)- be as given above. Set

N--n

t bj
j=l

where the b) are chosen so that

bjM,,()= E, i= 1,..., N-n.

e ]]t]] j ]bj] d t i the unique solution to (11).
Proo Let t be as given above. Such a t exists and is unique since (M

is nonsingular. Since E(-1)>O, i=1,...,N-n for some {-1, 1}, fixed, it
follows from the total positivity of (M,,())-",j=, that b(-1)> O, j= 1,-.., N-n.
Fuhermore since c(-1)> O, i= 1,..., N-n, it is easily seen that

N--n n N-n

IDol c,E, c,E,I.
j=l i=1 i=1

For any , ]l <, satisfying

for M,,(y) d(y)= E,, i= 1,..., N-n,

we have

ciEi
i=1

h(y) dtz(y) h II.
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Since h II 1,
N-rl

IIz ll r. Ib l=
j=l

n ciEi
i=1

which implies that/zt is a solution to (11). Assume [[/-*t[] [[/zl[. Then necessarily

h(y) dp(y)

By Proposition 4.1(iii), h attains its norm only at the values ()1-". Thus /z has
support only on the ()-". Since i,j=l is nonsingular, it follows that

We now turn our attention to the problem as stated in (4), namely,

(13) min min {[[/x[["f V(")(t; e)}.

From Theorem 4.2 we know that any solution must be of the specific form
given therein. We will prove that any solution must also oscillate strictly between
the (ei)s on some (6). For n- 2, this result is simple, and yet disappointing. For
any t..N, tl=O<t2<...<t=l, construct t and the associated f(x)=
ao+ alx + Yf=-2 bj(x- )+. As noted earlier tj+,j 1,.. N-2. Since (ei- e_)
(e+l- e) < 0, 2, , N- 1, it is easily seen that for any choice oft ’’N,f oscillates
strictly between the (e) on (6). Thus our result clearly holds, but obviously this
condition is not sufficient in (13). However, it is possible, by calculation, to verify that
the solution to (13) is unique.

We now turn our attention to the case n ->_ 3. Here it is unclear as to whether the
following necessary conditions are also sufficient for a solution to (13), and also as to
whether uniqueness holds.

THEOREM 4.3. Let n >--3 and let f* be any solution to (13). There exists a t*=
(t*, ’’, t), O= t* <" < t* 1 such that f* V(")(t*; e). Furthermore,

--1 N

(a) f*(x)= E aixi + Y bj(x-)-I
i=0 j=l

where the (bj) -" and ()-" are as in Theorem 4.2 with respect to (t* .
(b) f* oscillates strictly between the (ei) on (t*i )..
Proof Let f* be a solution to (13). There then exists a t* as above for which

f* V(")(t*; e). Since f* must also solve (11) for t*, it follows that f* necessarily
satisfies (a). It remains to prove (b).

We first prove that f*’(t*)=0, i-2,..., N-1. Assume to the contrary that
f*’(tk*) 0 for some k {2, , N- 1}. Without loss of generality we will assume that
(ek-ek-1) >0. Thus there exists an Sk as near as we wish to tk* for which f(Sk)> ek.
Recall from Proposition 4.1 that t*+ < s < t*i+n-1, 1, , N- n. Taking Sk close to
tk*, this implies the existence of a unique

n--1 N-n
n--1g(x) E cix’ + _, 4(x-6)+

i=0 j=l

that satisfies g(t*)= ei, i= 1,..., N, i# k, and g(Sk)= ek. Furthermore sgn dj sgn bj
(-1)Jtr, j= 1,’.., N-n, where try{-1, 1}, fixed, g is "admissible" in (13) with
n/xll 2j-" ]dj]. We will prove that ,j= z.,j=, Ibj], contradicting the minimality
of f*. To this end, note that

n--1 N-n

(f*-g)(x)= (ai--Ci)Xid E (bj-dj)(x-)--1
i=0 j=l
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satisfies (f*-g)(t*)=O, i= 1,..., N, iS k, and (f*--g)(Sk)>O. The conditions
t*+l<:i<t*+n_l, i=l,...,N-n, easily imply that f*-g vanishes only at
(t*)=l.,j. Thus, in particular, (f*--g)(t*k)>O.

Set (f*-g)[t*,..., t*+n] F, i= 1,’.., N-n. Then

N--n

F,= E (bj-d)M,.(), i= l, N-n
j=l

and F(-1)tr=>0, i= 1,.’’ ,N-n. Furthermore the (Fi)-" are not all zero. From
the total positivity of ,.=litfollowsthat(b-d)(-1)Jtr>=O,j=l,’",N-n,
and not all the (b- d)N-" are zero (in fact all are nonzero). Thus

N--n N-n N-n N-n

Z Ibl-- Z b(-1)tr> E dj(-1)’= E Idol.
j=l j=l j=l j=l

Therefore f*’(t*) 0, 2,. ., N- 1.
It remains to prove that f* is strictly monotone on Its*, t*+l] for each i=

1, , N- 1. Using the fact that t*/ < : < t*+n_, 1, , N- n, it follows that
f*’(x) has no zeros in [0, other than t*,. , t*_l. Thus f* oscillates strictly between
the (e,)v on (t/*). I-i
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Abstract. In this paper a far-reaching extension of Szeg6’s theorem on the univalence of partial sums
of the power series expansion of univalent functions in the class 6e is given. In particular, it is shown that
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is not only true for 6e but also for the closed convex hull of . The paper concludes with the discussion of
a new conjecture on 6e, stronger than the former "Bieberbach conjecture."
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1. Introduction and statement of the results. Let d denote the set of analytic
functions f in the unit disk D satisfying f(0)=0,f’(0)= 1, and let 5e be the set of
univalent functions in M. For

f(z)= E akZk M,
k=l

let

f.(z) az (n ).
k=l

In 1928, G. Szeg6 [5] proved the following nice result.
THEOREM A. Forf all sections fn are univalent in D1/4.
Here DR denotes the set {z: Izl < R}. A functionf s is said to be convex (starlike)

in DR if it is univalent in DR with f(DR) convex (starlike with respect to the origin).
By c, . we denote the subclasses of functions in which are convex or starlike in
D, respectively. Szeg6 also proved the following theorem.

THEOREM B. Iff6 c (*), then all sections fn are convex (starlike) in I[I)1/4
In the present paper we show that both Theorems A and B are very special cases

of a general convolution theorem. We recall that for

f(z)= Z akzk, g(z)= Z bkzk
k =0 k =0

the Hadamard product (or convolution) is defined by

(f’g)= akbkzk
k=O

and that M is closed under convolution, i.e., f, g M implies f, g ’.
Let

* Received by the editors March 5, 1986; accepted for publication (in revised form) January 11, 1987.
t Math. Institut d. Universitit, D-8700 Wiirzburg, Federal Republic of Germany. Current address,

Depto. Matemgticas, Universidad T6cnica F.S.M. Casilla ll0-V, Valparaiso, Chile.
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where clco stands for the closed convex hull (in this case with respect to the linear
space of analytic functions in ) with the topology of compact convergence in D).
contains two interesting subsets:

(1.1) := {f M" Re(f(z)/z)>1/2, zD}c

(1.2) :’- Z) ak2
k M: 0 <- ak+ <- ak, k ;.

k=l

In particular, since c c (compare Duren [2, pp. 72-73]), we have

(1.3) c c
We will show that is closed under convolutions:

(1.4) f,gf, g,
and, in particular,

(1.5) f :f, . for n.
Our main result is as follows.
THEOREM 1. Let f clco 5e and g . Then f, g is starlike in D1/4. The constant

1/4 is best possible.
This obviously contains both Theorems A and B using the special choices g

where

s.(z) z (n ).
k=l

But, in fact, Theorem A is considerably improved by Theorem 1; the result is true not
only for f 5e but for all f clco 5f, a much larger set, which includes, for instance,
all normalized typically real functions in D; and the conclusion "univalent" is replaced
by a stronger one, "starlike". Also Theorem B is extended by Theorem 1, as can be
seen from Corollary 1 and the above-mentioned inclusion c c c .

COROLLARY 1. Iff6 then f is convex in )1/4. In particular, fn is convex in

for n . The constant - is best possible.
Note that this also gives the sharp "radius of convexity" within the class

the function s2 is convex in 1/4 but in no larger disk.
Theorem 1 is related to a general convolution conjecture we are proposing. Let

@ {g M: ]g"(z)[ _-< Re g’(z), z [}.

Conjecture. Let f clco 0, g 9. Then f g 0*.
We can prove that h implies g(z) :- 4h(z/4) and this shows that Theorem

1 is a partial verification of the conjecture.
Regarding we prove the following theorem.
THEOREM 2. (i) @ is a compact convex subset of c, closed under convolutions.
(ii) Let g(z)= Yk= akzk M with

(1.6) Y, k2[ak] <= 1.
k=2

Then g and the conjecture is true for g.

After completing this manuscript became aware of the paper entitled, "On a theorem of Szeg6," by
K. Hu and Y. F. Pan, J. Math. Res. Exposition, 4 (1984), pp. 41-44. The authors also show that "univalent"
can be replaced by "starlike univalent" in the conclusion of Theorem A. Their method, however, does not
extend to clco 0
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We also note that the conjecture is stronger than the (former) Bieberbach conjecture
(de Branges’ theorem). In fact, assume

f z Z akZ
k b"

k=l

and that the conjecture holds. Since, by Theorem 2,

g,,(z)=z+z"/n-,

we see that (f, g,,)(z) z + a,,z"/n2 *, which gives [a,[-<_ n, n 2, 3,. ..
2. Proofs. We first verify the claims (1.1)-(1.5). Since is closed by definition,

it contains the functions

Z
L(z):- Ixl-- 1,

1 -xz

and hence also clco {fx: Ix[ 1}, which is known to equal . This proves (1.1).
For the proof of (1.2) we note that the set of polynomials in is dense in , and

since is closed it suffices to show that every such polynomial is in . But these
polynomials are finite convex combinations of the sn , n M, and is convex.

Let l_-<n_-<m and

f(z)= xk-’zk, g(z)=
k=l k=l

for certain x, y D. Then

(f * g)(z)= (xy)k-lzk ,.
k=l

Since is obviously compact we can apply [3, Thm. 1.17] (with a slight modification
concerning the normalization) to deduce (1.4). Then from (1.4) with g s, andf .
we havef s, =f, :, n , which is one direction of (1.5). The other direction follows
from the compactness of .

For the proof of Theorem 1 we require a fairly large number of results on 5e which
we state in the following three theorems. Except for (2.5) (de Branges’ theorem [1]),
these results can be found in the standard textbooks on univalent functions (see, for
example, Duren [2]).

THEOREM C. Forf6 5f and z D we have

(2.1)

(2.2)

log f(z--) + log (1 -Izl:)
Z

logZf’(z)
f(z)

=<log

(2.3) largf’(z)l<-4arcsinlzl (Izl < 1/4),

(2.4) [f’(z)l_->
(1 + Izl)

THEOREM D. Let f(z)=Y.=l akzk . Then

(2.5) la.l<in (n),

(2.6) la3- al -< 1.
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THEOREM E. Let

V3 {(a2, a3) 6 C2: :If(z) z + a2z2 + a3z3 +... }.

Then the set ofpoints (a2, a3) with

a2 -2 x( t) dt, a3 a- 2 tx2( t) dt,
o

where x( t) is continuous with Ix(t)[ 1, is dense in V3.
We now.give a series of lemmas based on these theorems. The results derived in

these lemmas are not sharp.but sufficient for our purposes. Let

t og 0.508 ..
We note that et is a (not normalized) convex univalent function in .

LEMMA 1. We have

1 etz
<r (z),(2.7)

1 + et

where o’=,v/3 (1 +cos/3)-1/2=0.3445....
Proof Let f(z) (1 et3Z)/(1 + eOZ). Thenf is analytic in ) since Re et > 0, z .

It therefore suffices to prove (2.7) on Iz[ 1. Also, since

IF(z)l- IF(-z)l IF(e)l,
we can restrict our attention to z e i, 0-< 0 _-< 7r/2. But in that range we have

el e 0 __> 1,

and, since e3z is convex univalent in , we see that in the same range Re e3Z>-_ Re ei.
Simple geometry now shows that

I + eZl->- I + ei] x/2( 1 +cos/3),

which together with the trivial estimate

l1 et3Z[ <= e
gives (2.7).

LEMMA 2. Let f D1/4. Then

(2.8) [f’(z) Z.)
Z

where a < 0.53.
Proof From (2.2) we conclude that in

(2.9)
zf’(z) eO(Z)t
f(z)

where Ip(z)l--< 1. Hence, by Lemma 1,

(2.10) f’(z)-f(z---)z <=’lf’(z)+f(z---)z
Now we estimate the entity

[f(z)+f(z)/z[
(2.11)

Re (f’(z)+f(z)/z)-

=<a Re (f’(z) +f-V)),

(Z 11/4).

cos (arg (f’(z)+f(z)/z))"
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From (2.1) we obtain

(2.2) largf(z)/zl<- (z 1/4).
It is the consequence of Lemma 1 and (2.9) that

zf’(z) 1 + 0
.2 20.

l+f(z) -1+ +e(z) 21 _0.2 1 -0.

with [e(z)] =< 1, and therefore

(arg 1+ f(z) ]
=larg(l+e(z)0.)l-<arcsin0."

This together with (2.12) shows that the function (2.11) is bounded by

0.53
(2.13) 1/cos (/3 + arcsin 0.)<,

and a combination of (2.10), (2.11), and (2.13) yields (2.8).
LEMMA 3. Forf 5f and z D1/4 we have

(2.14) Re f’(z) _->
250

Proof. From (2.1), with Izl--I, we obtain

log \---/ fl

which extends, by the maximum principle, to ]z] ]. Hence there exists an analytic
function p in /4 with

f(z)_ 16 eO) (]p(z)] 1)
z 15

and, again using the convexity of ez in D, we get

16 -t 16
(2.15) Re

f(z)
__>me

z 15 25
(Z D1/4)-

On the other hand,

Ref’(z) If’(z)l cos (argf’(z))

and a combination of (2.3), (2.4) yields

(2.16) Re f’(z) >)-- cos 4 arcsin
(1 +- 250

Formulae (2.15) and (2.16) give (2.14).
LEMMA 4. Let (a2, a3)G V3. Then

(2.17) 12a2+ a31 <- 16+6 Re a2+2 Re a3.

Proof We show first that

(Z E [[])1/4

21
(2.18) Re (3a2+ a3)->

4
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Using the representations of Theorem E we obtain

Re (3a2 + a3) Re -6 x( t) dt + 4 x( t) dt 2 tx2( t) dt

--+ 4 Re x(t) dt 2 Re tx2(t) dt
4

=--+4 Re x(t)- dt -4 Imx(t) dt
4

-4 t(Re x(t)) dt
o

-->--+4 Re x(t)- dt
4

-4 (Im x(t))2 at
o

-4 t(Re x( t)) dt
o

=---+4 Re x(t)- dt
4

+ 4 (1 t)(Re x(t))2 dt
o

21

Here we made use of the Cauchy-Schwarz inequality and the relations

Re A2 (Re A) (Im A)2 -IAI + 2(Re A):z (A C).

When we use the bounds la2[ =< 2, [a31 _-<3 it follows immediately that (2.17) holds if

Re a2 2

Also, by (2.18) we deduce that (2.17) holds if

21 11
(2.19) [2a2 + a31 <= 16

2 2

which is, in particular, the case if

5

Now let Re a <-1/2, [al > ] and write a --a + p where I1 _-<1 by (2.6). Then we have

12a+ a3la 4la2l 2 + la312 + 4 Re aza--3
<-_ 25 + 4 Re a2(-22 +)

_-<25-4 -+8

This shows that also in this case (2.19), and hence (2.17) holds.
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LEMMA 5. Let f 5f. Then for n N and z D1/4 we have

(2.20) [f’(z)_f(z)<_z Re(f’(z)+fz))"
Proof. We write f. =f-p. such that by Lemma 2 for z D/4

f’(z)-f"(z)z <-1f’(z)-f(z-)z +1 p’(z)-p(z)z
<- a Re (f’(z)+f--(-(-() + p(z)-p"(z)

In order to estimate the right-hand side using

Re(f’(z)+f(z))z =Re(f’(z)+f-))-Re(p"*(z)+Pz))
it suffices to show that

p’(z) _p(Z) P’(z)+f"(z) Re (f’(z)+f-z)).
From (2.5) we obtain

p’(z)+
p"(z)

<
4k_ (Z

Z k=n+l

and, using Lemma 3, we are left with the inequality

k2 0.47 211
< 0.198

k= +1 4k-l= 2 250

A simple calculation shows that this is true for n-> 4. Formula (2.20) is immediately
verified for n 2. For n 3 we have to show that

(2.21) [azz+2a3z2l<-2+Re(3a2z+4a3z2 (z 6 D1/4).
Since (a2, a3) V implies (a2x, a3x2) G V3 forx we see that (2.21) is equivalent to

a2+a3 _-<2+Re a+ a
4 8

for (a, a)e V3. This, however, is the content of Lemma 4.

Proof of Theorem 1. Let denote the class of functions h M with

(2.22) h’(z) h(z)[ ( h.z))_-<Re h’(z)+ (Z6DR).
Z

Then (2.22) implies

(zh’(z.____)_ )/(zh’(Z) + l) -<_1
h(z)

1
h(z)

and hence Re (zh’(z)/h(z))> 0 in DR. Thus (2.22) implies the starlikeness of h
in DR. We also note that R is convex and compact (this class was introduced by
Singh [4]). In Lemma 5 we have seen that forf 5e and

g(z)= x’-Izk (Ixl_-<l,n)
k=l

we have

(2.23) f * g 6 /4.
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By the convexity and compactness of 1/4 and the linearity of the convolution we
deduce that (2.23) holds also forf clco 5e, g , which is an even stronger result than
that which we have claimed in Theorem 1. That the constant J is best possible is readily
seen from the example

__Z__z
f(z)

1 z)2
e 9, g(z) z + z2 e o%.

Then (f* g)(z) z + 2z2 is starlike in D1/4 but in no larger disk.
It follows from Theorem 1 that for f the function z/(1-z)2,f=zf’(z) is

starlike in D1/4. But this is equivalent to the assertion of Corollary 1.

Proofof Theorem 2. The functions gD fulfill, in particular, [zg"(z)[ _-< [g’(z)[ and
therefore Re (zg"(z)/g’(z))+ 1 >0 in D. Hence c c, a compact set. That is closed
and convex is obvious. Now let f, g . Then g c and therefore

g(z)= I ----f---z d/x
1 xz

for a certain probability measure/ on Ixl 1, Thus

(f * g)(z) f l
f(xz) dtx clco

xl=l X

which shows that @ is closed under convolutions. A simple calculation shows that a
function

(2.24) h(z) z + az"

belongs to @ if and only if la[ <-1/n2. The functions (1.6) are in the closed convex
hull of the functions (2.24) with la[-< 1In2 and thus in . Let g satisfy (1.6) and

f(z) , bkZk clco 5e.
k=l

Then

satisfies (using (2.5))

f, g= , akbkzk
k=l

klakbkl <-- k21akl <= 1,
k=2 k =2

which is the well-known sufficient condition for f, g 5e*.
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ON THE ZEROS OF DERIVATIVES OF BESSEL FUNCTIONS*

LEE LORCHf AND PETER SZEGO

Abstract. Bessel functions of the first and second kind are denoted as usual by J(x), Y(x), the general
cylinder function AJ(x)+ BY(x), where A, B are independent of x and v, by C(x), their respective

tk,positive zeros and those of their derivatives by Jk, Yk, Ck, Jk, Y Ck, etc. It is shown here..that for
-1 <v<0, (i) Jk increases in v, k= 12,. , (ii) j’l>jl= 1.84... and (iii) (-1) kr’’rJkJvk] > 0. It is alo
established that Ck’ C increases in u > 0, provided Ck > C > u > 0, where the ranks k, may or may not
be equal but are kept fixed as v varies. Further, (iii’) (-1 kJ"(j’k) < 0 for 0 < v 1, k 1, 2,. 0r’tJol)"’ 0,
(--1)kJ’(jk)<O, k=2,3,’"

Key words. Bessel functions, zeros

AMS(MOS) subject classification. 33A

1. Introduction. The Bessel function of the first kind and order u is defined to be
[2, p. 4 (2)]

(_ 1)’x:’-+
(1) J(x) 2- m=0E4,i-. 1)"

It satisfies the differential equations [2, p. 4 (1); p. 13 (67)]

xZy"+ xy’ + x2- u2)y O,(2)

and

(3) x2(x2- u2)y’" + x(x2-3u)y"+[(x- u)- (x2+ u)Jy’ 0.

Here we shall consider only real values of x, y, and u, and concern ourselves
chiefly with the interval -1 < u < 0. The kth positive zero of J(x) is denoted by jk,
of J’(x) by j’k, except that j =0. For the standard second solution of (2), Y(x),
and its derivative, positive zeros are denoted by Yk, Y’k, respectively.

General solutions C(x) of (2) will also be considered here, in the form

C(x)=AJ(x)+BY,,(x),

where the constants A, B are independent of both x and u. The positive zeros of C(x)
and C’(x) are denoted by Ck, C’g, respectively, and generically by c, c’ or simply
by c, c’.

It is well known, for each fixed k 1, 2,. ., that jk increases with , provided
v >-1 [7, p. 508] and that j’k increases with v provided that v > 0 [5, p. 248].

This last result follows also from [7, p. 510 (4)], since j’ > v when u>0 [5, p.
246], [7, p. 485 (1)]. This formula, which will be used below, states

dc’ 2c’ fo(4)
du c’2- u----- (ca cosh 2t- )Ko(2C’ sinh t) e--’ dt,

where the positive decreasing function Ko(x) is the modified Bessel function of the
second kind and order 0 [7, p. 78].
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An alternative proof of the monotonicity of J uk, 1; > 0, can be based on Sturm
comparison techniques instead of (4) [3].

2. Statement of results to be established. If the inequality j’ul > lu[, known [5, p.
246] to be valid for u > 0, could be established also for -1 < u < 0, then (4) would
imply also that J uk is an increasing function of v, 1 < u<0, k 1,2,.... In fact,
somewhat more is true, namely,

(5) jl > max {jllvl,Jul,j_ul}, --1 < v < O,

where [6, p. 30] jl 1.84118378> 31/2. Indeed,

(5’) j’ -1 < u < O.

Hence, as stated, for k- 1, 2,...,

(6) J uk increases with v, 1 < < O,

as well as for v > 0.
This does not assert that J uk increases for -1 < u < oo. Indeed, such a claim would

be false, as the third inequality in (5) shows. The function j’ is discontinuous at v 0,
although it is continuous from above at u 0, i.e ,Ju jl 0 as v - 0+. In the transition
from negative v to positive v, the zero j’ goes over into J v,k+

As a consequence of (5) and (3), it will be established that

(7) (--1)kJ"u’(j’uk)>O, --1 < V<0.

Analogous results hold for v 0 and 0< v <_-1, namely,

(8) Jg’(j)=Jg’(O)--O, (--1)kJg’(jk)<0, k=2,3,’’’,

and

(9) (--1)kjT(j’k)<0, 0<V=<1, k=l,2,....

This last set of inequalities cannot hold for general v > 0, since they depend on
the inequality j’ 1/2

uk > 3 u, valid for 0 < u _<- 1 (in fact for somewhat larger u as well) but
not for sufficiently large u, as can be noted from the well-known fact that j’ul/u- 1 as

It will be shown also that

1 O) c’ cu increases with u, provided c’u > cu > u > O.

Here c’u and c need not be of the same rank. Special cases of (10) worth noting are,
for fixed k= 1, 2,...,

(11) y!uk- Yuk increases with v > 0,

and

(12) u,k+l --juk increases with u > O.

Remark. The monotonicity result (10) and its corollaries (11) and (12) are reminis-
cent of the results in [4] where it was shown, e.g., that jr,k+1--jug and similar differences
are increasing functions of v>0 for each fixed k--1, 2,.... Proof was done by
employing the integral representation for dc/dv which will be used here to establish
(10). These and other results were later derived by Sturm techniques in [3].



1452 L. LORCH AND P. SZEGO

For the corresponding differences such as Jv.k+l--J,k, k 1, 2,’’’, we have not
proved any monotonicity properties. Numerical values suggest these differences and
the differences j,k--j’,,k possess regularities which are less uniform. Thus, j,,1-j’,,1
decreases over the values v 0,-, , , but increases when v =-, 1, ,. ..

3. Proof of (5) and (6). As a preliminary to (5), but sufficient to establish (6), we
note first

(13) j’l > ]vl, -l<v<O.

This is a consequence of J’(x)< O, Ix -< Iv I, -1 < v < O, which in turn follows on
differentiating (1) and isolating the first term of the resulting infinite series to obtain

v (-1)m+l(2m+ l,t)X2m

2"xl-’J’(X)=F(v+1--1 4mm!F(m+ ’+1)

The isolated term on the right side is negative for -1 < v<0 and the (alternating)
infinite series is positive for 0 < since its successive terms decrease in absolute
value for these x. Hence, (13) holds.

This implies also (6), on taking c’=j’,,k in (4).
Putting x =j’l in the differential equation (2), with y J,,(x), we now infer also that

(14) J(j’) < 0, -1 < u < 0,

since x =j’ yields a minimum for J,,(x) -1 < v < 0. Thus, j’vl >j, as asserted in the
second inequality in (5), since J(0+)= +c for such u.

To establish the third inequality in (5), we recall the Wronskian [7, p. 76]

(15) J(x)J’_,(x)-J’,,(x)J_,,(x)= -(2 sin v’rr)/(’rrx).

This implies J,,(j’,)J’_,.(j’,) > 0 when, as here, -1 < v < 0, so that J’_,(j’,,) < 0, from
(14). Hence j’,>j’_,,, as the third inequality in (5) states, since -v>0.

It remains to verify the first inequality in (5). When we know that j’l and j’_
are monotonic for -1 < v < 0, it follows that their respective limits exist as u-->- 1 +.
Since j>j’, -1 < v<0, we have

in view of the continuity of j’ at u= 1 [5, p. 246]. The first inequality in (5) now
follows, since (6) has already been verified. The reasoning provided establishes also
the stronger assertion (5’).

4. Proof of (7), (8), and (9). The first inequality in (5), slightly weakened, implies

(16) j’,k > 31/21V[, --1 < v<0.

In differential equation (3), we substitute x=j’,,k, with y= J,,(x), and recall that
j’, j3’, yield minima, Jvz,jv4," yield maxima when -1 < v < 0. The y’ term
vanishes; the coefficients of y" and y’" are positive in view of (16), so that (7) follows
from (3).

The results (8) and (9) can be shown similarly, except that, for the first part of
(8), we start by remembering thatjn 0. That J’g’(j)) 0 then follows by differentiating
(1) three times and then putting x 0. For 0 < , -< 1, we need to know that j’l > /v.
This follows from the inequality [7, p. 486 (3)]

j, > /u(v+2), u>O.
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Remark. In fact, j’ >j v, 0< v< 1 This follows from the concavity of "Juk,vl

established by Elbert and Laforgia 1], since jl 0 so that the chord joining the origin
with (1,jl) lies below the curve j’l in the (v,j’v) plane.

5. Proof of (10), (11), and (12). These are consequences of (4) and the lemma of
[4], since cosh 2t > 1, > 0. Thus, from (4) and [4],

dc’,, ,2 2

dv
2c’u Jo

cu cosht2 2t2- v
Ko(2C’ sinh t) e-2’ dt

Ko(2c sinh t) e-’ dt> 2c,

> 2cv Ko(2c sinh t) e-’

where the last inequality follows from the lemma of [4] since c > c, > v > 0. But this
last expression equals dc/dv [7, p. 508 (3)], verifying (10). The remaining assertions
(11) and (12) are corollaries.. ddRl rerk. When we put x =j’vl in the Wronskian

W(J, Y)= J(x) Y’(x)-J’(x) Y(x)= 2/(rx),

it follows that Jv(j’)Y’(j’)>0. When -1 < v<0, the factor J(j’)<0, and so for
this interval of v, Y’(j’v) < 0. When -1/2< v < 0, Y(0+) -m, while Y_/2(x) J1/2(x),
so that Y-l/2(0)=0. Hence

(17) y’ <j’ -1/2<vl vl, /’’ < O,

reversing the inequality which obtains for v > 0 [6, p. xvi (1.04)].
It is perhaps worth noticing the significance of (16) by inferring (17) from another

"Wronskian" [7, p. 76 (8)], namely

(18) J’(x)Y’(x)-J’(x) Y’,,(x)=
2 (3v2

,rrx-- \---- 1

When x =j’, this implies

Jvl) Y,(J) > O, -1 < v < O,

in view of (16). From (7), it follows now that Y’(j’v) <0, as in the previous proof,
leading again to (17).

Note added in proof. The zeros of J’(x) are simple when v > -1, except possibly
for x=0. This follows on applying inequality (13) to the differential equation (2),
since (13) holds also when v>=0. For v<-l, this is no longer the case. This is pointed
out by Kerimov and Skorokhodov, "Calculation of the multiple zeros of the derivatives
of the cylindrical Bessel functions J(z) and Y(z)," Zh. VychisL Mat. Mat. Fiz., 25
(1985), pp. 1749-1760 U.S.S.R. Comput. Math. and Math. Phys., 25 (1985), pp. 101-107,
especially p. 107).
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A COMBINATORIAL INTERPRETATION OF THE INTEGRAL
OF THE PRODUCT OF LEGENDRE POLYNOMIALS*

J. GILLIS?, J. JEDWAB, AND D. ZEILBERGER

Abstract. Denote by P,,(x) the Legendre polynomial of degree n and let

I_I,,,...,,k: P,,(x)...P,,k(x)dx.

I,,,...,n is written as a sum involving binomial coefficients and the sum is interpreted via a combinatorial
model. This makes possible a combinatorial proof of a number of general theorems concerning I,,,...,,k, not
all of which seem analytically straightforward, including a direct combinatorial derivation of the known
formula for Ia, b, and the expression of Ia, b,c,d as a simple finite sum. In addition, a number of apparently
new combinatorial identities are obtained.

Key words. Legendre polynomials, integrals, digraph

AMS(MOS) subject classifications, primary 33A45; secondary 05A10

1. Introduction. We will be concerned with the Legendre polynomials, defined by

P,(x)=2-" Y (-1)(n)(2n-2a)x"-2’ (-l<=x=<l;n=0,1,2,...),
2 O

which may be written in the equivalent form [4, p. 38]

( e(x - } (x + (x -.
In (1), as in other combinatorial sums in what follows, we shall omit the limits of
summation where these coincide with the natural cut-offs implied by the fact that
() 0 wherever a, b are integers and b > a > 0 or a > 0 > b.

Let

(2) I,,,...,, Pnl(X) Pn (x) dx,
-1

where n, n are nonnegative integers. We will express I, ., ..,, as a sum involving
binomial coefficients and use a combinatorial interpretation of this sum to derive a
number of analytical and combinatorial results.

To simplify notation, write (n, , n) and a (a, , a). It is convenient
to write x 2y- in (1) to obtain

y (-- (0yl,

which on substitution in (2) gives

1 k

nl nk (-1 (i)(ni-i)[
(3) =2fv_ (l+ni)

Received by the editors March 25, 1987; accepted for publication (in revised form) March 1, 1988.
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Now consider a set of elements of k different types, ordered by type number
(i 1,..., k) and, within each type number, by a serial number r (r= 1,. ., n). We
represent these by points and form a directed graph by connecting them, with one
edge going into and one coming out of each of the points. We then color each of the
n edges blue or yellow according to the following balance condition"

(*) For each the number of points of type at the beginning of blue edges, a
(say), equals the number at the end of blue edges.

Call each such colored graph a system, and let T denote the set of all possible
distinct systems. Class a system as even or odd according to the parity of the total
number of blue edges k: a. Let the difference between the number of even and odd
systems, in any subset E of T, be H(E). Clearly,

(l+En,). v (l+En,)’.
(-1

al ak
()

by (3).

2. Some elementa considerations. Denote the set of distinct graphs formed by
omitting the coloring of each system, in any subset E of T, by E*. We will refer to
an edge beginning at a point of type and ending at a point of type j (1 i, j k) as
"an j edge," calling it pure if =j and mixed if j. Where desired we will indicate
the edge color by j or L j.

We recall that any veex is characterized by a pair of natural numbers (i, j) where
is the number of the type to which it belongs and j (1 j n) is its serial number

in that type. If two points P, P’ are characterized by (i, j), (i’,j’), respectively, then P
is said to be of lower rank than P’ if

either i<i’

or i=t, j<j’.

Now let P be the set of systems containing at least one pure edge. Given any
system in P, select from among the pure edges the one beginning at the point of lowest
rank and change its color. This leaves the balance condition (*) satisfied but produces
a new system of opposite parity, so that the two systems together give a canceling
contribution to Hv(T). Since this process defines a (1, 1) parity-changing map from P
to itself, H,(P)= 0. Writing TP U, say, this is equivalent to

n.(r) =n.(u);

thus, we may disregard P and count only the contribution of systems in U to Hv(T).
Now consider any graph belonging to U. Take the lowest ranking veex and call

it X. Since there is exactly one edge staing at each veex, there will be a uniquely
defined cycle of the form

(6) Xx’x...x-’x(=x).
Since there are no pure edges it follows that P2 and that each edge XX+ is
mixed. If this cycle does not cover the entire graph, let yO be the lowest ranking veex
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not lying on it. As before, we define a cycle

(7) yO -> y -> -> yq -> yq yO

and continue until the entire graph has been covered in this way.
Consider any such cycle, e.g., (6). It can be divided up into segments each of

which begins and ends with vertices of the same type as X. For example, if the cycle
(6) were

(1, 1) (2, 5) (3, 7) (1, 6)->(2, 4)-->(7, 1)--> (4, 3)--> (1, 2) (2, 1) (1, 1),

we should have the segments

(1, 1)-->(2, 5)-->(3, 7)-->(1, 6),

(1, 6)-->(2, 4) (7, 1)-> (4, 3)--> (1, 2),

(1,2)-->(2,1)->(1,1).

We can thus describe the graph structure by a set of segments, which we may
order by the ranks of their initial vertices. A segment will be called odd or even
according to the parity of the number of edges which compose it. Now let V be the
set of graphs whose structures contain at least one odd segment. Suppose such a graph,
G (say), contains the segment

(8) Z- Z -" - Z- - Zwhere r is odd, and suppose, moreover, that (8) is the lowest ranking such odd segment
in this graph. We change the graph, and its coloring, according to the following rules"

(a) Change the connecting edges of (8) to produce the segment

(9) Z -> Zr-1 -> Zr-2
--->" -> Z -> Zr.

(b) Color these new edges so that the ith edge of (9) (1 <- i-< r) has the opposite
color to that of the (r+ 1 i)th edge of (8).

Call the new system, with its coloring, G’. It is easily verified that G’ also satisfies
the rule (*). On the other hand, since r is odd, the graphs G, G’ will have opposite
parities. Moreover the transformation is clearly an involution. We thus have a (1, 1)
parity changing surjection of V onto itself. It follows that

(10) II_(V) 0.

Therefore if we write W U\ V we have

(11) II_(U) II_(W),

and therefore it is sufficient to construct the systems belonging to W and calculate
their contribution to II_, (T).

3. Application to the case k =3. We now apply these considerations to the
particular case k=3, writing _n=(a, b, c). Since the product Pa(x)Pb(x)Pc(x) is a
polynomial of parity equal to that of a + b + c, its integral will be zero for odd a + b + c.
We therefore limit the discussion to a + b + c 2s, where s is an integer. Moreover it
follows from the orthogonality of the polynomials that the integral will vanish unless
s ->_ max (a, b, c). We proceed to study the integral under these assumptions. Let G be
any graph of the set W*, let E be the number of even systems that can be constructed
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by coloring G, and let f be the number of odd systems. By the definition of W, each
such graph is made up of segments of one of the following forms:

(i) (2-* 3 -*)12,
(12) (ii) 1 -* (3-* 2-*)",3-* 1,

(iii) 1-*(2-.3-*)n,2-* 1,

where the 1, 2, 3 indicate the types to which the vertices belong and li -> 1, mi _-> 0, ni ->- 0.
Let the segments in each of these three classes be ordered by the rank of their initial
vertex.

For each i, j (i, j 1, 2, 3) denote by Eij the number of i-*j edges. In any segment
of type (i), (ii), or (iii) the number of i-*j edges equals that ofj-* edges and, hence,
for the whole graph Eij Ej. Since, by hypothesis, there are no pure edges, it follows
that

E2 E21 s-c,

(13) E13-- E31 s-b, and

E23 E32 s a.

To simplify the notation we write A, B, C for s- a, s- b, s- c, respectively. It is easily
seen that the only possible distributions of colors consistent with (*) must be as shown
in the following table:

2-*3

Blue

Yellow A-a-t A-o B-fl- C-y-t

where t, a, fl, / may take any values for which the table entries are all nonnegative
integers. Now the distribution of colors among the 2-* 3 and 3 -* 2 edges is determined
when we have chosen (a + t) of the 2-* 3 edges and A-a from the 3-* 2 edges, and

(A+t) ways. Similar results hold for 3 -* 1 and for 1 -* 2. Thethis can clearly be done in 23

total number of blue edges in any such coloring is 2(a +/3 + 3’)+ 3t-- (mod 2). Hence
the difference between the numbers of even and odd systems possible on any such
graph is

(14)

But

A+t B+t C+t

(B+C)!(C+A)!(A+B)!(-1 A+t B+t ] C+t

(15) E(-1)t, A+t/ B+t/ C+t AvBCV

(For an elegant combinatorial proof of this known identity, see [3, p. 65].)
Substituting into (17), we obtain
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(16)

(2A) (2B) (2C) (A + B + C)
(B + C)!(C + A)!(A+ B)! A!B!C!

(2s 2a) (2s 2b) (2s 2c)!s!
a!b!c!(s-a)!(s-b)!(s-c)!

(2:-2aa) (2:-2bb) (2:-c) s!(s-a),(s-b),(s-C)!a!b!c!
In particular the number is the same for all the graphs of W*. It remains to determine
how many such graphs there are.

Consider (12). Since there are B edges of type 1 3 in the graph, this will also
be the number of segments of type (ii). Similarly there will be C segments of type
(iii). Hence the total number of m’s and r/i’S is B + C a. If we write L= Eli we see
we have to determine the numbers L, {m}, {n}. Since L+ Ern + En equals the number
of 2 - 3 edges, i.e., A, it follows that L, {mi}, {t/j} are the nonnegative integer solutions of

a+l

Y xi=A
i=1

and this number is known to be (aa+a)= ().
The number of possibilities with the segments in each of (ii) and (iii) ranked in

order is therefore ()/(B! Ct). If the segments of forms (ii), (iii) are connected via
veices of type 1 (and this may be done in a ways), the graph will be determined
except for the numbers l and the ranks of the veices. The veices not involved in
segments of form (i) may be ranked in a(bt/Lt)(Ct/Lt) ways while it is easily seen
that the remaining pairs of (1, 2) points may be connected in cycles and ranked in
(L)z ways. Hence the total number of possible graphs in W* is

(17) {(s)/(B,C,)}.a’. {a’b’c,} =s’a’b’c
a AIBICI"

It follows from (5), (16), and (17) that

2 (2:-2aa) (2:-2bb) (2:-:c)(2:) -1

(18) L.b,--(a+b+c+l
This result was first obtained by Adams [1]. His approach was to evaluate the

integral for some low values of the subscripts and, on the basis of this, to guess a
general formula, which he then proved by induction. For a succinct history of the
problem see Askey [2, pp. 39-40]. In the special case a b= c= 2A, (18) becomes

(19) {P (x)} dx_, (6A +1)!
Substituting (18) into (4), we get the binomial identity

E (-1)++v
c a+b+c

(20)

f (2_2aa)0 (2: 2bb) (2:- c)(2;)-1
In the special case a b c 2A, this becomes

(2tA) 2(2A)2(2A)2( 6A )-1 (2AA)3(6A-I(21) E (-1)’+t+’

for a + b + c 2s,

for a+b+c odd.
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4. The case k =4. Since the product P,,, P,,2...P,,,, is a polynomial, it may be
written in the form

(22)

where the C,,...,,k,

P,,(x)P,(x)" p,(x)=E c.,.,...,,,,,,P(x)

are constants. Now if we apply the well-known relation

2
(23) Pm(X)P.(X) aX-

2m+l

we get

2
(24)

2a + 1
C,,,,,2,...,,,,,,, I,,,,,,...,,,,,,,.

Now let a, b, c, d be nonnegative integers. By (23) and (24)

(25)
P.(x)P(x)=Z (o
P(x)Pd(x) E fl +- Icd,t3Pt3(x).

Hence,

and

L,,,,,,, Po(x)P,,(x)P(x)P,,(x) dx
-1

( I_Y, o + fl + I,,b,o,Ic,d,t P,(x)Pt(x dx
o,fl

(26) _, a+ + IbLa by(22),

Since I,b,,e =0, unless a + b+ c+ d is even, we may assume in (26) that a + b
c+ d (rood 2). Thus we may write

I,b,,e=(2,+)I,b,I,a, if a+bc+dO (mod2)

(7

=(2,)Ia,b.2,+llc.d,2+l ifabcdl (rood 2).

Moreover, since I,,,a is clearly symmetric in the subscripts, we see that

(28) ( a +) Ia,b,Ic,d,a ( fl W) Ia,c,Ib,d,

A special case of some interest arises if we take a b c d. By (27) we get

I,,., 2 + I,,,

(29)
-1

[p,(x)]4dx=2(4y+l){ [(a+Y)[]2 (2:)2(2a-2y)’)}:z.
v (2a+2y+l) a
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A BETA INTEGRAL ASSOCIATED WITH
THE ROOT SYSTEM G*

F. G. GARVAN

Abstract. Some conjectures of Askey are proven that have to do with adding roots in the
Macdonald-Morris conjecture for G2. This is done by extending Aomoto’s proof of Selberg’s integral.
This yields a new proof of the Macdonald-Morris root system conjecture for G2 which should extend
to other root systems.

Key words. Askey’s G2 conjectures, Macdonald-Morris root system conjectures, Aomoto,
Selberg’s integral, multidimensional beta integrals
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1. Introduction. Let

G(xl,x2;a,b)

(1--Xl)a(1--1)
a

( 1)
a

( 1 )
a

(1 x2)a 1 (1 XlX2)a 1
12 1112

()b()b ( )b ( 1 )bxl x2 1
(1 XXl)b 11--22 1----X (1--XlX2)b 1

XX2 XX
Then the Macdonald-Morris root system conjecture for Gz is

( + )!()!()!()!(1.) C.T. (,,z; ,) ( + )!( + )!( + )!!!!
(, ).

Here C.T. means the constant term in the Laurent expansion as a polynomial in xl,
--1 -1x 12, 12 This has been proved independently by Habsieger [5] and Zeilberger

[12]. They have also proved the q-analogue of (1.2). Although their proofs are elegant,
they are special to G2. Recently Zeilberger [13] has also proved the G case of the
Macdonald-Morris conjectures. His proof should extend to other root systems.

In this paper we give a new proof of (1.2) which is entirely in terms of integrals
and which should also extend to other root systems. Our proof is an extension of
Aomoto’s [1] proof of Selberg’s [11] integral. See iskey [3] for a good exposition of
Aomoto’s proof. We were led to this by considering conjectures of Askey [3] that
have to do with adding roots in the Macdonald-Morris root system conjecture for G.
Askey conjectured

(1.3) C.T. (1- 11) (1- 1 ) G(xI x2;a,b)= 2(3a + 3b+ 1) (a,b)x- 2a + 3b + 1
g

(1.4) C.T. (1- 11)(1- x-1)(1- 12)(1- 221) G(Xl, x2;a,b)

+ + + + 1)
(2a+3b+l)(a+2b+l)

g(a,b),

*Received by the editors October 5, 1987; accepted for publication February 21, 1988.
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(1.5)

(1 XlX2) (1C.T.

(1.6)

(1 ZxX2) (1C.T.

1 )G(Xl,X2;a b)= 2(3a+3b+l)(3b+1)
xx (2a + 3b + 1)(7: 1)

g(a, b),

1 ) ( 1 )C(Zl,x;a,bxx (X-XXl) 1
XXl

6(3a + 3b + 2)(3a + 3b + 1)(3b + 1)(3b + 2)
(2a + 3b + 3)(2a + 3b + 2)(2a + 3b + 1)(a + 2b + 1)g(a, b).

In 2 we give the idea of the proof of (1.2). It is well known that (1.2) may be
written as a trigonometric integral formula (see, for example, Morris [10, p.46]). The
starting point of our proof is to write (1.2) as

43a/3b f (tl -[- t2)2a(i 2)2b( -[- 2/1t2 1)2b(t12 -[- 2tl/:2 1)2b(1.7)
r2

j (1 -b t;21)2a+4b+l(1 -[- t22) 2a+4b+i dtldt2

b).
The left-hand side of (1.7) is the integral referred to in the title of this paper. This is
done via three changes of variables: first, by letting xj ei (j 1, 2) in (1.1) and
using the orthogonality of the exponentials on [0, r] to obtain an integral on [0, r]2;

r ’2.second, by linear change of variables to obtain an integral on [-, ] and finally by
letting t. tan . to obtain the integral over R2. We note that this is the same change
of variables that Morris used in transforming his constant terms formula for An [10,
p. 95] into the Cauchy-Selberg integral [10, (6.6)]. The advantage of this integral
over the trigonometric integrals is that the integrand is a rational function of t, t2,
which can be easily manipulated using a computer algebra package like REDUCE. In
3 we prove some preliminary results. In 4 we complete the proof of (1.2) and prove
(1.3)-(1.5) as well.

Macdonald [8, conjecture(6.1)] has also conjectured generalizations of Mehta’s
integral formula for arbitary root systems [9], [8, (4.1)]. The G2 case does not seem
to be related to our integral given in (1.7). The Macdonald-Mehta integral conjecture
involves parameters that are constant on root length. We note that the two parameter
case of the G Macdonald-Mehta integral may be proved in the same way as the
one parameter case, which was proved by Macdonald [8, p.1002]. This is done by
transforming to polar coordinates. The resulting integral turns out to be the product
of a gamma integral and a beta integral.

We should mention that (1.3)-(1.6) and their q-analogues may be proved by other
methods. Zeilberger [12] proved (1.2) using the result of Morris, mentioned above,
related to An and Dixon’s [4, 3.1] summation of a well-poised 3Fu. Equations (1.3)-
(1.6) could be proved by trying to generalize Morris’s results and Dixon’s summation.
See Kadell [6] for such generalizations of q-analogues of Morris’s results and Askey [2]
for some extensions of Dixon’s summation. The author has proved (1.3).-(1.6), as well
as other similar results, by these methods. In 4 we state these other results without
proof. For the most part we restrict attention to (1.2)-(1.5), preferring to take a more
direct approach.

Kadell [7] has found yet another approach to proving (1.2) which should extend
to other root systems. This involves working with the function G(xl, x; a, b) directly
rather than writing it as an integral, and using the fact that derivatives have no
residues. Finally, (1.2)-(1.6) could be proved by extending Zeilberger’s [13] method
for the G case and then letting q --. 1.
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2. The idea of the proof. We label the roots of G2 as in Fig. 1.

xl+ 22

-2tz1- tz2 -it1- et
2

t + t2 2 tl+ z
2

-a 2 z ec
2

-t 2t2

FIG. 1
Let

(2.1) g’(a,b) C.T. G(Xl,X2;a,b).
Our goal is to prove that g’(a, b) g(a, b) for all a, b _> 0. The idea is to proceed by
induction on a. However to jump from a to a + 1 in one step would be too much to
ask for. Considering (1.3) and (1.4) we break it up into three stages:

Stage 1 C.T. [Cl]G 2(3a -t- 3b-4- 1) g’(a, b).
2a + 3b + 1

2(3a + 3b + 1)(3a + 3b + 2)9’(a, b).Stage 2. C.T. [axl[a2]G (2a + 3b + 1)(a + 2b + 1)
Stage 3.

where

6(3a + 3b + 2)(3a + 3b + 1)(2a + 1) 9’(a, b)C.T. [allia][al + a2lG (2a + 3b + 2)(2a + 3b + 1)(a + 2b + 1)

[klal + k2a21 (1 Xlklx2k2)(1 x’kick),
for k, k Z. Each stage corresponds to adding an additional pair of opposite short
roots. After Stage 3 all that will remain is to prove the result for a 0 since

(2.2)
g(a + 1, b) 6(3a + 3b + 2)(3a + 3b + 1)(2a + 1)

(2a + 3b + 2)(2a + 3b + 1)(a + 2b + 1)"
The case a 0 is equivalent to b 0 since we have

Long roots of G - Short roots of G2 A.
The result is trivially true for a b 0. The case b 0 follows from (2.2) and Stage
3 by induction.

To prove Stages 1-3 we rewrite each stage as an integral and use an idea of
Aomoto. To give the reader a taste of our method we work through the proof of Stage
1. If we let
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(2.3)

w(t) w(tl,t;a,b) (tx + t)a(tl t)b(t + 2tlt 1)b(t + 2tlt 1)b

(1 + t)2a+4b+l(1 + t22)2a+4b+l
then we may write Stage 1 as

43a+3b / 4 2(3a + 3b + 1)43a+3b f(2.4) ’ (1 + t w(t)dt (2a + 3b + 1) r w(t) dt,
R R

using the same change of variables used to derive (1.7). It is here that we use Aomoto’s
idea. To get f w(t)dt in terms of f w(t)dt we use

R: R

0o

f f 2t w(t)dt+2a/ ti
w(t)dt-(2a+4b+l) l+t tl+t2

R R2 R

w(t)dt

tl w(t) dt + 2b/ 2tlt2 w(t) dt+ 2b
t t2 t q- 2tlt2 1

R R

2t(t+t) w(t)dt+ 2b
tl + 2tt 1

We can make some progress by using the fact that w(t) is invariant under the trans-
position t

tl t2(2.6)
t :1: t t 4- t

It follows that
t

w(t) dt
1 f dt(2.7)

tx 4- t--’-’ ~"
R R

t2 w(t) d t + w(t) d t-2"8 t22 + 2tt2 1 t2 + 2tlt2 1
R R

f tit2
4- f tl(tl

t + 2t t2 1 w(t)dt t + 2tlt 1
R R

R R2

Then (2.5) becomes

(2.9)

w(t)dt

(via t t on the first
integral)

1

t -4- 2tlt: 1 w(t) dt.

/ / 1
0 (-3a 3b 1) w(t) dt + 2(2a + 4b + 1)

1 + t w(t) dt
R R

1
w(t)dt+ 4b t + 2tlt 1
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The problem that remains is to get fa2 +2tlt2_x w(t)dt in terms of fa2 w(t) dt and

f2 w(t)dt. The transformation tl t2 is not helpful here. We need another

transformation that leaves w(t)dt invariant. The real reason why w(t) is invariant

under t t2 is that the root system G2 is invariant under the linear transformation
given by

which is also the reflection through the plane orthogonal to the vector a2- ax. Recall
that a root system is invariant under any element of the Weyl group, the group
generated by the wa, where a is a root and wa is the reflection through the hyperplane
orthogonal to a. The Weyl group for G2 is generated by wa-al and wa. The extra
integral transformation that we need will correspond to wa We study the action of
this reflection on the roots:

G2 01 20I o2,

02 ’ 0I 2

We need a transformation

(2.10) f. 2 ___, 2, (tl, t2) (fx (tl, t2), f2(tl, t2))

with the following action:

(2.11)

1

l+tl
1 1 (t + t2)2

l+t’ 1+t22 (l+t2x)(l+t2)2’

(tl t2) 2 (t + 2tit2 1)2 (t] + 2tit2 1) 2 (t "t- 2tit2 1) 2

(1 + t)(1 + t) (1 + t)2 (1 + t)’ (1 + t)(1 + t)2 (1 + tl2) (1 + t)2"

The transformation that does the job is

(2.12) fx(tx,t2) tl, f2(tl,t2)
1 tit2 (tl :fi -t2).
tl +t2

In 3 we show that

(2.13) f g()w(L) dL / g(f(L))w(t)dL,
R R2

for a certain restricted class of functions g.
Now we return to the problem of evaluating fa t+2txt_x w(t)dt. A routine

calculation shows that

(2.14)

(2.15)

1 f (tl -4- t2)
t + 2txt2 1 (l+t)(tl

(tl + (tl + (tl +
(1 + t2)(tx t2) -(1 + t)(1 + t]) + (1 + t)(tx
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It follows that

(2.16)
[ 1

w(t) d t f (tl + t2) w(t) d t
J t + 2tit2 1 J (1 + tl2)(tl t2)
R R2

(by (2.13) and (2.14))
1 [ (tl + t2)2 w(t) d t
2 J (1 + t)(1 + t)

(by applying t t2 and
using (2.15))

Substituting this into (2.9) gives

1/1- 1 + t w(t)dt

(by applying f, then t

/ 1
w(t)dt(3a + 3b + 1) w(t) dt 2(2a + 3b + 1)

1 + t21
R2 R

and Stage 1 follows. The proof of Stages 2-3 is analogous and will be given in 4.
3. Preliminary results. The main result of this section is Lemma 3.6. It con-

tains a list of integrals that we will need in the proof of Stages 2-3. In the proof of this
lemma we will use the transformation formula (2.13) for f. A more formal statement
of this formula is given in Lemma 3.2. The idea of the proof of Lemma 3.2 is to write
both sides of (2.13) as an integral over [0, r] 2, using the same change of variables men-
tioned after (1.7) in the introduction, use the transformation T(01,02) (-01,01 +02)
and apply Lemma 3.1. The proofs of Lemmas 3.1 and 3.2 are omitted. In the proof
of Lemma 3.6 we will also need to calculate the image of certain rational functions in
tl, t2 under f. This was done using the computer algebra package REDUCE.

LEMMA 3.1. Let h:[0, r] 2 --, R be continuous; then

dOld02
[o,,1 [o,,d

Let

where
01,01 "- 02)

h* (01,02)
h(r 01,01 "" 02 71")

f 0 01 --02 71",

$’f 7r < 01 + 02 271".

wo(t)--(1 + t)(1 + t)w(t).
LEMMA 3.2. Suppose g: 2 is a continuous function that satisfies

(i) gwo is bounded on 2,
(ii) (go f)wo can be extended to a continuous function on R2, where f is defined

in (2.10) and (2.12). Then

g( t) w( t) dt / g(f( t)) w( t) dt.
R R2
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For notational convenience we let

1 1 (t -{-- t2) 2
1 + t’ 1 + t’ ( + t)( + t)"

This notation is related to the notation introduced in Stages 1-3. Using the same
change of variables used to derive (1.7) we have

(3.5) C.T.[a]k’[a]k[a +
4"++’++ f > > >

R2

where w(t) is defined in (2.3) and kl, k2, k3 are nonnegative integers.

LEMMA 3.6.

(3.7) f(t + 2tit2 1) < cx > w(t)dt 0,

R2

tl(3.8)
t q- t2

R2

(3.0)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

t
tl t2

t2(tl h-

t + 2tt2 1

5f< c2 > w(t) dt < 0/1 > W() dt
R

1/
R R

f 1-- tit2 <al>W()dt= 3f
R2 R2

R2 R
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Proof. Equation (3.7) follows from (3.3) and

(t + 2tt2 1) <a ><a> -(t + 2tt2 1) <a ><a2>.
We note that (t] + 2tt 1) <a ><a > satisfies the conditions of Lemma 3.2 since
it is equal to <a +a2 > < a2 >. Whenever we apply f to a rational function in the
remainder of the proof we leave it to the reader to verify that the nction involved
satisfies the conditions of Lemma 3.2.

Equation (3.8) follows from (3.7) and
t t

tl + t2 tl + t2
1
< al >< a2 > {-(t + 2tit2 1) + 3(1 + t) + 2(1 + t) 4}.

Similarly (3.9) follows from
tl t2

I 2 2 1
1
< ><= > ((t + tt= 1) + (1 + t) + (1 + t)).

We have

t2(t + t2) (1 tit2) < 0/1 >,(3.16) t + 2tit2 1
< 0/1 > < 0/1 > q-t q- 2tt2 1

(1 tlt2)
t + 2tit2- 1

and (3.10) follows.

(1- tlt2)
t + 2tit2 1

and (3.11)follows by (3.9).-- <0/1

and (3.12) follows.

$ t2(tl q- t2)
<0/1> t + 2tlt2 l <al >

f t+-*t2 tl
<0/1

< 0/1 -- 0/2 > t+-*t2 f tl*-+t2

t + 2tlt 1

We observe that (3.13) is equivalent to

A( t)w()d =0,

where

since

A(t) 4I(t) + 3 < 0/1 - 0/2 >2 --6 < 0/1 >< 0/1 -" 0/2 >,

I(t) =< 0/1 >< 0/2 >< 0/1 -- 0/2 >,

0/1 >2 tl*-*t2 f

A(t) I(t)(-2 + 3t + 6tlt= 3t)
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so that

/A(t)w(t) dt -2 f I(t)(1 3tlt2)w(t)dt,

since I(t) is invariant under tl t2.

It follows that

(1 tits) t(1 + t)
(t + t)

t(1 + t) + (1 +tlt2).(t + t) (t + t)

2 fI(t)(1-tlt2)w(t)dt--/I(t)(l+tlt)w(t) dt,

since I(t) is invariant under f and tl t2. Therefore,

f I(L)(1 3tlt2)w(L dL 0,

as required. This completes the proof of (3.13).
Equation (3.14) follows from

t + 2tlt 1 t22 + 2tit2 1

Finally, (3.15) follows easily from (3.10), (3.14), and (3.16).
4. Proof of Stages 2-3 and (1.2)-(1.5). In this section we use Lemma 3.6

to prove Stages 2-3, thus completing the proof of (1.2)-(1.4). Finally, we show how
(1.5) follows from (1.3) and (1.4). For kl, k2 0 we have

0 >kl >k(4.1) 0 tl < < () dL
2

-(4a + 8b + 2kl + 1) [ < al >kl< a2 >k2 W()d
R2

+ 2(2a + 4b + k + 1) [ < al >1+1<a> w(L) dL
J
R

+2a
tl +t2

+ t2x + 2tit2 1
R2

tlt+ 4b t + 2tit2- 1
R2

< al >kl< a2 >k2 w(t) dt
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Letting kl -0, k2 1 in (4.1) and using (3.8)-(3.12), we find that

f (3a+3b+2)/(4.2) < 0/1 >< 0/2 > W()dt 4(a + 2b + < a2 > w(t)dt.

Hence, by (3.5) we have

C.T. [0/1][0/2]G 43a+3bT1"2 / 16 < a ><a > w(t) dt

(3a + 3b + 2) 43a+3b /(a + 2b + 1) r2
4 < a > W()dt

(3a+3b+2)
(a + 2b + 11

C.T. [0/11C

2(3a + 3b-b l)(3a + 3b + 2)g,
(2a + 3b + 1)(a + 2b + 1) (a, b) (by Stage 1).

This completes the proof of Stage 2.
We cannot prove Stage 3 directly. Instead we use (4.1) to get fR2 < 0/1 >2 W(t) dt

in terms of fa. < 0/1 > W()dt and fa. < 0/1 >< 0/2 > W()dt. Then we show how

Stage 3 will follow from Stages 1 and 2 using (3.13). Letting kl 1, k2 0 in (4.1)
and using (3.8), (3.9), (3.11), and (3.15)we find that

(4.3) 2(2a + 3b + 2)/< 0/1 >2 W()dt

_3 (3a + 3b + 2) / < 0/1 > w(t)dt 2a / ( 0/1 > 0/2 > W()dt2
R2 R

2(2a + 6b + 3) / < 0/1 >( 0/2 > w(t) dt (by (4.2)).

We have

3(2a d- 1)
(2a + 3b + 2)

C.T. [0/1][0/2]G

(by (3.13))

16 < 0/1 >< 0/2 > W() dt

(by (4.3))
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6(3a + 3b + 2)(3a + 3b + 1)(2a + 1) g’(a b)(2a + 3b + 2)(2a + 3b + 1)(a + 2b + 1)
(by Stage 2).

This completes the proof of Stage 3.
At the beginning of {}2 we showed how Stage 3 implies (1.2). We remark that

(1.3) and (1.4) follow from Stages 1 and 2 together with (1.2). We have been unable
to find a proof of (1.5) or (1.6) in terms of integrals. However (1.5) follows easily from
(1.3) and (1.4). In order to show this we need to recall how the Weyl group acts on
polynomials. For c kick1 + k2o2, where kl, k2 E ’ and c, a2 are the roots from
the root system G2 as in Fig. 1, we let

xa xk112k2.
The elements w of the Weyl group W act on monomials by

and by linearity on Laurent polynomials that are linear combinations of the xa. For
w in the Weyl group W we have

(4.4) C.T. xaG C.T. xw(a)G,
since G is symmetric with respect to the Weyl group and w does not change the
constant term. Utilizing (4.4) we find that the left-hand sides of (1.3)-(1.5) can be
written as

(4.5)

(4.6)

(4.7)

Hence,

C.T. [a]G 2C.T.(1 Xl)G,

C.T. [al[a2]C 2C.T. 2- 31 + C,
12

C.T. [2c1 + a]G 3C.T. [al]G C.T. [all[a]G
]" 6(3a + 3b + 1) 2(3a + 3b + 2)(3a + 3b + 1) ]
(2a+3b+l) (2a+3b+l)(a+2b+l) ]g(a’b)

(by (1.3), (1.4))
2(3a + 3b + 1)(3b + 1)

(2a + 3b + 1)(a + 2b + 1)g(a, b),

which is (1.5).
5. Other results. In this section we state other results that are similar to (1.3)-

(1.6). These may be proved by extending Zeilberger’s [12] proof of the ordinary G2
case as mentioned in 1.
(5.1)

4(3a + 3b + 2)(3a + 3b + 1)(3b + 1)C.T. [O1][C1 o21G (2a - 3b + 2)(2a -- an -- 1)(a + 2b + 1)
g(a, b),

C.T. [O11[O - ff21[1 2]G
6(4a + 3b + 4)(3a + 3b + 2)(3a + 3b + 1)(3b + 1)
+ ab + a)( a + ab + + ab + + + 1) b),
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C.T. [o/1][o/2][c o2]G
(3a + 3b+ 2)(3a + 3b+ 1)(3b+ 1)

=6
(2a+3b+l)(a+2b+2)(a+2b+l)

b(4a + 3b + 4)(3a + 3b + 2)(3a + 3b + 1)(3b + 1)
-(2a + 3b + 3)(2a + 3b + 2)(2a + 3b + 1)(a + 2b + 2)(a + 2b + 1) ’ g(a, b),

(5.4)
C.T. [o1][o o2][o +

6(3a + 4b + 4)(3a + 3b + 2)(3a + 3b + 1)(3b + 2)(3b + 1)
(2a + 3b + (2a + 3b + )(2a + 3b + 1)(a 2b + 2)(a + 2b + 1)

g(a’ b),

C.T. [O1][O1 O2][20/1 --6(6au + 20ab + 23a + 12b2 + 28b + 16)
(2a + 3b + 4)(2a + 3b + 3)(2a + 3b + 2)

(3a + 3b + 2)(3a + 3b + 1)(3b + 2)(3b + 1)
(2a + 3b + 1)(a + 2b + 2)(a + 2b + 1)

g(a, b),

C.T.[oI][OI + O/:2][O/1 O/][O1 + 2a2]G
18(3a + 3b + 4)(3a + 3b + 2)(3a + 3b + 1)
(2a + 3b + 4)(2a + 3b + 3)(2a + 3b + 2)

(2a + 2b + 3)(3b + 2)(3b + 1) (a, b)(2a + 3b + 1)(a + 2b + 2)(a + 2b + 1)
g
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UNE q-INTÉGRALE DE SELBERG ET ASKEY*

LAURENT HABSIEGERt

Résumé. Nous prouvons une conjecture de R . Askey ("Some basic hypergeometric extensions of
integrals of Selberg and Andrews," SIAM J. Math. Anal., 11 (1980), pp. 938-951), qui propose une
q-généralisation de l'intégrale de Selberg :

r
i

0 J
1

	

n
I t` - tJI2z

	

tc
-1(1 - t`)y-1 dtl . . dtn .

p lai<j~n

	

i=1

Nous en déduisons une conjecture de Morris sur le terme constant de :

I

(x0/xj)a(gxj/x0)b

	

(xi/xj)c(gx /xi)c,
j =1

où (x) k = ( 1-x)(1-qx) . . . (1-q kx). En appendice se trouve la preuve d'une autre conjecture Askey, liée
à la q-conjecture de Dyson .

Abstract. We proue a conjecture by R . Askey ("Some basic hypergeometric extensions of integrals of
Selberg and Andrews," SIAMJ. Math. Anal., 11(1980), pp. 938-951) on a basic extension of Selberg's integral :

1

	

J

1

	

n
I t` - tJl2z

fl ti -1(1 -

t)1 dtl

. . dtn .
0

	

0 lai<j~n

	

i~l

We deduce from this a conjecture due to Morris about the constant terra in the expansion of

11 (x0/xj)a(gxj/xo)b

	

(xil xj)c(gxjl xi)c~
j=1

	

1 i<j~l

where (x) k = (1-x)(1- qx) . . . (1- q kx) . In the appendix thee can be found a proof of another conjecture
by Askey related to the Dyson q-conjecture .

Key words. q-analogues, beta and gamma functions, constant terra, q-integral, continuons, Macdonald
conjecture

AMS(MOS) subject classifications. 33A15, 33A75, 05A19

1. Introduction . Commençons par définir les notations que nous utiliserons par
la suite . Dans tout l'article, q désignera un nombre réel de l'intervalle ouvert ]0, 1[ .
En fait, on peut, la plupart du temps, considérer q comme une indéterminée et se
placer dans l'algèbre des séries formelles associées à q ; les résultats démontrés restent
en général valides . Toutefois cette restriction à ]0, 1[ permet de donner un sens évident
à l'expression "faire tendre q vers 1 ."

Posons (a )~ = fl 0 (1- aq n ) et pour n E C, (a) n = ( a )~/ (aq n )~ . La q-fonction
gamma, introduite par Jackson [7], est définie sur C\Z - par

rq(a) =
(q

a
	 (q))°°

	

q)
'-a .~ (1-

Jackson [7] définit également la q-intégration par
1

(1 .1)

	

J f(t)dgt = ( 1 - q)

	

.Î(g n )g n.
p

	

n=0

* Received by the editors June 2, 1986 ; accepted for publication (in revised form) June 12, 1987 .
t Département de mathématique, Université Louis-Pasteur, 7, rue René-Descartes, F-67084 Strasbourg,

France .
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nous montrerons que :

(1 .4)

~k(t1, . .

LAURENT HABSIEGER

Les dernières notations à introduire pour comprendre la q-généralisation sont, en
prenant pour k un entier naturel :

11

	

(Eijtil tj)k,
1Çi~j~n

tn )

	

~
n . pES"

Ou E0 =
f

'
9

k-1
, tn) -

	

11

	

11 (tj

	

g l ti)(tj

	

q-I ti) .
1~i<j<n l=0

L'intégrale de Selberg est une intégrale à plusieurs variables généralisant la fonction
bêta. Elle vaut :

1

	

1

	

n
(1 .2)

	

. . . j

	

11

	

(t i - tJ)2k 11 tl-1(1 - t,) "

	

dt1 . . • dtn
j 0

	

0 1~i<j~n

	

i=1

n F(x + (j -1) k)F(y + (j -1) k)r(jk + 1)
j= 1

	

h(x+y+(n+j-2)k)h(k+1)

Askey [3] en a proposé plusieurs q-extensions . Nous allons prouver sa première
conjecture, à savoir :

( 1 .3)

	

J 1 .

	

1

	

n

	

(tcg)oo.3)

	

fi

	

t2k tj ql-k

	

f t; -

	

d9t l

	

d tny

	

9'
0

	

0 lai<j~n

	

ti

	

2k i=1

	

(tiq ),

(y+ ( j -1)k)I'kx(2)+2k2(3) n rq(x+ (j -1)k)rqq(jk+ 1)
x+ y n+ -2 k I k+ 1j-1

	

rq(

	

.y

	

(

	

,~

	

) ) q(

	

)
q

De manière équivalente, en notant que

t2k L 1-k

	

= (-1)k(titJ.)kq'-2)
(

	

tl

	

tJ
q

	

,
ti

	

2 k

	

tj k ti

	

k

n
Ok(t) ~ tl+(n-1)k-1	1 °O d t9

	 (tq)
Y

si i<j,
si i>j,

[0,1]"

	

i=1

	

tig o0

_ ( - 1 ) k(2) q(2)(2)+k(2)x+2k2(3)

fl r q (x+(j-1)k)F q (y+(j-1)k)F q (jk+1)
j= 1

	

Fq(x+y+(n+j-2)k)rq (k+1)

	

'

où x et y sont deux nombres complexes de parties réelles suffisamment grandes pour
assurer la convergence de l'intégrale et où k est un entier naturel .

Regardons maintenant ce qui se passe lorsque q tend vers 1 . Askey [4] a prouvé
que lim q~ 1 r q (x) = r(x) . De plus on vérifie sans peine que lim q~ l (qt)~/(qYt)~ _
lim q . i n=0 (q l-Y ) n(tg Y ) n/(q) n =~ 0 (1 - y) n t n/n! _ (1- t) Y-1 et le théorème de con-
vergence des sommes de Riemann nous assure que limq~i f ô f (t) dqt = f o f (t) dt. Ces
remarques nous permettent de vérifier que lorsqu'on fait tendre q vers 1 dans (1.3) et
(1 .4), on retrouve bien (1.2) .

Dans le deuxième paragraphe, nous étudierons quelques propriétés utiles de la
q-fonction gamma et de la q-intégration puis nous calculerons 0 k . Nous montrerons
ensuite au troisième paragraphe qu'il suffit alors d'évaluer la quantité

n

( 1 .5)

	

J

	

Z(t) ~ ti -1 tiq ~

--

	

t , y

	

dq t.
[0,1]"

	

i=1

	

( iq )oo
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Nous suivrons alors la preuve de Selberg pour montrer que (1 .5) peut se mettre sous
la forme

fl rq(x + (j --1)k)rq(y + (j-1)k)
R(qx,

	 q y )
j 1

	

h q (x+ y+(n + j -2)k)

	

P(qy) '

où R et P sont des polynômes à deux et une variables respectivement :
A ce stade, dans la preuve classique, on utilisait la symétrie en x et y pour montrer

que R(X, Y)/P( Y) était une constante, indépendante de X et Y. Ici cet argument
n'est plus valable car (1 .5) n'est pas symétrique en x et y. Nous démontrerons toutefois
au quatrième paragraphe que l'on a R (X, Y)/ P( Y) = C(k)X", où Cn (k) est une
constante, indépendante de X et Y, grâce à l'utilisation appropriée de développements
limités .

Le cinquième paragraphe sera consacré au calcul de Cn (k), suivant deux méthodes .
Au sixième paragraphe, nous utiliserons (1 .4) pour prouver une conjecture due à
Morris [9] :

CT l x°II

	

(q-ç)

	

xi
(qL')

	

x= `II-' (q)a+b+jc(q)(j+1)c
II

	

-

	

.
j=1 xj a

	

xo b 1~i<j~l xj c

	

xi c j=o (q)a+;c(q)b+;c(q)jc

Enfin, en appendice, nous prouverons une autre conjecture d'Askey, tirée du même
article que (1 .3 ), en montrant qu'elle est essentiellement équivalente à la q-conjecture
de Dyson.

Après rédaction de cet article, Kadell nous a communiqué son mémoire [8] dans
lequel il démontre également la conjecture d'Askey sur la q-intégrale de Selberg . Il
reprend, en les généralisant, les méthodes développées par Aomoto [2] . Les techniques
de démonstration de Kadell ne recouvrent absolument pas les nôtres .

2. Calculs préliminaires . Tout d'abord, montrons quelques formules relatives à la
q-fonction gamma .

PROPRIÉTÉS . On a :

2.1)

	

Fq(n+ 1
)=(1

(q )"q)n p(

	

our n E N
r

I' (a + n)	(qa)n

	

hq(a-- n) (1-- q )n
(2.2)	q	-

r q (a)

	

(1q)n
et

	

r q (a)
=(qa_n)

	

pour n E N,
-

	

n
rq (x + a)

	

_«
(2.3)

	

lim
x-~ao r q (x)

. 1-q 6

	

(1 - q)«(-1)aq(a21>
(2.4)

	

l~m

	

h q (--a + E) =
e-0 1-q

	

pour a EN.
(q)a

Preuves. Propriété (2.1) est une conséquence triviale des définitions de F q et (q),, .
Pour n E N,

F q (a + n)
F q (a)

(1- q)1-a-n(q)=/(qa+n)=
-	

(1 - q)'-a(q)~/(ga)~

=(1-q)-n(qa )=	(qa )n
a a+n

	 -	

(

	

1_ n
)~ (

	

q)

La deuxième partie de (2.2) est une conséquence de la première .
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et

ce qui entraîne (2.3) .
De même,

donc

(2.5)

(2 .6)

On a :

r q(-a + r)

rg (x+ a)

	

1 - -a (qx)~-

r x

	

( q)

	

x+a
g( )

	

(q

	

)

lim (q x)~ = lim (qx+a)~ = (0)~ = 1,
x-~+oo

	

x-+ao

=(1

lim
1 q r - a + r

E-O 1-

	

q C

	

)
q

Le point de départ de la théorie des fonctions hypergéométriques basiques est le
théorème q-binômial :

LAURENT HABSIEGER

)
l+a-£ ( q )~

q (q-a+E )

cXD

(1 _ q)l+a-E
	 (q)=	1	

1- q E

	

' (q l+E) ~ '
fl

1 (1- q-t+X )

__	( 1 q) a	__ (1 q) a (-1 ) a q~ a21 ~

11l 1 (1 - q-t )

	

(q)a

(ax)~

	

°° (a)n x n	 _

	

•
(x)oo

	

n=o Cg)n

En fait il est équivalent à la formule intégrale fondamentale :

f 1 x-1
(
gt )Qo

	

rq(x)r q (Y)
j o

t

	

(qyt)
dqt = T

q (x+~

	

Y)

Pour le voir, il suffit d'appliquer les définitions :

J
1 tx-1 (qt)~

	

°~

	

nx (qn+1 )ao ,
yt dqt = ( 1-q)

	

q

	

n+y

	

(d après (1 .1))
o

	

(q )~

	

n-o

	

(q

	

)~

-q)
>.:(q)~ (gy ) n x

)
n

n (q
y
)~ (q)n

(q

(q)~ (qx+y )oo

(qx)
(grâce a (2 .5))

(q )~

	

~

- rq(x)r q (y) par définition de I' .r q (x+ y) '

	

g

On remarquera que la formule (2.6) est une q-généralisation de la formule d'Euler :
J~ tx-1 (1 - t) y-1 dt = r(x)r(y)/r(x+ y) .

Notons aussi l'égalité suivante, valable pour o E Sn

(2.7)

	

f

	

f(o-t) dg t = f

	

f(t) dg t.
[O,l] n

	

[O,1]'

En effet J [O,i] fl f(ot) dqt = ( 1 q)n L,mEN" lli qm °` xf(gm~l, . . . qm= ) = ( 1 q) n ~ LENX
jj . qµi x f (qµ1, . . . , qµn) = J[o,lJXf(t) dg t . Passons maintenant au calcul de Ok .



on a forcément

Or

UNE q-INTÉGRALE DE SELBERG-ASKEY

PROPOSITION. On a la formule explicite suivante :

(2 .8

	

Q t =
rg k (n+1)

	

ti
k ( )

	

fi n !

	

~ ~ t1=i~jn , k

Démonstration. Posons

On a

R (t) _

y[0,1]n

	

I

	

tlq
Do t fik( )

	

q

	

g

	

(

	

),

Q
t
- rg k (n+1)

k( )

	

nl

Fq k (n + 1) k-1(1_q')(1

n !Ok (t)

H1<i~j n (ti/t;)k

jI t`

	

(grâce à
i ~ j tj k

R(t)_	 Ok(ot) _

	

(gt~jl toi)k
(T~Esnllji~J(ti/t-~ ~ t t,)k

	

a i<, ( aj/ ~i)k

1- qk t(T; / t(i

	

q k tue; - t~ i
e o-

=~ ( )i<j 1 - tQ;/ t(yi

	

(

	

t . - t .
J

	

t

en notant r (o-) la signature de la permutation o-. Posons V(t) = rj 1 i <; n
voit que le produit

(QO
t)

	

tx+(n-1)k-1	 (tiq)~ dq t =
[ o,l]

	

k(0 t)
11

1
tx+(n-1)k-

(t

1
q[0,1]

( tiq)°D dq t .J

	

n k

	

11 i

	

t
y

	

n

	

i

	

t y
1

	

( lq )~

	

)~

k-1

	

l
fi
i< ; I=0

	

titj
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(t; - ti ) . On

R(t) V(t) _~ £(o) fl (g k t~j - t(i)

est un polynôme antisymétrique, qui est de degré au plus (2) . C'est donc un multiple
scalaire de V(t), ou encore R (t) est une constante en t . Pour évaluer cette constante,
on calcule le coefficient de tn- ' • • • t2t,° dans RV(t). Notons I (u) le nombre d'inversions
de la permutation o-, de sorte que e (o-) _ (-1) I (~) . On vérifie alors aisément que la
contribution du terme e (o - ) fi i <; (q k t~; - t(i ) au coefficient de t

	

t2 t° dans la
somme R V(t) est donnée par e (o•) gk(2)-kI (° ) (- 1) I (0) , c'est-à-dire q k(2)-kI (r) . De là,
R (t) q -k(2) n'est autre que la fonction génératrice, sur le groupe des permutations, du
nombre des inversions . La variable utilisée étant q -k, cette fonction génératrice est
égale à h q-k (n + 1), comme il est bien connu (cf . [6] ), ce qui donne R (t) = r q k (n + 1) .

J

3. Factorisation de la q-intégrale de Selberg. Prenons comme point de départ la
forme (1 .4) de la conjecture . Puisque pour tout o- E S,,,

	

Q(O Q,t)
11
~ tx+(n-1)k-1 ( tiq) dtn

	

k

	

ï

	

t y

	

g

[0,1]~

	

1

	

( ~q ),

(
~0 a,t)

fi
tx+(n-1)k-1	 ( t~iq)~

J

	

n

	

t y

	

g
[0,1]~

	

1

	

( ~,q ),

t x+(n-1)k-1 ( tig)~ d t

	

râce à 2 .7
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c'est-à-dire :

3 .1

	

0 t = rgk(n + 1) -1 kc2) c2)c2)O1 t n t-(n-1>k •
(

	

)

	

k()

	

n!

	

(

	

)

	

q

	

k( ) fl i
i-1

Posons donc :

F x

	

k = -kx(2)

	

0 1 t

	

tx-1 (tiq)°° d t
[0,1]

	

.(3.2)

	

ri( ~ Y~ )

	

q

	

n

	

(
k( )~ i

	

tqy)

	

q
1

	

lao

En confrontant ce qui précède à (1 .4), on voit qu'on est ramené à prouver le théorème
suivant .

THÉORÈME. La formule suivante est valide.

n !
g2k2(3)

fl rq(x +(j-1 ) k)rq(Y +(j-1)k)rq (jk+1)
(3 .3)

	

Fn(x, y, k)=
I' q k n+1

	

rq(x+Y+( .~n+'-2 k rq k+1(

	

)J 1

	

) )

	

(

	

)

Démonstration. On suit tout d'abord la preuve classique : on développe zk(t) _
«EN' c(a)t,« où les c (a) sont presque tous nuls, de sorte que

Fn(x, y, k) = q-kx(2)
c(a)

	

fl tX+«;-1(qt dqt~

	

t

	

y t
«

	

[0,1]
n

(q ~)~

_ -kx( 2") c(a) rq(x+ai)Fq(y)

	

râce à 2.6-g

	

- rq(x+Y+a1) ' grâceg

	

).

«

Or O k (t) est symétrique, par construction, donc 0 k( t) est aussi symétrique, grâce à
(3 .1) . On a donc

(3 .4)

	

Fn(x, y, k) q

	

n-kx(2)

	

c,(p) 11 r
g(x + Ni)rq(Y)

OÇ(~1Ç . . .Çf2n

	

i rq(x+y+lai)

ou

c'(/3) = c (f3) • + { a ENn: ~ T E Sn l E7a = f3}

(= c(/3) . n ! si /3 a toutes ses coordonnées distinctes) .

Or t~ k (t) est homogène de degré 2k(2), donc kn (n -1) _ x(3 1 + • • • + f3n nf3n et ainsi
/3n1((11) .

De plus, 0 k (t 1 , • • • , t;) divise Q k (t 1 , • • • , ta ), pour 1 j n, et ainsi la puissance
de t; dans 0 (t 1 , . • • , t n ) est au moins celle de tj dans k(t 1 , • • • , t3 ) . On en déduit que :

(3 .5)

	

pour j E {1, • • .,n},

En outre,

Alors 2(n

(3.6)

/3j>k(j-1) .

1

	

1 q r

	

1 q
-r

t

	

nn t t

	

t

	

tn

	

i<j 1

	

~

	

J

	

t

	

J

1

	

-l

_

	

- q

	

-q

	

Ctz -
g-

`t;)Cti-q't;)
i < j l

	

ti tj

	

t i ti

._ n ti2(n-1)k Ok(t) •ll
i

-1)k-/3n+1_j (j -1)k, en utilisant (3.5) . Donc

(3;~2(n-1)k-(n+1-j-1)k=(n+j-2)k pour 1 n.



Fq (x +y + (n +j - 2) k)
rq(x+Y+f3j)

est un polynôme en qx+y, de degré (n + j - 2)k - f3j . En reportant dans (3 .4), on trouve

F x k) - - -k(2)x c-

	

rq (x + (J- 1) k)rq (Y) R x
y)

p

	

~
n(~Y~

	

q

	

~ (l~)~rqx+Y+ n+J'-2 k a(g ~q ~
(

	

(

	

) )

où R,3(X, Y) est un polynôme en deux variables, de degré en Y égal à

((n+j-2)k-f3j)=k n .
2

Le produit mis en évidence ne dépend plus de f3 ; donc Fn (x, y, k) peut se mettre
sous la forme

Fq(x+(J - 1)k)rq (Y) Ro(gx, qy )
j rq(x+y+(n+j-2)k)

	

g k(2)x

De plus,

rq(Y)(1_q)('
rq(Y (J

	

) )

	

(g)(j-1)k

Donc

( 3 .7 )

	

Fn(x, y, k) _-
Fq (x+(J 1)k)r4(Y+(J 1)k) R(qx, q'')

j

	

hq(x + y + (n + j -2)k)

	

g k(PxP(gY)'

où R est un polynôme en deux variables, de degré en Y inférieur ou égal à k(2) et
où P est un polynôme en Y de degré k(2) :

n

	

n-1
(3.8)

	

P(Y) = n (Y)(j-1)k = n (Y)jk-
=1

	

j=1

Il faut maintenant démontrer que R(X, Y)/(X" P( Y)) est une constante, indépen-
dante de X et Y.

4. Simplification de R(X, Y)/(X")P(Y)) . Prenons Fn (x, y, k) sous la forme (1 .1)
n

	

mi +1
F x k = 1 - n -k(2)x

	

01
m l . .

	

m) n q
n

	

m ix (	,q	 q	)~
n( , Y~ ) (

	

q) g

	

~ n k(q ,

	

m~+y
meN

	

i=1

	

(q

	

)oo

La fonction È k est symétrique . Elle est de plus nulle si deux des variables sont égales
(en fait pour k 1, le cas k = 0 étant trivial) . Donc

Fn (x, Y, k) = n ! q-k(2)x (1 - q)n

	

Ok(gml, . . . , qmn)
OÇm i~ . . . ~ m n

(4.1)

Or

.x
(g m~+1)

m	.~g ~	°°

(gm`+y )cx

L (gm', . . .,
qmn ) = n n (gm'_gr+mj)(gm~_g-~+m ) ;

i<j 1
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De (3.5) et (2.2), on déduit que

hq (x+f3j )

est un polynôme en qx, pour 1 j

rq(x+(j-1)k)

n. Il résulte alors de (3.6) et (2.2) que, pour 1 j n,
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donc s'il existe une paire { i, j } {1,

	

, n } telle que Imi - m; I < k, alors
0 k(qml,

	

, qmn) = 0 . Ainsi, en supposant les m i ordonnés, on a
(4.2)

	

~k(gmi, . . ., gmn)~O~O~m 1 ~m2 -k~ . .<mn-(n-1)k.

(4.3)

	

En particulier (4.2) entraîne que m 1 +

	

+ mn k(2) . Il y a de plus égalité
si et seulement si m i = ( i -1) k pour 1 i n .

Faisons tendre x vers +00 : grâce à (4.3),
(q (i-1)k+1)

Fn(x, y, k) n!(1 q)nOk(1, qk, . . . q(n_1)k)
fl1 (q(i-1)k+y)~

En utilisant (2.3), on voit que
fq (x+(j -1)k)rq(y+(j-1 )k) .R(qx,qy)

	

C

	

R(qx,q y )

Fq(x+y+(n+j-2)k)

	

qk(2)xP(qy)

	

1 (y)
q k(~)x

On en déduit que nécessairement X' (2) divise R (X, Y). On peut donc écrire Fn (x, y, k)
sous la forme

fl fq (x + (j- 1)k)F q(y + (j-1 )k) Q(qx~ qy)
j-1

	

Fq(x+y+(n+j-2)k)

	

P(qy ) '

où P( Y) = i-i-1 (Y);k .
Pour a E {0, • • • , n - 2} et b E {O, • • • , k -1}, posons Ya,b = q-(ak+b)

(4.4)

	

On remarque que les Ya , b sont les seuls zéros de P et que la multiplicité
de Ya, b dans P est n -1- a.

Prenons y = -ak - b + E où E E ]O, 2[, a E {O, , n - 2}, b E {O, • • • , k -1 } et x tel
que x - [x] E ]O, 2[ . La seconde condition ne fait que nous assurer qu'il n'y a aucun
problème de définition et ne nuit pas à la généralité du problème . On fait tendre E
vers zéro. D'après (2.4),
(4.5)

	

H Tq((j -1)k - ak - b + E) C2(a, b)(1-

car (j -1) k - ak - b ~ O' j a +1 . Grâce à (4.4), on a :

(4 .6)
Dans (4.1), on pose rn =p; +(j -1) k, ce qui est licite, grâce à (4.2) . On a :

fi (q(;-1)k-ak-b+E+pi)=~, C4(a, b, p)(1- qE )`~ (P) avec w(p) a + 1,1
.1

car {j: (j-1)k-ak-b+p~_O}c:{j : (j-1)k-ak-b~O}={1, • • • , a+1} .
Récrivant (4 .1) à l'aide des p;, on trouve (pour k 1) :

Fn(x, y, k) = n !(1 q) n

(qp.+(i-1)k+1)
TT p x	°d

•

	

ii q p.+(i-1)k+yi

	

(q

	

)~

Dans cette somme, seul le dénominateur varie quand y tend vers -ak - b et donc, en
utilisant ce qui précède,
(4.8)

	

Fn (x, -ak-b+ E, k)---C S(a, b, x)(1-q E ) - o avec w a+1.

En combinant (4.5), (4 .6) et (4.8), on obtient

Q
(qx~ q-ak-b+E) C6(a, b, x)(1- q E ) n

	

avec w a + 1 .

(4.7)

P(q-ak-b+E )
C3(a, b)(1-qe)n-1-a •

q,pn+(n-1)k)
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Ceci montre que Ya, b est zéro de Q(X, Y), d'ordre au moins n - (a +1) . D'après (4.4),
on peut en déduire que P( Y) divise Q(X, Y) . Or, d'après (3.8), d YR(X, Y) k(2)
d °P. Ceci prouve que Q(X, Y)/ P( Y) est un polynôme en X, disons Q0(X ) .

Pour déterminer Q0, prenons y = --( n -1)k + r et faisons tendre r vers zéro. On
a alors

4.9)

	

rq(x+(J- 1)k)rq(E-(n -J)k) G7(1 - E -n
(

	

~

	

rq(x+(J•- 1)k+£

	

q ))

De plus, pour 0 p l

	

pn et p n >0, on a :

(qp'
-(n ')k+e

)aol = o((1 - qE )-n )
J

et

11 (q-(n-J)k+E)~1 Cg(1 - q E)-n•

J

Donc, grâce à (4.7),
(4.10)

	

F,. (x, -(n -1)k+ r, k) C9(1- q E )-n '

où C9 est indépendante de qx car le terme prépondérant de la somme est celui
correspondant à p 1 = = pn =0. En confrontant (4.9) et (4.10), on trouve donc
Q0(X) = C9/ C7 : c'est bien une constante indépendante de x. Posons désormais
Q0(X) = Cn(k) •

5. Calcul de la constante Cn(k) . Il existe plusieurs manières pour déterminer
C,, (k) . Suivons tout d'abord la preuve classique . Pour À E C,

(5 .1)

donc

d'où

car

1

0
tx -l t A d

9
t

1-q
= 1- qx+À (Re (x+À)>0),

x

	

1
lim 1 _q

	

tx-1 À d t= 0 si Re À> 0 .
x-+0 1

		

q-q o

Ainsi on a le q-analogue de lim x , 0 x$ô t x-lf(t) dt =f(0), à savoir :

lim 1- q x Ç 1 x-1t f(t) dq t =f(0) si f est continue en 0 .
x-+ 0 1 - q 0

Par symétrie, on a la formule correspondant à (4.1)

F,. (x, y, k) = q-k(2)x n 1

X

lim 1 q F x k1-

	

n( ,Y, )x --~ 0

	

q

1

	

1
=n!

	

. . .
° t,-1

1

	

1

0

	

t„

1

t2

n-1 k-1

	

n=1
n n (0- glti)(0 - q-1 ti) = n t1 .
i=1 1=0

	

i=1

J
1

	

~n	 (q ti)o0
Ok(t1 •

	

. , tn) il t

	

(q
i

	

Y ti )~
dq t,

t2

	

i=1

n -1

	

( ti o01

	

2k-1 q	, tn-1) ~ t

	

(q
i

	

yt1)= dqt,
i-1
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Ainsi

On a alors

d'où

x
n 2 1

lim
-	 q Fn(x, y, k) = nFn_1(2k, y, k)g22k (

	

)
x-o 1-q
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c

	

• n-1	 rq(Jk)rq(Y +jk)	rq (Y)	
n(k)

	

rq(y+(n+J'-1)k) rq(Y+(n - 1)kJ 1

	

)

2k2(n21)

	

n-1
=

	

rq((j + 1)k)r q(Y + (j- 1)k)q

	

nCn_ 1(k) jI
J-1

	

rq(Y+ n +J' -1 k

	

'(

	

) )

C k = n !
rq (nk) 2k2() C _ k = • . . = n ! n I'q (Jk) 2k 2 (3)n( )

	

Fq
k

	

n l( )

	

II r k q
( )

	

J1

	

q( )

car C 1(k) =1 . Or

rq (jk + 1) = rq (jk) , 1--qJk = rq (jk) ,
~ r q k+i ~ rq k ~ 1-q k~ F(k)

r qk(n+1),
j

	

(

	

)

	

J

	

( )

	

,

	

J

	

q

donc

nt

	

n rq(Jk+l)

Cn(k)_r k (n+1)H1 rg(k+i)'q

	

J

ce qui achève la démonstration du théorème (3.3) .
On peut également trouver Cn (k) de manière plus explicite, en précisant les

identités (4.9) et (4.10) . En effet, pour y = -( n -1) k + r et r tendant vers zéro, on a,
à partir de (4.1)

Fn (x, -(n -1)k+ E, k)

n (q(j-1)k+1)
yl !(1, • . . q(n_1)k)

	

_(n-j)k+E~ ( 1

	

q)n
j=1 (q

	

)~

(n-1)k) p rq (-(n-j)k+ £)(1 -- q)-(n-1)k+E

j

	

r q ((j -1)k+ 1)

n I Ok(1, . . . q(n-1)k)(1- q) 2" )
fl;rq((j1)k+1)

	

II r q (-(n -j)k+ r) .
-

	

;

D'autre part, on sait que

F x k fl
rq (x+ (j-1)k)rq(-(n -j)k+ E)

J1

	

C k .n( ~Y~ )

	

rq(x+(J '-1)k+£)

	

n( )
-

On en déduit que :

n ï zk(1, . . . ~
q
(n-1)k )(1 _, q)-2k(2>

(5.2)

	

Cn(k) _

	

IIJrq((J'-1)k+

	

.1)

Rappelons que
k-1

Ok(1, . . . q (n -1)k) =

	

(q ik - qjk+l)(qk qJk-1 ) •
0~i<j~n-1 1=0



On pourra sortir de ce produit une puissance de q dont l'exposant vaut :
k-1

	

n-1
2 ik =

	

2 ik2 = 2 k2

	

i (n -1
0~i<j~n-1 1=0

	

0~i<j~n-1

	

i=0

On en déduit que :

Ok(1,
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=k 2n(n-1)n-1_
3

2n-1
)=2k() .2

n 3

-1
q(n-1)k) = g2k2(3)

	

H

	

kf
(1- q(j-i)k+l)(1- q(j-i)k-1)

0~i<j~n-1 1=0

k-1 n-1

	

k n-2
2k2(3

	

() ii ii

	

1q

	

- qrk+l)n-r II fl
( 1

1=0 r=1

	

1=1 r=0

2k 2 (3) n (q)jk-1 n-1

q

	

~

	

fi
(q)jk

j=1 (q)k-1 j=1

q2k 2 ()2k2(3) n-1 rq(jk)rq((J -1)k+ 1)
j =1

	

rq(k)

En remplaçant dans (5.2), ceci nous donne :

Cn (k) n .
1
q

	

11
2k2(3)~ rq (jk) = n i	 g2k2(3) rq (jk+ 1)

rq(k) rqk(n+l) rq(k+1)'J

	

J

pour le mêmes raisons que précédemment .
Le lecteur attentif notera que l'on peut aussi obtenir (5 .2) en faisant tendre x

vers +00 .

6. Application à une conjecture de Morris. Il s'agit de calculer le terme constant de

1

	

to

	

ti

	

ti
II

	

q~ Cfi

	

t
i-1

	

i a

	

0 b 1-i~j l

	

J c

On pose x i = q -a ti / to , ce qui ne change pas le terme constant . Alors

(t)°

	

tt

	

a _1

	

1-a

	

b
--

	

q- _

	

1- g 	ii
( 1 -

q
l+a x,)

ta

	

to b

	

1= 0

	

xi

	

1=1

- (-1) aq -(a21)xi a (gxi)a+b •

On a donc

CT fi t°

	

~` jI 8
t`

i =1 ti
a ()(q)

t0 b i~ j
( j )

tj c

	 (q	_ (-1)1aq-l(°2')CT
fl

	

fi x ; a a+b+1
i ~ j

	

xj c i

	

(q

	

xi) Qo

Donnons maintenant une généralisation de (5 .1) . Comme me l'a fait remarquer Askey
dans une correspondance privée, celle-ci correspond au q-analogue de la notion
d'intégrale généralisée introduite par Hadamard . On pose, pour A E C:

1

	

_

tA-'dt= 1 q .
o

	

q

	

1 - q~

i)

- qrk+1) n-r-1

(1

	

q)
2(j-1)k .-
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Ainsi, si f est une série formelle, on peut définir f ô tx-1f(t) dq t, pour x E C\Z. On aura
de plus :

1
(6.1)

	

lim1
q

	

tx-1f,(t) dqt = CTf,
1-q °

où le symbole f désigne l'opérateur formel défini ci-dessus . On choisit pour paramètres
dans la q-intégrale de Selberg : n = l, x = -(n -1)k- a + E, c E ]0, 1[, y = a + b + 1, k = c .
On fait tendre c vers zéro. D'après (6 .1),

xCT

	

c-i

	

x-a (qxi )~
lJ

	

fl 1

	

a+b+1i ;

	

xj c

	

q

	

xi

f l _qE
£-+0 1-q

~ n(_1)c(2)q(2)(2)+c(-(n-1)c-a)(2)+2c2(3) lim 1 - q
E- o 1-q

fl rq(-a-(n-j)c+r)I'q(a+b+(j-1)c+1)I'q(jc+1)

j

	

rgb+(.Î '-1 c+1+r)r g (c+1-1

	

(

	

)

	

)

d'après (1 .4) . En effet, le membre de gauche de (1.4) n'était défini que pour Re x assez
grand. Avec la nouvelle définition introduite ci-dessus, on peut, par analyticité, l'étendre
à tout C\Z . Or

1-q6

	

(1 _	 q)a+'c(_-1)a+;cq(a+2
")

lim

	

Fq (-a -jc+ s) -
E-60 1-q

	

(q)a+;c
grâce à (2.4), et on a le système d'égalités :

r q (a + b+ jc+ 1) _ (1- q)-a-b-j~(q)a+b+jc~

rq(b+jc+1)=(1-q)-b-jc(q)b+;c,

rq ((j + 1)c+ 1) _ (1 - q) (j+1)c(q)(;+1)c,

I'q(c+1)=(1-q)-c(q)c •
On trouve donc :

CT fi t° (q -ç)

	

rj

	

£ t`
i=1

	

ti a

	

t0 b 1~i~j n

	

t; c

(-1)
na+c(2)+na+c(2)

q
a

n
fl
-1 (q)a+b+;c(q)(j+1)c

j=o (q)a+;c(q)b+;c(q)c
ou

a+1

	

n
c -c a+(n -1 c n +2c2 n

a = -n
2 + 2 2

	

(

	

)) 2

	

3

a+ 1

	

1 n

	

c2 n(n -1)(2n 1
+n

	

+c a+-

	

+-	
2

	

2)(2) 2

	

6

n c

	

n
+2c2

n + c n + c2n(n --1)(2n -1)
= ( 2

)(
2
) - (n - 1)c 2 () 2

	

3

	

2 2

	

12

c n

	

4c(n -2)

	

c(2n -1)
2 2 c-1-2c(n-1)+

	

3

	

+1+

	

3

-
c n c(3-2n)+

3
~

22

	

(6n-9) =0

n
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J

	

QO t

	

t-a+s-1	(gti)oo 	
d t

[0,1]n

	

c

	

i
( )

	

i

	

a+b+1 t

	

9
(q

	

i)+,
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On trouve donc bien la forme "Cauchy-Selberg" de la conjecture B de Morris [9] :

1

	

to

	

ti

	

t.
CT H -. (q-) ~ fi

	

rij
ti=1

	

i a

	

0 b 1-i~J 1

	

J c

On remarquera que lorsque a = b = 0, ceci fournit la q-conjecture de Dyson avec tous
les paramètres égaux (cf . [1]) .

Appendice : Une autre conjecture d'Askey . Posons

a n ; x)

Hn(al,

	

, an ; x) _

=

	

fi

	

nJ[0,1] i ~i J tj a t i

ou
{1
9

Gn(a1, . . . , an ; x) _

- 2(tiq~

si i<j,

si i>j.

=
I
I
-1 (q)a+b+jc(q)(j+1)c
'

j=o (q)a+jc(q)b+jc(q)c .

Fn(a1, . . .,an ;x)
Fn(0, . . .,0;x)

tx-1

	

(tiq) 0

	

d ti

	

(
q a .+1-x)

	

9 ,
ti

	

co

rq(a1+ . . .+an+1-x)
h9(a 1 +1) • • • hq(an +1)F q (1-x)

THÉORÈME. Pour (a 1 , • • , an ) ENn et x E C\N* , on a la formule suivante :

Gn(a1, .

	

, an ; x) = Hn(a1, . . , a n ; x) .

La conjecture initiale d'Askey [3, Conjecture 4] disait que :

Fn (a 1 , . . . , an ; x) = Hn(a1, . . . , a n ; x) ' [Fq(x)Fq(1-x)]n.

Il y a équivalence avec le théorème car
n

Fn (O , . . . O ; x)

	

n 11

	

t 1x dqt fi F q (x)r q(1-x),
[o,l]

	

1

	

( rq

	

)oo

	

l-1

d'après (2.6) . Askey avait mis en évidence le fait que sa conjecture entraînait la
q-conjecture de Dyson à n paramètres :

CT

	

£. tl

	

= ( q ) a l+ . . .+a n

1~i~j~n

	

tj a i

	

(q)al

	

(q)an

Nous allons en fait montrer que le théorème est une conséquence de la q-conjecture
de Dyson à n + 1 paramètres . Puisque cette conjecture a été prouvée (cf. Bressoud et
Zeilberger, [5]), ceci démontrera le théorème. Il va sans dire qu'une preuve directe du
théorème serait bien plus intéressante mais nous n'en avons pas trouvé .

D'après (2.2), Hn (a 1 , • • • , an ; x) est une fraction rationnelle en q x , définie sur
C\N * . Développons

II (ri - = A(a)ta,
lue-

	

t
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où la somme est prise sur les n-uplets d'entiers relatifs a = (a 1 ,

	

, an) tels que
a1 + • • •+a=0. Alors:

Gn(a1, . . .,an ;x)

=A(a)

	

tx+« i-1	(tiq)~ 	r x

	

1 - x)]"
-

i

	

(tq
a i+1-x [q( )I'q(

[0 1~ n t «

	

,

	

i

	

)~

I'q (x+al) Tq (ai+1 - x)
_~ A(a) ~

a

	

i

	

I'q x

	

rq 1-x

	

I'q at~+1+a~( )

	

(

	

)

	

(

	

i)
Cette dernière relation montre bien que Gn est définie sur C\Z. C'est de plus une
fraction rationnelle en qx. Montrons que Gn admet un prolongement continu aux
entiers négatifs, qui coïncide avec Hn . Ceci suffira à prouver que Gn et Hn sont égales
car deux fractions rationnelles qui coïncident en une infinité de valeurs distinctes sont
forcément égales .

Soient a0 E N, x E ]0,1[ . On a :

r (a;-ao+x)[' (ai+1+a0 -x)
Gn(a1, . . . ~ an ; -ao+x) _~ A(a) T'rj	 q	q	

a

	

i q(-ao+ x)I' q(1 + ao - x)rq(ai + a i + 1) .

Si a >_ 0, alors

I' q ( a - a 0+x) - (q-ao+x)a~ (q-a°)a

rq(-ao +x)

	

(1- q)" (1- q)"

quand x tend vers zéro et

0
(q-ao)a - (_1)a (2)-ao a1_	 q	(q)ao
(

	

q)

	

(1
_

q)
a

	

(q)a o-a
Si a O, alors

LAURENT HABSIEGER

rq(a - ao - x)_ (1 - q)
-a

	

(1 - q) - "
rq(-a o + x)

	

(q
a-ao+x)-a (q"

-ao
)-a

quand x tend vers zéro . Et de même :
(1- q)-«

	

(_1) aq- (a 2 1 > -( a o (q ) Qo_	
(1 - q)"

	

(q)a o-a(qa-a° )-a

= A(a) fi (-1)aiq(2`)	(q) a0+a;	
~
a

	

T

	

(q)a0-«i(q)a ;+ai

grâce à (2.1) et au fait que i1 q-axai = q-ao~
ai =1 .

1

si a 2 a0 ,

si a~a0 .

Ainsi, dans tous les cas, on trouve que :
Fq(a -ao +x) _ (_ 1)«q(2>-aoa •	 (q)aolim

	

a
x-~o rq(_ao+x)

-
( 1- q)

	

(q)ao-a
On en déduit que Gn(a 1 ,

	

, an; -a0 + x) admet pour limite quand x tend vers zéro

Gn( a 1 , . . . , a n ; -a0 )
(_1)"`q(2`)-ao«i

	

(q)ao r q(a;+1 +ao)
=A(a)fi

a

	

(1_q)ai

	

a i.+ 1+ai~ r q a0+1i

	

(q)ao-ai q(

	

)

	

(

	

)
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Or, pour i E {1,

	

, n}, on a la formule suivante, conséquence classique de (2 .5 ) :

ft0\

	

t

	

(-1)«`q)(q)ao+a, to «`q ~ _~	 _
ti ao

	

to a;

	

« (q)_(q)±,a o «,

	

a ; « ti

On voit donc que :

Gn(a1, . . .,an;-ao)=CT fl
oui jan

	 (q)a0± . . . ± a,1
(q)ao

	

(q)a„

T q(ao+ • • •+ an +1)
h q(ao + 1) • • • Fq(an + 1)

Ainsi Gn (a 1 ,

	

, a n ; -a0) = Hn (a 1 , • • • , a n ; -a0) et le théorème est prouvé .
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A PROOF OF RAMANUJAN’S IDENTITY BY USE OF LOOP INTEGRALS*

KATSUHISA MIMACHI?

Abstract. Ramanujan’s identity means the following:

(a; q), (ax; q)oo(q/ax; q)(b/a; q)oo(q; q)oo

where (a" q)=Hf=%(1-aqJ), (a; q), =(a; q)o/(aq"; q) for -<n<+oo, and [b/a]<lxl<l, [q[<l.
This identity plays an important role in the theory of "q-analysis" (see, for example, [1], [3]). Various
proofs of it are known ([2], [4], etc.). The aim of this paper is to derive the identity by another method,
that of loop integrals.

Key words. Ramanujan’s i1 identity, residue calculus

AMS(MOS) subject classifications, primary 33A30; secondary 10A45

1. Notation. Set

C, := {p, exp (x/-z-fq)lp, := 1/2(Iql" / Iql"+), 0 o =< 27r},

(. := {ft. exp (x/Z]-q)lfi. := 1/2[a/b[(]q] -"-l + ]q]-"), 0_-< q =<27r}

in the usual counterclockwise direction. Define

f(t):
(tq2/a;’q)00(a/tq; q)00

tX; q)1(1/t; q)00( tb/a; q)00’

F(t) := (a; q)00(b/a; q)00(q; q)(tq2/a; q)00(a/tq; q)
(b; q)00(a/q; q)00(q2/a; q)00(tx; q)l(1/t; q)00(tb/a; q)00

(a; q)00(b/a; q)00(q; q)00
(b; q)00(a/q; q)00(q2/a; q)00

f(t),

I(C) := f(t) at,27rx/-s]

Res q (t) := "the residue of q (t) at y".
t=y

2. The function F(t) has simple poles at qJ, a/bq (j =0, 1, 2,... ), and
1Ix. The infinite point and the origin 0 are essential singularities.
LEMMA 1. If Ib/al < Ix[ < 1, lal < 1, [q[ < Ib[, then we have

+00 (a; q),
x"- (ax; q)00(q/ax; q)00(b/a; q)(q; q)00

(x; q)00(b/ax; q)00(q/a; q)00(b; q)00

4-00 +00

ResF(t)+Res F(t)+ E Res.F(t).
j=0 t=q t=l/x j=0 t=a/bq

Received by the editors April 22, 1987; accepted for publication (in revised form) December 15, 1987.
t Department of Mathematics, Faculty of Science, Nagoya University, Furocho, Chikusa-Ku, Nagoya

464, Japan.
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Proof By summing up the part ofnonnegative powers in the left-hand side, we have

+Z (a’,_q).x. (a; q)oo +oo +oo. (b/a’, q)j(aq")Jx.
.=o (b; q (b; q) .=oj=o (q; q)

(a; q)+
E (xqJ). a (b/a, q)

(b; q)=o .=o (q; q)

_(a;q) a. (b/a; q)J
-(b; q)=o (J;; q)

2 Res F(t).
j=O t=q

The above expansions are valid when la] < 1, lx] < 1. Similarly,

(a; q)"x"= (q/b; q).( b )’
_(q/b; q)m (qn+l/a; q)( b )"-(q/a; q).=(q"+/b; q)

(q/a; q)m n=l j=o (q; q)j

(q/a; q)=o ,= X ax/ (q; q)

_(q/b;q)(b) (b/a;q)(qa/b)
-(q/a’, q) =o(bqJ/ax;q)(q;q)j

2 es. F().
j=0 t=a/bq

We note that the above expansions are valid when Iq/bl < 1, ]b/axl < 1. On the other
hand, we have simply that

(ax; q)(q/ax; q)(b/a; q)(q; q)
Res F(t)
t=,/x (x; q)(b/ax; q)(q/a; q)(b; q)’

which completes the proof.
What remains to be done is to estimate the effect of essential singularities at

and zero. We obtain the following lemma.
LEMMA 2. Under the condition lal < 1, Iq < Ibl, Ib/al < Ixl < 1, we have

Res F(t)+ Res F(t)+ Res. F(t)=0.
j=0 t=q t=l/x j=0 t=a/bq

Proof Due to the definition, we only have to prove

Res f(t) +tf(t) + Res f(t) 0.
j=O t=q j=O t=a/bq

Cauchy’s theorem shows

Resf(t)+ =/x-oReSf(t)+j Res .f(t)= I( C,) I( C).
j=O t=q t=a/bq

Therefore the proof is completed from the following lemma.
La 3. Under the condition Ib/ al < Ix[ < 1,
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(1) if lal<l, then II(C,)l-->O form+o;
(2) if Iql<lbl, then II()l - O for n - +o.
Proof (1) For m 1, 2, 3,. ., we have from the definition

f(Iql"t)=(a/q)"(tq2lql’/aq"; q),(aq"/tqlql’; q)(tqlql/a; q)
--1(tq]q]/q ;q)l(q/tlql ;q)l(tblql/a;q)(txlql ;q)l

Hence for 0 2,

If(P e)l If(polq[ e)l
la/ql x I(poqlql e’/aq; q)l

(1) x l(aq/poqlq] el; q)(poqZlql el/a; q)[

I(oqlql e’/q; q)m(q/Polq[ e; q)1-1
I(oblql e/a; q)(oxlql el; q)l-.

For each factor in the right-hand side, we have the following estimates:
-1 poq2+lq[ elI(poq21ql el/aq; q)l H 1-

(2)
j=o aq

=o a =o a

(3) I(aq"/poqlql e’/=-’*; q)ol -< 1-I
j=O

(4)

(5)

(6)

(7)

(8)

(9)

I(PoqZlq] e’/-=l/a; q)l <- H
j=O

----<fl 1+
j=0

m-1

I(poqlql e4-=--l/qm; q),l- II
j=O

m+j

=< 1+
a

poq+[ql e4=-
q

aqJ-1

Po

pq2+Ja )’

H (1 -Ipoq’+l) YI (1 -Ipoq’+l) > o,
=0 =0

I(qm/polql e4:--l; q)l- [I
j=O

m+j

polql e’/=--"

=> 1- >0,
Po = Po

I(poxlql e’/-q*; q),l--> 1 -Ipoxql >- 1 -Ipoxl > o,
+oo pobqjlql,, e4----1,

I(oblql ee-=--’/a; q)l H 1
j=o a

pobqm+j

a

pobq
a

By (1)-(8), there exists a positive number M such that

]f(p. e’/-) < M" (0 =< q =< 2,rr).

>0.
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Hence,

27rx/-Z-f f dII(C.)l = If(P,,, )[" Id’l

-< P--- Max If(p. e=a)l 2r Pm" M.27/" O--<q=<2

Consequently, for lal< 1, II(C)l- 0 if m-> +o.
(2) The proof is similar to (1).
THEOREM. Under the condition ]b/a] < Ixl < 1, ]q] ( 1, we have

+ (a; q)n
x

(ax; q)(q/ax; q)(b/a; q)(q; q)
(10) n=-" (b’, q)- (x’, q)o(b/ax; q)oo(q/a’, q)oo(b’, q)o"

Proof. Lemmas 1 and 2 verify (10), if ]b/allx]l, ]q](1, ]qllb], ]a]l.
Analytic continuation implies it is valid for
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